Shear cell technology

Towards a next generation of meat analogues

Jacqueline Berghout

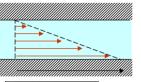
Towards a next generation of meat analogues

Anisotropic, fibrous structures

Soy protein isolate and wheat gluten Plant Meat Matters project

Soy protein isolate and pectin Dekkers *et al.* (2016)

Soy protein concentrate Grabowska *et al.* (2016)


Soy protein concentrate Krintiras *et al.* (2016)

Pea protein isolate and wheat gluten Schreuders *et al.* (2019)

Why shear cell technology

- Shear cell technology to improve scientific understanding of dense polymer blends under flow
 - Decouple mixing and structure formation: simple shear flow to make anisotropic structures

'Shear banding' by Vermant - Current opinion in Colloid & Interface Science - 2001

 Create large (7 kg) and thick (3 cm) fibrous structures that can be cut and shaped into whole muscle meat fractions

Shear cell technology

Conical shear cell (~100g)

Schematic representation

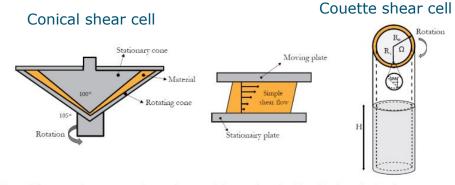


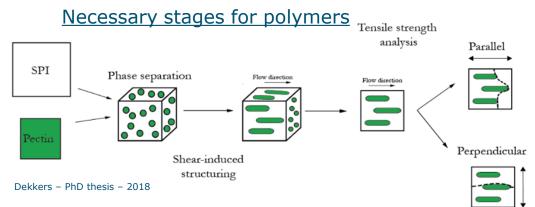
Fig. 1.1 Illustration of cone-in-cone and couette device in which materials can be deformed with simple shear flow

Dekkers - PhD thesis - 2018

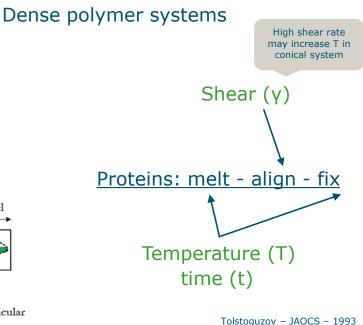
Shear cell technology

Couette shear cell (7 kg)

Krintiras – PhD thesis - 2016

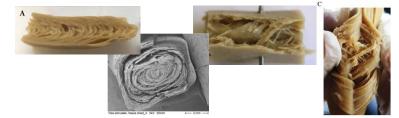

Shear cell technology What is happening in the shear cell?

Processing steps



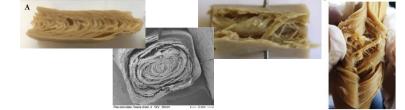
]

Cornet et al. - Critical Reviews in Food Science and Nutrition - 2021



High-moisture extrusion and shear cell technology For meat analogues | similarities

Anisotropic structures: layered, fibrous



Cornet *et al.* - Critical Reviews in Food Science and Nutrition – 2021 Dekkers et al. – Trends in Food Science & Technology – 2018 Osen – PhD thesis – 2017 Samard – Journal of the Science of Food and Agriculture – 2019 Grabowska – Journal of Food Engineering – 2016

High-moisture extrusion and shear cell technology For meat analogues | similarities

- Anisotropic structures: layered, fibrous
- Similar formulations, protein isolates and concentrates
 - Leguminous source such as soy or pea
 - Wheat gluten or polysaccharide
 - Water contents ranging from 50 70%
- Similar basic steps:
 - Mixing and hydration
 - Thermo-mechanical treatment
 - Cooling

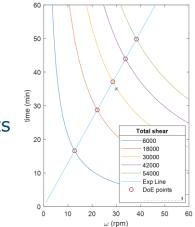
Cornet *et al.* - Critical Reviews in Food Science and Nutrition – 2021 Dekkers et al. - Trends in Food Science & Technology – 2018 Osen – PhD thesis – 2017 Samard – Journal of the Science of Food and Agriculture – 2019 Grabowska – Journal of Food Engineering – 2016

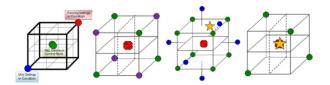
High-moisture extrusion and shear cell technology For meat analogues | differences

- Extrusion
 - Continuous process
 - Commercially available
 - Mixing inside the barrel
 - Simple shear flow and elongational flow
 - Temperature range: 100-175°C
 - More intense thermomechanical treatment
 - Residence time: 2-5 min
 - Mostly layered structures
 - Thinner strands of product

- Shear cell
 - Batch process
 - Not commercially available (yet)
 - External mixing
 - Simple shear flow
 - Temperature range: 95-140°C
 - Residence time: at least 20 min (conical shear cell)
 - Mostly fibrous structures
 - Large and relatively thick pieces

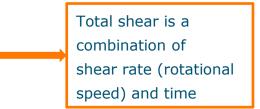
Cornet *et al.* - Critical Reviews in Food Science and Nutrition – 2021 Dekkers *et al.* - Trends in Food Science & Technology – 2018 Dekkers *et al.* - Innovative Food Science and Emerging Technologies – 2016

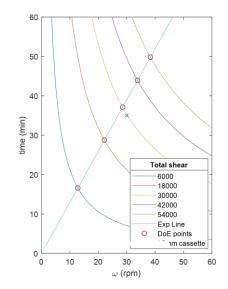

Research within the Plant Meat Matters project


- Create a window of operation for
 - Shear cell technology
 - Using soy protein isolate and wheat gluten
 - By studying the influence of process parameters on structure formation in the shear cell

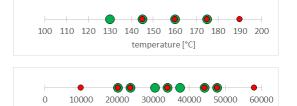
Window of operation

- 4 variables with 5 levels: 5⁴ = 625 experiments
 - Temperature
 - 'Total shear' = shear rate * time (assumption)
- Design of Experiments (DoE) to reduce # experiments = 31 experiments
- Output
 - Visual observation: with or without fibres
 - Product temperature: T_{core}

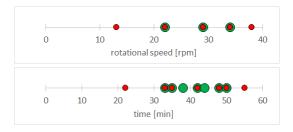




Window of operation Experimental details


- Recipe: soy protein isolate, wheat gluten, salt (NaCl) and water at 31% dry matter*
- Process parameter settings: 5 levels for each parameter
 - Temperature 1 130°C 190°C
 - Temperature 2 70°C 190°C
 - Total shear 1 6000 54000
 - Total shear 2 500 7500

Window of operation Results

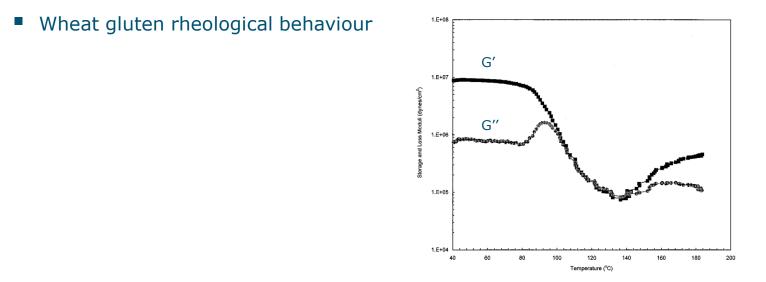


Total shear [-]

 No trend observed for a fibrous structure for the input parameters

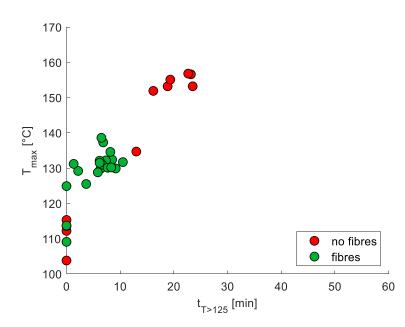
• Fibres

No fibres

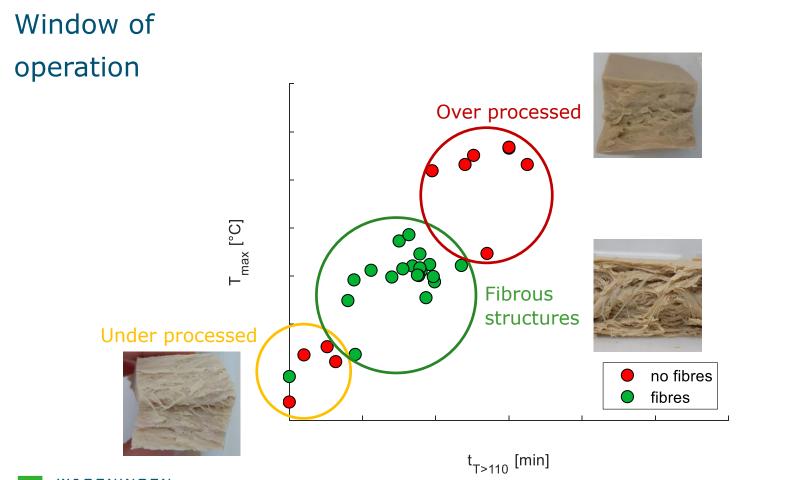

 Literature and experience show that T>120°C is important for structure formation of proteins

 There seemed to be a trend for a fibrous structure for the output parameter maximum T_{core} reached and T_{core}

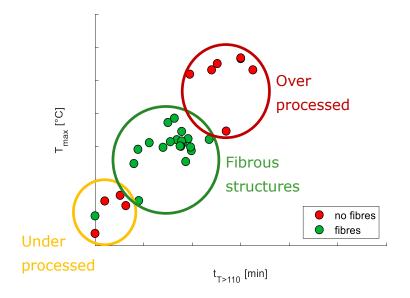
Hypothesis


Proteins `melt' as a function of temperature and time align and be fixed

There is a relation between the presence of fibres, time above T_{core} and max T_{core}



Relation between time above T_{core} and max T_{core}


- There is a relation
- Clustering of points with fibres and without fibres is preferred
- Search for another reference T_{core} that gives best clustering of data
 - Temperature that is relevant for structure formation
 - Separation of dots on the x-axis
- \rightarrow Allows to develop empirical model that relates time above T_{core} to process parameters

Summary of this research

- A window of operation was created for soy protein isolate and wheat gluten
- Time that T_{core} has been above a certain temperature can be related to fibre formation
- Over-processing should be avoided (max T_{core} and time)

Shear cell technology for meat analogues

Shear cell technology is very suitable for creating large and thick pieces of fibrous structures that can be cut into whole cut muscle meats

What is next:

- The insights obtained will be combined with our rheological and modelling work to improve the understanding processing conditions required for structuring dense polymer (protein) blends into anisotropic structures
- Follow up research will include different formulations, e.g. moisture content effects, recipes with other plant proteins

Thank you!

Special thanks to the PMM project team

Questions or suggestions

 \rightarrow during Q&A session \odot

Jacqueline Berghout jacqueline.berghout@wur.nl

