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the environment. 
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Chapter 1

General introduction

Els Weinans



2 General introduction

Complexity

Climate change, biodiversity decline and science-skepticism are three examples of chal-

lenges currently faced by science and society. These problems are not only complicated

(i.e. difficult to understand), but also highly complex (i.e. composed of many interacting

elements). Complex systems are characterized by interactions on different time scales

and spatial scales (Simon, 1991; Arenas et al., 2006), nonlinear interactions (Golberger,

1996; Phillips, 2003), and sometimes chaotic dynamics (Lorenz, 1963; Rickles et al., 2007).

Therefore traditional analysis tools have not been able to fully capture their behaviour

and there is an increasing interest in tools that are designed to deal with the dynamics

of complex systems (Ottino, 2003). This interest is stirred even more by the tremen-

dous amount of high quality data that is becoming increasingly available (Yaqoob et al.,

2016).

The main objective of this thesis is to explore how data sets from complex systems in dif-

ferent scientific fields can be used to get a fundamental understanding of their behaviour.

In this first chapter, I briefly introduce some of the concepts related to complexity sci-

ence, I explain why I explore these systems using time series analysis tools, and I give

an overview of how each chapter in this thesis contributes to our understanding of the

dynamics of complex systems.

Interactions on different scales

Complex systems are hierarchical. This means that a system is composed of interacting

subsystems. These subsystems can again be broken down into smaller subsystems, until

the subsystem with the lowest level is reached (Simon, 1991). Which subsystems should be

taken into account to understand and predict the overall dynamics of a system, depends on

the particular study objective and the knowledge of the system. For example, in physics,

the atom can be taken as a low level system (and not too long ago this was the lowest

level system known), but can also be considered as a complex system in itself (Simon,

1991). In biology, a cell, a leaf, a tree, a forest and a landscape are all subsystems that

could be addressed. Depending on the particular question, a scale can be chosen and

every scale can provide unique insights as “there is no single ‘correct’ scale on which to

describe populations or ecosystems” (Levin, 1992).

An interesting observation is that various systems have similar structures that repeat

on different levels. A simple example is a cauliflower, that seems to consists of smaller

cauliflowers that in turn consist of even smaller cauliflowers. For these systems, a pattern

is repeated on different scales, yielding a ‘scale free’ or ‘fractal’ structure (Mandelbrot,

1982). Scale free structures seem to be abundant not only in space (Mandelbrot, 1982),

but also in underlying network configuration (Barabási and Bonabeau, 2003) and temporal

dynamics (Zhang, 1991; Golberger, 1996).
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Hierarchical structures, scale-free behaviour and fractality have not only been identified

as emergent results of complex dynamics, but have also been used to quantify ‘complexity’

itself, especially in health care data. For example, the fractal dimension or the closely

related Hurst exponent (Hurst, 1956), have been used to infer complexity of fMRI data

(Rubin et al., 2013) and heart rate variability (Acharya et al., 2006). Furthermore, scale

free properties of oscillations (i.e. indicating a signal that consists of multiple oscillations

with different frequencies) are indicative of complexity for human psychology (Van Orden

et al., 2011) and human gait (DiBerardino III et al., 2010).

Nonlinear interactions

Linear interactions indicate that the response of one element is proportional to the change

in another driver element, as depicted in figure 1.1, left panel. Nonlinear interactions are

all interactions which are not linear. A possible driver is the amount if nutrients in a lake,

where the amount of algae is the response variable.

Sometimes, a linear assumption can be helpful as it greatly simplifies the analysis (Samuel-

son, 1947). However, for most real systems this linear assumption is only realistic for a

small range of driver and response values and therefore it seems to be most useful for pre-

dictions within that range and not for mechanistic understanding (Keen, 2001). Outside

of the linear regime, saturated behaviour is commonly observed. For example, increasing

nutrients only enhances algae growth up to a point, after which the algae are saturated

and an increase in nutrients has no effect anymore. This saturated behaviour is depicted

in the middle panel of figure 1.1.

Nonlinear interactions can lead to critical transitions. For this behaviour, a system can

exist in multiple states under the same conditions. A change in the driver can result in

either very little change in the system, as long as it remains in the same state, or result

in a very large change if the system jumps to the other state (figure 1.1, right panel).

The driver value for which the system suddenly jumps from one state into the next one

is called the ‘tipping point’. This behaviour can be observed in shallow lakes, where

sudden shifts from clear to turbid water can be explained by the existence of a tipping

point (Scheffer, 1997). These dynamics seem abundant in various fields of science, from

magnetization in physics (Yang, 1952) to social-ecological systems (Biggs et al., 2018) and

human psychology (Leemput et al., 2014), and have major implications for predicting and

managing systems.

For a tipping point to occur, a system needs a mechanism where a small change can

be amplified. One mechanism that can cause such a dynamic is a positive feedback

loop. In a positive feedback loop, the interactions between variables are arranged such

that an increase in one variable leads to growth of that variable itself. In the shallow

lake example, this positive feedback loop can occur through vegetation. An increase

in vegetation leads to clear water. Submerged vegetation, which is limited by light,
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Figure 1.1: Three response curves, varying from linear to non-linear. Lines depict the

stable equilibria and the dotted line represents an unstable equilibrium. Figure modified from

(Scheffer et al., 2000).

benefits from this clarity and therefore their growth is enhanced, stabilizing the high

vegetation/high clarity state. Similarly, when this state is disrupted, for example because

an increase in nutrients has caused an increase in algae cover and therefore an decrease

in water clarity, submerged vegetation will decrease, and the system will find a stable

equilibrium in the low vegetation/low clarity state (Kéfi et al., 2016).

These three response curves give a first impression of the complexities that can occur in

real systems that do not adhere to the linear assumption, and it has been the inspira-

tion for many books and articles (for example Gladwell (2006)). One can imagine, that

interactions in the real world do not happen in isolation, and therefore understanding

one driver-response interaction seldom suffices to understand and predict a system’s be-

haviour. An additional complicating factor is that, as multiple interactions are occurring

at the same time, synergistic effects might start to play a role, where the combined effect of

two drivers is not necessarily the additive effect of their individual contributions (Balduzzi

and Tononi, 2008; Staal et al., 2015), leading to even more nonlinear and unpredictable

dynamics.

Unpredictable dynamics

Various systems, like the weather, show highly unpredictable dynamics, making long

term predictions impossible. This is partly due to stochastic fluctuations (randomness),

or lack of understanding of the precise mechanisms. However, it is also possible that these

systems are intrinsically highly unpredictable and ‘chaotic’ (Lorenz, 1963). Chaos here

means that initial conditions that only differ slightly, can end up in considerably different

positions as time progresses (Lorenz, 1963). Consequently, if the initial condition is not

exactly known, or there is the slightest noise in the system, long term predictions are

impossible.
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A chaotic system may show scale-free dynamics and they can only arise from nonlinear

interactions, and therefore can be a consequence of the previous mentioned two properties

of complexity. Furthermore, a chaotic system is bounded, and some parts of the signal

may seem to repeat themselves. This can lead to ‘attractors’ in phase space. One simple

example of a chaotic attractor is the Hénon map (see figure 1.2, left panel).

Figure 1.2: The original Hénon map (one of the most simple discrete-time dynamical systems

that displays chaotic behaviour, according to the equations: xt+1 = 1− 1.4x2t + yt and yt+1 =

0.3xt), with it’s time delay embedding manifolds for X and Y. To create the time delay

embedding manifolds, instead of plotting X against Y, X and Y are plotted against time-

lagged versions of themselves. The three plots have different sizes and orientations, but the

general shape of the Hénon map remains the same.

A remarkable finding in 1981 led to the knowledge that most properties of a chaotic at-

tractor that consists of multiple variables, can be reconstructed using only one of the

variables involved (Taken’s theorem, Takens (1981)). Even though the proof is compli-

cated, the idea is quite simple: Different elements in a chaotic system are interacting

with each other. Because of these interactions, information from one variable is contained

in another variable. Therefore in principle one variable contains information of the full

attractor. Indeed, for the Hénon map it is clear that both the variable X and the vari-

able Y can reconstruct the shape of the original attractor (figure 1.2, middle and right

panel).

Time series analysis

There are many ways to study complex systems. In this thesis, I focus on time series

analysis tools. Three other approaches are worth mentioning. Firstly, simple models

are a popular approach to study complex dynamics. One benefit of simple models are

that they allow to isolate one element of the complex dynamics and therefore allow for a

thorough study of one of the many complexities. Furthermore, they often are generic and

therefore applicable to many different systems (Oreskes et al., 1994; Newell, 2012). The

simple driver-response figures (figure 1.1) and the Hénon map (figure 1.2) are examples



6 General introduction

of simplified models. One disadvantage is that these models can be quite theoretical

in nature, and the link to the real world is not always straightforward (Evans et al.,

2013b).

Secondly, computational, fully parametrized, mechanistic models have become increas-

ingly popular with the increasing available computational power. Especially in climate

science, these models have greatly enhanced our understanding of the possible future sce-

narios of our planet (Petersen, 2000). One disadvantage is that creating realistic models

requires quite some parameters that should be chosen based on mechanistic undertanding

or by fitting the model to data. This problem is partly reduced by the increase of data

availability that helps in the parametrization of the models (Curry and Webster, 2011).

Another difficulty with realistic models, is that these models are sometimes so complex

that analyzing them is as difficult as analyzing real-world data. Even when this happens,

the complex models approach can provide valuable insights, especially if data collection

is cumbersome (Grimm et al., 2005).

Thirdly, one approach of studying complex systems and one fundamental aspect of science

is performing experiments. Experiments allow for very clean hypothesis testing, especially

for inferring precise mechanisms such as causal links. However, experiments are not always

feasible (e.g. the climate system) or ethical (e.g. human drug experiments).

Time series analysis tools complement these approaches. The tools that I use in this

thesis are data-driven, meaning that they rely on time series data to infer a systems

dynamics, and thus do not assume any prior knowledge on the system. Therefore, these

tools are especially useful if precise mechanisms of underlying dynamics are unknown

and high frequency data is available (Ye et al., 2015a). I focus on two groups of time

series analysis tools in particular. First, I study Dynamical Indicators Of Resilience

(DIORs) (sometimes referred to as ‘early warning signals’, Scheffer et al. (2009)), that

are used to warn if a system is losing resilience (capacity to recover) for example because

a tipping point is approaching (see figure 1.1, right panel). Secondly, I use methods

based on Taken’s theorem (see figure 1.2), that use a systems attractor to infer a systems

complexity (Grassberger and Procaccia, 1983b) or to detect causal links (Sugihara et al.,

2012).

Simplicity

The three mentioned concepts demonstrate that complex systems cannot be assumed to

adhere to the assumptions of most traditional statistical methods. Therefore, ‘complexity

science’ is the relative new field of science that investigates these particular concepts and

finds new ways of unraveling the mechanisms behind these complex systems. There is

continuously a trade-off between diving into the complexities on one hand, but simpli-

fying it to a graspable problem on the other hand. For the development of tools, some

simplifying assumptions are often required, in order to benchmark the tools with a model
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that is actually understood. However, the models should still demonstrate the properties

of complex systems in order to ensure that the tools are actually complex systems analysis

tools. In this thesis, I have made an attempt to balance on this line where I look for both

simplicity and complexity at the same time.

Thesis overview

In chapter 2 I give a brief overview of ‘the human’ as a complex system, with subsystems

like the mood, the heart and the bones. I describe how complex system science, and in

particular dynamical systems theory, has provided the tools to analyze these different

subsystems. I emphasize two groups of methods in particular: Dynamical Indicators

Of Resilience (DIORs), that can be used to infer the likelihood of a tipping point in a

nonlinear interaction, and complexity quantification tools, that can be used to see how

complex (i.e. fractal/non-linear/chaotic/irregular) the behaviour of the subsystem is.

I demonstrate how both groups of methods are investigating different elements of the

subsystems and how both are valuable tools when assessing human health.

Chapters 3-5 are theoretical and focus on the resilience of a system, defined as the speed

in which it can recover from perturbations. In chapter 3, I explore the use of Min/Max

Autocorrelation Factors (MAF) to detect the direction of lowest resilience in a complex

system. MAF is a tool that has been developed as an alternative to PCA to reduce the

dimensionality of the data by disentangling the real signal from the noise, based on the

autocorrelation of the signal. I demonstrate that this tool is also surprisingly useful to

find the variables that are most vulnerable to external perturbations.

Chapter 4 takes the idea that the vulnerable variables can be detected and provide a

‘direction’ in which perturbations are most dangerous, even further by exploring if this

direction can also predict the future state after the system has passed a tipping point.

We demonstrate that mutualistic systems have properties that allow to extrapolate the

direction of these vulnerable variables to detect the direction where the system will most

likely move into in the future.

During the analysis for chapters 2 and 3, I discovered some complications in applying

the resilience framework to multivariate systems. Therefore, in chapter 5, I assess the

different indicators of resilience loss that have been developed for multivariate systems

and evaluate their performance in different scenarios. I demonstrate that there is not one

indicator of resilience that clearly outperforms the others, but that the optimal choice

depends on the scenario that the system is subject to.

In chapters 6-7 I explore the application of these complex system analysis tools to two

real world data sets. In chapter 6 we analyze time series of the English language to

look for trends and changes and see if and how they relate to societal changes. In this

project we use relatively straight-forward analysis tools such as correlations and Principal
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Component Analysis (PCA), and in that sense the chapter differs from the other chapters

in this thesis. However, since the underlying social system can surely be considered a

complex system and we investigate the temporal dynamics, it is an example of studying

complexity though time series analysis. We find that the current global discontent and

protests follow a shift in language where sentiment laden words become more abundant

and formal language becomes less abundant.

In chapter 7 I investigate if a causality detection method based on Taken’s theorem can

shed some new light on the saw-tooth shaped glacial-interglacial cycles of the past 800.000

years. Literature suggests that biological productivity, dust deposition, ocean circulation

and temperature are some dominant drivers of the shape of these cycles, but the directions

of the interactions (i.e. what causes what) is still a subject of debate. I demonstrate the

existence of a closed loop in the data that provides a potential explanation for the saw-

tooth shaped oscillations.

Finally, in chapter 8 I reflect on these findings and their interpretation, I describe some

limitations to the studies presented and some difficulties that I encountered in my attempts

to understand complex systems, and I discuss some open questions and ideas for future

studies.



Chapter 2

Bridging Resilience and Complexity

Indicators of Human Health

Els Weinans

Jerrald L. Rector

Merlijn Olthof

Marten Scheffer

Ingrid A. van de Leemput
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Abstract

In the past decades, society and science have seen an increased popularity of big data,

with unsurpassed volumes, resolutions and quality. Especially in medicine there is an

increasing role for big data to infer a patients health, his/her functioning, and predicting

the response to interventions. These data invite on the one hand for the development

of new analysis tools such as machine learning and Artificial Intelligence, but on the

other hand for re-investigation of analysis tools that previously were limited by data

availability. In this study we investigate two of these formerly proposed analysis tools that

have a basis in complex systems dynamics: Dynamical Indicators Of Resilience (DIORs)

and complexity quantification tools. We explore their similarities and differences and

demonstrate how they both have specific roles when studying the human as a complex

dynamical system.
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2.1 Introduction

The human body is constantly regulating its own behaviour in response to both internal

and external stressors, such as temperature fluctuations, viruses and perceived danger

(Ramsay and Woods, 2014). For example, when the human encounters a potential danger,

such as a barking dog, heart rate and respiration rate increase and the body prepares to

react (fight-or-flight response). Common perturbations away from this healthy situation

will be regulated, and the system will move back to the healthy situation (Ramsay and

Woods, 2014). One objective of human health care is to predict how well the human

body can handle perturbations (Olde Rikkert et al., 2016). For example, before a surgery

an evaluation should be made whether or not the patient can survive the anesthesia and

the operation and if the patient has the means to recover after the surgery (Royse et al.,

2010; Scheier et al., 1989). Also, it would be useful to know in advance which subsystem

might lose functionality if something goes wrong, i.e. which subsystem (such as an organ)

is most likely to fail (McNicol et al., 2007).

One line of thinking that has increased in popularity during recent years, is that dynamical

behaviour of various physiological processes is representative of overall ‘resilience’ (here:

capacity to recover) of the patient (Scheffer et al., 2018). For example, grip strength

tests have been proven to not only assess muscle fatigue (Bautmans and Mets, 2005), but

also self-perceived fatigue, physical functioning and circulating IL-6 (a molecule related to

inflammation) in elderly people (Bautmans et al., 2007), and even general mortality risk

(Celis-Morales et al., 2018). It seems like this one sub-system (the muscles used to grip),

contains information of processes on a larger scale (the whole human). Coming from a

dynamical systems perspective, this idea -that one variable can be representative of full

system functioning- is not surprising. In 1981, Takens wrote his influential paper where he

proved that lagged states of one variable could reconstruct the dynamics of a deterministic

chaotic system (Takens, 1981). In other words: If you have multiple differential equations

describing the dynamics of a system, then one of the variables contains enough information

to retrieve some global properties of the system such as the lyapunov exponent. Thus, it

is likely that knowing one variable (such as grip strength) in a coupled system provides

information of other variables as well (such as fatigue).

Methods that infer a systems property based on the dynamics of a system, such as overall

health, or resilience of a patient, require fast amounts of data. This becomes especially

important when the redundancy in the data cannot be extracted with linear measures, but

nonlinear methods (such as the ones based on Taken’s theorem) are required. The cur-

rently unsurpassed amount of data, with increasingly high quality and resolution (Yaqoob

et al., 2016), encourages re-investigation of analysis tools that were limited by data quan-

tity and quality in the past.

In this study, we investigate how the temporal behaviour of a system can be analyzed
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to infer a persons health. We focus on two popular groups of measures that aim to

quantify overall health or resilience of a person: 1) Dynamical Indicators Of Resilience

(DIORs), and 2) Complexity measures. Both indicators stem from a dynamical systems

perspective, and find their origins in the 60s with work about nonlinear dynamics, chaos,

synergetics and complexity (Haken, 1987; Prigogine et al., 1993; Thom, 2018), but despite

their common origin they make different assumptions about the underlying systems and

therefore cannot be used interchangeably. Before elaborating on these measures, we first

provide some background information about what we want these measures to do when

describing a persons health.

2.2 Background: Health & Functionality

Health has many definitions. According to the World Health Organization it is defined

as “a state of complete physical, mental and social well-being and not merely the absence

of disease or infirmity”. A more pragmatic definition is “having adequate physical and

mental independence in activities of daily living” (Rattan, 2020). This definition is closely

linked to evolutionary perspectives of health, in particular ‘physiological adaptation’,

which is “concerned with maintaining energy efficiency and finding the best possible

answer to lifetime encounters” (Baffy and Loscalzo, 2014). In this study we approach

‘the human’ as a complex system that is comprised of several subsystems. We consider a

subsystem as well-functioning or healthy if it helps the full system (the human) in its aim

for health and physiological adaptation (Baffy and Loscalzo, 2014). Both the functioning

of each subsystem itself as well as the interactions between different subsystems determine

overall health of the human system as a whole (Buchman, 2002).

Various subsystems in the human body aim for homeostasis. This means they work as

negative feedbacks, i.e. if deviation away from a certain value are detected, the human

body reverses these effects in order to return to the baseline (Ramsay and Woods, 2014).

For example, when oxygen concentration in the blood drops, the human body detects this

and may increase respiration in order to increase oxygen concentration back to healthy

levels (Ramsay and Woods, 2014).

The concept of homeostasis is not useful to describe the behaviour of subsystems that

do not aim to stay within baseline values. Therefore, in 1994 the term ‘homeodynamics’

was proposed to account for the continuously changing internal milieu of living beings

(Yates, 1994). Alternatively, around that same time and for the same purpose, the term

‘allostasis’ was developed, describing “stability through change” (Sterling, 2012), where

the ‘allostatic load’ are the costs related to maintaining allostasis (e.g. unrepaired molec-

ular damage) (Rattan, 2007). Homeodynamics and allostasis can be relevant concepts

when talking about systems that do not seek an equilibrium, but instead should change

and adapt depending on their surrounding environment and therefore should be highly

responsive.
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Variables that fit in the homeostatic framework function well when they remain around

a fixed value, and therefore are called regulated variables. For these variables a high

variability relates to poor health (i.e. blood pressure, Parati et al. (2013)). The variables

that fit in the homeodynamic/allostatic framework function well when they are able to

regulate these regulated variables, and are called effector variables accordingly (Fossion

et al., 2018; Rector et al., 2021). For these variables, a high variability is linked to good

health (i.e. heart rate variability, Golberger (1996))

2.3 Dynamic indicators of physiological health

One way of identifying not optimally functioning subsystems, is by investigating stimulus-

response patterns, such as a glucose and insulin response after an oral glucose intake

(Varadhan et al., 2008). However, these experiments are not always feasible for practical

or ethical reasons. Instead, non-invasive time series are becoming more abundant (Gijzel

et al., 2019b). Inferring system functioning based on time series can be challenging, since

mechanisms and causal links are hard to detect without experiments. Dynamical systems

theory has led to several analysis tools that attempt to infer a systems functionality based

on time series. In the following section we will elucidate on two concepts that have been

particularly popular for medical applications and we will discuss their similarities and

differences.

2.3.1 Resilience indicators

It has been suggested that various illnesses manifest themselves as a qualitatively different

state of the healthy state of the same dynamical system (Olde Rikkert et al., 2016).

This can happen when there are alternative stable states in the system (Strogatz, 2014).

Alternative states in dynamical systems are defined as two states that can be reached

under the same external conditions (Scheffer and Jeppesen, 1998). Depending on the

environmental situation, states can appear or disappear. The environmental situation

where a state appears or disappears, is called a tipping point or bifurcation point (Strogatz,

2014). Even when there are no alternative stable states, these tipping points can exist

where very small changes in the environment can lead to very large (qualitatively different)

dynamics in the system under study (Strogatz, 2014).

The idea that the loss of health of a patient reflects the shift of the dynamical system to

an alternative state has major implications for diagnosis (Scheffer et al., 2018). In the

last decade, several indicators of resilience have been found that signal when a system is

approaching such a ’tipping point’ (i.e. the point where change to the alternative state is

inevitable) (Scheffer et al., 2009). These indicators are labelled ’Early Warning Signals’

(or EWS, Scheffer et al. (2009)) or ’Dynamical Indicators of Resilience’ (or DIORs, Gijzel

et al. (2019b,a)). They rely on the fact that dynamical systems can have stable and

unstable equilibria. Stable equilibria are defined as values where the system is attracted
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to. If the system is perturbed, it will return back to the stable equilibrium, in line with

the concept of homeostasis. Unstable equilibria are points that repel the system. If a

system is perturbed slightly away from an unstable equilibria, it will travel away from it

(Strogatz, 2014).

For various tipping points, such as the fold bifurcation or transcritical bifurcation, the

appearance or disappearance of equilibria (or states), happens when a stable and an

unstable equilibria meet each other (as in figure 2.1). Therefore, at the tipping point the

system is neither attracted nor repelled by the equilibrium (Strogatz, 2014). Consequently,

the recovery rate of the system to slight perturbations is exactly zero at the tipping point

and approaches zero as the system approaches the tipping point. This slowing down of

recovery rate in the vicinity of a tipping point (critical point) is also called ‘critical slowing

down’ (CSD) (Strogatz, 2014; Scheffer et al., 2009).

most popular DIORs rely on natural fluctuations of a system around its equilibrium

(Scheffer et al., 2009). All natural systems are continuously subject to small perturbations.

If the recovery rate is high (i.e. far from a tipping point), each small perturbation is

immediately taken care of and by the next moment in time the perturbation is ‘forgotten’.

Close to the tipping point however, the recovery rate is small and therefore perturbations

decay at a slower rate. This leads to a higher memory in the time series which can be

uncovered by calculating the lag-1 autocorrelation of the time series (Ives, 1995; Held

and Kleinen, 2004). Alternatively, since perturbations in the vicinity of the tipping point

decay slowly, the system may be perturbed again before the perturbation has decayed,

causing the system to move even further away from its equilibrium. Therefore, also the

variance of the time series is a popular DIOR (Carpenter and Brock, 2006). Figure 2.1

demonstrates how these dynamics close and far from a tipping point can differ. Many

variations to these DIORs exist that all have a basis in CSD (see Dakos et al. (2012a) for an

overview of some univariate indicators or chapter 5 for an overview of some multivariate

indicators).

In order to use DIORs to infer a patient’s resilience and determine the possible risk of a

perturbation such as an operation, the assumption is made that the ‘danger’ is a zero-

eigenvalue bifurcation. Thus, DIORS have been developed to indicate an approaching

zero-eigenvalue bifurcation. In essence, they indicate that a system is becoming slower,

whether that is the result of an approaching bifurcation point, or some other reason.

Obtaining accurate DIORs is not always possible. Especially for high dimensional systems

it is not always straight-forward which variables to choose, which pre-processing steps are

required and to determine whether the data is of sufficient quality (See chapter 5). In many

fields of science, the application of DIORs has proven difficult. However, some successful

stories exist, for example in ecological systems (Van Belzen et al., 2017; Wilkinson et al.,

2018), the climate (Dakos et al., 2008; Hennekam et al., 2020), financial systems (Zheng

et al., 2012; Quax et al., 2013b), and also several human subsystems, of which we describe
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Figure 2.1: Fluctuations of a system close and far from a tipping point. Top panel visualizes

a fold bifurcation, where the driver can be any environmental variable such as temperature,

and the response can be any human subsystem such as the heart. Lines reflect the stable

states, and the dotted line is an unstable state. For certain values of the driver, two response

states are possible. The tipping points are the points where one of the states disappears. If the

driver slowly moves past a tipping point, the system will quickly jump from one state into the

other, this is a critical transition. Close to the tipping point (bottom left panel), the temporal

dynamics of the system are characterized by high memory (the near future is similar to the

present), which can be captured by calculating the lag-1 autocorrelation. Far from a tipping

point (bottom right panel), every moment in time is a random fluctuation, and the the near

future does not depend on the present. It is also clearly visible that close to the tipping point,

the response shows a higher variance than far from the tipping point.
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Figure 2.2: An intuitive definition of complexity. Purely ordered dynamics, such as a perfect

sine, have a low complexity (left side). Purely random signals, such as white noise, have a low

complexity as well (right side). A complexity quantification method should yield a maximum

in between the two extreme cases. Figure adapted from Huberman and Hogg (1986).

four examples in the ‘examples’ section below.

2.3.2 Complexity indicators

Physiological processes are highly complex. Complexity has many definitions. One in-

tuitive definition is that complexity finds a maximum somewhere between completely

ordered data and completely disordered data (Huberman and Hogg, 1986), as we illus-

trated in figure 2.2. For example, if one starts with a blank sheet of paper and randomly

splashes some black ink on it, the image is not considered complex, nor is it when half of

the blank sheet is coloured black. However, if the ink is positioned in such a way that it

creates an object, i.e. a drawing of a face, the image has a high complexity.

Quantifying this complexity can be done in several ways. First, complex dynamics are

characterized by fractal behaviour. Fractal patterns are patterns that are replicated on

different scales. In space, this leads to figures such as the Mandelbrot set (Mandelbrot,

1982), but this property can also be applied to time series. Self-replicating dynamics

automatically lead to dynamics on different scales. Therefore ‘pink noise’ properties (i.e.

noise with a power spectrum between white noise and red noise) (Van Orden et al., 2011),

or ‘scale free behaviour’ (Barabási, 2005; Datta and Raut, 2006) are closely linked to

fractality and have also been proposed as indicators of a system’s complexity.

It should be noted that one popular definition of complexity, namely the Kolmogorov

complexity, is defined as the amount of bits needed to reproduce a string of n bits. In

that sense, a completely random signal can only be reproduced by n bits, since it cannot be

predicted. Therefore completely disordered (random) signals indicate a high Kolmogorov

complexity instead of a low complexity. This is not concurrent with our previous definition

as used in Huberman and Hogg (1986). One reason why Kolmogorov complexity based
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indicators of complexity are worth using, is that chaotic signals, which can have fractal

properties and could be considered as ‘complex’, are sometimes indistinguishable from

randomness. Thus, one may choose to measure ‘irregularity’ (by means of a Kolmogorov

entropy based quantification tool) instead of complexity according to our previous intuitive

definition (Grassberger, 2012).

One last popular line of complexity quantification tools are based on correlation integrals

(Grassberger and Procaccia, 1983a). The correlation integral Cd is defined as the mean

probability that two states at two different times are close together. It can be calculated

as

Cd(r) = lim
N→∞

1

N2

N∑
i,j=1

θ(r − |Xi −Xj|), (2.1)

where N is de length of the timeseries, θ is the heaviside function and Xi is a vector of

consecutive values of the time series Xi, Xi+1, ..., Xi+d where d is the ‘embedding dimen-

sion’. The parameter r determines what constitutes points that are ‘close together’, i.e.

the distance in which you search for neighbors. |Xi − Xj| is the distance between the

vectors Xi and Xj. Cd(r) follows a power law for small r where

Cd(r) ∼ rv (2.2)

where v is closely related to the ‘fractal dimension’ of the time series (Grassberger and

Procaccia, 1983a). In figure 2.3 we plotted the correlation integrals for time series of

the Hénon map, a classical example of a chaotic system (see chapter 1), for different

dimensions ranging from 1 to 5. For the Hénon map, it is known that the true dimension

of the attractor is two. Figure 2.3 shows that the lines for all correlation integrals with

a dimension of 2 or higher, have the same slope (the same v). This is no coincidence, if

d is higher than or equal to the true dimension of the chaotic attractor, the lines will be

parallel (Grassberger and Procaccia, 1983a).

The use of correlation integrals has inspired several new complexity quantification tools, of

which Approximate Entropy (ApEn, Pincus (1991)), Sample Entropy (SampEn, Richman

and Moorman (2000)), and Multiscale Sample Entropy (MSE, Costa et al. (2002)) are

some popular examples. ApEn and SampEn are both created as approximations of the

Kolmogorov complexity, based on the distance between two lines in the Cd(r) plot, such as

in figure 2.3. These are variations to what has been previously labeled ‘K2’ (Grassberger

and Procaccia, 1983b), as an approximation of the Kolmogorov entropy ‘K’. Thus, these

quantification tools, like the Kolmogorov complexity, measure irregularity as a proxy for

complexity. To account for a decrease in the statistic for disordered system, MSE was

developed (Costa et al., 2002). MSE calculates the SampEn for different scales of the
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Figure 2.3: Correlation integrals calculated for an increasing r for the Hénon map, a classical

example of a two-dimensional chaotic attractor, for different values of the dimension parameter

d. When d is higher than the true dimension (2 for the Hénon map), the slope of the line does

not change.

data by course graining the data, i.e. taking averages of windows with a varying size. It

is a promising idea, but it requires choosing a number of parameters for which no rules

exist, but that largely affect the results (for an illustration, see figure 2.4).

Regardless of the precise quantification tool, it has been recognized that for various physio-

logical processes, high complexity is linked to high functionality of the subsystem, whereas

low complexity is indicative of a loss of functionality and can result in illness. Four ex-

amples are discussed in the ‘examples’ section below.

2.4 Examples

Heart

From a resilience perspective, it is well known that the recovery time of the heart rate back

to its baseline is an indicator of human health (Shephard, 1967; Olde Rikkert et al., 2016).

Furthermore, preliminary analysis of heart rate data demonstrated that atrial fibrillation

is preceded by indicators of critical slowing down such as autocorrelation (Nannes et al.,

2020) and flickering (Lan et al., 2020), suggesting atrial fibrillation might be a result of

a shift over a critical transition of the heart system. Furthermore, flickering might give

a warning before the onset of entricular tachycardia (a type of regular, fast heart rate)

(Wai , 2019).
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Figure 2.4: The area under the MSE curve has been proposed as a complexity quantification

tool that should be at a maximum for systems intermediary of order and disorder. We calculate

the MSE for systems on this gradient by applying them to MIX models, which are models

that start with a perfect sine, where a fraction of the datapoints is replaced by numbers

drawn from a random distribution with zero mean and standard deviation of 1. MIX(0.3)

indicates a model where 30% of the data points are replaced by random numbers. This figure

demonstrates, that depending on the maximum scaling factor τ , the area under the MSE

curve behaves differently, indicating that with no prior knowledge of the system, it is difficult

(if even possible) to determine meaningful parameter values.

One common output measure for studying the heart is Heart Rate Variability (HRV). HRV

describes the dynamical behaviour or the period between consecutive heartbeats. Heart

rate variability is largely controlled by the autonomic nervous system (ANS). The ANS

responds to external situations such as a good nights sleep, an encounter with a barking

dog or a pleasant meal and all this information is reflected in the HRV signal (Acharya

et al., 2006). The heart is a very well-known example of a subsystem that seems to be

highly responsive, and whose functioning can be inferred with complexity quantification

tools. For example, a high variability in heart rate is considered healthy, whereas a low

variability is related to anxiety, depression and an increased risk of cardiovascular disease

(Acharya et al., 2006). HRV data varies significantly for different age groups, with a higher

complexity found in young healthy people. This has been tested with numerous nonlinear

statistics such as Approximate Entropy, Largest Lyapunov Exponent, and Detrended

Fluctuation Analysis (Acharya et al., 2006). Furthermore, complexity indicators such

as approximate entropy and sample entropy have been used as an early detection of

bacterial sepsis at the neonatal intensive care unit (Pincus and Viscarello, 1992; Lake

et al., 2002).
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Bone

Bone remodeling describes the process where old bone structure is replaced by new bone

tissue. The bone adapts itself to the mechanical load (i.e. external stressors), by either

adapting the density or the geometry of the new bone tissue (Weinans et al., 1992; Huiskes

et al., 2000). Bone has, to our knowledge, not yet been studied using indicators of critical

slowing down, however, several studies could indicate that fractures can be considered as

tipping points. Bone homeostasis is a delicate balance between removal of old and micro-

damaged bone parts and subsequent replacement of new strong calcified bone packages.

This balance is driven by mechanical signals in a feedback system where high loading

signals favors a net bone gain and low signals favors a net loss (Safadi et al., 2009). This

process mimics an ‘optimal’ bone architecture in which the bone structure adapts to loads

of daily life with bone struts more or less aligned with the loading pattern through the

bone (Tanck et al., 2001; Huiskes et al., 2000). It has been shown that bone fracture risk

at older age (osteoporosis) can be the result of loss of resilience as ongoing alignment of

the bone structure makes it prone for fracture upon an infrequent “error” load that is

somewhat rare but occasionally happens (Homminga et al., 2004).

Former work showed that realistic simulations models mimic the behaviour of real bone

when the parameters are tuned in such a way that the system is close to a critical point

(Weinans et al., 1992). The critical parameter in this model relates to information transfer

in the system, where a low information transfer makes long range interaction impossible

but high information transfer causes the system to homogenize, resulting in a structure of

low complexity that does not resemble the complex architecture of bone (Huiskes et al.,

2000). This is in line with a simple Ising spin model, where high complexity is found in

the vicinity of the critical point, where the bifurcation parameter (temperature for the

Ising spin model) relates to information transfer (see figure 2.5). Furthermore, complexity

quantification tools such as Hurst Exponent indicate that the complexity of bone structure

decreases with age (Lespessailles et al., 2002) and with diseases such as osteoporosis and

inflammatory arthritis (Caldwell et al., 1998).

Mood

It is long known that clinical changes in depression do not always follow smooth tra-

jectories but instead may be abrupt (Gaynor et al., 2003). Recent advances in human

psychology demonstrate that the symptoms of psychiatric disorders, such as depression,

can reinforce one another, causing feedbacks that can self-amplify or dampen the experi-

ence of emotions (Borsboom, 2017). This may lead to two stable states in the experience

of emotions: one is the healthy state, the other is a depressed state. As such, this example

seems to adhere perfectly to the prerequisites of critical slowing down indicators, that can

signal when one states loses resilience and a shift to the alternative state becomes more

likely. Indeed, critical slowing down and critical fluctuations have been found to correctly
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warn before a patient ‘tips’ to a depressed state (Leemput et al., 2014; Wichers et al.,

2016; Olthof et al., 2020b).

Alternatively, human emotions have been suggested to have evolved as a communication

to oneself to signal the occurrence of events which are relevant to important goals (Oatley

and Jenkins, 1992). As such, a healthy mood system should adapt to it’s environment

instead of seeking to maintain an equilibrium value at all costs (i.e. emotions are always

both internally and externally affected according to ‘appraisal theory’ (Ellsworth, 2013)).

Therefore not only critical slowing down measures, but also a loss of complexity could

indicate a loss of functioning. Indeed, recent work demonstrated that both self rated

emotions and time series of self rated self-esteem are characterized by complex dynamics

(Olthof et al., 2020a; Delignières et al., 2004). There is more evidence that a healthy

mood system functions in a ‘complex’ way. For example, for children with anxiety, their

communication pattern became less repetitive over time as their anxiety (maternal-rated)

decreased (Lichtwarck-Aschoff and van Rooij, 2019) and patients suffering from bipolar

disease have significantly more regular patterns in their mood record (Gottschalk et al.,

1995).

Balance

The human balance system is a system that seeks an equilibrium. One test where humans

were asked to use body movement to track oscillations of a videographic target, indicates

a larger recovery time after a task with a higher frequency oscillations, hinting at a signal

of critical slowing down (Bardy et al., 2002). Other tests rely on balance plates, where

the centre of pressure of people can be analyzed during quiet standing, a test particular

popular in geriatric research (Kang et al., 2009). A balance experiment between frail and

healthy elderly was used to correctly distinguish between the two groups, based on their

resilience. The healthier group was characterized by a fast recovery from fluctuations,

indicating a high resilience, whereas the unhealthy group showed a slower response (Gijzel

et al., 2019a).

Balance time series have been analyzed with several complexity measures, but the results

seem to vary widely (Manor et al., 2010). A loss of complexity can be indicative of

frailty. For example, decreased complexity in horizontal sway has been found to predict

probability of falling in the next 48 months (Zhou et al., 2017). Furthermore, Volleyball

players are taught to adapt their posture and their balance very quickly in response to

game situations (Agostini et al., 2013). They are found to have larger ellipses than non-

volleybal players in a balance test, in an open eyes test situation (the result disappeared

in a closed eyes scenario) (Agostini et al., 2013). This suggests that high responsiveness

relates to large fluctuation in horizontal sway. However, other studies showed that even

though young people had a higher sample entropy in the vertical direction, elderly people

had a higher standard deviation of the time series in both horizontal and vertical direction
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(Borg and Lax̊aback, 2010), suggesting that large fluctuation relate to aging and perhaps

a deterioration of the balance system. Additionally, complexity quantification analysis

on balance data led to the surprising result that elderly people had a higher complexity

than adults (Duarte and Sternad, 2008). This could indicate that the balance system is

not aiming for high complexity (or high responsiveness) in normal situations (with the

exception of professional athletes such as volleyball players), but instead aims for a high

resilience.

2.5 Indicators of resilience & complexity: two sides

of the same coin

So far we have made several distinctions: homeostasis vs allostasis, regulated vs effector

variables and DIORs vs complexity quantification tools. Based on currently available

literature, their relationship is hypothesized as follows: variables seeking for homeostasis

need to be regulated. Large fluctuation around their equilibrium value often indicate a

failure of maintaining homeostasis. If the system is architected in such a way that tipping

points exist, a failure at maintaining homeostasis could be measured with DIORs (Gijzel

et al., 2019b). The variables that have as a prime task to keep the regulated variables

within their healthy range are called effector variables (Fossion et al., 2018; Rector et al.,

2021). These variables are well-functioning when they are highly responsive, and therefore

non-linear behaviour is highly beneficial for these variables. Their healthy dynamics are

characterized by a high complexity and therefore complexity quantification tools can be

used to approximate their functioning.

This explanation explicitly provides two distinctive tasks for the two dynamical indicators

of physiological health. Furthermore, it hints at an explanation why nonlinear behaviour

and complex dynamics are so abundant in nature: high responsiveness is beneficial for

the full ‘human system’. Since high responsiveness is found near critical points, evolution

is pushing systems to the non-linear regime in order to deal with the events that are

continuously encountered in a complex world (Solé et al., 1996; Chialvo, 2008; Van Orden

et al., 2011). For many subsystems of the human system this nonlinearity in behavior is

quite intuitive. This becomes especially clear in our sensory inputs, where small signals

such as soft sounds should be detected, but large signals such as loud sounds should not be

experienced with the same sensitivity (see for example Nachtigall and Supin (2013) for an

explanation of the mechanism in killer whales). Furthermore, the nonlinearity in sensory

output allows for the filtering of noise, where part of a signal can be ignored in order to

allow for the other part of the signal to become clear (for example when conversing in a

crowded room) (Woods and Wilson, 2013).

DIORs have been developed for systems that are approaching a critical transition and are

used to predict when such a tipping point is coming up (hence the label ‘Early Warning
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Signals’). There are examples where DIORs have been used to distinguish in resilience

between groups (for example Leemput et al. (2014); Gijzel et al. (2019a)), but comparison

between individuals can be problematic (Bos and De Jonge, 2014). The reason for this,

is that the trajectories towards illnesses show high variations between individuals. Fur-

thermore, findings per individual do not always generalize to the group level (Van Orden

et al., 2011; Fisher et al., 2018).

Complexity quantification tools have been developed as a way to characterize healthy from

unhealthy individuals after the illness has developed, and are thus not used to indicate

a loss of functioning before the onset of an illness. It is possible that diseases exist that

are preceded by a ‘decomplexification’ in the dynamics, but so far this has received only

little attention (Dakos and Soler-Toscano, 2017).

For a system that moves towards a bifurcation point that represents a tipping point to

an illness, an increase in ‘complexity’ would indicate an increased danger of becoming ill.

Indeed, elevated nonlinearity has not only been described as a complexity quantification

tool, but also as a resilience indicator (Dakos et al., 2017). Furthermore, DIORs can signal

when the Ising spin model (see figure 2.5) is pushed towards its critical temperature, which

is also the location where the spatial structures are considered most complex (Morales

et al., 2015). This suggests that a loss of resilience is often accompanied by an increase

in complexity.

2.6 Discussion & Prospect

We have found that many subsystems can be analyzed both with DIORs and with com-

plexity measures. Both methods measure one particular element of the dynamics. DIORs

measure a slowing down of the dynamics, which could indicate an upcoming tipping point.

Complexity quantification tools measure a loss of complexity, which could indicate a loss

of responsiveness in the system and therefore a loss of functionality.

We hypothesize that there might be two processes at play here. On one hand, evolution

has pushed systems towards a nonlinear regime, since in the nonlinear regime systems

are able to be responsive and adaptive to their surroundings (Chialvo, 2008; Van Orden

et al., 2011). On the other hand, this nonlinear regime may be situated next to tipping

points to states representing diseases (Scheffer et al., 2018; Olde Rikkert et al., 2016).

Therefore a shift towards the tipping point can be considered as dangerous, as the work

on resilience indicators has demonstrated, but a shift away from the tipping point can be

indicative of a loss of responsiveness and is therefore also unwanted. The work on resilience

indicators and complexity quantification tools have, quite independently, described these

two processes.

The subsystems we described can be analyzed with both measures. For example the heart

as a subsystem has been intensively studied with both approaches. This subsystem might



24 Bridging Resilience and Complexity Indicators

Figure 2.5: A 2D Ising model on a 50x50 grid. In the Ising spin model, every cell can be

either 1 (black) or -1 (white). The total energy of the grid is calculated as the negative of

the product of each cell with its 4 direct neighbors, i.e. if two neighbors have the same spin

the energy is low, if they have different spins their energy is high. The model is run in time,

where spins are randomly flipped. If a flip results in a decrease of the energy, it is kept. If

it results in an increase in the energy, it can be either kept or reversed. The temperature

parameter relates to the probability of a cell to switch spin even if this increases the energy

of the grid. If the temperature is low, flips are almost never accepted unless they decrease

the grids energy, resulting in a grid where either all spins are 1 or all spins are -1 (see top

left panel). If the temperature is high, almost all flips are accepted independent of their effect

on the energy of the grid, resulting in a random grid (top right panel). The magnetization is

calculated as the average spin of the grid. The magnetization shows a pitchfork bifurcation (a

type of zero-eigenvalue bifurcation) at a critical temperature. For a temperature around that

value, the grid shows a ‘complex’ pattern (top middle panel).
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be subject to tipping points where it moves into atrial fibrillation. This shift is preceded

by an increase in autocorrelation as a DIOR (Nannes et al., 2020). The subsystem can

also move away from the critical regime. This shift is related to aging and illnesses such

as congestive heart failure (Costa et al., 2002). For some subsystems, it is even possible

that depending on the task, it moves towards or away from the responsive regime, as the

work in balance suggests. In the balance system, elderly people show an increased sway,

possibly indicating a loss of resilience (Gijzel et al., 2019a). However, volleyball players

too have a larger sway, but this is most likely not related to a loss of resilience but instead

to a skill they have developed in order to be highly responsive (Agostini et al., 2013).

Furthermore, it seems like for some actions related to balance, such as walking, a loss

of complexity in elderly can be restored by synchronizing them with young individuals

(Almurad et al., 2018). Therefore the complexity and the resilience of a subsystem of an

individual is not a static characteristic but a dynamic property by itself.

It can be expected that a decrease in complexity towards a more random regime (described

as a bad thing, Golberger (1996)) relates to a decrease in autocorrelation (described as

a good thing, given that the sudden situation is a healthy state, Scheffer et al. (2009))

and therefore complexity quantification tools and DIORs might contradict each other if

they are used on the same data with the same questions (Rector et al., 2021). However,

using system knowledge and carefully investigating specific illnesses, both measures can

be used to explore the wealth of information that is contained in the dynamics of a signal.

Therefore we propose that the first and most important step in investigating human time

series, like many other scientific endeavors, is more about asking the right questions than

asking for the right tools (Cross et al., 2010; Dodgson, 2020).

Even though the two separate processes are well-documented, the linkage between a loss

of resilience and a loss of complexity has to our knowledge not yet been identified in one

(sub)system. Future studies are required to explore how these two processes might work

exactly. For example, simple models describing behaviour of a regulated and an effector

variable can elucidate whether the mechanisms as we describe actually can give rise to the

expected signals. Secondly, more realistic models can be used to test whether DIORs and

complexity measures are visible in the data, and to benchmark the optimal data length

and resolution for the particular subsystems. Last, we are excited to see what both DIORs

and complexity measures can tell us about the human system based on empirical data.

This last test will assess how these measures translate from theory to practice and might

teach us new ways to look at the human as a complex system.
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Abstract

The dynamics of complex systems, such as ecosystems, financial markets, and the human

brain, emerge from the interactions of numerous components. We often lack the knowledge

to build reliable models for the behaviour of such network systems. This makes it difficult

to predict potential instabilities. We show that one could use the natural fluctuations in

multivariate time series to reveal network regions with particularly slow dynamics. The

multidimensional slowness points to the direction of minimal resilience, in the sense that

simultaneous perturbations on this set of nodes will take longest to recover. We compare

an autocorrelation-based method with a variance-based method for different time series

lengths, data resolution and different noise regimes. We show that the autocorrelation-

based method is less robust for short time series or time series with a low resolution but

more robust for varying noise levels. This novel approach may help to identify unstable

regions of multivariate systems or to distinguish safe from unsafe perturbations.
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3.1 Introduction

Many complex systems are managed or structured such that they are relatively stable,

in the sense that they can maintain the same functions. Examples include the human

body (Olde Rikkert et al., 2016), financial systems (Zheng et al., 2012), ecosystems, or

social systems (Walker et al., 2004). All of these systems can be represented as networks

(Barabási et al., 2016) with multiple interacting entities, such as organs, banks or compa-

nies, species and abiotic factors, or individual human beings (Castellano et al., 2009). All

network entities are continuously disturbed by external events that bring the full system

somewhat out of balance. For instance, climatic extremes, diseases, or human interference

may result in a temporary increase or decrease in abundance of one or more species (Schef-

fer et al., 2001). Environmental fluctuations and disturbances affect different species in

different ways (Bender et al., 1984; Elmqvist et al., 2003), and particular compounded

perturbations may have much larger impacts than when such perturbations occur in iso-

lation (Paine et al., 1998). It is intuitively straightforward that for each system there is

a particular type of perturbation (in the sense that a certain set of network entities is

disturbed simultaneously in a particular way) to which the system is the most sensitive

(Scheffer, 2009). This raises the question of whether we might be able to deduce such

‘weak spots’ in the myriad of possible combinations of pressures on the system.

In this study we are thus interested in finding the particular combinations of pressures

from which a system will recover the slowest. In other words, we aim to identify network

regions with low resilience, where resilience is defined as the rate at which a system

recovers after a perturbation, also often called engineering resilience (Holling, 1996). The

underlying configuration of the network and the interactions between elements is often

unknown, making it hard to rely on models to simulate dynamics and find such weak spots

in the system. Another approach is to use observed time series to search for combinations

of variables with low resilience. If we assume a homogeneous network where all nodes

and connections are similar, methods exist that may find universal patterns of resilience

(Gao et al., 2016). However, for heterogeneous networks other approaches are required.

One line of research has looked at the rate of recovery from perturbations as an indicator

of resilience. For example, if a system is intrinsically slow, this should be reflected in

the observed time series by a high autocorrelation (Ives, 1995; Dakos et al., 2008; Held

and Kleinen, 2004) and a high variance (Carpenter and Brock, 2006; Wiesenfeld, 1985).

While most literature on resilience indicators (also often called ’early warning signals’)

focuses on univariate data, recently the first steps towards resilience indicators based on

multivariate time series (i.e. of network-type systems) have been taken. Suggested metrics

to indicate the overall resilience of the system include the autocorrelation of the projection

of data on the first principal component (PC) using Principal Components Analysis (PCA)

(Held and Kleinen, 2004), combinations of cross-correlations between system elements and

variance of individual elements (Chen et al., 2012), mean autocorrelation and variance
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Figure 3.1: Using autocorrelation in a two-dimensional system to predict directions of fast

and slow recovery. (A) Stability landscape of two interacting species (X and Y), showing

that the speed of recovery depends on the direction of a disturbance. The speed is indicated

by the slope of the stability landscape. (B) Autocorrelation along different directions in the

system’s phase space. The scatterplot shows part of the time series. Red lines indicate the

slowest direction (dashed line), i.e., with highest autocorrelation, and the fastest direction

(solid line), i.e., with lowest autocorrelation. The colour circle indicates the autocorrelation in

every direction. (C-D) Projected time series on the slowest (C) and the fastest (D) direction.

(Dakos and Bascompte, 2014) and the maximum value of the covariance matrix (Suweis

and D’Odorico, 2014) . However, so far, these studies have mostly focused on finding a

scalar indicator of resilience, and not so much on identifying the combination of variables

involved.

Here we propose that one could use observed natural fluctuations to map the multivariate

pattern of indicators of slowness such as temporal autocorrelation (Fig. 1 B). The basic

idea is most easily illustrated from a stability landscape illustration of a hypothetical

two-dimensional system describing the dynamics of two interacting species X and Y (Fig.

3.1 A). From the shape of the stability landscape, it is intuitively clear that a disturbance

resulting in an increase or decrease of both species X and Y will return to equilibrium

relatively slowly. In contrast, the system will recover much quicker from a disturbance of

the same strength resulting in an increase in X combined with a decrease in Y, or vice

versa. Now, if we assume this system to be continuously perturbed in random directions,

we can use the observed timeseries of X and Y to find the direction of slowest recovery

simply by computing temporal autocorrelation or variance projected on all possible axes

(Fig. 3.1.B-D). In the two-dimensional case finding this slow direction can be done by

brute computational force. However, as the number of dimensions increases it becomes

impossible to scan all directions. We will show how novel ways of utilizing known tools

based on autocorrelation or variance allow scanning for the direction of lowest resilience

even in highly complex networks.

We assess the suggested methods by applying them to synthetic data where we know the

underlying mechanisms. Since in multivariate systems the link between a high autocorre-

lation or variance and a slow recovery is not as straightforward as in univariate systems,



31

we also assess what we can expect from these resilience indicators in our multivariate

examples. We pick three example models with varying degrees of complexity that allow

us to compare the predictions with the actual direction of slowest recovery. Furthermore,

we evaluate the robustness of both autocorrelation- and variance based approaches for

the length and resolution of the data and for different noise regimes. We introduce a test

to assess if a particular real-world multivariate time series is suitable for the proposed

analyses and discuss which method one should preferably use in which case.

3.2 Methods

Finding the direction of slow recovery

In order to find the slowest direction in a multivariate timeseries, we detect the direction

of highest autocorrelation by using the Min/Max Autocorrelation Factors (MAF) analysis

(Switzer and Green, 1984), which we explain below. Additionally, we detect the direc-

tion of highest variance by using the well-known PCA. We use simulated multivariate

time series with equal temporal spacing between data points to investigate the general

applicability and performance of both methods.

The MAF algorithm detects the direction of the highest variance of the first difference

(difference between consecutive time points) of the time series. In a timeseries with

high autocorrelation, the similarity between consecutive time points is high, which relates

to a low variance in the first difference. Similarly, low autocorrelation relates to high

variance in the first difference. The MAF algorithm detects the direction of maximum

autocorrelation in a four step process:

1. We transform the data to ensure that they have an identity matrix as the covariance

matrix. In line with (Haugen et al., 2015) we use an ‘SDS transform’ (spectral

decomposition sphering):

XSDS = X ∗ U ∗D−
1
2 ∗ U ′,

where X is the original dataset, XSDS is the transformed data, U is the eigenvec-

tor matrix of the covariance matrix of the data and D is a diagonal matrix with

eigenvalues of the covariance matrix.

2. We calculate the first differences of XSDS, resulting in [XSDS(t)−XSDS(t+ 1)].

3. We calculate the eigenvector matrix V and the eigenvalues E of the covariance

matrix of [XSDS(t)−XSDS(t+ 1)]. These eigenvalues can be used to determine how

different the variances of the different eigenvectors are.

4. We calculate the MAFs:

WMAF = U ∗D−
1
2 ∗ U ′ ∗ V.
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More details about the procedure can be found in (Switzer and Green, 1984; Desbarats

and Dimitrakopoulos, 2000; Haugen et al., 2015). The output of the MAF analysis is a

set of components called the MAFs, which are ordered from high to low autocorrelation.

These can be compared with the PCs of a PCA, which are ordered from high to low

variance. So like the PCs in PCA, we can project the data on the MAFs or summarize

the data using only a number of MAFs to reduce the dimensionality. In contrast to PCs,

the MAFs do not have to be orthogonal to each other. Since a high autocorrelation is

linked to low resilience, the MAFs order the directions of the system from low to high

resilience.

To be able to compare the MAFs, we use the MAF eigenvalues (E) belonging to the

eigenvectors of the covariance matrix of [XSDS(t) − XSDS(t + 1)] that we calculated in

step 3. Similar to the explained variance in PCA, the MAF eigenvalues provide a weight

to the autocorrelations projected on each MAF. In contrast to PCA, a MAF with a low

eigenvalue indicates that the autocorrelation of the projected timeseries is higher than all

other directions, whereas a high eigenvalue indicates a low autocorrelation.

Models

To test and compare the potential methods to detect the direction of lowest resilience

based on multivariate time series, we apply them to time series generated by three dif-

ferent models. The models have a deterministic part and a stochastic part. For the

stochastic models we use an Euler-Maruyama integration. For the deterministic models

an Euler integration is used. To generate the time series, we used Grind for Matlab (Nes,

2017).

Metapopulation model

First, as an example of a gradient non-reactive system, we use a classical ecological model

that is known for having alternative stable states (a bistable model) (May, 1977). Alter-

native stable states are multiple states that are stable under the exact same parameter

settings. The model describes the abundance of a logistically growing species that is being

harvested following a Holling’s type III functional response. The modelled species could

for instance represent a plant that competes for space and is being grazed by herbivores.

The grazing efficiency of the herbivores may increase with plant abundance until a certain

biomass is reached, at which point the herbivores become saturated. For this study, we

simulate a metapopulation with three patches and assume that the modelled species can

migrate between the patches,

dNi =

[
Ni(1−

Ni

Ki

)− ciN
2
i

1 +N2
i

+
∑
j 6=i

dij(Nj −Ni)

]
dt+ σNi

dWi (3.1)
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where Ni is the abundance of the species in location i, Ki is the carrying capacity at

location i, ci is the maximum harvesting rate and dij is a symmetric matrix describing

migration between patch i and j. Finally, each patch is affected by noise, with dWi

representing a Wiener process with mean 0 and variance σ that is uncorrelated for the

different variables. Default parameter settings are: K1=10, K2=13, K3=8, c1=3, c2=2,

c3=2.3, d21=d12=0.2, d31=d13=d32=d23=0.08, and σNi
=0.02. A time step of 0.01 was used

for integration. The parameters were chosen such that some asymmetries occur in the

resilience in different directions.

It should be noted that this model is extremely simplified and the parameters are not

based on observations. This first model is chosen because it is well-known and can easily

be used for visualizations and for explaining how to interpret the MAF results.

Sahara model

Second, as an example of a non-gradient non-reactive system we use a simple climate

model describing vegetation-precipitation interactions in four regions of the Sahara. This

model has been used to explain the shift from a vegetated state to a desert state in the

Sahara region. The model was developed by Brovkin et al. (1998) and made spatially

explicit by Bathiany et al. (2013). The model describes the growth of the vegetation as

a function of the current vegetation and the equilibrium vegetation cover, which depends

on the precipitation in that location,

dVi =

[
V ∗(Pi)− Vi

τ

]
dt+ σdWi, (3.2)

where V is the vegetation cover, V ∗(Pi) is the equilibrium vegetation cover as a function

of the precipitation at location i and τ is the characteristic time scale.

The vegetation equilibrium is described by:

V ∗(Pi) = 1.03− 1.03

1 + α( Pi−P1

exp(γδ)
)
. (3.3)

where δ stands for the growing degree days (minus 900 K). The dependency of vegetation

on temperature in the Sahara is, however, rather unimportant compared with rainfall.

The parameter γ determines how steep the V*(Pi) curve is, i.e. the sensitivity to rainfall.

Precipitation reacts much faster than vegetation cover and is therefore assumed to be in

its equilibrium (quasi-steady-state assumption), which depends on V,

Pi(V ) = P0i + siB +
N∑
j=1

kijVj, (3.4)
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where P0i + siB is the amount of precipitation if no vegetation existed and kij is the

sensitivity of the precipitation in location i to the vegetation in location j. Therefore k

is the parameter that couples the locations to each other. Default parameter settings are

chosen in line with (Bathiany et al., 2013) as N=4, τ = 1, σVi = 0.02, α = 0.0011, β = 28,

δ = 9100, P1 = 60.6855, P0 = [−50, 40, 210, 40], s = [1.7, 0.8, 0.2, 0.9], B = 100 and k =
243 30 50 50

135 24 15 15

72 12 75 10

18 18 10 25

. A time step of 0.01 was used for integration.

This Sahara model is fitted to observations and is therefore slightly more realistic than

the meta-population model.

Gene regulatory network

Third, as an example of a non-gradient reactive systen we use a simple network of gene

regulations among five genes, described by Chen et al. (2002). This model describes the

concentration of five molecules (e.g. gene or protein expressions),

dz1 =

[
90|P | − 1236 +

240− 120|P |
1 + z3

+
1488z4
1 + z4

− 30|P |z1
]
dt+ σdW1,

dz2 =

[
75|P | − 150 +

60− 30|P |
1 + z1

+
(240− 120|P |)z3

1 + z3
− 60z2

]
dt+ σdW2,

dz3 =

[
−1056 +

1488z4
1 + z4

− 60z3

]
dt+ σdW3, (3.5)

dz4 =

[
−600 +

1350z5
1 + z5

− 100z4

]
dt+ σdW4,

dz5 =

[
108 +

160

1 + z1
+

40

1 + z2
+

1488

1 + z4
− 300z5

]
dt+ σdW5,

where zi is the concentration of molecule i and P is a scalar control parameter. The

gene regulation growth rates are described by the Michaelis-Menten equation and the

degradation rates are proportional to the concentration of the genes. There is a stable

equilibrium at Z̄ = (z̄1, z̄2, z̄3, z̄4, z̄5) = (1, 0, 1, 3, 2) and a tipping point at P = 0. For

our simulations we use P = 0.35 and σ = 0.2. A time step of 0.001 was used for

integration.

This model is not based on observations, but it is tuned to display dynamics not unlike

real biomarker dynamics (Chen et al., 2012). Furthermore, it is a more complex model

than the other two models. In this way, our models have different levels of realism and

different levels of complexity.
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Perturbation experiments

To verify whether the direction with the highest autocorrelation is also the direction

in which perturbations recover slowest, we performed perturbation experiments in the

direction of the different MAFs, using the deterministic models. We expect that the

speed of recovery of perturbations in the direction of the MAF will be ordered according

to the order of the MAFs. This should be true for systems that return to their equilibrium

in a relatively linear way. However, when strong spiraling dynamics occur, the system

can move away from the direction of the MAF after the perturbation and recovery rates

may become different. Therefore we expect that the initial recovery rate is well ordered

according to the MAFs, and the later recovery rates are only well ordered when the system

recovers in a linear way. We capture the initial recovery time by looking at the moment

when the perturbation is at 10% of its recovery. In real-life applications, there is often

an interest in more than 10% recovery. For example an ecological system is normally

not labeled as “recovered” until it is indistinguishable from the situation prior to the

perturbation. Therefore recovery times are also calculated for 50% and 90% recovery. For

all perturbation experiments, perturbation size is three times the standard deviation of

the Gaussian white noise process used for the simulations.

Last, to check if the first MAF really provides the direction of slowest recovery, we did

1000 random perturbations for every model and calculated the recovery times for every

one of them to assess if the perturbation on the first MAF was really the perturbation

that would lead to the longest recovery.

Performance of MAF vs PCA

We evaluated the effect of data length and resolution on the performance of MAF and

PCA. To test whether the time series is of sufficient length, we performed a block bootstrap

with increasing block size. We started with a block size of 0.1% of the data size, and then

we randomly picked 100 blocks in the data. The blocks could overlap. For every block we

calculated the first MAF and first PC, resulting in a distribution based on 100 blocks of

which we calculated the median and the 90% confidence interval (5% and 95% boundary).

Next, we increased the block size and repeated the analysis. We repeated this until the

block size was 10% of the data size. If the confidence interval converges to a small value,

we conclude that the data are of sufficient length. This procedure can be done with

any available dataset to evaluate whether it is of sufficient length and quality for our

analysis.

To examine the effect of data resolution, we again performed a block bootstrap with blocks

of size 1000 for different distances between data points. We chose the blocks by starting

at a random point in the time series and then taking every nth point until the box was

full at 1000 points. We let n range from 1 to 1000. Again, we used a 100 boxes per n and

we calculated the median and the 90% confidence interval.
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Furthermore, we tested the performance of MAF and PCA in the case that noise is

unequally distributed over the variables. For this, we used the metapopulation model,

with different noise levels for each variable. We simulated all combinations of noise levels,

keeping the sum of the noise (
∑n

i=1 σNi
) at a constant of 0.2. For every noise regime, we

calculated the similarity of the obtained MAF and PCA with the true direction of slowest

recovery (see below).

Metric for comparing directions

In order to evaluate the performance of MAF and PCA, we compared both of them with

the true direction of slowest recovery. We calculate the latter with the deterministic

version of the model (using 50% recovery). Then, we calculate the angle between the first

(MAF or PCA) component and the vector in which the system shows slowest recovery

when perturbed along that vector with the formula

θ = cos−1
C • V
‖C‖ ‖V ‖

(3.6)

Where C is the calculated direction (first MAF or first PC) and V is the real direction of

slowest recovery. The • operator indicates the dot product. Next, we use the following

probability density function that calculates the probability of finding an angle θ when

comparing two random vectors with each other:

h(θ) =
1√
π

Γ(d
2
)

Γ(d−1
2

)
· (sinθ)d−2 (3.7)

where Γ is the Gamma function (a factorial function that can handle non-integer numbers)

and d is the dimension of the input vectors (Cai et al., 2013).

We calculate the vector similarity as 1-p, where p is the probability of finding two random

vectors that have an angle that is equal to or smaller than the angle between the two

vectors (using equation 3.7). This depends on both the angle of the two vectors and the

dimensionality of the space (Cai et al., 2013).

3.3 Results

Interpreting MAF analysis

In this section, we will apply the MAF analysis to the three models and discuss the

interpretation of the results of a MAF analysis. We start with the three-dimensional

meta-population model, since the low dimensions allow for clear visualization.
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Figure 3.2: Direction of slow and fast recovery as detected by MAF. (A) Time series of

the metapopulation model with three patches. (B) Autocorrelation for all possible directions

in the three-dimensional plane, for Z > 0. The blue X indicates the direction of the first

MAF (slowest direction), the red X indicates the direction of the last MAF (fastest direction).

(C-D) Lag-1 autocorrelation for the projected time series on MAF 1 (C) and MAF 3 (D).

(E-F) Perturbation experiments on the first and last MAF, showing that a perturbation on

the first MAF results, as expected, in a slower recovery than a perturbation on the last MAF.

The black lines indicate 90% recovery.

First, we calculate the autocorrelation in all possible directions. Just like the two-

dimensional example in Figure 3.1, we depict the autocorrelation for the different di-

rections with a colour gradient. In the two-dimensional example we plotted it on a circle,

but in this three-dimensional case we need a sphere to visualize all directions (Figure

3.2B). It is important to note that, just like the circle in Figure 3.1B, only half of the

sphere is needed since the circle is symmetrical (e.g. autocorrelation in direction [1 1

1] is the same as autocorrelation in direction [-1 -1 -1]). Therefore we can look at the

sphere from any side. We choose to look at the side where Z > 0 (Figure 3.2 B), but

any other angle would give exactly the same result. We show how the MAF analysis

accurately captures the direction of highest (blue X) and lowest (red X) autocorrelation

in this case (Figure 3.2B). Figures 3.2 C and D indicate how the autocorrelation differs in

the two directions. Perturbations in the direction of the first and last MAF show strong

differences in recovery time (Figure 3.2 E and F), where a perturbation on the first MAF

(Figure 3.2 E) lasts longer than a perturbation on the last MAF (Figure 3.2 F).

Next, we perform the MAF analysis for the other two models. After obtaining the MAFs,

we perturb the system on the different MAFs. The expectation is that the perturbation on

the first MAF, the one with the highest autocorrelation, will take the longest to recover
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Figure 3.3: Recovery times for 10% (left), 50% (middle) or 90% (right) recovery. The

initial recovery (10%, left three barplots) is well ordered by MAF, with low MAF numbers

corresponding to high recovery time, 50% recovery is well ordered for the meta-population

and the Sahara model and 90% recovery is only well ordered for the meta-population model

which responds in a gradient way. However, in all cases the recovery time is highest for the

first MAF, even for the non-linear genetic network.

and the recovery time will increase as the MAF number increases, where the shortest

recovery time will be found for a perturbation on the last MAF (Figure 3.3). We see that

for 10 % recovery the MAFs are indeed ordered to the recovery time of a perturbation

in their direction. For 50% recovery, this is true for the meta-population and the Sahara

model but not for the genetic network; and for 90% recovery it is only true for the meta-

population model and not for the Sahara model or the genetic network.

The time trajectories of the perturbations are plotted in supplementary Figures S1 and

S2. Here we see that for the Sahara model the recovery happens in a gradual way, just

as in Figure 3.2 E and F in the meta-population model. However, in the genetic network

we see some fluctuations before recovery occurs, a result of the complex eigenvalues of

the model which explains why directional autocorrelation does not reflect recovery times

well.

Apart from the recovery times we also calculate the MAF eigenvalues that indicate how

different the autocorrelations on the different MAFs are from each other. Figure 3.4 shows

the MAF eigenvalues for every MAF for the meta-population model (A), the Sahara model

(B) and the genetic network (C). For the meta-population model and the genetic network

there is a clear increase in the MAF eigenvalue for increasing MAF number, indicating a
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Figure 3.4: Difference in autocorrelation between MAFs as indicated by their eigenvalues

E. MAFs are ordered by their eigenvalues E (as described in step 3 of the MAF procedure)

in the meta-population model (A), the Sahara model (B) and the genetic network (C). Low

eigenvalues indicate a high autocorrelation. If two eigenvalues are similar, this indicates that

there is only a little difference in the recovery times of the MAFs, for example with MAF 2

and 3 in the Sahara-model (B), which can be verified in Figure 3.3.

clear difference in autocorrelation for the different directions. For the Sahara model there

is hardly any difference in autocorrelation for MAF 2, 3, and 4. This is also reflected in

the recovery times of perturbations on MAFs 2, 3, and 4 (Figure 3.3 and S1).

Last, we perturbed the system in 1000 random directions and calculated the recovery time

for all of them. Here we see that for the non-spiralling systems (the meta-populated and

the Sahara model) the first MAF was the direction of slowest recovery. For the spiralling

genetic network however, even though a perturbation on the first MAF yielded a slower

recovery than a perturbation on the other MAFs, it was not the slowest direction of the

system (supplementary Figures S3-S5). This shows that, for this model the direction of

maximum autocorrelation is not representative for the direction of slowest recovery. This

model is a reactive model (Neubert and Caswell, 1997), where perturbations exist that

first grow in amplitude before they return to their equilibrium. These directions affect

the MAF analysis. The other two models are not reactive (supplementary page 10).

Effect of timeseries length

We evaluate the effect of the length of the time series on the robustness of the results by

performing our data suitability test, which consists of a block bootstrap with increasing

block size. We find that for all our models there is clear convergence for the first MAF and

the first PCA, indicating that the data are suitable for the analysis (Figure 3.5 A-B for

the meta-population model and supplementary Figures S6-S7 for the other two models).

MAF and PCA both need about 60 000 time points for the meta-population and Sahara

model and 20 000 time points for the genetic network before convergence of the 90%

confidence interval is reached.
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Figure 3.5: Top panels show the effect of time series length on MAF (A) and PCA (B) for

the meta-population model. MAF and PCA are calculated using a block bootstrap with 100

blocks of increasing size (horizontal axe). Solid lines indicate the median of the 100 blocks

for every variable. Shaded areas show the 5% and 95% borders. Both MAF and PCA need

blocks with a size of about 60.000 to reach an accurate result. Bottom panels show the effect

of data resolutions on MAF (C) and PCA (D) for the meta-population model. Again, solid

lines show the median of 100 blocks with an increasing distance between consecutive data

points (horizontal axe). Shaded areas capture the 5% and 95% borders of the 100 blocks. The

Figures clearly show that data resolution has a strong effect on the MAF analysis whereas it

does not affect PCA.

Effect of data resolution

To evaluate the effect of data resolution, we perform the block bootstrap for different data

resolutions (Figure 3.5 C-D for the meta-population model and supplementary Figures

S6-S7 for the other two models). The first striking observation is that a sampling distance

of 1 does not yield the smallest confidence interval, indicating that for both methods it is

possible that the data are over-sampled, in which case reducing the amount of data could

improve the result. Second, for increasing distance between points, MAF results become

inaccurate, whereas data resolution does not affect PCA.

Effect of noise distribution over variables

In our previous analysis, we used Gaussian additive white noise, which is the same for all

variables. To evaluate the effect of different noise types, we experiment with differently
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distributed noise over the different variables. For all analyses we keep the sum of the

noise at 0.2 (
∑

i δNi
= 0.2).

Figure 3.6 shows the performance of MAF and PCA for different noise regimes. A loca-

tion in the plot represents the noise distribution over the three variables and the color

scale indicates the performance. Performance is measured as the similarity between the

MAF/PCA direction and the direction of slowest recovery. For instance, a similarity of

0.8 means that the probability of finding two random vectors that have an angle that is

smaller than the angle between the two vectors is 0.2. For this model, the true direction

of slowest recovery is on the vector [0.68 0.52 0.52]. If the result of PCA and MAF

point in the direction of only two variables, such as [0.7 0.7 0], our similarity measure

yields a score of 0.92. Therefore similarity values lower than 0.95 are not very meaningful.

We consider performance of the method to be ’reasonable’ when the similarity between

the two vectors is higher than 0.95 and ’good’ when similarity is higher than 0.99 (see

contours).

Figure 3.6: Performance of (A) MAF and (B) PCA for different noise regimes for the

meta-population model with three patches. A location in the plot shows how the noise is

distributed over the three variables. In the middle, every variable gets the same amount of

noise. In every location, the sum of the three noise levels is 0.2. The performance is calculated

by the similarity of the MAF or PCA result to the slowest direction. For noise that is the

same for all variables, MAF and PCA give the same (correct) result, as indicated with the

high similarity index in the middle of the panels (bright yellow colour). If one or more of the

variables receive little or no noise, MAF does not perform well. MAF outperforms PCA in

most other cases. The area inside the dotted lines is the area where the similarity is higher

that 0.95 (reasonable performance), the area within the black lines is the area where similarity

is higher than 0.99 (good performance).
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Overall, under most noise regimes, MAF performs better than PCA as indicated by a

larger area within the solid and the dotted black lines. Only when noise is low on one

variable, and relatively high in the two other variables does PCA outperform MAF. The

reason that PCA works better in that case is that the first PC will point in the direction

of the two variables with noise, and this will yield a high similarity score. The same

happens for MAF when there is noise on only one variable, in which case the first MAF

points to the two variables without noise. The Figures show that PCA is only truly

meaningful when the noise level is the same for all the involved variables. MAF is a

bit more robust and, even when noise levels vary slightly, the method maintains its high

accuracy. However, both methods fail to obtain the direction of slowest recovery when

there is a large difference in noise levels for the different variables.

If the noise becomes larger, the results are not affected (supplementary Figure S8), as-

suming that the system remains in the area around its equilibrium. For shorter time

series, the accuracy of both methods (MAF and PCA) is reduced (Supplementary Figure

S9). The performance of MAF is more affected by data size than the performance of

PCA.

3.4 Discussion & Conclusion

Our work reveals new ways in which multivariate time series may be mined to detect the

direction of lowest resilience in complex systems. Since we are living in a time when more

and more high-density data are becoming available (Porter et al., 2005), new methods to

use these data to their full potential are a welcome expansion of the toolbox to analyse

complex systems. Our method makes use of the temporal behaviour of the system on

small time scales, providing information that is hard to extract from the data by more

traditional statistical methods. This also means that the input data have to be sampled

at a time interval that is sufficiently small. What exactly is “sufficiently small” depends

on the time scale of the dynamics of the system. For instance, brain activity should be

measured at much smaller time steps than tree cover. It will typically be difficult to

decide a-priori what sampling frequency and time-series length are appropriate. However,

a simple way to test whether or not a particular time series is suitable for the proposed

analysis is to run the analyses for different time-series lengths (See Methods, figure 3.5

and supplementary figures S6-S7). If convergence is reached, and the confidence interval

is small, the time series can be considered to be of sufficient length for the proposed

analysis.

We showed that both high autocorrelation and high variance in a particular direction in

multivariate time series can act as a pointer to the dominant slow direction of a system,

provided that the system is not highly reactive and has no strong oscillating dynamics.

Importantly, both methods have advantages and disadvantages, so it depends on the

available data which method is expected to be most reliable. In one dimensional systems,
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autocorrelation is found to be a more robust indicator of resilience than variance (Dakos

et al., 2012b). Also in multiple dimensions, we show that autocorrelation outperforms

variance when noise levels vary for different variables (figure 3.6). Intuitively this makes

sense, since all variance based measures such as PCA, covariance and standard deviation

are heavily influenced by noise levels. Still, MAF may also lose accuracy when noise

only affects a subset of the variables (figure 3.6). Furthermore, if there is no noise in the

slowest direction (i.e. the dominant eigenvector), resilience indicators can miss signals

of slow dynamics (Boerlijst et al., 2013). Thus, in general, autocorrelation seems more

robust than variance. However, the MAF analysis requires a high data resolution to

capture the slow dynamics. Resolution is not an issue for PCA, which does not take the

timing of the data into account. In conclusion, if the measured variables are known to be

subject to different noise levels, MAF should always be preferred. If, however, data is too

sparse to get a reliable estimate of a direction with high autocorrelation, PCA might be

a good alternative.

There are several caveats when it comes to interpreting the results of our method. First

of all, the information we obtain depends on how large the natural fluctuations are (or

the noise is). We can only reliably estimate the speed of the system for the part of

the state space that is visited by the system. We show that, under some conditions, the

local information about slow and fast recovery may be extrapolated somewhat outside this

range. However, in real systems it will typically be impossible to know whether or not this

works as we lack complete insight into the properties that shape the dynamics throughout

the state space. Another fundamental limitation is the assumption that the system has

a stable point attractor. For systems that show oscillating, reactive or chaotic behaviour

the method is not applicable, and more generally the same is true for systems that are

far from equilibrium. Also, non-linear systems or reactive systems often display spiralling

dynamics, even if the attractors are stable points (e.g. our gene regulatory network). For

these types of systems, PCA will still find a direction of high variance and MAF will still

find a direction of high autocorrelation, but these directions do not necessarily correspond

to the direction of longest recovery and thus the engineering resilience of the system in

that direction. Whether or not a system is expected to fall into this category can be tested

based on the time series of the system with an estimation of the“worst case reactivity”

of a system (Ives et al., 2003). Also, for systems that have instabilities and that could

leave their equilibrium, the direction of MAF or PCA might still point to the direction

in which the system will lose its stability. We have deliberately limited ourselves to

detecting the mix of perturbations from which the system recovers most slowly. However,

the direction of lowest resilience may in some systems also be the direction in which

compound perturbations may most easily trigger a critical transition into a new state

(Lever et al., 2020).

Despite these limitations, MAF and PCA offer exciting opportunities to start probing

the resilience of multivariate complex systems in novel ways. Our approach builds on the
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influential work on detecting instabilities based on the phenomenon of critical slowing

down in the vicinity of tipping points. Clearly, the phenomena we describe are just the

tip of the iceberg when it comes to probing resilience in real systems. Our results show

that creative use of known computational tools allows to make the theory of resilience

indicators applicable for multivariate systems. The patterns we find suggest ways to move

forward to produce theoretical frameworks that help unravel resilience in the wide range

of high-dimensional systems on which humanity depends.
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Supplementary materials

S3.1 A note on stability and reactivity

Gradient systems are systems that have a potential. This means that if you perturb that

system in one direction, it will always follow the same path. No spiralling dynamics will

occur (i.e. the eigenvalues are real). Fully gradient systems are not common in the real

world. However, various systems may behave as a gradient system locally around a stable

equilibrium. If a system is described by dxi
dt

= fi(~x), one can evaluate whether or not it is

a locally gradient system by checking the equality:

δfi
δxj

=
δfj
δxi

: i 6= j (S3.1)

This means that the Jacobian is symmetric for all possible values for ~x. If the jacobian is

only symmetric at a stable equilibrium, we say that the system locally has a potential. in

this case, we expect simple dynamics and autocorrelation should correspond to recovery

time. For these types of systems a method such as MAF is useful. Autocorrelation still

corresponds to recovery time for more complex systems. If the system does not have a

potential (i.e. it is not a gradient system), it can still recover from perturbations in a

smooth way. However, for certain types of systems there exist directions where a pertur-

bation will amplify before returning to the equilibrium, even though the equilibrium is

stable. These systems are called reactive systems (Neubert and Caswell, 1997). Whether

or not a system is reactive can be tested by comparing the dominant eigenvalue (highest

eigenvalue) of the Jacobian to the dominant eigenvalue of the corresponding Hermitian.

The Hermitian is calculated as H = J+J ′

2
, where H is the Hermitian, J is the Jacobian,

and J’ is the transpose of the Jacobian. If the eigenvalues for the Jacobian are all negative

this indicates a stable equilibrium. However, if the Hermitian has at least one positive

eigenvalue, this means that the system is reactive. For all deterministic models we calcu-

lated the Jacobian, the dominant eigenvalue of the Jacobian and the dominant eigenvalue

of the corresponding Hermitian in order to evaluate whether or not the system is locally

gradient and/or reactive.

The Jacobian of the threepatch model is symmetric, indicating that this system behaves

like a gradient system locally (actually, this system is a completely gradient system, but

we are only interested in local dynamics). Consequently, the dominant eigenvalue of the

Jacobian (-0.2851) is the same as the dominant eigenvalue of the Hermitian (-0.2851)

indicating no reactivity. Therefore this is a system where autocorrelation is expected to

correspond to recovery time.

The Jacobian of the Sahara model is not symmetric and therefore this is not a gradient

system. The dominant eigenvalue of the Jacobian (-0.5223) is different from the dominant
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eigenvalue of the Hermitian (-0.4621), but since both eigenvalues are negative this should

not lead to reactive behaviour and autocorrelation is expected to correspond to recovery

time.

The Jacobian of the genetic network is not symmetric and therefore this is not a gradient

system. The dominant eigenvalue of the Jacobian (-10.50) differs considerably from the

eigenvalue of the Hermitian (10.99). Furthermore, even though the dominant eigenvalue of

the Jacobian is negative, corresponding to a stable equilibrium, the dominant eigenvalue

of the Hermitian is positive, which means that it is possible that some perturbations grow

initially even though the equilibrium is stable. In these directions, perturbations will take

a long time to recover even though the autocorrelation in this direction is not necessarily

high. Consequently, autocorrelation in these systems is not a good indicator for recovery

time.
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S3.2 supplementary figures

Figure S3.1: Perturbations on the four MAFS for the Sahara model. 10%, 50% and 90%

recovery are indicated with lines, dashed lines and dotted lines respectively. 10% and 50%

are well ordered, with no or hardly any difference between the second, third and fourth MAF.

90% Recovery is not well-ordered since the perturbation on MAF 4 results in a higher recovery

time. This result is summarized in figure 3.3.
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Figure S3.2: Perturbations on the five MAFs for the genetic network. 10%, 50% and 90%

recovery are indicated with lines, dashed lines and dotted lines respectively. 10% recovery

is well ordered, 50% and 90% recovery are not well-ordered. The figure clearly shows that

the perturbation on MAF 3 ends up on MAF 1 (high deviation for blue and red in the same

direction and a small deviation for yellow in the opposite direction). Also, the perturbations

on MAF4 and MAF5 clearly show spiralling dynamics, therefore only the initial recovery rate

(10% recovery) is well ordered. This result is summarized in figure 3.3.
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Figure S3.3: frequency distribution of the recovery times of 1000 perturbations in random

directions for 10% (up), 50% (middle) and 90% (bottom) recovery for the meta-population

model. Dotted lines indicate the recovery time of a perturbation on the last MAF, solid lines

indicate a perturbation on the first MAF. It shows that for the meta-population model MAF

finds the direction of slow and of fast recovery.
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Figure S3.4: frequency distribution of the recovery times of 1000 perturbations in random

directions for 10% (up), 50% (middle) and 90% (bottom) recovery for the Sahara model.

Dotted lines indicate the recovery time of a perturbation on the last MAF, solid lines indicate

a perturbation on the first MAF. It shows that for the Sahara model MAF finds the direction

of slow and of fast recovery.
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Figure S3.5: frequency distribution of the recovery times of 1000 perturbations in random

directions for 10% (up), 50% (middle) and 90% (bottom) recovery for the genetic network.

Dotted lines indicate the recovery time of a perturbation on the last MAF, solid lines indicate

a perturbation on the first MAF. It shows that for the genetic network, MAF cannot find the

direction of the longest and shortest recovery.
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Figure S3.6: Top row: Effect of time series length on MAF (top left) and PCA (top right)

for the Sahara model. Solid lines indicate the medians of 100 blocks in a block bootstrap,

shaded areas show the 90% confidence interval. The figures show that both methods improve

for increasing data length, but converge at around 100,000 datapoints. Bottom row: Effect of

data resolution on MAF (bottom left) and PCA (bottom right) showing that if the distance

between datapoints becomes too large, MAF results do not converge anymore, whereas this

distance does not affect PCA.
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Figure S3.7: Top row: Effect of time series length on MAF (top left) and PCA (top right)

for the genetic network. Solid lines indicate the medians of 100 blocks in a block bootstrap,

shaded areas show the 90% confidence interval. The figures show that both methods improve

for increasing data length, but converge at around 20,000 datapoints Furthermore, note that

when converged, MAF and PCA yield slightly different directions. Bottom row: Effect of

data resolution on MAF (bottom left) and PCA (bottom right) showing that if the distance

between datapoints becomes too large, MAF results do not converge anymore, whereas this

distance does not affect PCA.
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Figure S3.8: Performance of (a) MAF and (b) PCA for different noise regimes for the meta-

population model with three patches. A location in the plot shows how the noise is distributed

over the three variables. In the middle, every variable gets the same amount of noise. In every

location, the sum of the three noise levels is 0.4, which is twice as high as figure 3.5. The

performance is calculated by the similarity of the MAF or PCA result to the slowest direction.

For noise that is the same for all variables, MAF and PCA give the same (correct) result, as

indicated with the high similarity index in the middle of the panels (bright yellow colour).

If one or more of the variables receive little or no noise, MAF does not perform well. MAF

outperforms PCA in most other cases. The area inside the dotted lines is the area where

the similarity is higher than 0.95 (reasonable performance), the area within the black lines is

the area where similarity is higher than 0.99 (good performance). Comparison with figure 5

indicates that for this model the results remain unchanged for higher noise levels, provided

that the noise does not force the system into a new regime. This may be due to the smooth

stability landscape of this gradient system.
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Figure S3.9: Same as figure S3.8 but with only 300 data points, as opposed to 4000 as in

figure 3.5 and S3.8. If the noise levels are equal over the three variables, PCA results are more

reliable than MAF results, since there is a clear black circle (0.99 similarity to true direction of

slowest recovery) around the middle of panel B. However, when noise levels vary over variables,

both methods become inaccurate, but MAF has a larger region where the performance is at

least “reasonable” (0.95 similarity to true direction of slowest recovery, area within dotted

lines).
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Abstract

Changing conditions may lead to sudden shifts in the state of ecosystems when critical

thresholds are passed. Some well-studied drivers of such transitions lead to predictable

outcomes such as a turbid lake or a degraded landscape. Many ecosystems are, however,

complex systems of many interacting species. While detecting upcoming transitions in

such systems is challenging, predicting what comes after a critical transition is terra

incognita altogether. The problem is that complex ecosystems may shift to many different,

alternative states. Whether an impending transition has minor, positive or catastrophic

effects is thus unclear. Some systems may, however, behave more predictably than others.

The dynamics of mutualistic communities can be expected to be relatively simple, because

delayed negative feedbacks leading to oscillatory or other complex dynamics are weak.

Here, we address the question of whether this relative simplicity allows us to foresee a

community’s future state. As a case study, we use a model of a bipartite mutualistic

network and show that a network’s post-transition state is indicated by the way in which

a system recovers from minor disturbances. Similar results obtained with a unipartite

model of facilitation suggest that our results are of relevance to a wide range of mutualistic

systems.
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4.1 Introduction

Empirical studies of lakes, arid ecosystems, coral reefs, and tropical forests suggest that

remarkably sudden transitions to alternative stable states may occur when changing en-

vironmental conditions pass a critical value (Scheffer et al., 1993; Rietkerk and Van de

Koppel, 1997; Scheffer et al., 2001; Hirota et al., 2011). While the outcome of such tran-

sitions is relatively predictable when a few leading species or species groups determine

the state of an ecosystem, this may not be the case when ecosystem dynamics are deter-

mined by many interacting species. Species traits as well as their sensitivity to changing

conditions are known to be highly diverse, and many drivers of environmental change

are known to have multiple simultaneous effects on species communities. A change in

climate may, for example, affect the distribution, phenology, physiology, behavior, and

relative abundances of species, and these changes may, in turn, affect the strengths of in-

teractions between species (Kareiva et al., 1993; Memmott et al., 2007; Suttle et al., 2007;

Tylianakis et al., 2008; Burkle et al., 2013; Høye et al., 2013; Usinowicz and Levine, 2018).

The specific ways in which interactions are arranged in complex ecological networks are

known to be crucial for the stability of ecosystems (Kareiva et al., 1993; De Ruiter et al.,

1995; McCann, 2000; Solé and Montoya, 2001; Neutel et al., 2002; Montoya et al., 2006;

Bastolla et al., 2009; Rohr et al., 2014). Gradual changes in these patterns and other

complex simultaneous effects of changing environmental conditions may therefore lead to

regime shifts of which the outcomes are highly unpredictable (Scheffer et al., 2012).

The response of ecosystems to a change in environmental conditions is determined by the

relative strengths of positive and negative feedback loops in the networks of interactions

between species or between species and their environment. Immediate negative feedbacks,

e.g. due to intraspecific competition, have stabilizing effects, while positive or ‘reinforcing’

feedbacks are destabilizing and a necessary condition for the existence of alternative sta-

ble states (Thomas, 1981; Snoussi, 1998; Gouzé, 1998). Critical transitions towards such

states may occur when changing conditions alter a system’s feedbacks such that desta-

bilizing, positive feedbacks gain in strength relative to stabilizing, immediate negative

feedbacks. A classic example is found in shallow lakes where an increase in algae leads

to an increased turbidity and the suppression of aquatic plants. As a consequence, more

nutrients become available to algae which enhances algae growth. A clear-water, plant-

dominated state may therefore switch to a turbid, algae-dominated state when gradually

increasing nutrient levels pass a critical value. Recovery from such transitions requires a

relatively large reduction in nutrient availability, a phenomenon called ‘hysteresis’ (Schef-

fer et al., 1993)). Other examples of such switching behavior are found in coral reefs,

woodlands, deserts, and oceans (May, 1977; Wilson and Agnew, 1992; Scheffer et al.,

2001), as well as in many other systems such as the climate (Hare and Mantua, 2000;

Scheffer et al., 2001; Alley et al., 2003; Lenton et al., 2008), the economy (Diamond and

Dybvig, 1983; Arthur, 1989; Easley and Kleinberg, 2010), and human cells (Hasty et al.,
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2002; Ferrell Jr, 2002; Lee et al., 2002; Tyson et al., 2003; Angeli et al., 2004).

Mutually beneficial interactions are, perhaps, the most intuitive examples of positive feed-

back loops in complex ecological networks, metapopulations, or other complex environ-

mental systems. Previous studies have emphasized the importance of such interactions in

communities of flowering plants and animal pollinators or seed dispersers (Jordano, 1987;

Bascompte et al., 2003). Mutually beneficial interactions between zooxanthellae, coral

species and invertebrates occur in coral reefs where a diversity of coral species provide food,

shelter and reproduction sites for other organisms (Moberg and Folke, 1999; Wilson et al.,

2006; Stella et al., 2011). Nutrient exchange with mycorrhizal fungi and nitrogen-fixing

bacteria is fundamental for plant communities (Kiers et al., 2011), and mutualistic inter-

actions are of importance for microbial communities where multiple species are involved

in the degradation of organic substrates (Schink, 2002; Stolyar et al., 2007). Indirect

facilitation may occur between plant species when modifying harsh environments (Wilson

and Agnew, 1992; Callaway, 1995; Holmgren et al., 1997; Rietkerk et al., 2004), and the

exchange of individuals between habitat patches may be fundamental for metapopula-

tions (Hanski, 1998). Previous work suggested that critical transitions may occur due

to the positive feedback resulting from such mutually beneficial relationships in plant-

pollinator communities because a decline in pollinator abundances may negatively affect

plant abundances, which in turn is bad for pollinators. Similar transitions may occur in

metapopulations due to a ‘rescue effect’ (Hanski, 1998) and in facilitative communities

due to an ‘Allee effect’ (Rietkerk et al., 2004; Courchamp et al., 1999; Stephens et al.,

1999)). The observation that the relative strength of facilitative interactions tends to in-

crease with environmental stress (Bertness and Callaway, 1994; Maestre et al., 2009; Tur

et al., 2016), suggests that competitive communities may become increasingly mutualistic

as conditions change. The aforementioned positive feedbacks and associated critical tran-

sitions may thus also occur in communities where mutually beneficial interactions were

not particularly strong under more advantageous conditions.

Here, we propose a new class of indicators that may allow us to detect the specific way

in which species are affected by an increase in the relative strength of a positive feedback

prior to a critical transition. The essence of our approach is that we seek the direction

in a system’s phase space, i.e. a multidimensional space in which each axis corresponds

to the abundance of a species, in which a system becomes increasingly sensitive to small

subcritical disturbances. Earlier studies have shown that an increasingly slow recovery

from small disturbances may be indicative of a loss of resilience prior to critical transitions

(Wissel, 1984; Nes and Scheffer, 2007). Various indicators of this phenomenon known as

‘critical slowing down’ may therefore serve to detect an increase in the likelihood of critical

transitions (Scheffer et al., 2009; Dakos et al., 2012a). Here, we take advantage of the fact

that resilience is not lost equally in all directions. Disturbances have a size (i.e. the total

amount of change) and a direction (i.e. the relative amount of change in each species).

The more similar a disturbance’s direction to the direction in which increasingly small
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perturbations may cause critical transitions, the stronger the effect of critical slowing

down. Provided that there are no oscillatory, chaotic or other complex dynamics, a

system’s future state will most likely lie in the same approximate direction.

To get an intuitive understanding of the principle behind our approach, consider a small

plant-pollinator community of which the dynamics can be represented by a landscape

of valleys, hills and ridges (Fig. 4.1.A and Appendix S4.2 in Supporting Information).

In this landscape, every possible combination of pollinator abundances is represented by

a unique point, while the speed and direction in which abundances change corresponds

roughly to the slope of the landscape. The lowest points of the landscape’s valleys or

‘attraction basins’ represent alternative stable states. As conditions change, the shape

of the landscape changes and new basins appear. When a threshold comes close to the

network’s initial state, a small perturbation in the right direction can invoke a transition

into another attraction basin. Eventually, the basin around the network’s initial state

disappears altogether and the system inevitably shifts into one of the alternative basins.

The question we ask is whether we may know beforehand to which of the alternative

attractors a system will most likely shift. The clue is that the slope of the initial state’s

attraction basin changes in a characteristic way before the transition occurs. A ‘mountain

pass’ towards the system’s future state is formed, marked by a ‘saddle point’ in the land-

scape. The initial state’s attraction basin becomes increasingly shallow in the direction

of this pass and the recovery from perturbations increasingly slow (Fig. 4.1.B-C and Fig.

S4.2). This direction is what we refer to as the ‘direction of critical slowing down’ and

is indicative of the relative gain or loss in abundance of each species after an impending

critical transition.

To explore whether the direction of critical slowing down might be indicative of the future

state of mutualistic communities, we use a model of a bipartite mutualistic network in

which critical transitions are known to occur (Dakos and Bascompte, 2014; Jiang et al.,

2018). This model was originally developed to describe the interactions between flowering

plants and animal pollinators or seed dispersers (Bastolla et al., 2009), but may describe

any system characterized by competition within and cooperation between species groups.

Previous work has shown that indirect facilitation occurs between pollinators when they

interact with the same plant species (Moeller, 2004; Ghazoul, 2006; Bastolla et al., 2009).

This indirect facilitation makes a network more resilient, i.e. the minimum size of pertur-

bations or the amount of change in environmental conditions needed to cause a critical

transition is larger. When pollinators continue to facilitate each other under increasingly

harsh environmental conditions they may, however, also collapse simultaneously because

they depend on each other for survival.

We generate time series in which the resilience of a network’s initial state is gradually

undermined by altering the relative strength of mutualistic interactions. Oscillatory, or

other complex dynamics occurring after a threshold is passed may negatively affect the
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performance of the here proposed class of indicators but are unlikely in purely mutualistic

systems, i.e. systems in which all interspecific interactions are positive, because they

require at least one delayed negative feedback, i.e. a negative feedback with a time lag,

usually occurring as the result of an uneven number of negative interactions in feedback

loops of two or more species (Levins, 1974; Thomas, 1981; Puccia and Levins, 1985;

Goldbeter, 1996; Hastings and Powell, 1991; Snoussi, 1998; Gouzé, 1998; McCann et al.,

1998; Dambacher et al., 2003). Few real ecosystems can, however, be expected to be purely

mutualistic. Different scenarios are therefore explored, varying from a scenario where

positive feedbacks are the only cause of instability, i.e. in purely mutualistic systems,

to scenarios in which the destabilizing effects of delayed negative feedbacks are stronger,

i.e. in mixed systems with mutualistic and competitive interactions. To determine the

direction of critical slowing down, we study changes in the fluctuations around the species

mean abundances and determine whether they can be used to predict a network’s post-

transition state. To explore whether the results obtained with this model may hold for a

wider class of mutualistic systems, we investigate whether similar results are obtained with

a more general, unipartite model of competition and facilitation between species.

4.2 Community model

We use a dynamic model describing the interactions between two types of species: plants

(P ) and pollinators (A). As in Bastolla et al. (2009), species of the same type compete

with each other, while species belonging to a different type interact mutualistically. The

dynamics of species i belonging to a group of S(A) pollinator species are as follows:

dN
(A)
i

dt
=

Ri(N
(P ))

1 + hiRi(N (P ))
N

(A)
i −

S(A)∑
j=1

cijN
(A)
j N

(A)
i − diN (A)

i + εi. (4.1)

Plant dynamics are described by a similar formula, which can be found by exchanging

indices A and P . Unless stated otherwise, this procedure can be applied to all formulas

in this chapter.
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Figure 4.1: Stability properties for a small network of two pollinators (shown) and two

plants (not shown). (A) Attraction basins (valleys) of alternative stable states (balls) are

separated by thresholds (dashed curves). Initially, the only alternative to pristine state 1

is fully collapsed state 2 (A.I). When conditions change, two additional, partially collapsed

states appear (states 3 and 4). The initial, pristine state loses resilience after state 3 appears

(A.II-A.III). Eventually, the threshold towards state 3 approaches the pristine state so closely

that a critical transition towards this state becomes inevitable (A.III-A.IV). (B) Alternative

stable states, saddle points (yellow dots), and hilltops (grey dots) are surrounded by areas in

which the landscape’s slope, and thus the rate at which abundances change, is nearly zero

(indicated in orange). Higher speeds are found further away from these points. The direction

of slowest recovery changes substantially before future state 3 appears (yellow arrow, B.I-

B.II). After state 3 appears, the system slows down in the direction of the saddle point on

the approaching threshold (B.II-B.III). (C) Slow recovery from a perturbation towards the

saddle point (C.I) as opposed to the much faster recovery from an equally large perturbation

in another direction (C.II).
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Species i has abundance Ni, which may increase due to mutualistic interactions with mem-

bers of the other species type. The rate at which the abundance of species i increases

depends on the total amount of resources provided by mutualistic partners, Ri(N
(P )), i.e.

nectar for pollinators and pollen for plants. As in Okuyama and Holland (2008) and Bas-

tolla et al. (2009), we assume that species are limited in their capacity to process resources

and become saturated when the amount of resources provided is high. The rate at which

species become saturated is determined by saturation term hi. The total mutualistic

benefit, Ri(N
(P )), depends on the abundance of mutualistic partners as follows:

Ri(N
(P )) =

S(P )∑
k=1

γikN
(P )
k , (4.2)

in which γik is the mutualistic interaction strength, i.e. the rate at which resources become

available to species i, due to its interaction with species k.

Species of the same type compete directly amongst each other, e.g. plants for soil nu-

trients and pollinators for nesting sites. Intraspecific competition, cii, is assumed to be

substantially stronger than interspecific competition, cij, such that species do not easily

outcompete each other. Independent of mutualistic and competitive interactions, several

processes may simultaneously enhance or reduce population growth. We assume that the

combined effect of these processes is negative, which is incorporated by mortality rate

di.

Species experience small stochastic perturbations incorporated through noise term

εi:

εi = δi
dW

dt
. (4.3)

εi fluctuates in time due to a Wiener process, W , with mean zero and standard deviation

δi. The Wiener process is a continuous-time stochastic process generating white noise.

To prevent noise leading to negative abundances, we assume that dN/dt = 0 when N <

0.001.

Coexistence and relative mutualistic benefits

As the number of species and/or the strength of interspecific competition increases, it

becomes increasingly difficult to assign parameters such that all species may stably coex-

ist. In previous work, a trade-off was assumed between the number and the strength of

mutualistic interactions which prevented species with many interactions from becoming
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overly abundant and outcompeting other species (Bastolla et al., 2009; Dakos and Bas-

compte, 2014; Jiang et al., 2018). Here, we assume mutualistic interaction strengths to

vary continuously, i.e. pollinators may interact with all plant species and vice versa, which

allows us to explore gradual changes in interaction structure beyond the fixed structure of

a predefined mutualistic network. A different kind of balancing relationship is therefore

required, and mutualistic interaction strengths, γik, are determined as follows:

γik =
θikRi(N̂

(P ))

N̂
(P )
k

, (4.4)

in which the relative mutualistic benefit, θik, corresponds to the fraction of the total

amount of resources provided by species k, and Ri(N̂
(P )) to the total amount of resources

received by species i at the system’s nontrivial equilibrium, i.e. the equilibrium point at

which all species have a non-zero abundance. There are different costs and benefits asso-

ciated to different feeding strategies, e.g. being a specialist or a generalist or interacting

with specialists or generalists (Morales and Traveset, 2008; Tur et al., 2016). This way of

assigning mutualistic interaction strengths makes sure that a species’ total amount of re-

sources received is independent from a species’ relative feeding preferences, i.e. we assume

the sum of these costs and benefits to be approximately the same for each strategy. The

sum of a species’ relative mutualistic benefits,
S(P )∑
k=1

θik, is one. A change in relative mu-

tualistic benefits does not affect the equilibrium abundances of species, because the total

amount of resources provided to each species remains the same (see Appendix S4.5).

Changing environmental conditions and the direction in which resilience is

lost

To test whether the direction of critical slowing down is indicative of a system’s future

state, we study our ability to predict a system’s future state when changing conditions

lead to substantial changes in the strength of positive feedbacks and the direction in

which they have destabilizing effects. Such changes may occur when changing conditions

fundamentally alter the ways in which species relate to each other.

Positive feedbacks and the direction in which resilience is lost can be studied when de-

termining the elements of the Jacobian matrix at a system’s nontrivial equilibrium. Each

element in this matrix describes how a change in the abundance of species i affects the

growth of species j, dNj/dt. At a tipping point, the dominant eigenvalue of the Jaco-

bian matrix is zero and the slope of the direction in which a system recovers slowest

from perturbations is indicated by the eigenvector corresponding to this eigenvalue. The

strength of the positive feedback between pollinator i and plant j can be determined by

multiplying the Jacobian’s off-diagonal elements; αij ∗ αji. In a two-species system, a
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tipping point is reached when the strength of this feedback is equal to the multiplication

of the two direct negative feedbacks; αii ∗αjj. Similar relationships can be obtained when

studying larger systems (Levins 1974; Thomas 1981; Puccia and Levins 1985; Goldbeter

1996; Snoussi 1998; Gouzé 1998; Dambacher et al. 2003; De Ruiter et al. 1995; Neutel

et al. 2002; Neutel and Thorne 2014).

Some species contribute more to the instability caused by positive feedbacks than others.

The effect of a temporary change in the abundance of mutualistic partners, as described by

the Jacobian matrix, for example, is small when species are highly saturated, i.e. Ri(N̂
(P ))

and/or hi is large. Positive feedbacks are therefore weak and the resilience of the here

studied networks is high when relative mutualistic benefits, θik, are distributed such that

most resources are obtained from the same, highly saturated species (see Appendix S4.1

and Fig. S4.1). In more complex communities such a distribution resembles a nested

structure as is commonly observed in mutualistic networks, as in those networks species

tend to obtain resources from the same mutualistic partners as well (Bascompte et al. 2003

and Fig. S4.6.A). The interrelationships between saturated and non-saturated species are

asymmetrical as in Bascompte et al. (2006).

As a starting point for further research, we explore a scenario in which a change in the

aforementioned distribution of relative mutualistic benefits, θik, undermines the resilience

of the mutualistic networks while keeping all other properties, e.g. nontrivial equilibrium

abundances and the negative effects of inter- and intraspecific competition, constant (see

Appendix S4.5). Increasingly strong positive feedbacks emerge when two or more non-

saturated species start to interact increasingly strongly with each other. Eventually, this

will lead to a full or partial network collapse depending on the specific way in which relative

mutualistic benefits are changed. Conditions, M , affect relative mutualistic benefits as

follows:

θ∗ik = θ0,ik + (θfinal,ik − θ0,ik)M, (4.5)

in which θ0,ik is the initial, θfinal,ik the final, and θ∗ik the actual relative mutualistic benefit.

Conditions, M , change from zero to one over time, t, such that dM/dt = 1/T , in which

T is the total simulation time. Mutualistic interaction strengths, γik, are updated as

described in equation 4.4. The species and interactions involved in the positive feedback

leading to a critical transition, the direction in which this feedback amplifies change,

and the nature of a system’s future state, are determined by the specific way in which

interactions are altered.

In addition to the scenario in which only the relative mutualistic benefits change, we

explore scenarios in which the nontrivial equilibrium abundances of species change as well

due to a change in the total amount of resources received from mutualistic partners (see

Appendix S4.5).
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Determining the direction of critical slowing down

Although measuring the recovery rate from experimental perturbations is the most direct

way to determine the direction of critical slowing down, an experimental approach may

be impractical or even impossible when studying complex networks. The development

of alternative methods to determine the direction of critical slowing down is therefore of

importance. Previous studies suggested that small changes in the statistical properties of

time series, e.g. an increase in variance, autocorrelation, skewness, and spatial correlation,

may be used as an indicator of a change in the proximity to a tipping point (Scheffer et al.

2009; Dakos et al. 2012a). Here, we explore whether changes in the statistical properties

of time series may be used to predict the future state of mutualistic communities.

When assuming a continuous regime of random perturbations, a system will spend most

time away from its equilibrium state in the direction in which it recovers slowest from

perturbations (see Appendix S4.2). When approaching a tipping point, the distribution

of natural fluctuations around the species’ mean abundances should therefore become

increasingly elongated in the direction in which a system slows down (Fig. S4.3). To detect

such change, we analyze our model-generated times series by determining the direction

and magnitude of such asymmetry in a rolling window. This window has a fixed size and is

moved along the time series as new data become available. To determine the direction in

which abundances are distributed asymmetrically, we use a principal component analysis

of which the first principal component corresponds to the line in the network’s phase space

along which variance is highest (see Held and Kleinen 2004; Chen et al. 2012; Suweis and

D’Odorico 2014; Dakos 2018 and Chen et al. 2019 for related approaches). Abundances are

distributed asymmetrically either in an up- or downward direction along this component.

To determine the direction of our indicator, we orthogonally project the time series on

the first principal component and determine the direction in which the projected time

points are skewed (Fig. S4.4.A-E). The magnitude of the indicator is determined by the

fraction of the total variance explained by the first principal component. This direction

and magnitude together form a vector which is our indicator of a network’s future state

(Fig. S4.4.F).

A network’s phase space has as many axes as there are nodes in a network. Our indicator

thus has multiple components; one for each species (Fig. S4.4.F). Each component, or

‘score on the indicator’, gives an indication of the extent and direction in which the abun-

dance of each individual species is distributed asymmetrically. The indicator accurately

points towards the future state when its components, or ‘scores’, are directly proportional

to the difference in abundance between a network’s initial and future state. Species with a

negative score are expected to decrease, while species with a positive score are expected to

increase. Species with a relatively large score are expected to change more in abundance

than species with a comparably smaller score. An increase in the indicator’s magnitude

is reflected by more extreme (positive or negative) scores.
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To assess the quality of the prediction, we determine the angle between the indicator’s

slope, as determined by the first principal component, and the direction of the observed

shift in abundance. As a measure of similarity, we take one minus the probability that the

angle between two unrelated, random vectors is smaller (see Appendix S4.3). We consider

the indicator’s slope to be accurate when this measure of similarity is above 0.99. When

time points are also skewed towards a network’s future state, we consider the prediction

to be fully accurate.

Simulations and parameter settings

We analyze several data sets consisting of 1000 model-generated time series in which the

above described mutualistic networks approach a tipping point. For each time series,

we compute the change in direction and magnitude of the indicator on the pollinator

abundances (see Appendix S4.4). The distribution from which interspecific competitive

interaction strengths are sampled, the number of plant and pollinator species, and the way

in which changing conditions affect nontrivial equilibrium abundandances differ among

data sets (see Appendix S4.5). The resilience of mutualistic networks is, in all cases,

undermined by a change in the distribution of mutualistic benefits leading to a substan-

tial increase in the relative strength of positive feedbacks or delayed negative feedbacks.

Declining abundances may have an additional negative effect on resilience.

To explore the effects of oscillatory, chaotic or other complex dynamics, we analyze data

sets of which the strength and variability in interspecific competitive interaction strengths,

cij, varies. Delayed negative feedbacks become stronger as the strength and variability

of interspecific competition increases. To provide a clue as to how (un)likely it is to find

transitions to oscillatory, chaotic or other complex dynamics, we determine for each time

series whether the system approaches a Hopf or a saddle-node bifurcation.

Networks were discarded from a data set when they were unstable at initial conditions,

M = 0. We determined the frequency at which this occurred as a measure of how difficult

it is to find a stable solution. The final distribution of relative mutualistic benefits, θfinal,ik,

was redrawn either when a network would become unstable within the range of conditions

M = (0, 0.5), or when a network would still be stable at M = 1.

A more general, unipartite model of competition and facilitation

To explore whether the indicator may work for a wider class of systems, we investigate

whether similar results are obtained with a more general model of competition and facil-

itation. The positive feedback between plants and pollinators in the previously described

communities can be seen as an Allee effect, i.e. a positive relationship between the growth

and density of populations (Courchamp et al. 1999; Stephens et al. 1999). The indirect

facilitation occurring between pollinators when interacting with the same plant species
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is not fundamentally different from the facilitation occurring between plant species when

ameliorating the same harsh environment, or other forms of interspecific facilitation oc-

curring in ecosystems. The most essential properties of a group of pollinator species may

therefore be captured as follows:

dNi

dt
= riNi

(∑S
j=1 γijNj

Ai
− 1

)(
1−

∑S
j=1 cijNj

Ki

)
− diNi + εi, (4.6)

in which Ni is the abundance of species i. When the abundances of other species and

mortality rates, di, are zero, species may grow in abundance until they reach carrying

capacity Ki, or collapse to extinction when abundances are below critical abundance Ai.

The speed at which species abundances change is determined by growth rate ri. Facili-

tation is mediated by facilitation rate γij. Strong interspecific facilitation allows species

to recover from large disturbances, i.e. below critical abundance Ai. Species with a high

critical abundance Ai depend strongly on this facilitation, and a community’s overall re-

silience is highest when such species are facilitated relatively strongly by species with a low

Ai. The relative strength of interspecific competition is determined by cij. Other causes

of abundance loss are incorporated through mortality rate di. Species are assumed to

experience small stochastic perturbations, as in the bipartite mutualistic network model,

through noise term εi.

The main difference between the here presented model and the previously described plant-

pollinator model is that it is a unipartite model, i.e. it describes one set of interacting

species. The means by which facilitation occurs are, in contrast to the above described

plant-pollinator model, not explicitly described. Parameter settings and results can be

found in Appendix S4.6 and S4.7.

4.3 Results

We found that, when interspecific competitive interaction strengths are weak, instability

nearly always arises from the positive feedback between plants and pollinators or from the

Allee effect in the above described mutualistic or facilitative communities. Instability is

caused by a saddle point approaching the communities’ initial state and at least one species

will collapse to extinction when a tipping point is passed. Other species may either gain or

lose in abundance depending on the communities’ initial properties and the way in which

they are affected by changing environmental conditions (Fig. 4.2.A). Critical transitions

were nearly always preceded by a period in which the indicator’s magnitude would increase

significantly, indicating that the distribution of fluctuating species abundances becomes

increasingly asymmetric (see Appendix S4.7, Fig. 4.2.B-D and Fig. S4.7-S4.9). As with

the small mutualistic network in Fig. 4.1, the indicated direction typically shifts towards

a system’s future state at the beginning of this period. The indicator thus consistently
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pointed towards a community’s future state while increasing in magnitude prior to a

critical transition, when interspecific competitive interactions were weak.

A notable exception to this general pattern occurred when competitive interaction

strengths were taken from a low to intermediate range, e.g. ∼ U(0.02, 0.08). We found

that, for such a range, full network collapses were not always indicated accurately. Transi-

tions would lead either to the collapse of relatively few species or to a collapse of the entire

network (Fig. S4.9). Both the inaccurate prediction of full network collapses and the ab-

sence of intermediate-size, partial network collapses may occur because critical transitions

lead to a series of cascading, partial network collapses. The likelihood of an additional

collapse increases as more species collapse (Solé and Montoya 2001; Memmott et al. 2004;

Rezende et al. 2007). The most likely outcome of a series of cascading, partial network

collapses is therefore a collapse of the entire network. In such a scenario, the indicator will

accurately indicate the initial regime shift but will not foresee the cascade of partial net-

work collapses immediately following it (Fig.4.3). In some time series, we observed that

regime shifts consisted of several consecutive collapses (Fig. S4.10.A-B). The amount of

time in between two consecutive collapses can, however, be extremely small. Also when

cascades were not clearly visible, we suspect therefore that the inaccurate prediction of a

full network collapse is caused by a cascading collapse.

Cascading, full network collapses were uncommon when interspecific competitive interac-

tion strengths were drawn from other ranges (Fig. S4.9). When there is no competition

between species, full network collapses are very common, well indicated and do not show

signs of being caused by a cascade of partial network collapses (as in Fig. S4.10.C). When

competitive interactions are strong, few species tend to collapse to extinction, while most

or all other species gain in abundance from a transition. Apart from the specific range

from which competitive interaction strengths were drawn, cascading collapses were found

to become increasingly common when the noise level increases suggesting that they, in

part, result from a low resilience of a system’s future state (Fig. S4.11-S4.12). A rela-

tively large number of species was usually indicated to lose in abundance when a, likely,

cascading collapse occurred (e.g. 7 out of 10 on average, Fig. 4.3.E). As an alternative

indicator of the likelihood of a cascading, full network collapse we propose therefore to

use the number of species indicated to lose in abundance.

As the strength and variability of interspecific competition increases, Hopf bifurcations,

leading to oscillatory, chaotic or other complex dynamics, become increasingly common.

After such transitions, the system remains highly sensitive to small-scale stochastic per-

turbations and may end up in any of several potential future states (Fig. 4.4.A-B, and

Fig. S4.13-S4.15). To which of these states a system will shift is determined by chance

and thus hard to predict. For the highest competition level we tested, we found that such

hard-to-predict regime shifts made up about 60% of a data set. Higher levels were not

tested because, as the strength of competition increases, it becomes increasingly difficult
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Figure 4.2: Directional slowing down in a mutualistic network as detected by our indicator.

(A) Time series of species belonging to one part of a bipartite mutualistic network, i.e. the

pollinators. At the tipping point two species collapse to extinction (light blue and yellow). (B)

The indicator of the future state measuring the direction in which fluctuations are distributed

asymmetrically. Scores on the indicator indicate the relative predicted gain or loss of each

node. (C) The magnitude of the indicator, reflecting the extent to which fluctuations are

distributed asymmetrically, plotted together with the accuracy measured as the similarity

between its direction and the observed shift in abundance. Grey bands indicate the period

in which the indicator’s magnitude increases significantly. This period likely corresponds to

the period in which the network rapidly loses resilience (as in Fig. 4.1.A.II-III). The accuracy

increases rapidly at the beginning of this period. (D) The observed changes in abundance

versus the scores on the indicator just before the tipping point. Extinct species are indicated

with crosses. The observed shift is nearly proportional to the scores on the indicator as points

are close to a straight line through the origin.
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Figure 4.3: Cascading collapses and the indicator’s performance when predicting the future

state of mutualistic networks. (A-C) Examples of the relationship between the scores on

the indicator and the observed shifts in abundance when a single, when four, and when all

pollinator species collapse to extinction. The change in abundance of winners, losers and two

or three collapsed species was almost always accurately indicated. The loss in abundance of

additional species collapsing (red circles) was underestimated. (D) The fraction of regime

shifts after which a certain number species collapsed to extinction. The fraction for which the

change in abundance was not accurately indicated is shown in red. Inaccurate predictions (as

in panel C) usually occurred prior to a full network collapse. (E) Relationship between the

number of species collapsing and the number of species with a negative score on the indicator

(mean and SD). When the number of species indicated to lose in abundance was high, we were

often dealing with a full network collapse. (F-G) Combined plots of the 900 best indicated

transitions in a data set of 1000 regime shifts. Species remaining after a regime shift (blue

dots, panel F) are indicated more accurately than collapsing species (red crosses, panel F).

Species of which the loss in abundance prior to a collapse was underestimated usually belonged

to networks of which 5 or more species were indicated to lose in abundance (green dots and

crosses, panel G). Competitive interaction strengths were taken from a low to intermediate

range (i.e. 0.02-0.08).
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to generate networks of which the initial, nontrivial state is stable. More specifically, we

found that the probability of a network to be stable at initial conditions, M = 0, is nearly

one when interspecific competitive interaction strengths were taken from the aforemen-

tioned lower ranges and below 0.01 when they were taken from the highest here reported

range (Fig. S4.16). The indicator accurately indicated about 50% of the regime shifts in

this ‘worst-case scenario’ (some of the hard-to-predict regime shifts were indicated accu-

rately). When there is no competition between species, this percentage was nearly 100%

(Fig. 4.4.C-D).

Qualitatively similar results were found when, in addition to a change in relative mutualis-

tic benefits, the species’ nontrivial equilibrium abundances changed as well (see Appendix

S4.7 and Fig. S4.17). Full network collapses are more frequent when abundances tend to

decrease and the period in which the indicator’s magnitude increases prior to a critical

transition tends to be somewhat shorter when abundances change over time. The ex-

amples in Fig. S4.18-S4.20 suggest that the direction of the first principal component is

initially determined by the way in which abundances change over time. It may, therefore,

take longer before the direction in which abundances are distributed asymmetrically is

determined by the direction of critical slowing down. The application of a detrending

method may prolong this period when trends are strong.

Qualitatively similar results were also found when analyzing data sets of communities

with different numbers of species (see Appendix S4.7). Full network collapses became

less common as the number of species increased, and Hopf bifurcations leading to oscilla-

tory, chaotic or other complex dynamics became more frequent (Fig. S4.21-S4.22). These

changes occurred, most likely, due to a change in the balance between intra- and inter-

specific competition. Interaction strengths were assigned such that the relative difference

between intra- and interpecific competitive interaction strengths remained approximately

the same (see Appendix S4.5). The number of interspecific competitive interactions, how-

ever, increases as the number of species increases. The combined effect of all interspecific

competitive interactions is therefore larger. Systems with many species may, due to the

way in which we assigned competitive interaction strengths, therefore be comparable with

smaller networks in which interspecific competition is relatively strong.

Simulations with the more general, unipartite model of facilitation between species gave

roughly the same qualitative results as the bipartite plant-pollinator model (see Appendix

S4.7). The resilience of communities of 10, 20 and 40 species was generally a bit lower than

the resilience of plant-pollinator networks with the same number of plant and pollinator

species. To prevent networks from collapsing almost immediately, we chose a lower noise

level with standard deviation δi = 0.05. A relatively low resilience may also explain the

relatively high frequency of likely cascading collapses in facilitative communities of 10

species (Fig. S4.23). A different way of assigning critical abundances, Ai, could have

increased the resilience of the here studied facilitative communities.
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Figure 4.4: Hopf bifurcations and the predictability of a network’s future state when sam-

pling competitive interaction strengths from different parameter ranges (ranges are indicated

on the x-axis). As the strength and variability of competition increases, Hopf bifurcations

become increasingly frequent as well as the number of networks of which the future state is

determined by chance. (A) The frequency of saddle-node (blue) and Hopf bifurcations (red)

for different data sets. A high frequency of Hopf bifurcations indicates that transitions to-

wards oscillatory, chaotic or other complex dynamics are common. (B) The fraction of cases

in which, after five simulations in which a network’s resilience was undermined in the exact

same way, a network would always shift to the same state (blue), to one out of two states

(orange), to one out of three states (green), or to one of four or more potential future states

(purple). (C) The fraction of accurately indicated regime shifts (dark blue), the fraction ac-

curately indicated by the first principal component, i.e. the slope of the indicator is accurate,

but not by the direction in which time points are skewed (light blue), and the fraction of inac-

curately indicated regime shifts (red). (C) The skewness of time points projected on the first

principal component. A positive skewness means that time points are skewed in the direction

of a network’s future state. The skewness is shown for regime shifts that were accurately

indicated by the first principal component.
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4.4 Discussion

Human activities alter the Earth’s climate and its ecosystems at unprecedented rates

(Vitousek et al. 1997; Millenium Ecosystem Assessment 2005; Rockström et al. 2009;

Intergovernmental Panel on Climate Change 2014; Steffen et al. 2015). These changes

may jumble the patterns in the networks of interactions between species that hold complex

species communities together (Kareiva et al. 1993; McCann 2007; Tylianakis et al. 2008).

Monitoring and forecasting the effects of such changes thus requires a systems approach,

i.e. an approach that explicitly studies the properties emerging from the complex and

often unknown ways in which species relate to each other. Here, we try to make a

further step towards developing such an approach by determining the direction in which

destabilizing positive feedbacks undermine resilience. With model-generated time series

we show that this direction is indicative of the future state of mutualistic communities,

potentially providing us with a tool to assess the impact of impending critical transitions

in natural communities and other complex systems.

Ecologists have emphasized the importance of improving our ability to predict the future

state of ecosystems previously, and predicting future developments in complex systems is

common practice in various fields of research, e.g. economics, engineering, and climatology

(Clark et al. 2001; Sutherland 2006; Coreau et al. 2009; Beckage et al. 2011; Novak et al.

2011; Evans et al. 2012, 2013a; Purves et al. 2013; Petchey et al. 2015). Concerns about the

forecastability of ecosystems and the limits to our capacity to predict the future state of

ecosystems have however also been strong (Coreau et al. 2009; Beckage et al. 2011). Some

of these concerns stem from a misunderstanding of why predictions are made. Making

predictions is fundamentally different from describing a scientific law. Predictions are

made when a limited amount of knowledge is available, and people rely on predictions

even when they are known to often be inaccurate simply because better predictions are

not available. Predictions may also be made when evaluating the risks associated with

different ecological scenarios. In this spirit, we also see the indicator we propose here; as

an indication of where a system’s future state might lay. There is no absolute certainty

as complex dynamics may occur after a critical threshold is passed.

Some general properties may, however, give a clue about the predictability of ecosystem

dynamics. We found that, as the strength and variability of interspecific competition

increases, dynamics change from a situation where positive feedbacks are the main cause

of instability, to a mixed, intermediate situation, and, eventually, to a situation in which

delayed negative feedbacks govern ecosystem dynamics. Our results suggest that the

indicator performs well at predicting a system’s future state when positive feedbacks are

strong. Performance was reasonably good and transitions caused by positive feedbacks

remained quite common in the aforementioned mixed situation, i.e. more than 50%

accurate predictions. When dynamics were governed by delayed negative feedbacks, we

found that the initial pristine state of the here studied systems was unlikely to be stable,



76 Foreseeing the future beyond collapse

i.e. the probability of a system’s nontrivial equilibrium to be stable was below 0.01.

The indicator could not be applied and the interplay between several delayed negative

feedbacks was likely to lead to chaotic dynamics.

Ecosystems exhibit positive feedbacks when species have direct or indirect positive effects

on themselves, i.e. in loops with an even number of negative interactions, and do not

only occur as the result of mutually beneficial interactions. Positive feedbacks may, for

example, also occur when species positively affect themselves by suppressing other species,

e.g. between a pair of competing species and in three-species omnivore loops in food webs

(Nes and Scheffer, 2004; Neutel and Thorne, 2014). Despite a longstanding interest in

the occurrence of complex ecosystem dynamics (May 1974; Hastings and Powell 1991;

Huisman and Weissing 1999), no real classification of where and when to expect unpre-

dictable, complex dynamics exists. As a first speculative proposal, we suggest that all the

various types of mutualistic communities are likely to exhibit relatively strong positive

feedbacks and predictable dynamics. Terrestrial foodwebs, where the top-down effects

of herbivory are relatively small (Cyr and Face 1993), may fall in the aforementioned

mixed category, while aquatic food webs are more likely to exhibit chaotic dynamics (e.g.

Benincà et al. 2008). Complex dynamics are likely to occur in competitive communi-

ties when competitive interaction strengths are variable and asymmetrical. When pairs

of interacting species have similar competitive effects on each other, positive feedbacks

between some pairs of species are more likely to be strong and dynamics may be fairly

predictable (e.g. Nes and Scheffer 2004). Further research into where and when to expect

complex dynamics will greatly improve our capacity to evaluate the performance of the

here proposed indicator and the predictability of ecosystem dynamics in general. Such

research may, for example, involve a further investigation of the interrelationship between

the structural properties of ecological networks and the occurrence of different types of

critical transitions and may include transitions that are not preceded by critical slowing

down (Grebogi et al., 1983; Hastings and Wysham, 2010).

Earlier studies explored different ways in which changing environmental conditions may

lead to critical transitions in mutualistic networks, for example by increasing pollinator

mortality rates (Jiang et al., 2018) or by declining mutualistic interaction strengths (Dakos

and Bascompte 2014). In this work, assumptions were made that make the effects of these

changes fairly simple from a dynamical perspective, e.g. the assumption that the intrinsic

properties of species and the effects of changing environmental conditions are similar for

all species, and the assumption that the structure of whom interacts with whom remains

unchanged. As a consequence, there is little change in the direction of slowest recovery

and the nature of the systems’ alternative stable states. Here, we chose to study a

more complex dynamical scenario because we wanted to test whether the direction of

critical slowing down is indicative of a community’s future state even when the direction

of slowest recovery changes substantially prior to the period in which resilience is lost.

There is no reason to assume that the indicator would perform worse at predicting a
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system’s future state when changing conditions affect a group of similar species in one of

the aforementioned more simple ways.

The here proposed indicator has a number of advantages compared to previous methods

to predict the future state of ecosystems such as extrapolation and the use of mechanis-

tic models. Extrapolation is risky, because it assumes trends to continue outside of the

range in conditions for which data are collected, and the behavior of mechanistic models,

e.g. aiming to simulate feeding, reproduction, death, and other rates with as much accu-

racy as possible, often depends on many unknown parameters, in particular when these

rates depend on environmental conditions and species abundances. Using the direction of

critical slowing down as an indicator of a system’s future state has the advantage that it

directly relates to an emerging property of complex ecosystems, i.e. the direction in which

resilience is lost. As such, it avoids the often difficult process of parameter estimation

needed to develop mechanistic models, and it specifically aims to predict a system’s future

state when abrupt shifts away from existing trends, i.e. critical transitions, occur.

The above described results consider scenarios in which plenty of data are available. When

time series are short, i.e. contain few data points, or when the rolling window used to

analyze time series contains few data points, predictions become less accurate (Fig. S4.24-

S4.29). This brings us to the question of how we may determine the data requirements

in practice. For this, it is important to consider the two different aspects of our analysis:

‘critical slowing down’ and ‘the direction of slowest recovery’. Critical slowing down can

only be detected over a longer time periods, i.e. in which conditions change, while the

direction of slowest recovery can be determined for a given set of conditions, i.e. over

a short period of time. When determining critical slowing down it is not necessary to

monitor the abundances of all species per se, while this is important when determining

the direction of slowest recovery. A more economical approach could thus be to monitor

only few species for indicators of critical slowing down (Scheffer et al., 2009; Dakos et al.,

2012a), and to determine the direction of slowest recovery only once these indicators

suggest that the system approaches a tipping point. In some cases, one may even consider

to skip monitoring of critical slowing down indicators altogether and focus on determining

the direction of slowest recovery in systems that are known to be under stress.

Two aspects could cause our approach to be less data-hungry than expected. First, we are

only interested in the slope indicated by the first principal component and require, there-

fore, fewer data when compared to analysis in which also the higher-order components

are of importance. Secondly, we expect the distribution of abundances to become highly

asymmetric when a system approaches a tipping point. Dynamics become similar to a

low-dimensional system and the number of observations needed to accurately determine

the direction of slowest recovery becomes smaller when a system approaches a tipping

point (Fig. S4.30). It remains, however, difficult to determine a priori what the data

demands are.
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Previous studies have proposed rules of thumb that give an indication of the minimum

sample size required to perform principal component analysis, i.e. the method used to

determine the slope of the indicator. Such rules are often a function of the number of

variables, e.g. species abundances, and suggest that the minimum sample size required

to perform a principal component analysis should be at least n, e.g. 2, 10 or 20, times

more than the number of variables. Velicer and Fava (1998) and MacCallum et al. (1999)

showed, however, that such rules of thumb are invalid and that the required sample size

depends on the underlying correlation structure. A better approach to determine the

minimum sample size is therefore to draw subsets from the data and compare results for

the subset with those for the full set (Barrett and Kline 1981; Arrindell and Van der Ende

1985). When subsets give similar results to the full set, enough data is likely obtained.

Methods to determine the effect of a change in sample size may vary form a simple

comparison of the direction indicated (as in Fig. S4.30) to more advanced bootstrapping

techniques (as in Shaukat et al. 2016).

In this study, we chose to use time-series analysis because it links closely with previous

work on early warning signals (Scheffer et al. 2009; Dakos et al. 2012a), and because data

collection efforts have, traditionally, focused on species abundances. For some ecosystems

it may, however, be easier to monitor changes in the structural properties of ecological

networks rather than in the specific way in which a system recovers from small perturba-

tions. When such monitoring efforts could be used to estimate (changes in) the effective

relationships between species as described by the different elements of the Jacobian ma-

trix, we may be able to obtain a more direct measure of (changes in) the relative strengths

of feedback loops in ecosystems, their proximity to a tipping point, and their likely future

states. Our analysis suggests, for example, that the extent to which species are saturated

and the relative benefits received from mutualistic partners play a crucial role in determin-

ing the resilience and future state of mutualistic communities. These properties might be

measured in more direct ways, for example by determining the time spent by pollinators

on handling and searching for nectar and their relative visitation rates to different plant

species. Other theoretically-informed measures for other types of ecosystems may likely

provide us with other potential indicators of the direction of critical slowing down.

In a time when humanity’s biggest challenges and opportunities depend upon our capac-

ity to manage complex natural systems, new tools to foresee the risks and opportunities

associated with critical transitions are of increasing importance. Such tools may not only

be useful when addressing the question of what a system’s future state might be like, but

may also help to address questions such as to what extent individual species or inter-

actions are contributing to network resilience and which deliberate human interventions

could prevent or alter the outcome of impending critical transitions. Such approaches

are becoming increasingly useful as the availability of data on natural and other complex

systems is rapidly increasing.
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Supplementary materials

S4.1 Example: Undermining the resilience of a

3-species network

To illustrate how differences in the intrinsic properties of species and the arrangement

of interactions between them may affect the overall resilience of mutualistic networks,

we use a model in which one pollinator species interacts mutualistically with two plant

species. The system’s overall resilience is highest when this pollinator species obtains

most resources from the more saturated plant species.

As conditions change from a situation in which pollinators obtain most resources from

highly saturated plant species P1, i.e. with high saturation term h1, to a situation in which

they obtain most resources from less saturated plant species P2, the network becomes

increasingly sensitive to small-scale stochastic perturbations. Eventually, a critical tran-

sition occurs away from the initial pristine state of the network towards a fully collapsed

network state in which both plant species and the pollinator species are extinct.

For illustrative purposes, we assume plants to be in steady-state and determine how chang-

ing conditions affect the relationship between the net growth of the pollinator species,

dN (A)/dt, and the abundance of the pollinator species, N (A) (Fig. S4.1). The net growth

of the pollinator species is negative at low abundances. As a result, there are two alterna-

tive stable states; a pristine state in which the pollinator species has a positive abundance

and a collapsed state in which the abundance of the pollinator species is zero. These

two alternative stable states can be visualized more intuitively by a stability landscape of

which the slope corresponds to the rate at which the abundance of the pollinator species

changes, dN (A)/dt, valleys to the attraction basins of the alternative stable states, and

hilltops to the threshold between the two attraction basins. As conditions change, the

attraction basin of the initial pristine state of the network becomes increasingly small

and a small perturbation becomes sufficient to cross the threshold and cause a critical

transition towards the alternative fully collapsed state of the network.

Parameter settings: N̂i = 2, cii = 0.4, cij = 0.1, di = 0.2, h(A) = 0.3, h
(P )
1 = 0.3,

h
(P )
2 = 0.1, and εi = 0.01. Initial interaction strengths: (M = 0): θA0,11 = 1, θA0,12 = 0,

θP0,11 = 1, and θP0,21 = 1. Final interaction strengths: (M = 1): θAfinal,11 = 0, θAfinal,12 = 1,

θPfinal,11 = 1, and θPfinal,21 = 1.
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S4.2 Example: Critical Slowing Down in a 4-species network

To illustrate the direction in which a community slows down prior to a critical transition

and how this might be used to predict a community’s future state, we use a model in which

two pollinator species interact mutualistically with two plant species. As described in the

main text, changing conditions undermine the resilience of this small network by altering

relative mutualistic benefits, θ. As was the case with the earlier studied 3-species network

(see Appendix S4.1), regime shifts occur in the here studied 4-species community because

the community’s initial pristine state is approached by a threshold (i.e. a boundary

between two attraction basins, Fig. 4.1). As conditions change, the minimum size needed

for perturbations to push the system over the approaching threshold becomes smaller. The

likelihood of a transition caused by the small-scale stochastic perturbations incorporated

in our model therefore increases and, eventually, a regime shift towards an alternative

state becomes inevitable.

The outcome of a transition depends on the way in which changing conditions undermine a

community’s resilience. One, some or all species may collapse to extinction and remaining

species may either gain or lose in abundance from a regime shift. Multiple thresholds

separating the community’s initial pristine state from different alternative stable states,

or ‘potential future states’, may exist prior to a regime shift. Changing conditions may

alter the number and nature of these alternative stable states, and the thresholds towards

them may or may not approach the network’s initial pristine state. Which alternative state

eventually becomes the community’s future state depends on which threshold towards

which future state eventually approaches a community’s initial state.

For illustrative purposes, we assume plants to be in steady state and determine how

changing conditions affect the dynamics of the network. These dynamics can be visu-

alized intuitively by a stability landscape of which the slope corresponds approximately

to the rate at which the abundances of pollinator species change, dN (A)/dt (see methods

below). Every possible combination of pollinator abundances is represented by a unique

point in the stability landscape and alternative stable states are at the lowest point of

the landscapes valleys or ‘attraction basins’. Thresholds between attraction basins are

represented by ridges in the stability landscape. These thresholds are not equally high

at all places and have local maxima at hilltops and local minima at saddle points in the

network’s stability landscape. Attraction basins are shallow in between alternative stable

states and the saddle points on the thresholds that separate them. When approached by

a threshold, the attraction basin of the initial pristine state becomes increasingly shallow

and the network increasingly slow when recovering from perturbations in the direction of

the saddle point on the approaching threshold.

For the here studied 4-species network (Fig. 4.1) we found that the network’s pristine

state is initially accompanied only by a fully collapsed state, i.e. a state in which the

abundance of all species is zero. The pristine state’s distance from the threshold towards
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this state, however, remains large even when conditions change. A regime shift towards

a fully collapsed state remains, therefore, unlikely. Changing conditions start to rapidly

undermine the network’s resilience only after the appearance of the first of two additional

alternative stable states. These states correspond to partially collapsed network states

in which the abundance of some but not all species is zero. Both thresholds towards

both partially collapsed states approach the network’s pristine state. One threshold,

however, approaches the initial pristine state more closely than the other and eventually

a regime shift, caused by the small-scale stochastic perturbations to which the network

is permanently subjected, towards the partially collapsed state in the attraction basin

behind this threshold becomes inevitable.

As conditions change there are two decisive moments which are both preceded by a partic-

ular change in the network’s dynamics. The first is the moment at which the future state

of the network comes into existence as an alternative stable state in the network’s stability

landscape, and the second is the moment at which the regime shift towards this alter-

native stable state actually occurs. The direction in which the network recovers slowly

from perturbations changes substantially before the future state of the network comes into

existence from a direction that roughly indicates a full collapse to a direction that indi-

cates the future partially collapsed state of the network. The speed at which the network

recovers from perturbations, however, remains approximately the same. After the future

state of the network comes into existence, the network slows down dramatically when

recovering from perturbations in approximately the same direction (Fig. S4.2).
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Methods: To determine the rate at which pollinator abundances change as illustrated

in Fig. 1.B, we analytically determined this rate, v(A), for different pollinator abundances

at 200 by 200 grid points in the network’s phase plane as follows:

v(A) =

S(A)∑
i=1

(
dN

(A)
i

dt

)2
0.5

, (S4.1)

in which N
(A)
i is the abundance and dN

(A)
i /dt the net growth rate of pollinator species

i. At the same grid points we determined the height of the stability landscape with an

algorithm that keeps updating the height of the landscape until all slopes in between these

points are within a certain margin of error from the pollinators net growth rate. This

allows us to intuitively show the position of alternative stable states, which are found at the

bottom of the landscapes valleys or ‘attraction basins’, and the thresholds between them,

which correspond to hills or ridges in the landscape. The stability landscape produced

with this algorithm, is a useful tool to intuitively illustrate the idea behind our method.

As our system is non-gradient, it is not a way to determine the potential energy of the

system.

Parameter settings: N̂i = 2, cii = 0.4, cij = 0.1, di = 0.2, h
(A)
1 = 0.1, h

(A)
2 = 0.3,

h
(P )
i = 0.3, and εi = 0.04. Initial interaction strengths: (M = 0): θA11 = 0.7, θA12 = 0.3,

θA21 = 0.5, θA22 = 0.5, θP11 = 0.5, θP12 = 0.5, θP21 = 0.3, θP22 = 0.7. Final interaction strengths:

(M = 1): θA11 ≈ 0.83, θA12 ≈ 0.17, θA21 ≈ 0.10, θA22 ≈ 0.90, θP11 ≈ 0.90, θP12 ≈ 0.10, θP21 ≈ 0.17,

and θP22 ≈ 0.83

Conditions analyzed for Fig. 1 in the main text: M = 0.31, M = 0.66, and

M = 0.87.
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S4.3 Similarity between the indicated and the observed shift

As explained in the main text, the slope of the indicator is determined by the first principal

component (Fig. S4.4.C), while the eventual (up- or downward) direction of the indicator

along the first principal component is determined by the direction in which time points

are skewed (Fig. S4.4.D-E). To asses the performance of our indicator, we evaluate the

performance of the first principal component and the skewness of the projected time points

independently. An accurate slope, means that the indicator performs well at predicting

the relative gain or loss of species and which species shift in opposite directions (i.e. an

‘accurate PC1’). The indicated direction is, however, only fully ‘accurate’ when the actual

winners and losers are also indicated correctly. This depends on the direction along the

first principal component in which time points are skewed.

To evaluate the performance of the first principal component, we determine the difference

between the slope of our indicator and the direction of the observed shift in abundance.

We do this by determining the angle, θ, between the direction of the indicator and the

observed shift as follows:

θ = cos−1
I ·∆N (A)

|I||∆N (A)|
, (S4.2)

in which I is the indicator of a network’s future state and ∆N (A) the observed shift in

pollinator abundances. I · ∆N (A) indicates that we take the dot product between these

two vectors. To determine ∆N (A), we take the mean abundances over 200 time steps at

500 steps before the tipping point and subtract it from the mean abundances 500 steps

after the tipping point was found. Because we want to evaluate the accuracy of the first

principal component, and not whether points are also skewed in the right direction, we

take −I as the input for the formula above when we find an angle > π/2 (i.e. > 90

degrees). Both I and ∆N (A) are vectors of which the number of dimensions is equal to

the number of species analyzed. The smaller the angle, the more similar the direction of

the two vectors.

Two random vectors in a ten-dimensional space are more likely to be orthogonal than two

random vectors in a three-dimensional space. More extreme small or large angles become

less likely as the number of dimensions increases (Fig. S4.5). How ‘special’ it is to find a

certain angle between the indicated and the observed shift thus depends on the number

of dimensions in a system. As a measure of how different the indicated direction is from

the observed regime shift, we determine for the observed angle, θ, the likelihood that two

unrelated random vectors have an equal or smaller angle. As a measure of similarity, we

take one minus this probability, and we consider the indicator’s slope to be accurate when

this measure of similarity is above 0.99.

To determine the aforementioned probability, we use the following probability density
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function:

h(θ) =
1√
π

Γ(
S(A)

2
)

Γ(
S(A) − 1

2
)

· (sin θ)S(A)−2, (S4.3)

in which S(A) is the number of dimensions and h(θ) the probability density for a certain

angle θ (ref. Cai et al. (2013)). Our method may be interpreted as a test whether the null

hypothesis that I and N are two random vectors is true. This hypothesis is rejected when

angle is found to be significantly smaller than the expected angle between two random

vectors, when the one-sided p-value is smaller than 0.01 (i.e. similarity > 0.99).

To evaluate the tendency of time points to be skewed in the direction of a network’s

future state, we determine the skewness of the time points projected on the first principal

component. When points are skewed in the direction of the network’s future state, we

report a positive skewness. When points are skewed in the opposite direction, we report a

negative skewness. We consider a positive skewness as accurate and a negative skewness

as inaccurate. A strong positive or negative skewness is considered more accurate or

inaccurate than a weak positive or negative skewness.
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S4.4 Time series analysis

Unless stated otherwise, we determine the dominant direction of fluctuations in a rolling

window of 10% of the entire time series (e.g., 2000 out of 20.000 time points) to detect

changes in the direction and extent in which time points are distributed asymmetrically.

The choice of this window size is to some extent arbitrary. A too small window leads to

irregular trends, while a too large window smooths out the trends. To test whether the

size of the window chosen influences our results, we make additional analysis in which we

use a window size of 0.005, 0.1, 0.5, 0.1, 5,10, 20 and of 50% of the time series. The rolling

window is moved along the time series with steps of 1% of the time series, independent

of the window size. As time passes by, the direction and magnitude of the indicator is

thus computed every 200 time steps in a window containing the last 2000 time steps when

using a window size of 10% of a time series with a length of 20.000 time points.

Far from a tipping point, time points may be skewed only weakly. When this is the case,

sudden shifts of nearly 180 degrees may occur in the direction of the indicator when time

points are skewed in a different direction along the first principal component. Clearly, such

large shifts in direction do not occur because the network’s future state has changed. We,

therefore, correct previously found indicator values such that there is no change larger

than 90 degrees between two consecutive points at which the indicator’s direction was

determined. We assume the last direction in which time points were found to be skewed

to be the accurate one.

To determine whether there is a significant increase in the indicator’s magnitude, we

determine the Kendall rank correlation coefficient, τ , for the last ten points at which

the indicator’s magnitude was computed. We consider the increase significant when this

coefficient was positive and its p-value < 0.05. Once a significant increase was found, we

tested whether the increase remained significant by determining Kendall’s correlation for

the last eleven points the next time the indicator’s magnitude is determined, for twelve

points the time after that, and so on until the tipping point is reached. We would again

look at the last ten points when the increase was found to not be significant anymore. By

doing this, we could determine the range in conditions in which the indicator’s magnitude

increased significantly.

As a measure of a ‘regime shift’ we determined whether there was a change in abundance

of more than 1.5 over a period of 1% of the entire time series (200 time steps). We did

this by taking the mean abundances over a period of 200 time steps before this period and

200 time steps after this period and determining Euclidean distance between these two

mean abundances. To make sure that this large shift in abundances was not a temporal

large deviation from the species’ mean abundances, we added as a second criterion that

the abundance of at least one species should be near extinction, i.e. below 0.1.

We did not apply any preprocessing to handle trends in the time series. We expect
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the indicator to be relatively robust against such trends, because trends only alter the

direction of the first principal component when their effect on this direction is stronger

than the effect of critical slowing down. Not applying any preprocessing is a good way

to test this robustness. When using the indicator as part of a different study it may,

however, be worth considering to apply a preprocessing method (see ref. Dakos et al.

(2012a)). It may improve the performance of the indicator, especially when trends are

strong.
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S4.5 Additional information mutualistic networks

Nontrivial equilibrium abundances, N̂ , competitive interaction strengths, c, mortality

rates, d, and saturation terms, h, are randomly sampled from predefined probability

distributions, and the total amount of resources received by species i at the system’s

nontrivial equilibrium, Ri(N̂
(P )), are assigned such that the rate at which abundances

change at the system’s nontrivial equilibrium, dN̂ (P )/dt, is zero:

Ri(N̂
(P )) =

∑S(A)

j=1 cijN̂
(A)
j + di

1− hi(
∑S(A)

j=1 cijN̂
(A)
j + di)

. (S4.4)

The total amount of resources provided at the system’s nontrivial equilibrium, Ri(N̂
(P )),

is thus approximately the same for highly specialized and more generalist species, pro-

vided that their losses due to competition, c, and mortality rates, d, and their nontrivial

equilibrium abundances, N̂ , are similar.

The extent to which species are saturated is determined by the total amount of resources

provided, Ri(N̂
(P )), and the rate at which species become saturated as determined by

saturation term hi. In our simulations, we assume nontrivial equilibrium abundances, N̂ ,

and inter- and intraspecific competition, cij and cii, to be similar for all species. Highly

saturated species are, therefore, the ones with a high hi. Species are saturated relatively

quickly, and, according to equation S4.4, the total amount of resources provided at the

system’s nontrivial equilibrium is high when species have a high hi.

Parameters are assigned such that there are substantial differences in the extend in which

species are saturated by drawing saturation terms, hi, from a scaled beta distribution with

range ∼ (0.05, 0.35) and shape parameters α = 1 and β = 5. Due to this distribution,

there are few highly saturated species, i.e. hi close to 0.35, and many non-saturated

species, i.e. hi close to 0.05. Strong mutualistic interactions between non-saturated

species lead to strong positive feedbacks. Non-saturated species thus need to obtain a

relatively large share of resources from a few, highly saturated species for the network to

be stable. Relative mutualistic benefits at initial conditions, θ0,ik, are therefore ordered

such that larger benefits are obtained from the more saturated species. To make sure

that the sum of all relative benefits is one, we take relative mutualistic benefits, θ0,ik,

from a symmetric Dirichlet distribution. The distribution’s concentration parameter, α,

determines the extent in which species are specialized and is, for each species, taken from

a uniform distribution between zero and one.

To explore how transitions towards oscillating, chaotic or other complex dynamics caused

by delayed negative feedbacks may influence the performance of the indicator, we analyze

several data sets of which the strength and variability in interspecific competitive interac-

tion strengths, cij, varies. The tested parameter ranges are: cij = 0, cij ∼ U(0.02, 0.08),
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cij ∼ U(0.04, 0.16), cij ∼ U(0.06, 0.24), cij ∼ U(0.08, 0.32), cij ∼ U(0.10, 0.40),

cij ∼ U(0.12, 0.48), and cij ∼ U(0.14, 0.56). Intraspecific competition strengths, cii, are

taken from ∼ U(0.9, 1.1). Delayed negative feedbacks become stronger as the strength

and variability of interspecific competition increases. Simulations are made for commu-

nities of 10 plant and 10 pollinator species. Initial equilibrium abundances, N̂0,i, and

mortality rates, di, are taken from N̂0,i ∼ U(1.5, 2.5) and di ∼ U(0.15, 0.25). Initial and

final nontrivial equilibrium abundances are assumed to be equal, N̂final,i = N̂0,i.

Changing environmental conditions, M , lead to an increase in the relative mutualistic

benefits received from some, and a decrease in the relative benefits received from other

species. We assume the distribution of interaction strengths of the final network, at

M = 1, to be quite heterogeneous (Fig. S4.6). We select, therefore, with a probability

of 0.75, interactions of which the interaction strength goes to zero, θfinal,ik = 0. To the

remaining interactions, relative interaction strengths are assigned by taking them from

a uniform Dirichlet distribution (α = 1). The ‘diet breath’ of plants and pollinators

thus tends to become more narrow as could be the case under various scenarios of global

environmental change (Memmott et al. 2007; Burkle et al. 2013).

As conditions change, either a single eigenvalue or a pair of complex conjugate eigenvalues

goes to zero. In the first case we are dealing with a saddle-point approaching the network’s

initial state, caused by a positive feedback. In the second case, we are dealing with a Hopf

bifurcation caused by a delayed negative feedback.

Data sets consist of 100 initial networks. For each network, 10 final distributions of relative

mutualistic benefits, θfinal,ik, were drawn, allowing us to determine the extent in which a

community’s future state depends on the specific way in which relative mutualistic benefits

are changed. Parameters were assigned such that this dependency is high. Networks were

discarded from a data set when they were unstable at initial conditions, M = 0. We

determined the frequency at which this occurred as a measure of how difficult it is to

find a stable solution for the initial networks of a given data set. The final distribution of

relative mutualistic benefits was redrawn either when the network would become unstable

within the range of conditions M = (0, 0.5), or when a network would still be stable at

M = 1.

To test whether the indicator also works when equilibrium abundances change, we ana-

lyzed networks of 10 plant and 10 pollinator species of which the final equilibrium abun-

dances are different. We do this by changing the nontrivial equilibrium abundances of

species as follows:

N̂∗i = N̂0,i + (N̂final,i − N̂0,i)M, (S4.5)

in which N̂0,i is the initial, N̂final,i the final, and N̂∗i the actual nontrivial equilibrium
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abundance of species i. The total amount of resources provided at the system’s nontrivial

equilibrium, and the strengths of mutualistic interactions are determined by equations 4.4

and S4.4. We tested three scenarios. One in which the nontrivial equilibrium abundances

of species tend to increase, N̂final,i ∼ U(2, 3), one in which they stay the same on average

N̂final,i ∼ U(1.5, 2.5), and one in which they tend to decrease N̂final,i ∼ U(1, 2). Compet-

itive interaction strengths were taken from the following distributions: cii ∼ U(0.9, 1.1)

and cij ∼ U(0.02, 0.08). Changing abundances affect all relationships as described by the

Jacobian matrix. The main effect of a decline in abundance is, however, a reduction of the

direct negative effects of species on themselves which undermines resilience. Increasing

abundances tend to promote resilience.

To test whether the indicator may accurately indicate the future state of larger networks,

we analyzed networks of 10 and 20, 10 and 40, 20 and 10, 20 and 20, 20 and 40, 40 and 10,

40 and 20, and 40 and 40 plant and pollinator species. We assigned competitive interaction

strengths such that the rate at which species lose in abundance due to competition,∑S(A)

j=1 cijN
(A)
j N

(A)
i , is approximately the same for different numbers of species, as well as

the relative difference between intra- and interpecific competition, cij/cii. When a species

group consisted of 10 species we assumed cii ∼ U(0.9, 1.1) and cij ∼ U(0.02, 0.08). When

a group consisted of 20 species cii ∼ U(0.67, 0.82) and cij ∼ U(0.015, 0.06), and when a

group consisted of 40 species cii ∼ U(0.44, 0.54) and cij ∼ U(0.01, 0.039). Initial and final

equilibrium abundances were assumed to be equal, N̂final,i = N̂0,i.

The amount of noise, determined by standard deviation δ, is assumed to be equal for

all species. Unless stated otherwise, we assume standard deviation δ = 0.1. Additional

simulations were made with lower and higher noise levels, δ = 0.01, δ = 0.05, δ = 0.15, and

δ = 0.2 to make sure that this does not qualitatively alter the results. Higher noise levels

were not tested because they would lead to an almost immediate collapse. Unless stated

otherwise, model generated time series had a length, T , of 20.000 time steps. Additional

simulations were made in which time series had a length of 100, 200, 1.000, 2.000, 10.000,

and 100.000.
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S4.6 Additional information unipartite model of facilitation

Nontrivial equilibrium abundances, N̂ , interspecific facilitation rates, γij, critical abun-

dances Ai, interspecific competitive interaction strengths, cij, carrying capacities, K, and

mortality rates, d, are randomly sampled from predefined probability distributions. In-

traspecific facilitation rates, γii, and intraspecific competition rates, cii, are one. To make

sure that the rate at which abundances change at the nontrivial equilibrium, dN̂i/dt, is

zero, we assign the intrinsic growth rates, r, as follows:

ri =
diN̂iAiKi

(
∑S

j=1 γijN̂j − Ai)(Ki −
∑S

j=1 cijN̂j)N̂i

. (S4.6)

The contribution of species to the overall resilience of a network is determined by critical

abundance Ai. Species with a high critical abundance, Ai, collapse more easily and

the overall resilience of the community is highest when such species are facilitated by

species with a low critical abundance. A change from such a distribution to a more

random distribution of facilitative interaction strengths will undermine resilience. To

generate time series in which the resilience of the here described facilitative communities is

undermined, we assume that conditions, M , affect facilitative interactions as follows:

γ∗ij = γ0,ij + (γfinal,ij − γ0,ij)M, (S4.7)

in which γ0,ik is the initial, γfinal,ik the final, and γ∗ij the actual facilitative interaction

strength. Conditions, M , change from zero to one over time. We assume that the total

amount of facilitation received,
∑S

j=1 γijNj, remains equal as conditions change. We

therefore determine the final facilitative interaction strength as follows:

γfinal,ij =
θij
∑S

k=1 γikN̂k

N̂j

, (S4.8)

in which θij is the fraction of the total facilitation received by species i from species

j.

We assign parameters such that there are substantial differences in the critical abundances

of species by drawing critical abundances, Ai, from a scaled beta distribution with α = 5

and β = 1 and range ∼ (0, 1.5). Due to the beta distribution, there are few highly vigorous

species (i.e. Ai close to 0) and many non-vigorous species (i.e. Ai close to 1.5). The

initial facilitative interaction strengths are taken from the following uniform distribution:

γ0,ij ∼ U(0.2, 1.8). Initial facilitative interaction strengths are ordered such that species

receive most facilitation, i.e. highest γ0,ij, from species with the lowest Ai. We assume
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that as conditions change, the strength of some facilitative interactions increases strongly

while others approach zero. Final relative facilitative benefits, θfinal,ik, are therefore

selected with a probability of 0.75 and set to zero. To the remaining interactions, relative

benefits are assigned by taking them from a uniform Dirichlet distribution (α = 1). As

with the model of mutualistically interacting species, we chose for this distribution of

critical abundances, Ai, and facilitative interaction strengths γij, because it leads to a

high variety in potential future states to which a network may shift. Other parameters

and equilibrium abundances are taken from the following uniform distributions: N̂i ∼
U(1.5, 2.5), cij ∼ U(0.04, 0.16), di ∼ U(0.15, 0.25).

Simulations were made with networks of 10, 20 and 40 species. As for the bipartite

model of mutualistically interacting species, we assign parameters such that the rate at

which abundance is lost due to competition,
∑S

j=1 cijNj/Ki, remains approximately the

same for different species numbers, as well as the relative difference between intra- and

interpecific competition (see main text). Carrying capacities, Ki, were therefore taken

from respectively Ki ∼ U(5, 6), Ki ∼ U(7.63, 9.15), and Ki ∼ U(12.89, 15.47), depending

on the number of species.

The amount of noise, determined by standard deviation δ, is assumed to be equal for all

species. For the results shown in this document we assume standard deviation δ = 0.05.

As with the model of mutualistically interacting species time series had a length, T , of

20.000 time steps.
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S4.7 Supplementary results

Independent of the parameter ranges chosen, we found that regime shifts were preceded

by a substantial period in which the indicator’s magnitude increases significantly, i.e. the

‘critical range’. Our indicator would, provided that the future state is indicated accurately,

point towards a network’s future state during a substantial part of this period (Fig. S4.7).

In Fig. S4.8 we provide information about the critical ranges as observed in a single data

set (cij ∼ U(0.02, 0.08)). These results are exemplary for the other data sets and show

that our indicator consistently indicates a network’s future state during the period in

which the network slows down.

Cascading collapses occur at an intermediate range of competitive interaction strengths

most likely due to the nature of effective relationships between species, i.e. the combined

effect of all direct and indirect interactions (Fig. S4.9). When there is no competition,

effective relationships are positive and species collapse as one group. When competition

is strong, most effective relationships are negative and species collapse independently.

Cascading collapses are only likely when effective relationships are a mix of positive and

negative relationships. When interspecific competitive interaction strengths, cij, were

taken from ∼ U(0.02, 0.08), we found that such likely cascading, full network collapses

took up a bit more than 12% of the data set. For specific parameter ranges not tested by

us, this percentage may be higher.

In Fig. S4.10 we provide examples of two cascading collapses and one immediate network

collapse. Species that collapsed a bit later, were also the ones for which the indicated

loss in abundance was smallest, suggesting that the indicator indicates the initial regime

shift accurately. The amount of time in between two consecutive partial network collapses

can be extremely small. Also when cascades are not clearly visible, we suspect therefore

that the inaccurate prediction of a full network collapse is caused by the occurrence of a

cascading collapse.

In Fig. S4.13 we provide an example of a network for which the future state is hard

to predict because it may shift to several alternative future states. When making five

simulations in which relative mutualistic benefits, θik, are changed in the exact same way

by changing conditions, M , we found that the network shifted to four different future

states. The future state of this network is determined by the only stochastic element in

our model; the small-scale perturbations to which the network is permanently subjected.

Our indicator accurately indicates two of the future states to which the network may shift,

but does not indicate the other future states. A likely explanation for the several future

states to which this system may shift is the fact that this system is approaching a Hopf

bifurcation, leading to oscillating (Fig. S4.14), chaotic or other complex dynamics (Fig.

S4.15). Such dynamics may explain a high sensitivity to perturbations in more than one

direction.
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In Fig. S4.18-S4.20, we show examples of time series in which not only the relative

benefits, θij, change over time. The nontrivial equilibrium abundances, N̂i, and thus the

total gain from mutualistic interactions, Ri(N̂i), changes as well. We found that a change

in abundance over time does not have a strong effect on the performance of the indicator

(Fig. S4.17). In comparison to data sets in which abundances stay (on average) the

same, full network collapses are much less frequent when abundances increase and much

more frequent when abundances decrease. Quite a large fraction of full network collapses

is indicated accurately when abundances decrease. Cascading collapses may occur less

frequently because all species experience a similar loss in resilience as a consequence of a

decline in abundance. Another difference is that the length of the critical range tends to

be a bit shorter when abundances in- or decrease.

In Fig. S4.21 and S4.22, we show that the indicator performs well, also when we ap-

ply our method to networks with different numbers of plant and pollinator species. Full

network collapses become less common as the number of species increases, as well as

the occurrence of cascading network collapses. An explanation for this effect of an in-

crease in species number is that the loss in abundance due to competition with other

species,
∑S(A)

j=1 cijN
(A)
j N

(A)
i − ciiN

(A)
i N

(A)
i , increases substantially as the number of species

increases. Systems with many species may, therefore, be comparable with smaller net-

works in which interspecific competition is relatively strong. In those networks we also

observed that full network collapses were less frequent. Increasing numbers of species did

not have clear effect on the length of the critical range, nor on the fraction of the critical

range in which the future state was indicated accurately by the slope of the indicator (Fig.

S4.22). We did, however, found some effect on the skewness of time points projected on

the first principal component. The frequency at which we found that points were skewed

in the wrong direction increased as the number of species increases.

In Fig. S4.23, we show results for a more general model of competition and facilitation

(see main text). The general behavior and performance of the indicator is similar to the

results obtained with the mutualistic network model. The overall resilience of the networks

tested seems a bit lower than the resilience of the mutualistic networks (this depends on

parameter settings). To prevent networks from collapsing almost immediately, at M ≈ 0,

we chose a lower noise level of δ = 0.05. This relatively low resilience may also explain

the relatively high frequency of cascading collapses in networks of 10 species.
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S4.8 Supplementary figures

Figure S4.1: Changing conditions undermining the overall resilience of a small mutualistic

network. The network consists out of one pollinator, A, and two plants species of which

plant species P1 is more saturated than plant species P2. For illustrative purposes, we assume

plants to be in steady-state. (A) Time series of the pollinator species and the network at

different conditions (I, II, and III). As indicated by the thickness of the network’s arrows,

changing conditions alter the relative mutualistic benefits, θ, such that the pollinator species

becomes increasingly dependent on non-saturated plant species P2. This undermines the

overall resilience of the network and leads to a full collapse of the network at which both plant

species (not shown) and the pollinator species (shown) collapse to zero. (B) The net growth

rate, dA/dt, and the stability landscape of the pollinator species at conditions I, II and III. As

conditions change, the initial pristine state of the network, 1, is approached by a threshold,

i.e. a hilltop in the stability landscape, and a small perturbation becomes sufficient to cause

a regime shift towards fully collapsed state 2.
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Figure S4.2: The slope of the small mutualistic network’s stability landscape reflecting the

speed at which pollinator abundances change, va, at different conditions, M . As in Fig. 2

of the main text, alternative stable states (balls), saddle points (yellow dots), and hilltops

(grey dots) are surrounded by areas in which the landscape’s slope, and thus the rate at

which abundances change, is nearly zero (indicated in orange). Higher speeds (blue) are

found further away from these points. The network recovers slowest from perturbations in

the direction of the saddle point on the nearest threshold and slows down in the direction of

the saddle point on the threshold approaching the network’s initial pristine state. Changing

conditions alter the shape of the network’s stability landscape in a non-linear way. After a

period in which there is almost no change (M = [0, 0.31]), the direction in which the network

recovers slowest from perturbations (see yellow arrow) changes substantially from a direction

that roughly indicates a full collapse to a direction indicating the future partially collapsed

state of the network (M = [0.31, 0.59]). After the network’s future state comes into existence,

the network slows down dramatically in approximately the same direction (M = [0.59, 0.87]).
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Figure S4.3: Example of a time series in which the small mutualistic network in Appendix

S4.2 approaches a tipping point. Conditions at window I,II and III correspond to the conditions

for which stability landscapes are shown in Fig. 1 of the main text. (A) At the tipping point

(M ≈ 0.9) one pollinator species collapses to extinction, while the other gains in abundance.

(B) The distribution of points in the network’s phase plane representing the abundances of

species at different moments in time for time window I, II and III (see A). Far from the

tipping point, in window I and II, deviations from the species’ mean abundances are relatively

small. Close to the tipping point, in window III, the distribution of points in the network’s

phase space is highly asymmetrical. Deviations from the mean abundances in time window

III usually involve a simultaneous increase in the abundance of species A1 and a relatively

larger decrease in the abundance of species A2, suggesting that this will also be the direction

in which the network will shift once a threshold is passed.
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Figure S4.4: The measures of asymmetry together forming our indicator as they were de-

termined for window III in Fig. S4.3. (A) Time series of the two pollinator species in the

moving window. (B) Time points, representing species abundances at different moments in

time, in the phase plane of the network. (C) The first principal component (grey dotted line)

corresponding to the line in the phase plane along which variance is highest. (D) Direction

along the first principal component (grey arrows) in which time points deviate the most from

the species’ mean abundance, i.e. the direction in which time points projected on the first

principal component are skewed. (E) Distribution of the projected time points. (F) The

indicator, corresponding to a vector in the phase plane of the network (grey arrow). The two

components of this vector correspond to the species ‘scores on the indicator’. In this example,

we found a large negative score (-0.79) indicating a relatively large decline in abundance for

the pollinator on the x-axis and a relatively smaller positive score (0.32) indicating a relatively

smaller increase in abundance for the pollinator on the y-axis. The length of the indicator

corresponds to the amount of variance explained by the first principal component.
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Figure S4.5: Cumulative distribution function of the angle between two random vectors.

(A) Cumulative distribution function when these vectors have three dimensions. (B) Cumu-

lative distribution function when these vectors have ten dimensions. As can be seen from the

distributions, the probability of finding an angle of, for example, 40 degrees or less is much

smaller in a high dimensional system. Cumulative distribution functions are determined with

the help of the probability density function in ref. Cai et al. (2013).
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Figure S4.6: Example of (A) a highly resilient mutualistic network and (B) a network

with a low resilience. Plant (circles) and pollinator species (squares) are ordered from highly

saturated (green/left) to non-saturated (red/right). The thickness of the lines between nodes

indicates relative mutualistic benefit θij . In the highly resilient network species receive most

of their resources from highly saturated species, while this is not the case in the network with

a low overall resilience. The resilience of a network is undermined when relative benefits are

changed from the situation in A to the situation in B.
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Figure S4.7: The critical range (grey band) in which the indicator’s magnitude increases

significantly and the fraction of this range in which the indicator’s similarity to the observed

shift in abundance is larger than 0.99. In the here shown example, the length of the critical

period is 0.8-0.46 = 0.34. The slope of the indicator accurately indicates the future state, i.e.

similarity is > 0.99, during a fraction of 0.29/0.34 = 0.85 of this period. The full time series

is shown in Fig. 2.
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Figure S4.8: Overall statistics on the performance of the indicator when competitive inter-

action strengths, cij are taken from ∼ U(0.02, 0.08). (A) The performance of the indicator

for different numbers of collapsed species. The fraction of regime shifts for which the change

in abundance was not well indicated is shown in red. The fraction accurately indicated by the

first principal component, but not by the direction in which time points are skewed is shown

in light blue. Fully accurate predictions are indicated in dark blue. (B) The skewness of time

points projected on the first principal component. A positive skewness means that time points

were skewed in the direction of the network’s future state. (C) The length of the critical range

in which the indicator’s magnitude increases significantly. (D) Kendall’s rank correlation, τ ,

as determined for the critical range. (E) The fraction of the critical range in which the slope

of the indicator accurately indicates the future state, i.e. in which the similarity between the

first principal component and the observed shift in abundance is > 0.99. Results in panels

(B-E) are shown for regime shifts that were accurately indicated by the first principal compo-

nent. Box plots show the median and the upper and lower quartiles. Whiskers correspond to

the 9th and the 91st percentile.
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Figure S4.9: The number of pollinator species collapsing to extinction as observed in data

sets of 1000 regime shifts. Each panel shows results when sampling competitive interaction

strengths from a different parameter range (see ranges indicated). In the extreme case where

there was no competition (top left panel), we found almost exclusively full network collapses

(i.e. all ten pollinator species collapsed to extinction). As the strength of competition in-

creases, full network collapses become less frequent. Partial network collapses tend to be

small independent of the strength of competition, i.e. the most common partial collapse led to

the extinction of only one single pollinator species. The fraction of regime shifts for which the

change in abundance was not well indicated is shown in red. The fraction accurately indicated

by the first principal component, i.e. the slope of the indicator is accurate, but not by the

direction in which time points are skewed is shown in light blue. Fully accurate predictions

are indicated in dark blue.
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Figure S4.10: Two cascading collapses and one immediate collapse. (A) Example of a

cascading collapse that eventually leads to the collapse of four pollinator species. Three species

(blue, green and purple) collapse to extinction rapidly. A fourth (black) species collapses

as well, but remains for a short while at a lower abundance before collapsing to extinction

(red arrow, A.I). Out of the four species that collapse to extinction, the black species is

also the one for which the indicated loss in abundance is smallest (red circle, A.II). (B)

Example of a cascading collapse that eventually leads to a full collapse of the network (i.e.

the most common outcome of a cascading collapse). Two species (black and yellow) collapse

to extinction rapidly. The other species collapse as well, but remain for a short while at

a lower abundance before collapsing to extinction (red arrow, b.I). The indicated loss in

abundance of the rapidly collapsing species is much bigger than the loss indicated for the

species that collapse a bit later (red circles, B.II). (C) Example of a full network collapse

that was accurately indicated. All species collapse at approximately the same time (C.I). All

species were indicated to lose in abundance (C.II).
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Figure S4.11: Performance of the indicator for different noise levels (noise levels, εi, are

indicated on the x-axis). (A) The fraction of accurately indicated regime shifts (dark blue), the

fraction accurately indicated by the first principal component, i.e. the slope of the indicator is

accurate, but not by the direction in which time points are skewed (light blue), and the fraction

of inaccurately indicated regime shifts (red). (B) The skewness of time points projected on

the first principal component. A positive skewness means that time points are skewed in

the direction of a network’s future state. The skewness is shown for regime shifts that were

accurately indicated by the first principal component.
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Figure S4.12: The number of pollinator species collapsing to extinction as observed in data

sets of 1000 regime shifts when noise levels are low (left panel, εi = 0.05) and when noise levels

are high (left panel, εi = 0.2). Full network collapses were found to occur more frequently

when noise levels are high. The fraction of regime shifts for which the change in abundance

was not well indicated is shown in red. The fraction accurately indicated by the first principal

component, i.e. the slope of the indicator is accurate, but not by the direction in which time

points are skewed is shown in light blue. Fully accurate predictions are indicated in dark blue.
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Figure S4.13: Five time

series of a network that

shows ‘unpredictable’ be-

havior. Even though the re-

silience of the network is un-

dermined in the exact same

way, the network may shift

to several alternative future

states. The future state of

the network is determined by

the only stochastic element

in our model; the small-

scale perturbations to which

the network is permanently

subjected. We found that

this network may shift to (at

least) four different future

states (i.e. Euclidean dis-

tance between future states

> 1.5). Of these future

states, future state A and

D are well indicated by the

indicator (i.e. similarity >

0.99). The future state of

the network is the same only

in time series 2 and 3.
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Figure S4.14: Example of a network approaching a supercritical Hopf bifurcation. (A)

Time series of the network as conditions change. (B) Time series at fixed conditions just

after the bifurcation point when assuming there are no external perturbations (ε = 0). As

can be seen from the dynamics we are dealing with a limit cycle. In the presence of external

perturbations, the fluctuations caused by these dynamics are amplified and lead to a partial

collapse of the network.
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Figure S4.15: Example of a network approaching a subcritical Hopf bifurcation. (A) Time

series of the network as conditions change. (B) Time series at fixed conditions just after

the bifurcation point when assuming there are no external perturbations (ε = 0) and when

excluding the condition that populations of a size smaller than 0.001 have a zero growth

rate (dN/dt=0). As can be seen from the dynamics we are dealing with chaotic/heteroclinic

dynamics. The condition that populations of a size smaller than 0.001 have a zero growth rate

leads to a partial collapse of the network. Which species are the first to cross this threshold is

strongly influenced by the stochastic perturbations that are constantly disturbing the network.
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Figure S4.16: The probability of finding a stable solution at initial conditions, M = 0,

when sampling competitive interaction strengths from different parameter ranges (ranges are

indicated on the x-axis). As the strength of competition increases, it becomes increasingly

difficult to find a stable solution. When there is no competition between species, the proba-

bility of finding a stable solution is nearly one. For the highest competition level we tested,

i.e. (0.14,0.56), this probability was below 0.01. Results are shown for networks of 10 plants

and 10 pollinators as described in Appendix S4.5.
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Figure S4.17: Overall statistics on the performance of the indicator when nontrivial equi-

librium tend to increase (I), change but stay the same on average (II), and when abundances

tend to decrease (III). Results are shown for data sets of 1000 regime shifts. As in Fig. S4.8

we show: (A) the performance of the indicator for different numbers of collapsed species,

(B) the skewness of time points projected on the first principal component, (C) the length

of the critical range in which the indicator’s magnitude increases significantly, (D) Kendall’s

rank correlation, τ , as determined for the critical range, and (E) the fraction of the critical

range in which the slope of the indicator accurately indicates the future state. Box plots show

the median and the upper and lower quartiles. Whiskers correspond to the 9th and the 91st

percentile.
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Figure S4.18: Directional slowing down when abundances tend to increase. (A) Time series

of species belonging to one set of a bipartite mutualistic network, i.e. the pollinators. At the

tipping point two species collapse to extinction (red and light blue). (B) The indicator of

the future state measuring the direction in which fluctuations are distributed asymmetrically.

(C) The magnitude of the indicator, reflecting the extent in which fluctuations are distributed

asymmetrically, plotted together with the accuracy measured as the similarity between its

direction and the observed shift in abundance. Grey bands indicate the period in which the

indicator’s magnitude increases significantly. (D) The observed changes in abundance versus

the scores on the indicator just before the tipping point. Extinct species are indicated with

crosses. The initial network, at M=0, is the same as in Fig. 4.2.
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Figure S4.19: Directional slowing down when abundances change, but stay the same on

average. (A) Time series of species belonging to one set of a bipartite mutualistic network,

i.e. the pollinators. At the tipping point a single species collapses to extinction (purple). (B)

The indicator of the future state measuring the direction in which fluctuations are distributed

asymmetrically. (C) The magnitude of the indicator, reflecting the extent in which fluctu-

ations are distributed asymmetrically, plotted together with the accuracy measured as the

similarity between its direction and the observed shift in abundance. Grey bands indicate the

period in which the indicator’s magnitude increases significantly. (D) The observed changes

in abundance versus the scores on the indicator just before the tipping point. Extinct species

are indicated with crosses. The initial network, at M=0, is the same as in Fig. 4.2 and Fig.

S4.18.
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Figure S4.20: Directional slowing down when abundances tend to decrease. (A) Time se-

ries of species belonging to one set of a bipartite mutualistic network, i.e. the pollinators.

At the tipping point three species collapse to extinction (yellow, purple and orange). (B)

The indicator of the future state measuring the direction in which fluctuations are distributed

asymmetrically. (C) The magnitude of the indicator, reflecting the extent in which fluctu-

ations are distributed asymmetrically, plotted together with the accuracy measured as the

similarity between its direction and the observed shift in abundance. Grey bands indicate the

period in which the indicator’s magnitude increases significantly. (D) The observed changes

in abundance versus the scores on the indicator just before the tipping point. Extinct species

are indicated with crosses. The initial network, at M=0, is the same as in Fig. 4.2, Fig. S4.19,

and Fig. S4.18.
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Figure S4.21: The performance of the indicator for networks of different size, i.e. for different

number of plant (rows) and pollinator species (columns). Each panel shows the number of

pollinator species collapsing to extinction as observed in data sets of 1000 regime shifts. The

fraction of regime shifts for which the change in abundance was not well indicated is shown

in red. The fraction accurately indicated by the first principal component, but not by the

direction in which time points are skewed is shown in light blue. Fully accurate predictions

are indicated in dark blue.
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Figure S4.23: Overall statistics on the performance of the indicator when predicting the

future state of a more general model of competition and facilitation. Results are shown for

networks of 10 (I), 20 (II) and 40 species (III). (A) The performance of the indicator for

different numbers of collapsed species. (B) The skewness of time points projected on the first

principal component. (C) The length of the critical range in which the indicator’s magnitude

increases significantly. (D) Kendall’s rank correlation, τ , as determined for the critical range.

(E) The fraction of the critical range in which the slope of the indicator accurately indicates

the future state, i.e. in which the similarity between the first principal component and the

observed shift in abundance is > 0.99. Results in panels (B-E) are shown for regime shifts

that were accurately indicated by the first principal component. Box plots show the median

and the upper and lower quartiles. Whiskers correspond to the 9th and the 91st percentile.
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Figure S4.24: Directional slowing down as detected by the indicator when the total length of

a time series is 2.000 time steps. (A) The indicator of the future state measuring the direction

in which fluctuations are distributed asymmetrically. (B) The magnitude of the indicator,

reflecting the extent in which fluctuations are distributed asymmetrically, plotted together

with the accuracy measured as the similarity between its direction and the observed shift

in abundance. Grey bands indicate the period in which the indicators magnitude increases

significantly. (C) The observed changes in abundance versus the scores on the indicator just

before the tipping point. Extinct species are indicated with crosses. The initial network, at

M = 0, and the way in which this network is affected by changing environmental conditions,

M , is the same as in Fig. 4.2. Changes in the direction and magnitude of the indicator are

determined with a rolling window of 10% of the entire time series, i.e. 200 out of 2.000 time

steps.
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Figure S4.25: Directional slowing down as detected by the indicator when the total length of

a time series is 200 time steps. (A) The indicator of the future state measuring the direction

in which fluctuations are distributed asymmetrically. (B) The magnitude of the indicator,

reflecting the extent in which fluctuations are distributed asymmetrically, plotted together

with the accuracy measured as the similarity between its direction and the observed shift

in abundance. Grey bands indicate the period in which the indicators magnitude increases

significantly. (C) The observed changes in abundance versus the scores on the indicator just

before the tipping point. Extinct species are indicated with crosses. The initial network, at

M = 0, and the way in which this network is affected by changing environmental conditions,

M , is the same as in Fig. 4.2. Changes in the direction and magnitude of the indicator are

determined with a rolling window of 10% of the entire time series, i.e. 20 out of 200 time

steps.
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Figure S4.26: Performance of the indicator when time series have a different length (lengths

are indicated on the x-axis). (A) The fraction of accurately indicated regime shifts (dark

blue), the fraction accurately indicated by the first principal component, i.e. the slope of the

indicator is accurate, but not by the direction in which time points are skewed (light blue),

and the fraction of inaccurately indicated regime shifts (red). (B) The skewness of time points

projected on the first principal component. A positive skewness means that time points are

skewed in the direction of a network’s future state. The skewness is shown for regime shifts

that were accurately indicated by the first principal component. Changes in the direction and

magnitude of the indicator are determined with a rolling window of 10% of the entire time

series.
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Figure S4.27: Directional slowing down as detected by the indicator when using a rolling

window of 1% of the entire time series, i.e. 200 out of 20.000 time steps. (A) The indicator of

the future state measuring the direction in which fluctuations are distributed asymmetrically.

(B) The magnitude of the indicator, reflecting the extent in which fluctuations are distributed

asymmetrically, plotted together with the accuracy measured as the similarity between its

direction and the observed shift in abundance. Grey bands indicate the period in which the

indicators magnitude increases significantly. (C) The observed changes in abundance versus

the scores on the indicator just before the tipping point. Extinct species are indicated with

crosses. The initial network, at M = 0, and the way in which this network is affected by

changing environmental conditions, M , is the same as in Fig. 4.2.



121

Figure S4.28: Directional slowing down as detected by the indicator when using a rolling

window of 0.1% of the entire time series, i.e. 20 out of 20.000 time steps. (A) The indicator of

the future state measuring the direction in which fluctuations are distributed asymmetrically.

(B) The magnitude of the indicator, reflecting the extent in which fluctuations are distributed

asymmetrically, plotted together with the accuracy measured as the similarity between its

direction and the observed shift in abundance. No significant increase in the indicator’s

magnitude was detected. (C) The observed changes in abundance versus the scores on the

indicator just before the tipping point. Extinct species are indicated with crosses. The initial

network, at M = 0, and the way in which this network is affected by changing environmental

conditions, M , is the same as in Fig. 4.2.
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Figure S4.29: Performance of the indicator when the rolling window has a different length

(lengths are indicated on the x-axis). (A) The fraction of accurately indicated regime shifts

(dark blue), the fraction accurately indicated by the first principal component, i.e. the slope

of the indicator is accurate, but not by the direction in which time points are skewed (light

blue), and the fraction of inaccurately indicated regime shifts (red). (B) The skewness of time

points projected on the first principal component. A positive skewness means that time points

are skewed in the direction of a network’s future state. The skewness is shown for regime shifts

that were accurately indicated by the first principal component. Time series have a length of

20.000 time steps.
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Figure S4.30: The extend in which the size of a rolling window affects the slope indicated

by the first principal component far from a tipping point (blue) and close to a tipping point

(orange). The y-axis corresponds to the difference in angle between the first principal compo-

nent obtained for a window of 200 observations and for a window containing the number of

observations indicated on the x-axis. The effect of an increasingly small window size on the

direction of the first principal component is, in this example, much smaller close to a tipping

point. Results are shown for the time series in Fig. 4.2.A at M=0.1 (blue) and M=0.78

(orange).
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Abstract

Various complex systems, such as the climate, ecosystems, and physical and mental health

can show large shifts in response to small changes in their environment. These ‘tipping

points’ are notoriously hard to predict. However, in the past 20 years several indicators

pointing to a loss of resilience have been developed. These indicators use fluctuations in

time series to detect critical slowing down preceding a large shift. Most of the existing

indicators are based on theories of one-dimensional systems. However, most if not all

complex systems consist of multiple interacting entities. Moreover, due to technological

developments and wearables, multivariate time series are becoming increasingly available

in different fields of science. In order to apply the framework of resilience indicators

to multivariate systems, various extensions have been proposed. Not all multivariate

indicators have been tested for the same types of systems and therefore a systematic

comparison between the methods is lacking. Here, we evaluate the performance of the

different multivariate indicators of resilience loss in different scenarios. We show that

there is not one method outperforming the others. Instead, which method is best to use

depends on the type of scenario the system is subject to. We propose a set of guidelines

to help future users choose which multivariate indicator of resilience is best to use for

their particular system.
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5.1 Introduction

Some systems may show large transitions in response to very small changes in their

environment. Such nonlinear responses have been documented in systems from various

seemingly unrelated fields of study, including algae coverage in shallow lakes (Scheffer,

1997), self-reported emotions of persons (Leemput et al., 2014), abundance of fish (Mangel

and Levin, 2005), climatic variables such as ice cover (Crowley and Baum, 1995), or illness

of animals or human beings (Scheffer et al., 2018; Liu et al., 2012). Often these observed

transitions are argued to be shifts from one stable state into another one, and these shifts

between two stable equilibria are the focus point of this study. Because of internal feedback

mechanisms, reversing conditions to a pre-shift situation does not necessarily cause a shift

back to the old state (Strogatz, 2014). Sometimes the shift back to the preferred state

might not be possible at all. The likelihood of such transitions to be triggered by a

perturbation, or in more technical terms the size of the stability landscape, is called

the resilience of the system (Holling, 1996). Being able to indicate if a system is losing

resilience is one fundamental goal of the research on critical transitions (Scheffer et al.,

2009). If interactions and feedbacks of a system are well understood, fully parameterized

models can help to simulate transitions. However, most of the aforementioned examples

are inherently so complicated that accurate models do not exist. As an alternative to

models, there are data driven methods that need time series data as input and that can

provide a signal when a system is approaching a tipping point (the point where a shift

to the alternative state is inevitable). The most well-known indicators of resilience loss

are an increase in temporal autocorrelation (most often lag-1 autocorrelation) (Ives, 1995;

Held and Kleinen, 2004) and an increase in variance (Carpenter and Brock, 2006). These

indicators are based on the phenomenon of critical slowing down. If a system approaches

a tipping point, it will become intrinsically slower, such that recovery rate of disturbances

decreases (Scheffer et al., 2009). Indicators of critical slowing down have been applied to

various lab-experiments (Veraart et al., 2012; Dai et al., 2012) and have been observed in

real life systems (Dakos et al., 2008; Wilkinson et al., 2018).

One limitation of the resilience indicators is that the theoretical framework used for their

development is generally based on one-dimensional systems. It is therefore not clear if

it is one-to-one applicable to the complexities that may occur in multivariate systems

(Brock and Carpenter, 2010). Multivariate systems, or network systems, are systems

whose dynamics are described by multiple entities (Barabási et al., 2016). Examples in-

clude food webs of multiple interacting species, social networks where multiple individuals

are observed, or spatial systems where the different locations in space can be viewed as

different variables. Obtaining resilience indicators from time series of multivariate sys-

tems is fundamentally different from resilience indicators in univariate systems for two

reasons. First, for most systems, it is not possible to obtain a quality time series of all

variables, so a measurable subset should be chosen. Sometimes, the variables of inter-
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est are not measurable at all and a proxy is used (i.e. self-reported levels of emotions

to track a persons mood in psychological studies (Wichers, 2014), or isotope measure-

ments of δ18O in a sediment core to get an indication of past temperatures (Epstein et al.,

1951)). Second, for multivariate systems, recovery trajectories depend on which nodes are

perturbed (Rodŕıguez-Sánchez et al., 2020). In mathematical terms it is said that multi-

variate systems may not have smooth potentials or that they are ‘non-gradient’. It has

been suggested that non-gradient behaviour gives a dramatic boost for the possibilities

in a system’s dynamics that are completely overlooked by the more traditional analyses

(Green et al., 2005; Hastings and Wysham, 2010). One example of such behaviour of

systems without a smooth potential is reactive behaviour, in which a perturbation leads

to an initial response away from a stable equilibrium and only later recovers to it’s equi-

librium position (Neubert and Caswell, 1997). Reactivity has been proposed to be an

intermediary step between stable systems and unstable systems and therefore might have

properties of both (Tang and Allesina, 2014).

Despite this worry about the applicability, several multivariate indicators of resilience have

been proposed. These can be divided into indicators based on univariate measures and

multivariate indicators. A straightforward option using commonly used univariate mea-

sures is to choose one ’representative’ variable to track over time (Dakos, 2018). However,

this immediately leads to the problem of deciding which variable to measure. Another

approach is to use the mean or median of commonly used univariate resilience indica-

tors, such as autocorrelation and variance, for all variables (Bathiany et al., 2013; Dakos

and Bascompte, 2014). However, the average value of all variables might be influenced

by outliers, and does not exploit the full amount of information that is available in the

multivariate signal. Among univariate indicators, autocorrelation is considered the more

direct indicator of resilience which is more robust to noise, whereas variance is easier

to measure and less sensitive to varying time intervals between consecutive data points

(Dakos et al., 2012b). A nonlinear alternative to autocorrelation is mutual information

(Kraskov et al., 2004).

Proposed multivariate indicators consist of a first step of dimension reduction technique,

followed by the 1-D framework on the newly created 1-D data. This has led to the

development of for example degenerate fingerprinting (Held and Kleinen, 2004), that

calculates the autocorrelation of the data projection on the first principal component of a

Principal Component Analysis (PCA). The advantage is that these techniques offer some

new properties that in turn have been suggested as multivariate indicators of resilience

loss, such as the explained variance of a PCA analysis (Lever et al., 2020), the eigenvalue of

a Min/Max Autocorrelation Factor (MAF) analysis (Weinans et al., 2019), the maximum

value of the covariance matrix (Suweis and D’Odorico, 2014; Chen et al., 2019), and the

cross-correlation between individual elements (Leemput et al., 2014; Chen et al., 2012).

Multivariate extensions to mutual information are for example information dissipation

length (IDL) (Quax et al., 2013b) or information dissipation time (IDT) (Quax et al.,
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2013a) which measures how long a signal remains in the system before the information

is lost. A possible disadvantage of these multivariate metrics is that they are data-

hungry and that their theoretical foundation and link to critical transitions is not as

well-developed as the more simple metrics. The multivariate indicators of resilience loss

that we investigate in this study are listed in table 5.1.

The set of recent indicators clearly reflects the interest in multivariate resilience indicators

and the promising new opportunities. However they also pose new questions. Can we

expect the multivariate indicators of resilience loss to accurately indicate an upcoming

tipping point? What type of data do the different methods require? And can all the

proposed indicators deal with the above mentioned multivariate data issues? Since most

indicators have not yet been systematically compared (although some have (Suweis and

D’Odorico, 2014)), we here evaluate the performance of the indicators from table 5.1.

The model we use to generate the time series is well-known plant-pollinator interaction

model (Bastolla et al., 2009; Lever et al., 2020). This model has been suggested to also

be applicable to other bipartite networks where both facilitation and competition play

a role. We chose to use this model, because it can be tuned to display the different

types of dynamics that we explore here and it is simple enough to be representative

of many systems that can undergo a critical transition such as a fold- or transcritical

bifurcation. These bifurcations are part of a group of ’zero-eigenvalue bifurcations’ where

at the bifurcation point one eigenvalue of the systems Jacobian Matrix is zero.

We use the plant-pollinator interaction model to generate data where we know the true

outcome which allows us to evaluate the performance of the different proposed indicators.

We investigate the effect of six scenarios on the performance of the different indicators.

These scenarios are meant as an illustration of some common data issues and system

issues that can demonstrate the pros and cons of the list of indicators that we investigate,

but obviously do not represent all issues that may be encountered when dealing with time

series data. Four scenarios are associated with data acquisition: 1) limited data length, 2)

limited data resolution, 3) observational noise/measurement noise, and 4) multiplicative

noise as an example of a complex noise regime. The other two scenarios are associated

explicitly with multivariate systems: 5) an incomplete set of observed variables and 6)

reactivity as an example of non-smooth potential behaviour. The six scenarios are sum-

marized in table 5.2. All scenarios (except reactivity) are tested on a 4-dimensional (4D)

version of the model and on two 20-dimensional (20D) models, of which one undergoes

a full network collapse (all pollinator species are affected by the shift, all species go ex-

tinct), and the other approaches a partial network collapse (only half of the pollinators

are directly affected by the shift, half of the pollinators go extinct, the other half of the

pollinators and all plants remain alive). For reactivity, we only use the 4D model, since

only this model can be tuned to display reactive behaviour.
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Table 5.1: Multivariate indicators of resilience loss used in this study. References are 1:

Held and Kleinen (2004), 2: Weinans et al. (2019), 3: Quax et al. (2013b), 4: Dakos (2018),

5: Suweis and D’Odorico (2014), 6: Lever et al. (2020), 7: Leemput et al. (2014)

Indicator Description A
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Degenerate fingerprinting1 The autocorrelation of the data projection on the first principal
component of a PCA.

7 3 3 3

MAF autocorrelation2
The autocorrelation of the data projection on the first MAF.
Alternatively his measure can be seen as the maximum
autocorrelation in the system

7 3 7 3

MAF eigenvalue2
The minimum eigenvalue of a MAF analysis, calculated as the
eigenvalues of the covariance matrix of the first difference of an
SDS-transform of the original data.

7 3 7 3

Mutual information3 Mutual information of time series with lagged time series of itself 7 3 7 7

Average autocorrelation Autocorrelation averaged over all variables. 3 3 7 7

Node maximum
autocorrelation4 The autocorrelation of the variable with the highest autocorrelation. 7 3 7 7

MAF variance2 The variance of the data projection on the first MAF. 7 3 3 3

Node maximum variance4 The variance of the variable with the highest variance. 7 7 3 7

Average variance Variance averaged over all variables. 3 7 3 7

PCA variance1
The variance of the data projection of the first principal component
of a PCA. Alternatively this measure can be seen as the maximum
variance in the system.

7 7 3 3

Maximum value of
covariance matrix5 The maximum value of the covariance matrix. 7 7 3 3

Explained variance6
The explained variance of a PCA based on the covariance matrix,
calculated as the maximum eigenvalue of the covariance matrix
divided by the sum of all eigenvalues of the covariance matrix.

7 7 3 3

Average absolute
cross-correlation7

The average of the absolute values of all possible cross-correlations
between variables.

3 7 7 7
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5.2 Methods

Model

To investigate the effect of various multivariate data issues, we use a well-known simplistic

model that we can tune to display a wide range of dynamics and which can be pushed

towards a fold or a transcritical bifurcation (two types of critical transitions). The model

has been used to describe plant-pollinator interactions (Lever et al., 2014), but can be

used to describe a wide range of phenomena where facilitation and competition both play

a role (Lever et al., 2020). The model has a deterministic part and a stochastic part. The

deterministic part is used to calculate the dominant eigenvalue of the Jacobian (as the

‘true’ resilience of the system) and the eigenvalue of the corresponding Hermitian (as the

reactivity of the system). The model is implemented in Grind for Matlab (Nes, 2017) and

integrated using an Euler-Maruyama scheme with an integration step of 0.01. The time

unit is arbitrary. We sampled data points with an interval of 0.1 time point (so after 10

integration steps), unless stated otherwise.

dAk = [r
(A)
k Ak +

∑SP

i=1 γ
(A)
ki Pi

1 + hk
∑SP

i=1 γ
(A)
ki Pi

Ak −
SA∑
l=1

c
(A)
kl AlAk]dt+ σAk

dW (5.1)

dPi = [r
(P )
i Pi +

∑SA

k=1 γ
(P )
ik Ak

1 + hi
∑SA

k=1 γ
(P )
ik Ak

Pi −
SP∑
j=1

c
(P )
ij PjPi]dt+ σPi

dW (5.2)

In this model, Ak represents the abundance of pollinator species k and Pi represents the

abundance of plant species i.

The parameter r describes the per capita growth rate, which in this case can be negative.

The parameter γ describes the mutualistic interactions with other species of the other

group (where γ
(P )
ik stands for the positive effect that plant species i experiences from

pollinator species k). In the model, a saturation is assumed for high abundances of

mutualistic partners, where parameter h is the half-saturation constant. The parameter

c is a competition term describing the negative effect that pollinators have on each other

(c
(A)
kl ) and on themselves (c

(A)
kk ) and that plants have on each other (c

(P )
ij ) and on themselves

(c
(P )
ii ). Consistent with previous work (Lever et al., 2014), we assume that species can

not out-compete each other in the absence of mutualistic partners, so each species has a

higher competition with itself than with the other species.

First we use this model to simulate data with two plants (SP = 2) and two pollinators

(SA = 2) with default parameters set as r(P ) = [−0.5,−0.5] (non-reactive) or r(P ) =

[2.2, 2.2] (reactive), γ11 = γ22 = 1, γ12 = γ21 = 0.8 and c11 = c22 = 0.3, c12 = c21 = 0.1 for

both plants and pollinators. The half saturation constant h is 0.5 for all species.
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In this model, the relative growth rates between the plants and the pollinators can cause

the system to become reactive or pass a tipping point. We find the combinations of

parameter values of r(P ) and r(A) for which the system undergoes a tipping point by

calculating when the Jacobian matrix is zero (Supplementary figure 3). Additionally,

we find the parametervalues where the system becomes reactive (Supplementary figure

3).

We find that the combination of parameter values for which the model becomes reactive

and for which it passes a tipping point by setting the noise to zero and calculating the

eigenvalues of the Jacobian and Hermitian matrix dependent on the values of r(P ) and r(A)

(Supplementary figure 1). The parameter r(A) is the bifurcation parameter and changes

in the basic model from [-0.3 -0.2] to [-0.68 -0.58], in the reactive model from [-0.91 -0.81]

to [-1.45 -1.35]. We tuned this bifurcation parameter such that the change in resilience

for both scenarios is exactly the same: the dominant eigenvalue moves from -0.45 to -0.15

in both scenarios. In line with previous studies, in the reactive scenario, the system is not

reactive in the beginning but it becomes reactive as the system moves towards the tipping

point (Tang and Allesina, 2014) (in supplementary figure 1 the dashed line at r(P ) = 2.2

crosses the blue line indicating the system becomes reactive).

For our simulations, we increase r(A) stepwise in 50 steps. For every value of r(A) we

generate stochastic time series by setting σ to 0.02 for both the plants and the pollinators,

unless stated otherwise.

Next, we use the same model to simulate data with ten plants (SP = 10) and ten pollina-

tors (SA = 10). For this model, we could not use default parameters from other studies, so

we did a random search to find parameters for which the system starts in an equilibrium

where all species are present (abundance > 0.1) and that slowly moves either to a full

network collapse (10 pollinators are affected by the changing parameter, all 20 species

become extinct) or a partial network collapse (5 pollinators are affected by the changing

parameter, those 5 species become extinct). An illustration of the behaviour of these 20D

models can be found in suppementary figures 1 (full network collapse) and 2 (partial net-

work collapse). In line with the 4D model h = 0.5, c
(P )
ii = c

(A)
kk = 0.3 and γ

(A)
ii = γ

(P )
kk = 1.

Parameter settings for the other variables can be found in the supplementary materials

section 1 and 2.

Indicator performance

We use the generated data to calculate how the indicators in Table 5.1 change for different

values of the bifurcation parameter. In line with previous work (Dakos et al., 2012a; Chen

et al., 2019), we calculate Kendall tau correlation between the indicator and the value of

the bifurcation parameter as a measure of how well the indicator performs. If the Kendall

tau correlation was lower than zero, the performance was set at zero. The Kendall tau

correlation is a rank correlation and therefore distinguishes if there is a trend. It provides



133

no information on how this trend evolves over time (i.e. a linear trend can have the same

correlation as an exponential trend).

All indicators with the exception of mutual information where implemented in Matlab.

Mutual information (Kraskov et al., 2004) was calculated in Python using the NPEET

package (Versteeg, 2014), using 3 neigbors for the kNN algorithm (k=3), a base of 2 and

no bias correction (alpha=0).

We test for the sensitivity of the indicators to data length by repeating the tests for

different lengths of data while keeping the sampling interval constant. A data length of

1000 was chosen for the reduced data length scenario. Next, we test for the sensitivity to

data resolution by sampling every 100rd time point (instead of the default of 0.1). Last,

we test for the sensitivity to accuracy of the data by applying artificial measurement noise

(or observational noise) by adding random values from a normal distribution to the data

with µ = 0 and σ ranging from 0 to 0.3. A σ of 0.08 was chosen for the reduced data

accuracy scenario. We create data with multiplicative noise by multiplying the Wiener

process with the species abundance. We analyze the effect of not observing all variables

by repeating the analysis for all possibilities of half of the variables, so for our 4D model

this leads to 6 options (4 choose 2) and for the 20D model this leads to 184765 options (20

choose 10). In this scenario we determine the performance as the 5% and 95% quantile of

all Kendall tau correlations and label them ’worst case’ and ’best case’ respectively. Using

the 4D model, we test for the effect of reactivity by generating data with the reactivity

parameter set to its reactive value (r(P ) = 2.2) and repeating the same tests as described

before. This was only done for the 4D model as the 20D model could not be made reactive

while ensuring all species were present in the system. The scenarios, including a short

description, are summarized in Table 5.2.

5.3 Results

The performance of the indicators based on the 4D model are summarized in figure 5.1.

The results of the 20D model with a full network collapse are summarized in figure 5.2,

and of the 20D model with a partial network collapse in figure 5.3. The performance

of each indicator per scenario is measured as the Kendall tau correlation between the

indicator itself and the value of the bifurcation parameter r(A) (see methods). In the

next subsections we will discuss the performance per scenario, so per column in these

figures.

Performance in the basic model

The basic model scenario is unlimited by data length, resolution and accuracy, it has the

most simple noise regime, all variables are observed, and the system behaves like a gradient

system locally. Therefore, it adheres to all assumptions needed to apply indicators of
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Table 5.2: Scenarios used in this study.

Scenario Description

Basic model
Time series have a length of 10.000 with a resolution of 0.1 steps. Gaussian white noise
is implemented as a Wiener process with a standard deviation of 0.02. There is no
measurement noise. All variables are taken into account.

Data length
Time series have a length of 1.000 with a resolution of 0.1 steps. Gaussian white noise
is implemented as a Wiener process with a standard deviation of 0.02. There is no
measurement noise. All variables are taken into account.

Data resolution
Time series have a length of 10.000 with a resolution of 100 steps. Gaussian white noise
is implemented as a Wiener process with a standard deviation of 0.02. There is no
measurement noise. All variables are taken into account.

Measurement noise

Time series have a length of 10.000 with a resolution of 0.1 steps. Gaussian white noise
is implemented as a Wiener process with a standard deviation of 0.02. Afterwards, a
random number drawn from a normal distribution with 0 mean and a standard deviation
of 0.08 is added to every datapoint in the time series. All variables are taken into account.

Multiplicative noise

Time series have a length of 10.000 with a resolution of 0.1 steps. Gaussian white noise
is implemented as a Wiener process with a standard deviation of 0.02 multiplied by
the value of the variable at that moment in time. There is no measurement noise. All
variables are observed.

Subset variables

Time series have a length of 10.000 with a resolution of 0.1 steps. Gaussian white noise
is implemented as a Wiener process with a standard deviation of 0.02. There is no
measurement noise. All possible subsets of half of the variables are analyzed and their
Kendall tau correlation is calculated. The 5% (worst case) and 95% (best case)
percentiles of these correlations are depicted as the performance.

Reactive system
Same as basic model, but model parameters are chosen in such a way that the
equilibrium in which the system resides is reactive.

Figure 5.1: Performance of all indicators for different situations of the four-dimensional

plant-pollinator model. Performance is calculated as the Kendall tau correlation of the change

in indicator as the system approaches a critical transition.
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Figure 5.2: Performance of all indicators for different situations of the 20-dimensional plant-

pollinator model with a full network collapse.

resilience loss. In this scenario, as expected, all indicators increase as the bifurcation

parameter increases, reflected by a high Kendall tau correlation. An example of the

change in the indicator values for the 4D model can be found in supplementary figure

4. In the 4D model the lowest Kendall tau correlation is found for the MAF eigenvalue

and the explained variance (figure 5.1). Additional analyses indicate that the Kendall tau

correlation of all indicators has quite high statistical specificity, i.e. it is able to distinguish

between time series of a system that moves towards a tipping point and time series of a

system that does not move towards a tipping point (supplementary figure 7).

For the 20D system, a weak Kendall tau correlation is found for the average absolute

cross-correlation between variables (figure 5.2 - 5.3). In the 20D model with a partial

network collapse all indicators have a lower performance than in the 4D and the 20D

models where the entire network collapses. This indicates that partial network collapses,

which are quite common especially in highly dimensional systems, are harder to detect

than full network collapses.
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Performance for reduced data length

The data length scenario shows that all indicators are negatively affected by a reduction

of the data length (from 10.000 data points in the basic model to 1000 data points in this

scenario) (figures 5.1-5.3, second column). An illustration of the performance for 10.000,

1000 and 100 time points is provided in supplementary figure 4-6, The effect of a gradually

increasing data length is visualized in supplementary figure 8. Interestingly, for the 4D

model, most indicators quickly converge when the time series length is increased from 10

to 1000 data points. For the average absolute cross-correlation, explained variance and

MAF eigenvalue, convergence happens slower and these indicators still seem to not have

converged for a data length of 10.000 time points (supplementary figure 8).

The best performing indicators in the reduced data length scenario are average autocor-

relation and average variance, both in the 4D (figure 5.1) and the 20D model with the

full network collapse (figure 5.2). These indicators are closely followed by the dimension

reduction techniques degenerate fingerprinting, autocorrelation of the data projection on

the first MAF (MAF autocorrelation), the variance of the data projection on the first PC

(PCA variance) and the variance on the first MAF (MAF variance). In the 20D model

with the partial network collapse (figure 5.3), all indicators performed quite poorly in

this scenario. The best indicators are the node with the maximum autocorrelation or

maximum variance, the average variance and the maximum value of the covariance ma-

trix. The already poorer performing indicators MAF eigenvalue, explained variance, and

average absolute cross-correlation are still the least effective indicators in this scenario.

Another important observation is that the mutual information performs quite well for the

reduced data length scenario in the 4DD model, even though this method is known to

be data-hungry. As the dimensions increase in the 20D models, the mutual information

suffers more from the reduced data length scenario than in the 4D situation. The mutual

information approximates a joint distribution from the data, and therefore it requires

more data as dimensions increases.

Performance for reduced data resolution

In the scenario of reduced data resolution, all autocorrelation-based indicators perform

poorly compared to the variance based indicators (figures 5.1 - 5.3). Even the variance on

the first MAF, which is also variance-based, performs poorly here, probably because the

direction of the first MAF is not meaningful when data resolution is low. An illustration

of the effect of a decreasing data resolution for the 4D model is provided in supplementary

figure 9. Perhaps surprisingly, all variance based indicators perform even better in the

low-resolution scenario than in the basic model scenario (figures 5.1 - 5.3). Furthermore,

the autocorrelation-based indicators too seem to benefit from a small decrease in data

resolution (supplementary figure 9). This can be explained by the fact that we fixed

the data length at 10.000 points. The decrease in data resolution in this scenario thus
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Figure 5.3: Performance of all indicators for different situations of the 20-dimensional plant-

pollinator model with a partial network collapse.

entails an increase in simulation time. The increase in performance indicates that a

higher sampling rate does not always provide more accurate results than a lower sampling

rate, if the data length remains unchanged. The average variance is the indicator that

outperforms the others for all three models in this scenario, which is especially clear in

the 20-dimension model with a partial network collapse (figure 5.3).

Performance for reduced data accuracy

A reduction in data accuracy affects the performance of all indicators negatively. The

effect of a gradually increasing amount of measurement noise (or observational noise) is

visualized in supplementary figure 10. The least affected indicators are the autocorrelation

on the first MAF, the average autocorrelation and the average variance. The mutual

information is most negatively affected by the increase in measurement noise. The mutual

information is the only indicator that does not make any assumptions on the distribution

of the data, and therefore might have trouble estimating the distribution when the signal

becomes more noisy.
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Performance for multiplicative noise

When the noise is modelled in a multiplicative way, all autocorrelation-based indicators

maintain their high performance in the 4D model (figure 5.1). the mutual information

and average autocorrelation are even completely unaffected by this change in noise type.

In both 20D models however (figures 5.2 - 5.3), the mutual information fails to detect

the upcoming critical transition. In this scenario noise depends on the abundances of the

variables and therefore the total noise changes over time. This might affect the bias in the

mutual information, something we did not correct for in this study. The variance-based

indicators, with the exception of the explained variance, are unable to detect an upcoming

critical transition in this scenario, both in the 4D and 20D models. This is an interesting

observation, since the explained variance is closely related to the maximum value of the

covariance matrix. The advantage that the explained variance might have here, is that it

is relative to the other values in the covariance matrix and is therefore less affected than

the maximum value of the covariance matrix by unevenly distributed noise.

Performance for reduced number of observed variables

The effect of only sampling a subset of the involved variables in the system depends on

the type of collapse. Our reported performance levels reflect the 5% (worst case) and

95% (best case) quantile. In the case of a full network collapse we find that the MAF

eigenvalue, the explained variance and the average absolute cross-correlation have the

lowest performance (figures 5.1 - 5.2, column ’subset worst case’). For the 4D model, the

other indicators work as good as in the basic model. For the 20D model however, all

indicators are compromised, although the average autocorrelation, average variance, and

mutual information are least affected by this scenario. In the case of a partial network

collapse however, the performance of all indicators is highly reduced (figure 5.3 - column

’subset worst case’). The worst performance is found in the mutual information and the

average-based indicators. Surprisingly, the best case scenario here even outperforms the

basic model (figure 5.3 - ’subset best case’). Additional analyses of the distribution of

the Kendall tau correlations show a large variation in performance (supplementary fig-

ures 11-13). The average absolute cross-correlation does not detect a signal on average,

but all other indicators have a high probability of detecting the upcoming shift. The

highest probability of detecting a shift in this scenario is for the node with the maximum

autocorrelation, the node with the maximum variance, and the maximum value of the co-

variance matrix (supplementary figures 11-13). The high performances in this distribution

correspond to situations where all or most variables that are affected by the bifurcation

parameter are observed. The low performances appear for situations where the collapsed

variables are not part of the observed subset (supplementary figure 14). Interestingly,

the increased performance in the best case column compared to the basic model, suggests

that all indicators are hindered by the inclusion of variables that are not taking part in

the shift.
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Performance for reactive systems

In the 4D version of our model, we tuned the parameters in such a way that the system is

reactive. This did not substantially affect the performance of the indicators, other than

that the average absolute cross-correlation performed slightly better in this scenario. Also

the MAF-based indicators seemed to slightly improve their performance in this reactive

system (figure 5.1).

5.4 Discussion

Our results show that in our basic model (figures 5.1 - 5.3, first columns) all proposed indi-

cators rise preceding a critical transition (see also supplementary figure 4). Furthermore,

even though non-gradient behaviour has been described as a major issue for multivariate

dynamical systems (Neubert and Caswell, 1997; Hastings and Wysham, 2010), our results

find no evidence that reactivity is a problem for the multivariate indicators of resilience

tested for here (figure 5.1, last column). However, not all indicators perform well in ev-

ery situation and our modelled scenarios help us to understand why certain resilience

indicators may fail under particular circumstances.

In the scenario of reduced data length, all indicators have a lower performance than in

the basic model. This can simply be explained by the fact that less data leads to weaker

statistics.

In the reduced data resolution scenario all variance-based indicators and the absolute

average cross-correlation remain strong, while all the autocorrelation-based indicators are

weakened. If the sampling resolution is too low, the indicators directly capturing the

speed of the system, i.e. based on autocorrelation, will fail to indicate critical slowing

down. However, the variance-based indicators, which are essentially indirect measures of

slowing down, are not affected by lower resolutions (Dakos et al., 2012b). This is true

for both univariate and multivariate timeseries. Whether data resolution is problematic

depends on the sampling frequency and the actual speed of the system. For instance,

in systems where the activity of taking measurements might affect the dynamics of the

system, such as the questionnaires about the mood or behaviour of individuals (Schwarz,

1999), obtaining data with high data length and high resolution can be challenging. Also

many ecosystems are difficult to sample on a sufficiently high resolution and sufficiently

long time scale, since interactions often occur on long time scales (order of magnitude of

several years are not uncommon) (Hastings, 2010). However, long time series do exist in

ecology (Benincà et al., 2008), and modern sensor techniques are proving their potential,

in both aquatic ecology (Carpenter et al., 2020; Duarte et al., 2021) and vegetation studies

(Lamchin et al., 2018). Fields of science that more commonly gather data via automated

monitoring devices, such as in medical applications (e.g. wearables), high resolution data

is more abundant (Lee and Yoon, 2017).
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Higher measurement noise leading to reduced data accuracy has a detrimental effect on

all indicators. Mutual information is most strongly affected by reduced data accuracy in

comparison to the other indicators. Mutual information is closely related to autocorre-

lation. It has for instance been shown that for a bivariate normal distribution the lag-1

autocorrelation and mutual information are directly linked to each other (with the rela-

tion MI = −1
2
log(1 − ρ2), where ρ is the lag-1 autocorrelation) (Gelfand and Yaglom,

1959). Therefore, the difference in performance between the two has to be linked to data

length. This links to our observation both in the noisy scenarios, as well as in the high

dimensional systems, where mutual information needs an increasing amount of data to

estimate the distribution of the data, since it is not assuming any predefined distribution.

Autocorrelation has fewer degrees of freedom and is therefore less influenced by noisy data

when data is limited. Our analysis was based on stationary time series of 10.000 time

points for every value of the control parameter, which is considered quite a lot of data in

most applications. Therefore mutual information might not be the most practical choice

as an indicator of resilience unless the number of degrees of freedom can be significantly

reduced or large amounts of data are available.

We simulated a complex noise scenario by replacing additive noise with multiplicative

noise, meaning that the amount of noise depends on the variable level (here species abun-

dance). The multiplicative noise scenario hardly affects the autocorrelation based indica-

tors in the 4D model, but it has a detrimental effect on all variance-based indicators. In

the 20D systems it also affects degenerate fingerprinting and mutual information. Degen-

erate fingerprinting is most likely affected because a PCA, which is a step in degenerate

fingerprinting, is heavily influenced by changes in noise regimes. In our multiplicative

noise scenario we multiplied the noise by the species abundances. Other ways to in-

vestigate complex noise regimes are by changing the way it is distributed over variables

(Boerlijst et al., 2013; Weinans et al., 2019) or by adding the noise to modeled parameters

instead of variables (Dakos et al., 2012b). Ecological systems are often most realistically

modeled with noise added to a parameter (for example a simple system of bacteria where

temperature affects the growth rate and in that way affects the abundance), and therefore

in ecological systems autocorrelation-based indicators might be the more robust choice

(Dakos et al., 2012b).

Our findings suggest that the subset of variables that is looked at, can have a major

influence on the results. This problem was first described for univariate analyses of three

variables in a three-dimensional system (Boerlijst et al., 2013), and still appears for the

multivariate methods that we investigate here. Importantly, not all variables in a multi-

variate system approaching a critical transition are subject to critical slowing down, so

when only a subset is observed, it depends on the subset whether a loss of resilience will

be signalled. In models with a full network collapse, several indicators hardly show a

loss of resilience: the MAF eigenvalue, the explained variance and the average absolute

cross-correlation (figures 5.1 - 5.2). In contrast, in our 20D model where only a part of the
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variables collapses, all indicators have a reduced performance. Cross-correlation is most

affected by not observing all variables (supplementary figures 11-13). Some combina-

tions of variables even give an indication of an increase in resilience as the system moves

towards the tipping point (supplementary figures 7-9). In this scenario, only 5 of the

20 species are directly affected by the changing environmental condition. The variables

are all interacting with each other, so in principle this information could be distributed

through the network. However, as we show, the signal is not picked up by all subsets

of variables. The performance essentially depends on the fraction of observed variables

that are part of the transition. Performance is high if all variables that are collapsing

are observed, and performance reaches a minimum when none of the observed variables

are collapsing (supplementary figure 14). One important note is that in real systems it is

typically unknown how many of the observed variables will be part of the shift (i.e. the

location on the horizontal axis in supplementary figure 14). The prevalence of this sce-

nario for all real-world cases therefore suggests a cautious interpretation of all univariate

and multivariate resilience analyses.

Our analysis of multiple indicators of resilience loss in multivariate timeseries shows that

there is not one indicator that clearly outperforms the others. It depends on the scenario

which indicator is favourable, similar to what was previously found for one-dimensional

systems (Dakos et al., 2012a). Some of the scenarios that we present here can be tested

for, providing a user with an indication of the type of system they are dealing with. Box 1

provides some guidelines and questions to consider before choosing a multivariate indicator

of resilience. Given the complexity of the matter, we are unable to propose a step-by-step

flow chart that recommends one indicator based on a set of questions. However, we do

believe that these considerations can guide the decision-making process.

It is important to realize that the scenarios we discussed generally do not happen in

isolation. In order to fully map the performance of resilience indicators, ultimately a

multidimensional coordinate system is needed where each of the scenarios that we used

can be seen as one of the axes in the coordinate system (as illustrated in figure 5.4. This

coordinate system has many additional axes that are not investigated here). In every

region of this coordinate system some indicators might perform well, whereas others are

unable to detect any change in resilience. Some regions might not be suitable for any (of

the currently used) multivariate indicators of resilience loss. This figure illustrates one

limitation of our study: our scenarios investigate what happens along each axis, whereas

the spaces in between are left unstudied. For example in our 4D model, in every scenario

we demonstrate that some indicators can correctly predict the upcoming tipping point.

However, when the data has a low resolution, in combination with multiplicative noise,

and only a subset of data is observed (not uncommon for empirical datasets), all indicators

will likely have a low performance.
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Box 1: Guidelines for choosing a multivariate indicator of resilience

Based on our findings, we recommend the following guidelines to help deciding

which indicator to use.

1. Before anything else, decide if the system you are dealing with could po-

tentially be subject to a zero-eigenvalue bifurcation. Are there known pro-

cesses that could cause a positive feedback loop? Have shifts been observed

before? Is the system fluctuating around an equilibrium?

2. Check the autocorrelation of the included variables. If the autocorrelation

is not significantly different from zero, this suggests the resolution of the

data is too low to use autocorrelation-based indicators, so use a variance-

based indicator instead.

3. Use system knowledge or take multiple measurements at the same time to

determine how accurate the data is. If there is a low data accuracy (high

observational or measurement noise), use a dimension-reduction technique

or use the average autocorrelation or variance.

4. Use system knowledge or perform experiments to get an understanding of

how the noise behaves. In real systems the noise is most likely a combina-

tion of observational/measurement noise and system noise. If the system

noise varies over time, such as in our multiplicative noise scenario, use an

autocorrelation-based indicator.

5. Irrespective of which method is chosen, we recommend to do a data suit-

ability test (Weinans et al., 2019), to test whether the data is of sufficient

length to reliably calculate the resilience indicators.

In this study, we focus on the performance of indicators for approaching zero-eigenvalue

bifurcations as classic examples of critical transitions. Obviously, there are many other

types of transitions that are out of the scope of this study. Consequently, the parameters

in our model were tuned in such as a way that more complex bifurcations such as hopf

bifurcations, or global bifurcations, are not taken into account. Also, we did not consider

abrupt shifts caused by an increase in noise (Horsthemke, 1984), in which case flickering

might be a more promising indicator than any of the indicators we have investigated here

(Dakos et al., 2013). Also, some rapid transitions might be caused by rapid changes in the

environment in which case no indicators of critical slowing down are expected (Boettiger

et al., 2013; Dakos et al., 2015). Therefore our conclusions should only be seen in the



143

context of slowly approaching fold or transcritical bifurcations, which is why the first

guideline in Box 1 suggests to always first consider the type of transition that is expected

before applying any indicator of resilience to the data.

Some multivariate indicators of resilience loss have been suggested to not only predict

when a systems is losing resilience, but also which variables are most affected by it (Bathi-

any et al., 2013; Chen et al., 2019; Weinans et al., 2019) or even where the future state

of the system can be found (Lever et al., 2020). To answer these ‘follow-up questions’,

MAF or PCA related indicators seem quite appropriate, since they provide a ‘direction’

(i.e. a combination of variables that are most affected by the changing conditions or that

recover slowly when perturbed simultaneously) in addition to a resilience indicator. These

are the indicators that fail in our ’subset of variables’ scenario and therefore we do not

recommend to use them to predict an upcoming tipping point. However, we do see a

use for these indicators to answer questions such as “which variables are affected by an

upcoming shift?” and “what will the future state look like?” (Weinans et al., 2019; Lever

et al., 2020).

Figure 5.4: Conceptual image of the multivariate space a system can be in, of which we here

visualize three axes. In reality, any issue (data issue such as data length of system issue such

as reactivity) can be seen as an axis in this coordinate system, resulting in a high-dimensional

space. Depending on the region in this coordinate system, some indicators are preferable over

others. For example, as the system under investigation moves to the low end of the ‘data

resolution axis’, variance based indicators are preferred, whereas on high resolution side there

is no limitation on the choice of indicator. If the system is found on the low end of the ‘data

length’ axis, average autocorrelation, average variance, or mutual information could be the best

choice for an indicator. As a system moves along the ‘multiplicative noise’ axis, our analysis

suggests that autocorrelation-based indicators, with the exception of mutual information, are

the best choice. In our analysis we investigate the effect of moving along several axes of this

conceptual coordinate system. The regions in between are yet to be explored.
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There is a group of indicators based on information theory that could potentially also be

useful to predict upcoming transitions (such as Fisher information (Eason and Cabezas,

2012) or entropy measures (Richman and Moorman, 2000)). These indicators also in-

fer properties of dynamical systems, but so far have not been applied to infer a systems

resilience. Therefore, we did not include them in our analysis. We do touch upon informa-

tion theoretical indicators by including the mutual information indicator. This indicator

accurately points to a loss of resilience in the basic model, but it seems quite sensitive to

the scenarios we have investigated here. Furthermore, some indicators not directly linked

to critical slowing down have been found to precede critical transitions, such as critical

fluctuations (Olthof et al., 2020b). Future comparisons can take into account these, and

other, extensions to the resilience indicators investigated here.

The idea that critical transitions are preceded by generic indicators that cross over

multiple scientific domains is an exciting premise that has attracted justifiable widespread

attention. However, even though the theoretical work has led to many successful discov-

eries, the application to multivariate empirical data remains challenging. Awareness of

the potential pitfalls that can be encountered in real data and an understanding of their

effect on the different indicators may help to interpret the growing body of resilience

research.



145

Supplementary materials

S5.1 parametersettings 20D plant pollinator model -

full network collapse

c(A) =

0.3000 0.0360 0.0462 0.0166 0.0365 0.0149 0.0536 0.0368 0 0.0221

0.0220 0.3000 0.0242 0.0885 0.0292 0.0602 0.0371 0.0809 0.0229 0.0086

0.0233 0.0763 0.3000 0.0547 0.0354 0.0228 0.0528 0 0.0549 0.0618

0.0510 0.0637 0 0.3000 0.0355 0.0057 0.0087 0.0556 0.0185 0.0498

0.0577 0.0251 0.0795 0.0500 0.3000 0.0534 0.0302 0.0537 0.0325 0.0523

0.0707 0.0165 0.0128 0.0471 0.0492 0.3000 0.0224 0.0573 0.0351 0.0350

0.0371 0.0774 0.0375 0.0434 0.0245 0.0150 0.3000 0.0771 0.0413 0.0834

0.0516 0.0164 0.0183 0.0406 0.0463 0.0355 0.0307 0.3000 0.0507 0.0457

0.0289 0.0318 0.0278 0.0602 0.0326 0.0403 0.0308 0.0332 0.3000 0.0306

0.0551 0.0336 0.0267 0.0392 0.0454 0.0556 0.0248 0.0124 0.0488 0.3000


c(P ) =

0.3000 0.0512 0.0299 0.0454 0.0033 0.0304 0.0392 0.0284 0.0382 0.0571

0 0.3000 0.0264 0.0192 0.0393 0.0504 0.0755 0.0020 0.0708 0.0283

0.0458 0.0463 0.3000 0.0394 0.0216 0.0335 0.0404 0.0209 0.0097 0.0329

0.0400 0.0478 0.0414 0.3000 0.0348 0.0370 0.0022 0.0331 0.0321 0.0345

0.0807 0.0348 0.0521 0.0429 0.3000 0.0675 0.0318 0.0622 0.0369 0.0425

0.0516 0.0079 0.0439 0.0347 0.0460 0.3000 0.0768 0.0280 0.0779 0.0484

0.0294 0.0456 0.0646 0.0001 0.0266 0.0385 0.3000 0.0769 0.0436 0.0576

0.0522 0.0476 0.0355 0.0641 0.0255 0.0359 0.0339 0.3000 0.0523 0.0398

0.0026 0.0699 0.0547 0.0246 0.0471 0.0396 0.0630 0.0355 0.3000 0.0591

0.0320 0.0109 0.0470 0.0213 0.0489 0.0139 0.0517 0.0353 0.0298 0.3000


γ(A) =

1.0000 0.7256 0.8165 0.8032 0.8804 0.7901 0.8946 0.7545 0.9086 0.8047

0.7243 1.0000 0.7728 0.7887 0.8128 0.8364 0.9992 0.8955 0.7779 0.8616

0.8501 0.8354 1.0000 0.8472 0.7449 0.8142 0.6800 0.6601 0.9537 0.9296

0.7165 0.8669 0.6222 1.0000 0.8427 0.8191 0.7604 0.6323 0.6300 0.7554

0.8607 0.8280 0.5856 0.7303 1.0000 0.8277 0.8152 0.7924 0.9418 0.7169

0.7751 0.8574 0.8164 1.0000 0.7621 1.0000 0.8343 0.7611 0.8105 0.7735

0.8250 0.9945 0.8621 0.8314 0.8036 0.8109 1.0000 0.8486 0.7733 0.5809

0.6731 0.7307 0.8968 0.7996 0.8268 0.6182 0.6832 1.0000 0.8913 0.5988

0.8080 0.9226 0.9267 0.9080 0.8974 0.9306 0.6748 0.7757 1.0000 0.8893

0.7584 0.7300 0.7736 0.9048 0.8394 0.8409 0.8633 0.6953 0.9092 1.0000


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γ(P ) =

1.0000 0.7717 0.8184 0.7633 0.8644 0.9198 0.9089 0.8588 0.8697 0.8381

0.9262 1.0000 0.7196 0.7353 0.9588 0.9840 0.8463 0.7853 0.7648 0.7666

0.7936 0.8113 1.0000 0.7441 0.8513 0.9274 0.7042 0.8250 0.8528 0.7291

0.7977 0.8136 0.9174 1.0000 0.8501 0.7205 0.8204 0.7631 0.8086 0.8773

0.8256 0.7828 1.0000 0.7830 1.0000 0.7872 0.8519 0.7275 0.7577 0.8263

0.8329 0.7944 0.5845 0.8226 0.7242 1.0000 0.8258 0.8666 0.8125 0.6453

0.7948 0.6633 0.6590 0.7301 0.7309 0.7954 1.0000 0.6924 1.0000 0.7572

0.6132 0.8242 0.9830 0.8946 0.9385 0.8337 0.6134 1.0000 0.7439 0.9050

1.0000 0.8272 1.0000 0.7849 0.8794 0.8221 0.8042 0.8693 1.0000 0.9213

0.6377 0.8034 0.8878 0.7836 0.8224 0.8371 0.8678 0.8240 0.8049 1.0000


r(P ) = −0.1

The bifurcation parameter r(A) changes linearly in in 50 steps from -0.0424 to -1.2106 for

all pollinators, chosen in such a way that the dominant eigenvalue of the Jacobian matrix

changes from -0.45 to -0.15 as the system approaches a critical transition (fig. S5.1).

Figure S5.1: Behaviour of the 20D model without noise with a full network collapse. Green

lines indicate plant abundances and red lines indicate pollinator abundances. The dashed

black line depicts the values for r(A) that we use for our analysis.
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S5.2 parametersettings 20D plant pollinator model -

partial network collapse

c(A) =

0.3000 0.0566 0.0525 0.0181 0.0516 0.0286 0.0510 0.0510 0.0635 0.0271

0.0517 0.3000 0.0724 0.0255 0.0508 0.0317 0.0358 0.0216 0.0444 0.0194

0.0085 0.0427 0.3000 0.0183 0.0235 0.0615 0.0009 0.0363 0.0468 0.0283

0.0418 0.0431 0.0361 0.3000 0.0572 0.0134 0.0524 0.0481 0.0603 0.0184

0.0421 0.0233 0.0480 0.0555 0.3000 0.0097 0.0220 0.0550 0.0407 0.0331

0.0381 0.0481 0.0158 0.0485 0.0583 0.3000 0.0480 0.0286 0.0388 0.0181

0 0.0608 0.0324 0.0282 0.0298 0.0629 0.3000 0.0200 0.0543 0.0451

0.0273 0.0594 0.0258 0.0364 0.0591 0.0148 0.0119 0.3000 0.0237 0.0559

0.0519 0.0439 0.0403 0.0210 0.0445 0.0274 0.0481 0.0243 0.3000 0.0070

0.0332 0.0069 0.0347 0.0470 0.0101 0.0496 0.0309 0.0264 0.0234 0.3000


c(P ) =

0.3000 0.0723 0.0379 0.0616 0.0127 0.0531 0.0275 0.0421 0.0248 0.0378

0.0460 0.3000 0.0038 0.0612 0.0664 0.0333 0.0293 0.0449 0.0360 0.0020

0.0344 0.0320 0.3000 0.0374 0.0585 0.0582 0.0680 0.0382 0.0676 0.0128

0.0184 0.0228 0.0371 0.3000 0.0392 0.0627 0.0575 0.0208 0.0461 0.0283

0.0402 0.0470 0.0392 0.0435 0.3000 0.0495 0.0195 0.0429 0.0591 0.0340

0.0431 0.0520 0.0581 0.0718 0.0269 0.3000 0.0079 0.0379 0.0408 0.0534

0.0615 0.0129 0.0262 0.0431 0.0396 0.0186 0.3000 0.0475 0.0253 0.0425

0.0461 0.0583 0.0134 0.0490 0.0126 0.0216 0.0446 0.3000 0.0577 0.0657

0.0290 0.0306 0.0290 0.0600 0.0147 0.0692 0.0807 0.0492 0.3000 0.0211

0.0345 0.0322 0.0443 0.0193 0.0409 0.0349 0.0504 0.0506 0.0441 0.3000


γ(A) =

1.0000 0.8529 0.7304 0.9240 0.6789 0.8022 0.6468 0.5195 0.9032 0.8485

0.7804 1.0000 0.8725 0.7045 0.8580 0.7597 0.8700 0.6865 0.8380 0.6699

0.8359 0.6892 1.0000 0.7063 0.7855 0.7843 0.6484 0.9288 0.7659 0.8341

0.7470 0.7224 0.9097 1.0000 0.7419 0.6929 0.8887 0.7431 0.9261 0.8208

0.7901 0.6600 0.9390 0.8583 1.0000 0.9169 0.6562 0.8008 0.8312 0.7562

0.6107 0.8838 0.7761 0.6947 0.8547 1.0000 0.8929 0.6877 0.7465 0.7407

0.7592 0.8284 0.6102 0.7943 0.8421 0.8563 1.0000 0.8955 0.8385 0.8438

0.7883 0.8154 0.8696 0.8296 0.8414 0.8169 0.6932 1.0000 0.7579 0.8582

0.6963 0.7577 1.0000 0.7533 0.8661 0.9028 0.8552 0.7388 1.0000 0.7857

0.7951 0.7947 0.6607 0.8321 0.7693 0.8694 0.7682 0.6940 0.7994 1.0000


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γ(P ) =

1.0000 1.0000 0.7609 0.7574 0.8573 0.8231 0.6850 0.7173 0.8598 0.8089

0.8550 1.0000 0.8879 0.7032 0.9633 0.8709 0.8280 0.8565 0.9481 0.7359

0.6711 0.7216 1.0000 0.7861 0.7660 0.7909 0.8975 0.7717 0.7193 0.7823

0.6764 0.7527 0.9938 1.0000 0.7275 0.6884 0.8215 0.7282 0.7369 0.6859

0.7902 0.7127 1.0000 0.9249 1.0000 0.9663 0.7082 0.8111 0.6957 0.8916

0.9422 0.7436 0.8804 0.8826 0.8622 1.0000 0.8426 0.8001 0.7651 0.8607

0.8188 0.6296 0.7034 0.8614 0.8303 0.7966 1.0000 0.7652 0.9753 0.7626

0.9492 0.7197 0.7458 0.7138 0.6965 0.9203 0.9097 1.0000 0.6572 0.6437

0.6836 0.9059 0.8163 0.7971 0.6762 0.9395 0.7365 0.7183 1.0000 0.8436

0.7899 0.6714 0.9072 0.5238 0.8976 0.7449 0.8339 0.7834 0.7596 1.0000


r(P ) = −0.1

The bifurcation parameter r(A) changes linearly in in 50 steps from -0.4318 to -0.8537 for

the first 5 pollinators. For the other pollinators it is set to -0.4318 and it remains there.

These values are chosen in such a way that the dominant eigenvalue of the Jacobian matrix

changes from -0.45 to -0.15 as the system approaches a critical transition (fig. S5.2).

Figure S5.2: Behaviour of the 20D model without noise with a partial network collapse.

Green lines indicate plant abundances and red lines indicate pollinator abundances. The

dashed black line depicts the values for r(A) that we use for our analysis.
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S5.3 supplementary figures

Figure S5.3: Illustration of the combination of values for r(A) (here denoted ra) and r(P )

(here rp) where the 4 dimensional plant-pollinator system becomes reactive and where the

tipping point is located. Dashed lines indicate the range of r(A) that we use for our analysis

where we push the system towards the tipping point, chosen in such a way that the dominant

eigevalue of the Jacobian ranges from -0.45 to -0.15.
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Figure S5.4: Illustration of the increase in all of the indicators as the bifurcation parameter

r(A) (here denoted ra) reaches the critical value. kendall tau correlation for the trend is

indicated in every subplot.



151

Figure S5.5: Same as figure S5.4, but with time series with a length of 1000 instead of 10,000

per value for ra, yielding a lower performance than with 10,000 points.
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Figure S5.6: Same as figure S5.4, but with time series with a length of 100 instead of 10,000

per value for ra, yielding a lower performance than with 10,000 or 1000 points.
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Figure S5.7: Distributions of 20 simulations for the 4-dimension model. The blue distribu-

tions are kendall tau correlations for different indicators for time series that do not change

over time (the parameter r(A) is fixed). In this situation, no change is expected and thus

the kendall tau correlation is centered around zero. The red distributions are distributions of

the kendall tau correlations for data that is pushed towards a tipping point (for one instance,

see figure 2). This figure shows that the distributions do not overlap and for this particular

dataset the specificitity of the kendall tau correlation is high, suggesting a low rate of false

positives.
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Figure S5.8: The effect of different data lengths for the analyses. Lines demonstrate the

increase in kendall tau correlation as the data length increases. Error bars indicate standard

deviations of 20 different simulations. The dotted line indicates the data length used for our

‘reduced data length scenario’. All other analyses were performed on the largest data size

indicated here (10,000 time points).
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Figure S5.9: The effect of different data resolutions for the analyses with data with a length of

1000. Lines demonstrate the increase or decrease in kendall tau correlation as the data length

increases. The dotted line indicates the data length used for our ‘reduced data resolution

scenario’. All other analyses were performed on the highest data resolution indicated here (a

distance of 10−1 time points).
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Figure S5.10: The effect of different measurement noise or observation noise for the anal-

yses. Lines demonstrate the decrease in kendall tau correlation as the standard deviation of

the measurement noise increases. Error bars indicate standard deviations of 20 different sim-

ulations. The dotted line indicates the measurement noise used for our ‘measurement noise

scenario’. All other analyses were performed without measurement noise.
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Figure S5.11: Violin plots of the distributions of kendall τ correlations of all 6 possibilities of

taking 2 out of the 4 variables in the 4D model. White circle indicates the median value. The

lowest values are used as the indicator’s performance in figure 5.1 in the main text. Kendall

τ correlations lower than zero indicate a reversed effect, i.e. the indicator predicts an increase

in resilience as the system moves towards the tipping point.

Figure S5.12: Violin plots of the distributions of kendall τ correlations of all 184765 possibil-

ities of taking 10 out of the 20 variables in the 20D model with a full network collapse. White

circle indicates the median value. The lowest values are used as the indicator’s performance in

figure 5.2 in the main text. Kendall τ correlations lower than zero indicate a reversed effect,

i.e. the indicator predicts an increase in resilience as the system moves towards the tipping

point.
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Figure S5.13: Violin plots of the distributions of kendall τ correlations of all 184765 possi-

bilities of taking 10 out of the 20 variables in the 20D model with a partial network collapse.

White circle indicates the median value. The lowest values are used as the indicator’s perfor-

mance in figure 5.3 in the main text. Kendall τ correlations lower than zero indicate a reversed

effect, i.e. the indicator predicts an increase in resilience as the system moves towards the

tipping point.
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Figure S5.14: Kendall τ correlations per indicator for all simulations where a fraction of the

collapsed variables are present. A fraction of 0 indicates that none of the collapsing variables

are within the subset of observed variables and a fraction of 1 indicates that all collapsing

variables are within the subset of observed variables. Highest performance is obtained when

all collapsed variables are observed.
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Abstract

The post-truth era where ‘feelings trump facts’ has taken many by surprise after a century

of societal, technological, and scientific progress. Here we demonstrate that the rise of

fact-free argumentation may be understood as part of a deeper change. We analyze text

from millions of books revealing that after the industrial revolution the use of sentiment-

laden words declined systematically, while the use of words associated with fact-based

argumentation such as ‘test, ‘conclude’ and ‘information’ rose steadily. However, this pat-

tern stagnated in the 1980s and reversed sharply around 2007, when across languages the

frequency of fact-related words dropped suddenly while emotion laden language surged,

together with words related to ’ spirituality’, ‘intuition’ and ‘feeling’. Within two decades

language sentiment has bounced back to pre-war levels while interest in words related to

science and societal organization dropped sharply. This reversal of the historical trend

happened in close synchrony with the rise of social media.
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Introduction

The surge of fact-free, post-truth political argumentation suggests that we are living a

special period in history when it comes to the balance between emotion and reasoning.

However, quantifying this intuitive notion remains difficult as systematic surveys of public

sentiment and world-views do not have a very long history. Here we address this gap by

systematically analyzing word-use in millions of books across eight languages covering the

period from 1850 to 2019 (Michel et al., 2011). Reading this amount of text would take a

single person millennia, but computational analyses of trends in relative word frequencies

may hint at aspects of cultural change (Michel et al., 2011; Kesebir and Kesebir, 2012;

Lin et al., 2012). Print culture is selective and cannot be interpreted as a faithful repre-

sentation of culture in a broader sense (Pettit, 2016). Also, the popularity of particular

words and phrases in a language can change for many reasons including technological con-

text (e.g. carriage or computer), and the meaning of some words can change profoundly

over time (e.g. gay). Nonetheless, across large amounts of words, patterns of change in

frequencies may reflect changes in the way people feel and see the world (Michel et al.,

2011; Kesebir and Kesebir, 2012; Lin et al., 2012), assuming that concepts that are more

abundantly referred to in books in part represent concepts that readers at that time were

more interested in. Here, we systematically analyzed long-term dynamics in the frequency

of the 5000 most used words in American English, German and Spanish (Brysbaert et al.,

2019) in search of indicators of changing world views. We compare patterns for selected

key words in the corpuses of Chinese, French and Russian as well as British English and

English fiction to gauge the robustness and generalizability of our results.

Principal components of change

As a first unbiased exploration of language change we perform a principal component

analysis (PCA) of changes in word frequencies over time (supplementary material 1 and

2). This approach seeks to capture patterns of change in a large dataset without relying

on prior assumptions. In each of the three languages, a dominant principal component

emerges that corresponds to a monotonic trend over time, and another one that shows

an asymmetric U-curve, or ‘tilted hockeystick’, declining gradually since the industrial

revolution, and surging sharply on recent decades (Fig. 6.2 left hand panels). Examina-

tion of the words that score highly on opposite ends of either principal component axis

(Supplementary material 8) suggests that, in each language the monotonic axis captures

general trends of word popularity over time. On the low end (representing earlier times)

we find more archaic terms such as favor, mere, wit, iron, liberty and crown. On the high

end (corresponding to more recent times) we find words such as computer, privacy, les-

bian, casino and taxi. By contrast, the tilted hockeystick axes are dominated on the high

side (more recently) by words reflecting human nature related concepts such as personal

pronouns, sensory concepts and emotion laden words (Table 1). By contrast, the opposite

end this axis (earlier times) has words related to rational decision making, procedures and



164 Roots of post-truth

systems (Table 2). Tellingly, in German where it carries a marked signal of the two world

wars, this emotion-linked hockeystick pattern is in the first principal component, whereas

it comes second in American English and Spanish.

Sentiment trends

As a next step we analyzed changes in the relative frequencies of words that have been

independently assessed as indicators of different aspects of emotion (using the ANEW

lexicon; Affective Norms for English Words) (Nielsen, 2011; Warriner et al., 2013) and

comparable lexicons for German and Spanish (See supplementary material 3). ‘Valence’

or pleasantness associated with a word is a dominant aspect of many models of human

emotion. ANEW valence values range from unhappy (e.g. for words such as torture,

rape, terrorism) to happy (e.g. words such as vacation, enjoyment, free). Some models of

human emotions also include an orthogonal affective dimension of arousal, which can be

evoked by words going from none (e.g. dull, scene, asleep) to strong (e.g. rampage, sex,

tornado). Integrating frequency-weighted valence and arousal sentiment scores over our

set of 5000 words we arrive at an index of positive and negative sentiment as well as arousal

for the entire content of books published each year since 1850. In all three languages we

find similar patterns of these affective indicators, comparable to the hockeystick axis of

the PCA (Fig. 6.2 second column of panels). Indeed, sentiment indicators are correlated

to this principal component of language change in all languages (see supplementary table

S1).

Correlated concepts

Although sentiment analysis allows for an objective evaluation of the affective components

of language change, sentiment indicators do not necessarily capture the full essence of the

marked pattern revealed by the Principal component analysis. This becomes evident if

we examine the words correlating and anticorrelating most strongly to the PCA axis,

to the sentiment score, and to the overall hockeystick pattern. A glance at the 1% top

scoring words for American English reveals that the patterns we find correspond to a

seesaw between two markedly opposing poles of concepts (Table 1). On the one hand we

have words that may be broadly characterized as related to human nature (Table 1, top

row). At the opposite end there are words that could be characterized at first glance as

related to societal systems (Table 1 bottom row). The human nature words contain many

so-called stop words which through their sheer abundance tend to dominate language

analyses (Perkins, 2014; Saif et al., 2014). Removing those eliminates personal pronouns

which may be considered characteristic of the human oriented nature, but also allows

a richer spectrum to appear in the top 1% (supplementary table S2). A closer look at

the unfiltered and filtered, short and long lists of words suggests that both the human

and the society poles encompass several distinct groups of concepts. On the human

nature pole we have words that relate to sentiments (tear, delicious, cold, lovely), words
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Figure 6.1: Dynamics of American English, German and Spanish book language character-

ized in four complementary ways. A, E and I) Principal component of change in frequency of

the 5000 most used words. B, F and J) Relative level of arousal (black), positive sentiment

(blue) and negative sentiment (red). C, G and K) time development of the frequencies of

flag-words related to intuition, believing, spirituality, sapience: spirit, imagine, wisdom, wise,

hunch, mind, suspicion, believe, think, trust, faith, truth, true, belief, doubt, hope, fear, life,

soul, heaven, eternal, mortal, holy, god, pray, mystery, sense, feel, soft, hard, cold, hot, smell,

foul, taste, sweet, bitter, hear, sound, silence, loud, see, light, dark, bright, always, never,

everything, nothing, surely. All frequencies are standardized so that they range from zero to

unity. The central line represents the mean, the red shaded area the 95% confidence interval of

the mean, and the blue shaded area the standard deviation. D, H and L) similar but for flag-

words related science, technology, quantification, economy, procedure: science, technology,

scientific, chemistry, chemicals, physics, medicine, model, method, fact, data, math, analy-

sis, conclusion, limit, result, determine, transmission, assuming, system, size, unit, pressure,

area, percent, business, company, payment, expenses, manager, profit, investment, market,

employee. Timelines for a few selected English example words are shown in Fig. 2.
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Figure 6.2: Examples of American English words associated to intuition and faith-based

views (System-I thinking, panel A) and rational evidenced-based views (System-II thinking,

panel B).

associated to spirituality (God, mind, spirit, heaven) and relationships (father, mother,

friend, brother), personal pronouns (they, us, him, them), and absolutes (never, nothing,

ever). By contrast, at the opposing pole tentatively labeled as ‘societal systems’ we have

words such as education, office, city, and employment, but also words related to science

and technology (result, determine, medical, tested, size, physics, transmission).

To test if those tentatively discerned concepts do indeed contribute individually to the

seesaw that we see in the PCA and sentiment, we examined the historical dynamics of the

separate concept groups. Groups such as personal pronouns and absolutes are straight-

forward to delineate. To populate the other word groups we used a thesaurus algorithm

available at relatedwords.org (combining search techniques such as word embedding and

Concept-Net). Examining dynamics of each of these separate groups reveals a striking

synchrony, confirming that within each language the shifts in interest across the concepts

we identified happen very much in concert (Supplementary material 4, 5 and 6).

Arguably, the opposing poles of human versus society concepts we identified may also be

interpreted in terms of how they relate to two fundamentally different cognitive modes of

operation (Han and Pöppel, 2011; Allen and Thomas, 2011; Baas et al., 2008; Morewedge

and Kahneman, 2010), namely system-I (‘thinking fast’, loosely intuition) vs system-

II (‘thinking slow’, loosely rational). We test this idea by exploring clusters of words

that we now filter to specifically reflect those opposed modes of thinking (for details see

supplementary information 4). Selected, system-I flag words are rooted in the concepts

spirituality, sapience, intuition, believing and dichotomization, while the system-II flag
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words we used are rooted in the concepts science, technology, quantification, business and

economy. Plotting the dynamics of the frequencies of words in those clusters supports

the view that the PCA and sentiment patterns we revealed are closely related with a

systematic change along the rationality-intuition gradient (Fig. 1 right-hand panels and

Fig. 2). This pattern remains robust if smaller focused subsets are chosen (Supplementary

Fig. S5).

In summary, the observed seesaw pattern consist of two trends. First, the steady decline in

the use of sentiment laden words starting after the industrial revolution and continuing up

to about 1980 went hand-in-hand with a decrease in the use of words related to intuitive

thinking, and a rise of terms associated with argumentation based on data and objective

procedures. The robust set of trends we find from 1850 to 1980 is suggestive of an ongoing

development towards a rising interest in rational arguments and data-based approaches.

Second, the subsequent stagnation of those trends around 1980 and the sharp reversal

in most languages around 2007 suggests a societal revaluation of the role of intuition

and spirituality, coupled with a declining interest in science, technology, and procedures,

consistent with a development towards rejection of fact-based argumentation.

Robustness and potential biases

It is possible that these patterns are in part artifacts of the Google Books data and

our choice of words. With respect to the latter, the 5000 most frequent words in any

language represents an overwhelming sample of common language use, buffering against

the problem that any individual word may be subject to fashions or change meaning.

Our findings may however be subject to other systematic biases. For instance, our list of

5000 most common words and the emotional ranking of words was determined in recent

years and therefore reflect relatively recent language use. Also, an important caveat of

using book texts is that they are a biased representation of language, a bias that may

change over time (Zhang, 2015; Pechenick et al., 2015). What ends up in the university

libraries used for the Google n-gram data varies with trends in editorial practices, library

policies, and popularity of genres. For instance, over time there has been an increase in

the relative proportion of nonfiction (a trend that noted as early as the 1950’s (Walters,

1953)) and scientific works (Zhang, 2015; Pechenick et al., 2015). Importantly, while such

developments could logically contribute to the long-term trends we find up to 1980, they

cannot explain the reversal after 1980, as the rise of nonfiction and science books continues

until today (Rowe, 2018).

It is also worth noting that the link between book language and social sentiment has

been validated in other studies (Hills et al., 2019), and that the long-term trend we find

until 1980 is in line with what has been found in other studies including different text

corpuses. For instance, a study comparing a corpus of New York Times articles from 1851

to 2015 and the Google books corpus 1800-2000 showed (Iliev et al., 2016) that in both
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corpuses there has been a significant downward trend in positive as well as negative words

as classified through the LIWC system (Pennebaker et al., 2001). Another study, using

a New York Times corpus, a corpus of Scientific American articles and Google books,

revealed that over the past two centuries in all those corpuses there has been a significant

increase of words reflecting causal reasoning as reflected by words in the ‘cause’ category

in the LIWS system (a list of 108 words such as because, since, hence, how, why, depends,

and implies) (Iliev and Axelrod, 2016).

In conclusion, studies using different corpuses as well as different marker words confirm

the long term decline of sentiment laden (positive and negative) language and a rise of

words related to causal reasoning. Meanwhile, the stagnation of this trend around 1980

and the subsequent dramatic reversal we reveal obviously cannot be explained by ongoing

trends towards non-fiction. Thus, while it will be important to explore alternative word

collections, sentiment classifications and text corpuses it seems likely that the marked

U-shaped pattern we find reflects a true dimension of change.

Potential drivers

Inferring the drivers of this stark pattern necessarily remains speculative, as language is

affected by many overlapping social and cultural changes. Nonetheless, it is worthwhile

reflecting on a few potential mechanisms. One possibility when it comes to the trends

from 1850 to 1980 is that the rapid developments in science and technology and their

socio-economic benefits drove a rise in status of the scientific approach, which gradually

permeated culture, society, and its institutions ranging from education to politics. As

argued early on by Max Weber, this may have led to a process of “disenchantment” as the

role of spiritualism dwindled in modernized, bureaucratic, secularized societies (Jenkins,

2000; Storm, 2017). It remains difficult to pinpoint what precisely caused the observed

stagnation in the long-term trend around 1980 visible in the PCA analyses of German and

Spanish, but particularly clear in all indicators of change in American English. However,

one could speculate that there is a connection to tensions arising from the increasing

neoliberal policies which were defended on rational arguments, while the economic fruits

were reaped by an increasingly small fraction of societies (Dehm, 2018; Duménil and Lévy,

2005; Razavi et al., 2020).

Much more spectacular, however, than the 1980 stagnation is the sharp change we see

across languages around 2007 (Fig. 3). This change coincides with the global financial

crisis which may have had an impact. However, earlier economic crises such as the great

depression (1929-1939) did not leave discernable marks on our indicators of book language.

This suggests we are observing a societal trend that transcends financial and economic

concerns. Perhaps more significantly, 2007 was also roughly the start of a near-universal

global surge of social media. This becomes obvious if we plot dynamics of the word

‘Facebook’ (or Weibo in Chinese) alongside the frequency of the word for ‘science’ as a
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marker for interest in concepts related to the ‘slow thinking’ cluster in eight different

languages (Fig. 3).

Various lines of evidence underpin the plausibility of an impact of social media on emo-

tions, interests and worldviews. For instance, there are negative effects of the use of social

media on subjective wellbeing (Hanley et al., 2019). This may in part be related to distor-

tions such as the perception that your friends are more successful, have more friends and

are happier (Feld, 1991; Bollen et al., 2017) and more beautiful (Fardouly and Holland,

2018) than you are. At the same time, a perception that problems are abound may have

been fed by activist groups seeking to muster support (Gerbaudo and Treré, 2015) and

lifestyle movements seeking to inspire alternative choices (Haenfler et al., 2012). For in-

stance, social media catalyzed the Arab spring among other things by depicting atrocities

of the regime (Breuer et al., 2015), jihadist video’s motivate terrorists by showing grue-

some acts committed by US soldiers (Weimann et al., 2014), and veganism is promoted

by social media campaigns highlighting appalling animal welfare issues (Haenfler et al.,

2012). Many of the problems highlighted on social media will be real, and often they

may have been largely hidden from the public eye in the past. However, independently

of whether problems are exaggerated or merely revealed online, the popular effect of such

awareness campaigns may be the perception of an unfair world entangled in a multiplicity

of crises. Further down the gradient from revelation to exaggeration we find misinfor-

mation. The spread of misinformation (Southwell et al., 2018) and conspiracy theories

(Douglas et al., 2019) may be efficiently facilitated by social media. Recent research

shows that the online diffusion of false news is significantly broader, faster, and deeper

than that of true news and efforts to debunk (Vosoughi et al., 2018). Conspiracy theories

originate particularly in times of uncertainty and crisis (Van Prooijen and Douglas, 2017;

Douglas et al., 2019), and generally depict established institutions as hiding the truth

and sustaining an unfair situation (Van Prooijen et al., 2015). As a result, they may find

fertile grounds in social media promulgating a sense of unfairness, subsequently feeding

anti-system sentiments. Neither conspiracy theories, the exaggerated visibility of the suc-

cessful, nor the overexposure of societal problems are new phenomena. However, social

media may plausibly have acted as an amplifier of societal arousal and sentiment, poten-

tially stimulating an anti-system backlash, including its perceived emphasis on rationality

and institutions.

Outlook

It seems unlikely that we will ever be able to accurately quantify the role of different

mechanisms driving language change. However, the universal and robust shift that we

observe suggests a historical rearrangement of the balance between the rational and the

emotional. It is consistent with a sharp reversal of a long term rise in the interest in ‘slow

thinking’ and fact-based argumentation. Careful weighing of evidence and arguments, is

essential to science, technology, and governance, the very institutions upon which modern
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societies are based. The complementary mode of ‘fast thinking’, requires not only less

time, but also less cognitive energy (Kahneman, 2017). The rapid pace of social media

discussions may provoke fast emotional responses. More generally, ‘fast thinking’ becomes

more prominent when people lack the resources to make carefully considered judgments

which may have a ranges of causes and consequences. For instance, the surge of absolutes

(e.g. never, always, all) is consistent with black-and-white thinking, which correlated

among other things to low scores on cognition tests, poor educational backgrounds, harsh

childhood years, impulsive behaviors, and aggression (Oshio et al., 2016; Mieda et al.,

2021).

Clearly, rational, fact-based approaches are essential for maintaining functional democ-

racies and addressing global challenges such as global warming, poverty and the loss of

nature. The trends we observe suggest a profound shift in societal interest away from

‘slow-thinking’ towards emotionality and subjective experiences. It may well be impossi-

ble to reverse this sea-change. Instead, societies may need to find a new balance, explicitly

recognizing the importance of intuition and emotion, while at the same time making best

use of the much needed power of rationality and science to deal with topics in their full

complexity (Kofman, 2018).
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Table 6.1: Human nature (top row) vs societal organisation related words (bottom row)

emerging from correlation with Principle Component results, sentiment analysis and the hock-

eystick pattern. Listed are the 1% words that score highest vs lowest on the PCA axis depicted

in Fig. 1, the 1% that correlating most positively vs negatively with sentiment, and the 1%

words that increased most clearly (measured as Kendall tau) after 1980 while declining be-

tween 1850 and 1980 vs words that show the opposite pattern. We used positive sentiment

for computing the correlations, but this is closely correlated to negative sentiment and arousal

too. The human nature words contain many so-called stop words (8, 9). Removing those al-

lows a richer spectrum to appear in the top 1%, but also eliminates personal pronouns which

may be considered characteristic of the human oriented nature (supplementary table S2).

Words scoring highest on
surging PCA axis:
I, he, his, and, to, it, her, was,
you, she, that, but, had, my,
not, they, a, him, their, me,
them, so, with, as, what, we,
who, said, when, your, all,
do, have, then, god, like, if,
into, could, upon, how, did,
one, which, up, us, can, our,
great, the

Words correlating most
positively to sentiment:
when, had, forgot, tear,
wonder, he, thing, eager,
rushing, come, gone, mind,
lighten, they, forgotten,
delicious, rest, never, happier,
lost, rid, brother, forget,
stood, dress, silent, night,
forgetting, cold, take, again,
glow, warm, perfume, here,
speaking, die, lovely, quiet,
dead, uncle, who, stray, into,
hear, deep, gorgeous, drew,
thirsty

Words rising after 1980 and
declining before that year:
thrown, perfectly, admit,
ashes, perfect, every, true,
believing, hearts, them,
throw, prayer, ever, mistaken,
place, safely, faithful, regret,
distant, so, soon, supposed,
understood, embrace,
touching, spirit, lay, mighty,
kindness, alone, nothing, but,
shed, constantly, besides,
fallen, sight, him, shine,
bless, never, thankful, glory,
ruin, harmony, owe, awful,
grave, seat, before

Words scoring lowest on
surging PCA axis:
board, education, industry,
water, plant, material, field,
office, unit, city, method, air,
employment, farm, interest,
agreement, building, present,
pressure, health, table,
market, social, highway,
radio, hospital, machine,
paper, metal, month, milk,
quality, item, outstanding,
phase, part, avenue, failure,
vehicle, truck, food, car

Words correlating most
negatively to sentiment:
limit, manual, transfer,
current, section, result,
determine, issue, technical,
medical, request, final,
phoenix, tested, separate,
affected, prior, national,
failure, limited, base, size,
recent, private, addition,
growth, physics,
transmission, chemical, local,
policy, agreement, library,
assuming, standard, delta,
notify, reliable, central,
chemicals

Words declining after 1980
and rising before that year:
program, basis, personnel,
available, equipment,
technical, determine, area,
hearing, million, percent,
indicate, final, funds, result,
addition, separate, procedure,
federal, basic, rate, automatic,
maximum, development,
budget, base, manual,
included, responsible,
replacement, plus,
transportation, involved, staff,
control, training, nuclear,
billion, limited, initial
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Supplementary materials

S6.1 Data and preprocessing

We used the 2019 release of the Google Books n-gram

data which the Google Books team made freely available

(https://storage.googleapis.com/books/ngrams/books/datasetsv3.html). The

data covers a period from the 16th century to the year 2019. Time series from 1850

till 2019 of the 5000 most frequent words in US English (Brysbaert et al., 2019) were

downloaded from the Google n-gram viewer at https://books.google.com/ngrams. To

correct for the increasing volume of text towards more recent times, we scaled the time

series dividing word frequencies by the frequency of the word ‘an’. In addition, the word

‘war’ was removed. The sentiment of ‘war’ is 2.08 for ANEW (on the original scale from

0 to 10) and the word has a massive increase in frequency around the two world wars.

Therefore it would skew the sentiment analysis around war periods.

S6.2 Principal Component Analysis

PCA was performed on time series of all words after the preprocessing step. A PCA

finds a direction in a multidimensional space where the variance is maximized, i.e. where

most dynamics are observed. The multidimensional space in our case, consists of axes

that describe the frequency of a word, so every axis reflects the dynamics of one word

in our analysis. The obtained coefficients of the principal components reflect the weight

that a word has on that particular principal component. The 5% words with the highest

coefficient and 5% words with the lowest coefficient where investigated and analyzed for

their sentiment. The complete time series where projected on the first two principal

components in order to evaluate the dynamics of the language as a whole in the direction

of these PC’s.

Words scoring strongly in the two opposite directions on either axes are given in the next

sections. Examining those words suggests that the first axis in American English and

Spanish and the second axis in German capture mostly the natural turnover of vocabulary

while the other axis in each language is dominated on the high side by words reflecting

human nature related and emotion laden concepts, while the opposite end is populated

by concepts related to rational decision making, procedures and systems. This ‘human

nature’ axis invariably surges in recent decades and is correlated to the sentiment value

of words (Table S1).

S6.3 Computing sentiment scores

For each of the words we assigned scores for mean valence and arousal if such scores were

available in the sentiment lists that we used for English (Warriner et al., 2013), German

(Schmidtke et al., 2014) and Spanish (Redondo et al., 2007). Since we aimed to separate
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(a) American English (b) German (c) Spanish

Figure S6.1: Time development of the 5000 most used words in three languages represented

by the weight on their first two principal components. Note that in each language there is

one axis that correlates strongly to sentiment scores and surges in recent decades. This is the

axis which we examine further in the main text. Explained variance for English, German and

Spanish resp. are 0.83, 0.72 and 0.77 for PC1 and 0.13, 0.17 and 0.12 for PC2.

Table 6.2: Spearman rank correlations (ρ) of positive and negative sentiment with the PC

that shows an inverse U curve (this hockeystick pattern occurs in PC2 for American English

and Spanish, but PC1 for German).

Positive Sentiment Negative sentiment

rho n p-value rho n p-value

American English PC2 0.24* 435 7e-7 0.17* 251 0.007

German PC1 0.06 279 0.33 -0.13 144 0.12

Spanish PC2 0.14 263 0.03 -0.01 138 0.90
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negative and positive sentiment in our analysis, we first subtracted 5 from the ANEW

valence scores, to obtain scores from -5 to 5 (-3 to 3 for the German list), where all scores

lower than zero reflected negative sentiment whereas all scores higher than zero reflected

positive sentiment. Next, we multiplied the scaled time series with their sentiment score

to obtain a sentiment per word per time. The sentiments per word for each year where

summed over all words, resulting in a sentiment per moment in time.

S6.4 Flag-word selection

Our exploration of words that scored strongly on the hockeystick PCA axis or correlated

strongly with sentiment led us to tentatively define groups of correlated concepts that

seemed to go hand-in-hand. To check for each of those concepts if they indeed follow

similar dynamics, we first populated sets of flag-words related to each of the concepts using

a thesaurus algorithm available at relatedwords.org (combining search techniques such as

word embedding and Concept-Net). Subsequently we plotted dynamics of each group

of flag-words separately. As we are using the 5000-word most frequent word collections

for plotting, not all of the words resulting from the thesaurus search end up in the final

selections. Also, inevitably, there is no precise 1-to-1 connection between words in the

different languages.

Human related word categories

1. Spirituality, intuition, believing and sapience : spirit, imagine, wisdom, wise, hunch,

mind, suspicion, believe, think, trust, faith, truth, true, belief, doubt, hope, fear,

life, soul, heaven, eternal, mortal, holy, god, pray, mystery

2. Senses: sense, feel, soft, hard, cold, hot, smell, foul, taste, sweet, bitter, hear, sound,

silence, loud, see, light, dark, bright

3. Relationships: father, mother, sister, brother, friend

4. Personal pronouns: I, we, you, he, she, they, mine, our, their

Society related word categories

1. Science & Technology: science, technology, scientific, chemistry, chemicals, physics,

medicine, model, method, fact, data, math, analysis, conclusion, limit, result, de-

termine, transmission, assuming, system

2. Quantification: size, unit, pressure, area, percent

3. Business and economy: business, company, payment, expenses, manager, profit,

investment, market, employee

4. Social organization: commission, lawyer, government, law, nation, community, ad-

ministration, education, city, agreement, health, policy, central
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Figure S6.2: Time development of the frequencies of separate groups of human-related flag-

words (see text above). All frequencies are standardized so that they range from zero to unity.

The central line represents the mean, the red shaded area the 95% confidence interval of the

mean, and the blue shaded area the standard deviation.
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Two clusters related to cognition modes

Lastly, we explore the idea that the human versus society groups of words may also

correspond to two types of thinking that have been shown to represent fundamentally

different cognitive modes of operation (Han and Pöppel, 2011; Allen and Thomas, 2011;

Baas et al., 2008; Morewedge and Kahneman, 2010): system-I (‘thinking fast’, loosely

intuition) vs system-II (‘thinking slow’, loosely rational). To slightly tailor our word

groups to this end we removed some concepts and added others and subsequently plot

the behavior of the two resulting over-arching clusters as a whole. To turn the human

related cluster into an System-I related cluster we removed relationships and personal

pronouns, and added absolutes. To turn the society related cluster into an System-II

related cluster we removed words related specifically to social organization.

System-I flag words thus become words related to

1. Spirituality, intuition, believing and sapience (as above)

2. Senses (as above)

3. Absolutes: always, never, everything, nothing, surely

Resulting in: spirit, imagine, wisdom, wise, hunch, mind, suspicion, believe, think, trust,

faith, truth, true, belief, doubt, hope, fear, life, soul, heaven, eternal, mortal, holy, god,

pray, mystery, sense, feel, soft, hard, cold, hot, smell, foul, taste, sweet, bitter, hear, sound,

silence, loud, see, light, dark, bright, always, never, everything, nothing, surely

System-II flag words are now related to:

1. Science & Technology (as above)

2. Quantification (as above)

3. Business & Economy (as above)

resulting in: science, technology, scientific, chemistry, chemicals, physics, medicine, model,

method, fact, data, math, analysis, conclusion, limit, result, determine, transmission, as-

suming, system, size, unit, pressure, area, percent, business, company, payment, expenses,

manager, profit, investment, market, employee

Dynamics of those clusters are presented in Fig. 6.1 of the main text. The additional

group of absolute words associated to dichotomous all-or-nothing thinking (Mieda et al.,

2021; Oshio et al., 2016) follows similar dynamics as illustrated by Fig. S6.4.

Robustness of cognition mode results to differently-sized sets of words

In the figures presented in the main text for System-I and System-II words, some clusters

are more prominent than others, because the number of words differs per cluster. We
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Figure S6.3: Time development of the frequencies of separate groups of society related

flag-words in (see text above). Use of colors and shading as in Fig S6.2.
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Figure S6.4: Time development of the frequencies of absolute words (see text above). Use

of colors and shading as in Fig S6.2.

therefore checked the robustness against this effect by picking five representative words

per cluster:

Subsets of system-I flag words, five words per cluster

1. Spirituality, intuition, believing and sapience : spirit, mind, trust, faith, god

2. Senses: sense, smell, taste, hear, see

3. Relationships: father, mother, sister, brother, friend

4. Personal pronouns: I, we, you, he, she

Resulting in the following list of System-I flag words: spirit, mind, trust, faith, god, sense,

smell, taste, hear, see, father, mother, sister, brother, friend, I, we, you, he, she, spirit,

mind, trust, faith, god, sense, smell, taste

Subsets of system-II flag words, five words per cluster:

1. Science & Technology: science, technology, method, data, analysis

2. Quantification: size, unit, pressure, area, percent

3. Business and economy: business, payment, manager, investment, market

Resulting in the following list of System-II flag words: science, technology, method, data,

analysis, size, unit, pressure, area, percent, business, payment, manager, investment,

market

Dynamics of these five-word clusters show very much the same pattern as found for the

full sets of words, albeit with less variance (Fig. S6.5).
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Figure S6.5: Time development of the frequencies of smaller subsets of System-I versus

System-II flag words (see text above). Use of colors and shading as in Fig S6.2.
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S6.5 Flag-words in German

Human related word categories

1. Spirituality, intuition, believing and sapience: Geist, Ahnung, Verstand, denke,

Vertrauen, glaube, Wahrheit, Zweifel, Hoffnung, Angst, Leben, Seele, Himmel, ewig,

Gott, beten, weise

2. Senses: Gefühl, weich, hart, kalt, heiß, Geruch, übel, Geschmack, süß, hören, Ton,

laut, sehen, Licht, dunkel, hell

3. Relationships: Vater, Mutter, Schwester, Bruder, Freund

4. Personal pronouns: Ich, wir, du, er, sie, meine, unsere, ihre

Society related word categories

1. Science and technology: Wissenschaft, Technologie, Medizin, Modell, Tatsache,

Daten, Grenze, Ergebnis, System

2. Quantification: Größe, Einheit, Druck, Prozent

3. Business and economy: Unternehmen, Manager, Arbeit, Markt, Mitarbeiter

4. Social organization: Regierung, Gesetz, Nation, Gesundheit, Politik

Absolutisms

The translation of the class of absolute words we used is: immer, nie, alles, nichts,

sicher



182 Roots of post-truth

Figure S6.6: Time development of the frequencies of separate groups of flag-words in German

(see text above). Use of colors and shading as in Fig S6.2.



183

S6.6 Flag-words in Spanish

Human related word categories

1. Spirituality, intuition, believing and sapience: esṕıritu, imaginar, sabiduŕıa, mente,

sospecha, creer, pensar, fe, verdad, duda, esperanza, miedo, vida, alma, cielo, santo,

dios, misterio

2. Senses: sentido, sensación, sentir, suave, duro, fŕıo, caliente, gusto, dulce, óır, silen-

cio, fuerte, ver, mirar, oscuro, brillante

3. Relationships: padre, madre, hermana, hermano, amigo

4. Personal pronouns: yo, nosotros, tú, él, ella, ellos, mı́o, nuestro, su

Society related word categories

1. Science and technology: ciencia, tecnoloǵıa, cient́ıfico, qúımica, productos, f́ısica,

medicina, modelo, método, dato, datos, hipótesis, estad́ısticas, cálculo, análisis,

conclusión, ĺımite, resultado, determinar, transmisión, sistema

2. Quantification: tamaño, unidad, presión, área, densidad, porcentaje

3. Business and economy: comercio, empresa, pago, gastos, gerente, beneficio, in-

versión, trabajo, ingresos, mercado, trabajadores

4. Social organization: ministerio, comité, gobierno, ley, nación, comunidad, adminis-

tración, municipio, educación, ciudad, acuerdo, salud, poĺıtica, central

Absolutisms

The translation of the class of absolute words we used is: siempre, nunca, todo, nada,

seguro
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Figure S6.7: Time development of the frequencies of separate groups of flag-words in Spanish

(see text above). Use of colors and shading as in Fig S6.2.
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S6.7 Top 1% strongest correlated words with PCA excluding stopwords

Table 6.3: Human nature related words obtained as the 1% words that score highest on the

PCA axis depicted in Fig. 1, the 1% that correlating most positively with sentiment, and the

1% words that increased most clearly (measured as Kendall tau) after 1980 while declining

between 1850 and 1980. We used positive sentiment for computing the correlations, but this

is closely correlated to negative sentiment and arousal too. Those lists are filtered for ‘stop

words’ using the list provided in the Python Natural Language Processing Tool Kit (1). In

an unfiltered version of this table (main text table 1) the list of words scoring highest on the

surging PCA axis (let-hand column) is strongly dominated by personal pronouns.

words scoring highest on
surging PCA axis

words correlating most
positively to sentiment

words rising after 1980 and
declining before that year

said, god, like, could, upon,
one, us, great,man, every,
never, know, back, day, yet,
life, love, much, people,
good, even,lord, little, still,
though, thought, eyes, whole,
heart, let, away, way, say,
place, men, might, would,
ever, hundred, go, house,
nothing, left, mind, father,
head, come, around, look,
took

forgot, tear, wonder, thing,
eager, rushing, come, gone,
mind, lighten, forgotten,
delicious, rest, never,
happier, lost, rid, brother,
forget, stood, dress, silent,
night, forgetting, cold, take,
glow, warm, perfume,
speaking, die, lovely, quiet,
dead, uncle, stray, hear, deep,
gorgeous, drew, thirsty, broke,

threw, devil, spoke, life, dark,
together, lonely, thirsty

thrown, entertain, perfectly,
admit, disturb, ashes, perfect,
every, great, true, believing,
hearts, throw,prayer, ever,
mistaken, place, safely, worthy,
faithful, regret, distant,declare,
hesitate, useless, bear, soon,
forbid, supposed, acquaintance,
understood, embrace, touching,
possessed, sooner, raised, lay,
spirit, impress,mighty, pass,
altogether, kindness, twelve,
alone, whatever, nothing, much,
shed, fatal
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Abstract

The sawtooth-patterned glacial-interglacial cycles in the Earth’s atmospheric tempera-

ture are a well-known, though poorly understood phenomenon. Pinpointing the relevant

mechanisms behind these cycles will not only provide insights into past climate dynam-

ics, but also help predict possible future responses of the Earth system to changing CO2

levels. Previous work on this phenomenon suggests that the most important underly-

ing mechanisms are interactions between marine biological production, ocean circulation,

temperature and dust. So far, interaction directions (i.e., what causes what) have re-

mained elusive. In this paper, we apply Convergent Cross-Mapping (CCM) to analyze

paleoclimatic and paleoceanographic records to elucidate which mechanisms proposed in

the literature play an important role in glacial-interglacial cycles, and to test the di-

rectionality of interactions. We find causal links between ocean ventilation, biological

productivity, benthic δ18O and dust, consistent with some but not all of the mechanisms

proposed in the literature. Most importantly, we find evidence for a potential feedback

loop from ocean ventilation to biological productivity to climate back to ocean ventilation.

Here, we propose the hypothesis that this feedback loop of connected mechanisms could

be the main driver for the glacial-interglacial cycles.
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7.1 Introduction

The past 0.9 million years have been characterized by large cycles in global Earth temper-

ature with a periodicity of about 100 ky. During warm (interglacial) periods, ice volume

was small and CO2 concentrations were high. During cold (glacial) time periods, ice

volume was large and CO2 concentrations were on average 90 ppm lower (Ruddiman,

2001). Understanding the processes involved in these cycles can help to pinpoint the

relevant processes in the carbon cycle. Given the rapid change that our climate system is

undergoing today, knowledge on the existing feedbacks is of particular importance.

There is an ongoing debate about which mechanisms drive the reduction of CO2 during

glacials and which mechanisms drive the rapid increases in CO2 during deglaciations

(Menviel et al., 2018). Interactions with the ocean’s carbon reservoir are an obvious first

candidate for two main reasons:

1. The ocean is by far the largest carbon reservoir interacting with the atmosphere on

the relevant timescale (Fasham, 2003).

2. The δ13C of the ocean-atmosphere system was isotopically lighter at the Last Glacial

Maximum than during the Holocene (especially in the deep ocean) (Eggleston et al.,

2016; Peterson and Lisiecki, 2018). Therefore, it is unlikely that the excess carbon

was stored in the terrestrial biosphere or methane hydrates, which are both isotopi-

cally light carbon reservoirs (Zeebe and Wolf-Gladrow, 2001).

It has been hypothesized that the excess carbon was stored in an isolated abyssal reser-

voir (Broecker and Barker, 2007). At the glacial-interglacial transition, carbon from this

reservoir would have been released to the atmosphere through upwelling (Broecker and

Barker, 2007; Marchitto et al., 2007). However, it has turned out to be difficult to lo-

cate a stagnant reservoir of sufficient size to account for the excess carbon (Broecker and

Barker, 2007; Broecker and Clark, 2010). Another proposed mechanism that has received

considerable attention is that changes in ocean circulation caused the increase in CO2

(Siegenthaler and Wenk, 1984) by bringing carbon from the deep to the sea surface (An-

derson et al., 2009). Ocean circulation or ocean ventilation could have caused the rise of

CO2 in other ways as well. For example, meltwater pulses in the North Atlantic during

the last deglaciation may have led to a temporary shutdown of the Atlantic Meridional

Overturning Circulation (AMOC) and an associated increase in Antarctic Bottom Water

(AABW) (Broecker, 1998). According to a hypothesis by Toggweiler (1999), such a shift

would in turn have led to outgassing of CO2 from the ocean to the atmosphere due to

the poor nutrient utilization subpolar Southern Ocean, where AABW is formed. Even so,

modeling studies have been ambiguous about the impact of meltwater pulses on the ocean

carbon cycle. In some simulations, the addition of meltwater in the North Atlantic led to

carbon release from the ocean to the atmosphere (Schmittner et al., 2007; Bouttes et al.,

2012; Matsumoto and Yokoyama, 2013; Schmittner and Lund, 2015), whereas it led to a
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net uptake of carbon by the ocean from the atmosphere in others (Obata, 2007; Bozbiyik

et al., 2011; Chikamoto et al., 2012). According to a set of model experiments by Menviel

et al. (2014), the net effect depends strongly on the detailed salt budget.

Other potential mechanisms for CO2 fluctuations during glacial-interglacial cycles are

based on biological activity. For a long time, the main hypothesis was that enhanced pro-

ductivity in polar regions during glacial times drove down carbon from the atmosphere into

the ocean (Sarmiento and Toggweiler, 1984; Sigman and Boyle, 2000). An early hypothe-

sis by Martin (1990) states that enhanced biological productivity during glacial times was

caused by iron deposition (or dust deposition). This idea is supported by experiments

that show that current densities of phytoplankton (biological productivity) are limited

by iron, for example within the Southern Ocean Iron RElease Experiment (SOIREE)

project (Boyd and Law, 2001). It has been suggested that changes in iron concentration

can be amplified by local feedbacks, for example by increased ocean surface temperatures.

These feedbacks could further increase the effect of iron fertilization on climate (Ridgwell,

2002). However, according to the iron fertilization hypothesis, primary productivity in the

subpolar Southern Ocean should be higher during glacial times, which is not supported

by proxy records (Kohfeld and Chase, 2011; Kohfeld et al., 2005, 2013). Furthermore,

general circulation models have shown that atmospheric CO2 did not respond as much

to increased productivity as suggested by earlier box models (Archer et al., 2000). A

hypothesis by Omta et al. (2013) describes another role for biological productivity: it

suggests that spikes in the densities of marine calcifiers may lead to a quick reduction

in sea surface alkalinity which explains the observed rapid increase in temperature and

CO2 during deglaciations. Instead of extracting CO2 from the sea surface and thus reduc-

ing atmospheric CO2 and temperature, marine productivity increases atmospheric CO2

according to this explanation.

It is generally assumed that the different mechanisms are linked to each other (Crucifix

et al., 2017), and many of them are not mutually exclusive. Therefore, most modeling

studies use a combination of proposed mechanisms (Brovkin et al., 2007). Furthermore,

many geological variables are synchronized with the Milankovitch forcing (the Summer

insolation at subpolar latitudes in the Northern Hemisphere), which makes it hard to

distinguish between links between the variables themselves or common links with the

forcing (Daruka and Ditlevsen, 2016). What makes the topic even more complicated is

the cyclic behaviour that is observed, which may be linked to positive or negative feedback

loops involving different elements (Lenton et al., 2008). One example is the ice-albedo

effect, where higher temperatures lead to reduced ice caps which leads to a reduction

in the albedo, which in turn increases the temperature. Thus, two processes reinforcing

each other can give a strong positive feedback loop. The addition of more processes may

weaken the feedback, particularly if different scales are involved. This suggests that a

potential feedback loop underlying glacial-interglacial cycles would likely be dominated

by a few key causal links.
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Figure 7.1: Timeseries of Ba/Fe, δ18O and Pacific (P), North-East Atlantic (NEA) and East

Atlantic (EA) δ13C and dust deposition (time left to right).
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It is still unclear what these few dominant causal links would be, although many different

potential causal interactions have been described (see table 7.1 and figure 7.2). Here we

take a statistical approach to investigate whether existing data suggest any particularly

strong causal links. The recent increase in available records that go back hundreds of

thousands of years and that have improved temporal resolution and quality allows for

such an approach. A suitable method for unravelling causal links from nonlinear time

series is Convergent Cross-Mapping (CCM) (Sugihara et al., 2012). It has been applied

in ecological systems to find causal links between temperature and anchovy and sardine

abundance (Sugihara et al., 2012), in physiology to distinguish between normal (healthy)

and impaired cerebral autoregulation (Heskamp et al., 2014), in social systems for pre-

dicting the behaviour of users of social media (Luo et al., 2014) and in the climate system

for detecting directionality in the relation between temperature and CO2 (Van Nes et al.,

2015b). In this study, we apply CCM to published marine and ice-core records spanning

the past 800,000 years in order to shed light on the (directions of) interactions between

climate, ocean circulation, biological productivity and dust deposition.

Productivity δ18O

δ13C

Dust

Omta et al. (2013)

Lisiecki (2010b)

Morris and Farrell (1971)

Sigman et al. (2010)

Anderson et al. (2009)

Tschumi et al. (2010)
Watson et al. (2015)

Anderson et al. (2009)

Martin (1990)
Martin (1990)

Tegen (2003)

Ridgwell (2002)

Figure 7.2: A schematic depiction of the links described in the literature between δ13C,

biological productivity, δ18O and dust, indicating that all links are potentially possible. Mech-

anisms are described in table 7.1.
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Table 7.1: Literature describing the links between ocean circulation, biological productivity,

δ18O and dust. X → Y means the hypothesis that X causes Y.

Link Paper Mechanism

δ13C → δ18O
Tschumi et al. (2010)

Break of stratification in southern ocean leading
to better ventilated ocean and increased CO2.

Watson et al. (2015)
Changes in meridional overturning circulation
affect the amount of CO2 outgassing.

Anderson et al. (2009)
Upwelling events increase d13C measurements
and atmospheric CO2.

δ18O → δ13C Sigman et al. (2010)
Increased CO2 facilitates CaCO3 dissolution
which increases alkalinity.

δ13C → Productivity Anderson et al. (2009)
Upwelling events increase d13C measurements
and increase ocean nutrients which positively
affect productivity.

Productivity → δ13C Lisiecki (2010b)
Biological productivity in surface water
changes d13C.

Productivity → δ18O Omta et al. (2013)
Increased abundance in calcifiers decreases
alkalinity, which in turn inhibits calcifier
growth.

δ18O → Productivity Morris and Farrell (1971)
At lower temperatures assimilation of CO2

happens more rapidly. Temperature has
a non-linear effect on most enzyme activity.

Productivity → Dust Martin (1990)
Uptake of iron by plankton decreases iron
availability in sea surface.

Dust → Productivity Martin (1990)
Increased iron in ocean leads to higher
biological productivity which is iron-limited.

δ18O → Dust Ridgwell (2002)
A colder dryer glacial climate has a less
vigorous hydrological cycle leading to higher
dust deposition rates.

Dust → δ18O Tegen (2003)
Absorption or reflection of incoming solar
radiation affects temperature which
is linked to δ18O
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7.2 Methods

7.1 Data

We use benthic δ18O from the LR04 stack of 57 globally distributed sites (Lisiecki and

Raymo, 2005). Benthic δ18O is a function of the temperature and the δ18O of the sur-

rounding water, which is influenced by the global ice volume. Therefore, δ18O is considered

a proxy for temperature and ice volume.

In the Supplementary Materials, we also analyze the role of atmospheric CO2 (as opposed

to δ18O) to see if a climate proxy that is more related to alkalinity gives similar results.

We use atmospheric CO2 data from the European Project for Ice Coring in Antarctica

(EPICA Lüthi et al. (2008)). This CO2 record can likely also be used as a proxy for ocean

alkalinity (ALK) for the following reason. [HCO−3 ] and [CO2−
3 ] account for more than 95%

of ocean alkalinity (ALK) and 99% of dissolved inorganic carbon (DIC) (Sarmiento and

Gruber, 2006; Williams and Follows, 2011) and therefore:

ALK ≈[HCO−3 ] + 2[CO2−
3 ] (7.1a)

DIC ≈[HCO−3 ] + [CO2−
3 ] (7.1b)

Thus, ALK ≈ DIC + [CO2−
3 ]. Whole-ocean DIC is likely higher during glacials than

during interglacials, as excess atmospheric carbon is stored in the ocean. Furthermore,

both the lysocline depth and the B/Ca proxy indicate relatively small glacial-interglacial

changes in deep-ocean [CO2−
3 ] (Catubig et al., 1998; Yu et al., 2010; Raitzsch et al., 2011;

Yu et al., 2014). Hence, ocean alkalinity probably increases from an interglacial to a

glacial period and decreases from a glacial to an interglacial.

Ocean circulation cannot be measured directly, but the δ13C of benthic foraminifera is

a proxy for ocean ventilation and ocean circulation (Curry and Oppo, 2005), because

it decreases in “older” water (measured from the time it was last in contact with the

atmosphere) due to the remineralization of organic material. We use the Lisiecki (2010a)

benthic foraminifera δ13C data compilation.

We use a Ba/Fe record from the Southern Ocean as a proxy for biological productiv-

ity (Jaccard et al., 2013). It has been shown that the vertical flux of marine Ba is a viable

proxy for productivity (Paytan and Griffith, 2007) and that the Ba/Fe in turn reflects the

vertical flux of marine Ba (Studer et al., 2015).

Lastly, we use Antarctic dust data from the EPICA dome C ice core (Lambert et al.,

2008).
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The data are available at resolutions of 0.2 ky (Ba/Fe), 1 ky (δ18O), 0.015 ky (CO2), 2 ky

(δ13C), and varying steps with a mean of 0.6942 ky (dust). The data dates back to the

last 1557 ky (Ba/Fe), 5320 ky (δ18O), 798 ky (CO2), 802 ky (δ13C), and 800 ky (dust).

Therefore, we only use data up to 798 ky before present and we use the data at intervals

of 2 ky (linear interpolation if necessary) for all interactions with δ13C and with intervals

of 1 ky (linear interpolation if necessary) for all other interactions.

7.2 CCM

For data analysis we use convergent cross-mapping (CCM) (Sugihara et al., 2012). The

method is based on Takens’ Theorem (Takens, 1981) that shows that dynamical systems

involving more than one variable can be reconstructed from time-lagged series of only

one of those involved variables, as long as sufficient time-lagged states are included: the

so-called embedding dimension. In CCM, time-lagged time series of two variables are

analysed to see if time-lagged states of those two variables can predict each other’s current

state. If time series of X can be predicted based on the time-lagged time series Y, it is

concluded that X causes Y. The prediction is tested by calculating the CCM skill, which

is the correlation between predicted values and true values. The method also tests for

convergence, which means that the predictions improve with the length L of the time

series that is used to predict X from Y. We calculate the ‘CCM skill’ for X→ Y (X causes

Y) with a slowly increasing length of data. We start with a library size (the number of

data points used for the prediction) of 15, and then increase with steps of 15, to end

with a library size of 270. More information about the CCM method can be found in the

supplementary materials or in Sugihara et al. (2012).

The significance of causal links is tested by generating 100 surrogate data sets by cutting

the time series at a random point and then exchanging the first and second part. In that

way, the surrogate data have exactly the same characteristics as the original data in terms

of power spectrum, autocorrelation and variance, but the linkage between the two data

sets is broken. This method has been used previously by Van Nes et al. (2015b). To test

the robustness of our results, we repeat the analysis with an alternative way of surrogate

data generation by Ebisuzaki (1997).

If causal links are found in two directions, one cannot distinguish between the following

options of having 1/ truly bidirectional causal links, 2/ synchronization with a third

variable, or 3/ a one-way strong interaction where one variable behaves as a follower of

the other. One possible method to distinguish between these three options is to perform

CCM analysis on time lags of the variables by shifting the two time series relative to each

other (Ye et al., 2015b). If one link has a clear optimum at a negative time lag, this means

that past values from one variable can better predict future values from another variable,

which is what you expect from a true causal link. If however the optimum is found at

a positive time lag (in the future), this suggests that the link might not be causal but a
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mere artifact from a strong coupling between the variables (Ye et al., 2015b). If one link

has a negative time lag and one link has a zero time lag, we cannot distinguish between

a bidirectional link and a strong unidirectional link. To be conservative and because we

are not sure about the link with the time lag of zero, we will call these unidirectional

links where we exclude the link with a time lag higher than or equal to zero. Lastly, it

is important to note that the method cannot distinguish between positive and negative

interactions.

7.3 Choice of parameters

Using the method by Cao (1997) (for details, see Supplementary Materials) for finding an

optimal embedding dimension, we find a dimension of 10. The choice of parameters spe-

cific to a method is often a topic for debate. Therefore, we also calculate the sensitivity to

the choices we made, and we find that a deviation from E=10 does not significantly affect

our results (Supplementary Materials Fig. S7.6). Subsequently, we tried an alternative

method from Sugihara (1994) for finding E and that also yields a maximum embedding

dimension of E=10 (Supplementary Materials Fig. S7.2–S7.4).

A time lag τ = 1 is used. Since climate time series are not over-sampled, it seems

reasonable to take the time lag as small as possible. Increasing τ can cause a loss of the

signal, which is to be expected for the data resolution we have (Supplementary Materials

Fig. S7.7).

7.3 Results

The causal links found in our analysis are summarized in Figure 7.3. Importantly, these

links include a causal loop, consisting of the link from δ13C to Ba/Fe to δ18O back to δ13C

in both the Pacific and East-Atlantic ocean. Within this loop, bidirectional significant

links are found between Ba/Fe (proxy for productivity) and δ18O (climate proxy) (Fig. 7.4

A). As these interactions are strong, this could either indicate truly bidirectional causal

links, or a coupling that is so strong that one variable becomes a ‘slave’ of the other.

The time-delayed results from convergent cross-mapping shows that the link from Ba to

δ18O has a clear negative time lag (Fig. 7.5 B) whereas the other link has a zero time

lag (Fig. 7.5 A). This suggests that productivity (Ba/Fe) affects climate (δ18O) with a

time lag of 4 ky whereas δ18O either causes Ba/Fe as well, or behaves as a “slave” of

Ba/Fe.

As discussed in the Introduction, glacial-interglacial changes in ocean productivity are

thought to be caused by (i) changes in the ocean circulation (for which deep-ocean δ13C

is a proxy) or (ii) variations in iron input (for which dust from Antarctic ice cores is a

proxy).

In case (i), we expect a causal link from deep Pacific and/or deep Atlantic δ13C to Ba/Fe.
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Figure 7.3: A schematic depiction of the network of causal links between deep Pacific δ13C

(P), deep North-East Atlantic δ13C (NEA), deep East-Atlantic δ13C (EA), biological produc-

tivity (Ba), δ18O and dust, according to our CCM analysis. Arrows indicate causal links, i.e.,

X → Y means that X causes Y.

The results for the analysis with δ13C show that indeed there are links from deep Pacific

and deep East Atlantic δ13C to and from δ18O (Fig. 7.4 C, G). Furthermore, there are

links from deep Pacific and deep East Atlantic δ13C to productivity (Fig. 7.4 B, F).

The time-lag analysis shows that all the links have an optimum for a negative time lag

(Fig. 7.5 D-F, L-N), indicating causal links with a time lag. These results are consistent

with the hypothesis that changes in ocean circulation could have had an effect on glacial-

interglacial oscillations. Furthermore, the closed loop suggests a potential mechanism

for nonlinear dynamics, which could explain the observed cycles (see Discussion). Note

that in the North-East Atlantic, the pattern is different from that in the Pacific and East

Atlantic: no significant causal links are found between the deep North-East Atlantic δ13C,

Ba/Fe and CO2 (Fig. 7.4 D-E).

In case (ii), we expect a causal link from dust to Ba/Fe. Our results are consistent with

this hypothesis too, but only via a confounded route. Even though the link from dust

to Ba/Fe is significant (Fig. 7.4 H), our time lags analysis shows that the optimum time

lag for this interaction is positive, suggesting that this link is not a causal link but an

artifact of the coupling between Ba/Fe and dust. However, we find causal links between

dust and δ18O (Fig. 7.4 I) and as mentioned before from δ18O to δ13C and from δ13C to

Ba/Fe. Time lags analysis suggest that these are truly causal links (Fig. 7.5 Q, R, E, M,

D, L).

An alternative way of surrogate data generation to test for significance does not affect our

results (Supplementary Materials Fig. 8-9). Furthermore, replacing δ18O for CO2, as an

alternative climate and temperature proxy that is closely linked to ocean alkalinity, only

alters one link in the results: the link from CO2 to Ba also has an optimum for a negative

time lag, suggesting a causal link with a time lag of 4 kyr (Supplementary Materials Fig.

10-11).
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Figure 7.4: CCM analysis results, where the lines show the correlation between the predicted

and true values (the CCM skill) and the shaded areas indicate a 90% confidence interval. The

analysis indicates significant causal links between Ba and δ18O. Also, the links from Pacific (P)

and East Atlantic (EA) δ13C to Ba and δ18O and from δ18O to Pacific (P) and East Atlantic

(EA) δ13C are significant. The links between North-East Atlantic (NEA) δ13C to and from

Ba and δ18O are not significant. Lastly, we find a significant bidirectional link between dust

and Ba.
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Figure 7.5: Timelags show that almost all links found in Fig. 7.4 have their optimum for a

negative time lag, suggesting true causal links. The only exception is the link from δ18O to

Ba, so this is most likely not a truly causal link.
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7.4 Discussion

For the first time, we have applied CCM to identify causal relationships between ice-core

and paleoceanographic proxy records. Our results suggest the existence of several closed

feedback loops. These feedback loops could provide an explanation for the dynamics

underlying glacial-interglacial cycles.

The first feedback loop is suggested by the unidirectional causal link from deep Pacific and

deep Eastern Atlantic δ13C (Lisiecki, 2010a) (proxies for the strength of the overturning

circulation) to Southern Ocean Ba/Fe (Jaccard et al., 2013) (1) and the bidirectional

links between Ba/Fe (productivity) to δ18O (climate) (2) and between δ18O and deep-

ocean δ13C (3). The first bidirectional link could also be a strong unidirectional link from

Ba/Fe to δ18O, since the lag between Ba/Fe and marine δ18O is negative (∼4 ky) whereas

the lag for the link between δ18O and Ba/Fe is positive (∼2 ky). For this feedback loop,

the underlying sequence of mechanisms could be:

1. A stronger Southern cell of the overturning circulation (of which δ13C in the deep

Pacific and deep Eastern Atlantic are proxies) is associated with enhanced upwelling

off Antarctica (Downes et al., 2011; Gent, 2016; Morrison and McC. Hogg, 2013),

which in turn drives a larger nutrient supply to the ocean surface. Thus, the over-

turning circulation may impact Southern Ocean productivity through variations in

the nutrient supply rate.

2. Southern Ocean productivity may impact atmospheric global climate and δ18O and

CO2. According to a longstanding hypothesis, high δ18O and low atmospheric CO2

during glacial times are (partly) caused by enhanced Southern Ocean productivity

(Siegenthaler and Wenk, 1984; Sarmiento and Toggweiler, 1984; Sigman and Boyle,

2000). However, the Southern Ocean Ba/Fe record (Jaccard et al., 2013) (Fig. 1)

that we used for our analysis does not suggest particularly high productivity during

times of low atmospheric CO2. Rather, the highest productivity appears to be as-

sociated with the glacial-interglacial transitions. Therefore, we think that a causal

link between productivity and atmospheric CO2 as described in Omta et al. (2018)

would be more consistent with this record. That is, a spike in burial of organic mat-

ter leads to a decrease in deep-ocean alkalinity and the eventual outgassing of CO2

from the ocean to the atmosphere due to carbonate compensation. This appears

consistent with the recently reported finding that the variation in productivity in

the Southern Ocean became larger as the amplitude of the glacial-interglacial cy-

cles increased across the Mid-Pleistocene Transition (Fig. 3E in Hasenfratz et al.

(2019)). In other words, small-amplitude glacial cycles are associated with relatively

constant levels of productivity, whereas large-amplitude glacial cycles are associated

with large periodic spikes in productivity.
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3. δ18O and CO2 may impact the overturning circulation in various ways. For exam-

ple, it has been suggested that a more northerly position of the Southern Hemi-

sphere westerly winds during glacial periods would lead to weaker upwelling around

Antarctica, which would in turn weaken the Southern cell of the overturning circu-

lation (Toggweiler et al., 2006). Alternatively, a northward shift of the regions of

upwelling and deep-water formation could be buoyancy-driven through changes in

the Southern Ocean sea-ice extent (Ferrari et al., 2014; Jansen, 2017). Regardless of

the precise mechanism, it appears that the structure of the overturning circulation

varies significantly between glacial and interglacial times (Curry and Oppo, 2005;

Lynch-Stieglitz et al., 2007; Burke et al., 2015).

Beside this three-variable loop, CCM detects two loops consisting of two variables, namely

between δ18O and Pacific and East-Atlantic δ13C and between δ18O and dust. However, we

want to interpret these loops a bit more cautiously than the others, because CCM cannot

always distinguish between a strong unidirectional link and a bidirectional link. Even

so, these two loops can also be considered candidate potential drivers for the nonlinear

behaviour observed in the glacial-interglacial dynamics. In particular, lower sea levels

during glacial times led to larger areas of the continental shelf off Patagonia being exposed

(Iriondo, 2000). Since most Antarctic dust seems to have a Patagonian origin (Fischer

et al., 2007), changes in climate cause changes in dust deposition. Furthermore, it has

been suggested that the larger equator-to-pole surface temperature gradient during glacial

times led to more storms in the Southern Hemisphere, which in turn led to more dust

transport (McGee et al., 2010). The link from dust to δ18O may be explained from

the radiative impacts of airborne dust (Tegen, 2003; Yoon et al., 2005; Rosenfeld et al.,

2006) and the impact of dust deposited in Antarctica on the snow albedo (Bar-Or et al.,

2008).

In addition to our standard CCM analysis, we also performed the same analysis for

different shifts in the data to see if the optimum causal link was pointing in the right

direction: from the past to the future. That is, a true causal link implies a negative

optimum time lag. For the link from δ18O to Ba/Fe, we found an optimum at a zero

time lag and the link from dust to Ba/Fe had a positive time lag. To be conservative,

we therefore interpret these interactions as unidirectional links from Ba/Fe to δ18O and

to dust. We want to point out that with the current quality of the data, the time lags

analysis should not be used to interpret the precise time scale of the interactions we find.

However, it can be used as an additional test to see if a link could be causal (i.e., past

values can only cause the future and not the other way around). It should be noted

that, like any statistical method, the absence of a significant causal link in our analysis

does not prove that this link is absent in the real world. It is possible that, as longer

and more accurate data become available, links will be revealed that currently remain

undetected.
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The unidirectional link from Ba/Fe to dust suggested by our analysis may not reflect

a direct causal link but may rather be the consequence of the transportation route of

the dust. From Patagonia, the dust first travels over the Southern Ocean where it may

enhance productivity. Subsequently, some of the remaining dust is transported further

and ultimately deposited on the Antarctic ice sheet (See Supplementary Figure 1 for a

location of these sites). As a result of this chronological order, the signal measured by

the productivity proxy Ba/Fe will be present in the Antarctic dust signal (and therefore

we find that productivity causes dust). However, elements of the Antarctic dust signal

that developed in the later stages of the dust’s journey will not be visible in the Ba/Fe

data (and therefore we find a positive optimal time lag for the causal link from dust to

Ba/Fe).

An interesting implication of the existence of feedback loops is the possibility for nonlinear

dynamics in the ocean-climate system. Feedback loops can be negative, in which case

they work stabilizing or cause oscillatory behaviour if there are long time lags in the

interactions (Levins, 1974). Feedback loops can also be positive, in which case they can

cause self-amplifying dynamics, but time lags in positive feedback loops can either weaken

or amplify the destabilizing effect. Based on our results, one cannot determine whether the

identified dominant feedback loop is stabilizing or not, and under which conditions. There

is no reason to believe that the interactions we investigate here are linear interactions, and

therefore the loops can vary in their response under different circumstances. Furthermore,

the present study cannot prove the existence of positive feedback loops, both because

CCM does not provide information about the way the effect-variable responds to the

cause variable (i.e., positive or negative) and because of large uncertainties in the precise

time lags of the analysis. However, as one of our objectives of this study is to find an

explanation for the nonlinear glacial-interglacial cycles, we believe that these loops are

worth investigating.

Positive feedback in a dynamic system can generate alternative system states that rein-

force themselves. Under certain conditions the system may ‘flip’ from one state to another

- the conditions under which this occurs are generally referred to as ‘tipping points’. The

model hypothesized by Omta et al. (2013) involves calcifiers in a feedback loop, and in a

numerical study it was shown that 1/ this model can generate the glacial-interglacial saw-

tooth pattern under Milankovitch forcing of 20 ky, and 2/ that the period of the sawtooth

can vary under minor perturbations with the same forcing (Omta et al., 2016), effectively

suggesting the possibility of a tipping point. This can explain the glacial interglacial cycles

of the past, but it can also guide the predictions for current climate dynamics. Currently,

there is a significant perturbation in the form of a considerable increase of atmospheric

CO2. The existence of a feedback loop as found in the data could indicate a potential

change in the future from the sawtooth pattern observed in the data over the last 800,000

years to some unknown behaviour.
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As we mentioned in the Introduction, various models have been formulated to explain

glacial-interglacial dynamics. Crucifix (2012) reviewed many such models, based on a

range of different mechanisms. It turned out to be difficult to decide between these

models, since they all generate a sawtooth oscillation in temperature/ice volume and/or

CO2. Therefore, Crucifix (2012) argued, we need more stringent criteria to operate our

model selection. In Omta et al. (2016), one such criterion was formulated: models will need

to reproduce the observed linear proportionality between the length and amplitude of the

glacial-interglacial cycles. The causal relationships that emerged from our analysis provide

further criteria. More specifically, model output could be analysed with CCM to test

whether the same causal relationships emerge as from the analysis of the proxy records.

However, it should be kept in mind that interpreting these links requires knowledge of

the system under study (see for example for our link from productivity to dust).

Quite remarkably, our analysis suggests that mid-depth Northeast Atlantic δ13C (Lisiecki,

2010a) has no significant causal relations with any of the other measured records. The

locations of the cores that form the basis of this record are likely within the Northern

overturning cell (North Atlantic Deep Water and Glacial North Atlantic Intermediate

Water) during both glacial and interglacial times. Therefore, one possible interpretation

would be that the strength of the Northern cell has no impact on, and is not impacted

by, the strength of the Southern overturning and climate in general. However, ocean

models generally indicate that a stronger and deeper Northern cell is associated with a

weaker and shallower Southern cell and vice versa (Shin et al., 2003; Liu et al., 2005;

Jansen, 2017). Another possible interpretation would be that variations in the mid-depth

Northeast Atlantic δ13C primarily reflect atmospheric changes, since the water at these

sites is so ‘young’. Thus, our analysis would suggest that atmospheric δ13C does not

have a strong causal relationship either way with the overturning circulation, climate or

atmospheric CO2. This appears in contradiction with the generally accepted view that the

release of isotopically light ‘old’ carbon from the abyss causes both the observed minimum

in atmospheric δ13C and the rise in atmospheric CO2 during the deglaciation (Schmitt

et al., 2012; Broecker and McGee, 2013). Lastly, we show that the deep Northeast Atlantic

δ13C data is not clearly distinguishable from noise according to one of the tests we did

(supplementary Fig. 7.5), making it hard to pick up signals with CCM. It is possible that

if data of higher resolution becomes available in the future, signals might become clear

that are not significant when using the currently available data sets.

The Ba/Fe record is from a single location in the Southern Ocean, whereas the other

records represent either global signals or averages for oceanic regions. Nevertheless, the

deglacial marine productivity maxima appear to be a global phenomenon. Deglacial

maxima in productivity proxies such as opal accumulation and biogenic Ba have been

found at various sites throughout the Atlantic (Kasten et al., 2001; Romero et al., 2008;

Gil et al., 2009; Meckler et al., 2013), the Pacific (Crusius et al., 2004; Jaccard et al.,

2005; Galbraith et al., 2007; Jaccard et al., 2010; Kohfeld and Chase, 2011; Hayes et al.,
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2011), and the Southern Ocean (Anderson et al., 2009). A global compilation of marine

sediment proxies reveals an increase in suboxic conditions in Oxygen Minimum Zones

(OMZ) during the deglaciation (Jaccard and Galbraith, 2012) which could result from

enhanced productivity. Furthermore, particularly strong deglacial maxima in δ15N have

been recorded in OMZ (Pride et al., 1999; Thunell and Kepple, 2004; Deutsch et al., 2004),

a possible indication of enhanced denitrification due to the low oxygen conditions.

Paleoceanographic records are often dated by overlapping them with other records, for

which the dating ultimately relies on orbital tuning. For example, the δ13C records Lisiecki

(2010a) were dated by aligning their δ18O records to the LR04 benthic δ18O stack (Lisiecki

and Raymo, 2005), which was in turn orbitally tuned. It has been pointed out that

this may cause spurious correlations with orbital cycles (Huybers and Wunsch, 2004).

However, the Fourier spectra of records using a depth-derived age model and an orbitally

tuned age model appear rather similar (Fig. 9 in Huybers and Wunsch (2004)). Perhaps

more importantly, any shifting of the time series due to tuning should only affect the

estimated lag between records and not the direction of the causality. As CCM does not

primarily establish causality based on time lags but rather based on the structure of the

data, we therefore believe the causalities found with the method are true causalities and

not the result of artifacts.

7.5 Conclusion

Our CCM analysis on paleoceanographic and ice-core records suggests a dominant loop

from ocean ventilation to biological productivity to climate and then back to ocean ven-

tilation. While all separate mechanisms have been suggested earlier as explanations of

the sawtooth-patterned glacial-interglacial dynamics, the existence of the dominant loop

as a whole has to our knowledge not been identified from any data before. These loops

provide possible mechanisms that explain why the climate system dynamics might not

react in a linear way to perturbations in elements of this loop. The current considerable

increase in atmospheric carbon dioxide could present a perturbation that results in a shift

of the climate system dynamics from the glacial-interglacial cycle to new (unpredictable)

behaviour. To elucidate the ramifications of feedback mechanisms in the climate sys-

tem further, numerical models could be used to quantify these mechanisms and simulate

possible glacial-interglacial dynamics as well as possible transitions between dynamical

regimes.
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Supplementary materials

S7.1 locations of data

Our data for δ18O and δ13C were compilations of multiple locations. For Ba/Fe and dust

the data were obtained from specific locations: ODP site 1094 and EPICA Dome C, as

depicted in figure S7.1.

Figure S7.1: The location for Ba/Fe (ODP site 1094) and dust (EPICA Dome C).

S7.2 CCM

For our analysis we follow the CCM method as proposed in Sugihara et al. (2012). In

the following section we briefly describe the CCM algorithm. For a more extensive

description including some examples we refer to Sugihara et al. (2012).

If a multivariate time series of n variables is described with Z = Z1, ...ZL where every

Zi contains information for all variables, we can plot the manifold of the full system in

an n-dimensional space. Takens theory states that the dynamics of this manifold of the

full system are fully preserved by a lagged time series of just one of the variables (the

‘shadow manifold’, i.e., the projection of the manifold in the selected variable plane, like

a shadow), provided that sufficient lags are included. CCM tests whether a manifold,

build with lagged time series of one variable can be used to predict the dynamics of a

shadow manifold build from lagged time series of another variable to see whether they

belong to the same dynamical system. If the manifold of variable X (MX) can predict

the dynamics of the manifold of variable Y (MY ), it can be stated that information of Y

has been included in X and therefore there must be a causal link from Y to X. The cases

that can occur are:
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� X and Y can not be used to predict each other: The two time series are unrelated.

� X can be used to predict Y, but Y cannot be used to predict X: The systems are

related with a unidirectional link from Y to X.

� Both variables can be used to predict each other: There is either a strong unidi-

rectional link, a bi-directional link or are both driven by an external variable. (To

test whether one option is more likely than another, we look at time lags of the

interactions, as described in 2.2 of the main article.)

We use the manifold of time series X (MX) to estimate values for Y(t) (Ŷ(t)|Mx) by

‘cross-mapping’ according to the following algorithm:

1. Find x(t) and its E+1 nearest neighbors

2. Get the time indices of the E+1 nearest neighbors: t1, ...tE+1

3. Estimate Y(t) from the locally weighted mean of the E+1 Y(ti) values using

Ŷt|Mx =
E+1∑
i=1

wiY (ti) (S7.1)

where the weight wi is calculated by

wi =
ui∑E+1
j=1 uj

(S7.2)

and

ui = exp(
−d[x(t),x(ti)]

d[x(t),x(t1)]
) (S7.3)

where d[x(t),x(ti)] denotes the euclidean distance between x(t) and x(ti).

If X and Y are coupled, the nearest neighbors on Mx should give time indices that find the

nearest neighbors on Yx. For longer time series (larger L), the manifold fills and Ŷ(t)|Mx

should converge to Y(t). If cross-mapping of Y from X does not converge, this means

that Y is not causal to X (i.e. the information of Y is not contained in X).

S7.3 Choice of embedding dimension

We calculate the optimal embedding dimension using the method of Cao (1997). This

method uses false nearest neighbors, with an improved stopping criterion. In line with

Cao (1997) we calculate two values. ‘E1’ is a measure that sees if two points are nearest

neighbors even if the embedding dimension increases. If the points are nearest neighbors

for an embedding dimension i, but not anymore for embedding dimension i+1, they are

labeled as “false nearest neighbors”. We increase the embedding dimension until no more

false nearest neighbors are found. ‘E2’ is a measure that tests if the data is in fact
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generated by a deterministic model and is not an effect of noise. The system is considered

deterministic if E2 depends on the embedding dimension and there exist an embedding

dimension for which E2 6= 1. More information and several examples can be found in Cao

(1997).

The analysis results in the choice of E = 10 (figure S7.2). Another analysis from Sugihara

et al. (2012) yields the same maximum embedding dimension of E, but here there is more

variation among variables (figure S7.4).

It is important to note that the E2 signal does not strongly indicate a deterministic

process. However, we still think the data is suitable for CCM because of the following

reasons:

1. The resolution of the data might be so low that the signal is missed. This is further

emphasized by repeating the analysis for the high-resolution data set that is available

for Barium which clearly shows a dependency of E2 on the embedding dimension

(figure S7.3).

2. The E2 measure of Cao (1997) is quite strict. Even in the simulated examples in

the original article by Cao (1997), the E2 signal is not always clearly indicative

of a deterministic process. To further explore this idea, we did another analysis

designed to distinguish a deterministic process from red noise based on the method

of Sugihara (1994). In this analysis, we calculate local and global forecast skill by

changing a parameter “theta”. the system is considered deterministic if correlations

decrease for high theta (global forecast skill) compared to low theta (local forecast

skill), and furthermore if the correlations are higher than the autocorrelation. Our

results clearly show deterministic dynamics for Barium, CO2, Pacific δ13C, East

Atlantic δ13C and dust. For North-East Atlantic δ13C we are unable to distinguish

it clearly from red noise, since the correlations from the predictions are lower than

the autocorrelation (figure S7.5).

3. We observe convergence in our CCM analysis. This should not happen if the signal

was actually noise.

Clearly, based on these results it is hard to prove that the embedding dimension is accu-

rate. So the next question we ask is how important the choice of the embedding dimension

actually is. We show that the the analysis on our data is not sensitive to deviations away

from the chosen E of 10 (Figure S7.6). The parameter b was always put to E + 1.

S7.4 Choice of τ

In theory, the choice of the time lag τ for the embedding dimension should not influence

the results Cao (1997), however, in practice this parameter can play a role (Cao, 1997).

For time series of discrete maps the best choice for τ is 1, but for continuous data there are



208 A potential feedback loop underlying glacial-interglacial cycles

Figure S7.2: Values for E1 and E2 for different embedding dimensions for all variables,

where P, NEA and EA stand for Pacific, North-East Atlantic and East Atlantic respectively.

Analysis led to the choice of an embedding dimension of 10.

Figure S7.3: Values for E1 and E2 for different embedding dimensions for the high resolution

dataset of Ba, indicating some changes in E1, and still converging at an embedding dimension

of 10.
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Figure S7.4: Simplex projection based on Sugihara (1994) to find E. The best embedding

dimension is the dimension where we find the maximum correlation. Results differ for different

variables, yielding 10, 3, 4 and 5. E=10 is the highest value we find and therefore a good

choice.
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Figure S7.5: forecast skill using simplex projection based on Sugihara (1994) to distinguish

deterministic dynamics from red noise. Lines indicate the forecast skill dependent of theta,

dashed lines indicate the autocorrelation. A deterministic process has a better forecast skill

for low values of theta (local predictions) than for high values of theta (global predictions),

as we see for all variables. However, for North-East Atlantic δ13C this forecast skill is lower

than the autocorrelation, which could indicate that the data is dominated by red-noise.



211

Figure S7.6: CCM result for all variables, where P, NEA and EA stand for Pacific, North-

East Atlantic and East Atlantic δ13C respectively, for different values of E to test for sensitivity.

The black dots form mostly horizontal curves, therefore we conclude that the results are not

sensitive to deviations away from our chosen embedding dimension.
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Figure S7.7: CCM result for all variables, where P, NEA and EA stand for Pacific, North-

East Atlantic and East Atlantic δ13C respectively, for different values of τ to test for sensitivity.

Results show that for a choice of τ larger than 1, often the signal is lost.

various methods to calculate or think about τ . Since our data is clearly not oversampled

(with a time step of 2000 years) and the embedding dimension is quite high already (10),

it seems sensible to choose τ as small as possible. Therefore we set τ = 1. Also for τ we

calculate the sensitivity of the method to different values. Our results show quite some

fluctuation in CCM-skill dependent on the value of τ . However, overall the signal seems

to be strongest for smaller values of τ , where the signal is sometimes lost for higher values.

The strongest fluctuations are seen for the links from and to North-East Atlantic δ13C.

However, since this variable is already excluded from the analysis based on figure S7.5,

we do not consider this to be a problem.
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Figure S7.8: CCM result where the Ebisuzaki method of surrogate data generation is used,

giving very similar results as Fig. 7.4 in the main text, indicating that these results are robust

for variations in significance determination.

S7.5 Analysis with Ebisuzaki method of surrogate

data generation

As our default method, we calculated our confidence intervals by creating surrogate data

by cutting the data in random locations and then swapping the first and last part. In this

way all characteristics of the data are kept intact, but the link between two time series is

broken. An alternative way to create surrogate data is to generate random data with the

same autocorrelation function and the same power spectrum as the original data. This

can be done with a method proposed by Ebisuzaki (1997). We use this analysis to see if

our results were robust for slight alterations in the way that we calculated the significance.

Supplementary Fig. S7.8 – S7.9 show very similar results as Fig. 7.4 – 7.5 in the original

text and therefore we conclude that the analysis is robust and that the results do not

depend on the way that the surrogate data is generated.
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Figure S7.9: CCM time-lags result where the Ebisuzaki method of surrogate data generation

is used, giving very similar results as Fig. 7.5 in the main text, indicating that these results

are robust for variations in significance determination
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S7.6 Analysis with CO2 instead of δ18O

In our main analysis we choose δ18O as a “climate proxy” since most mechanisms under-

lying the links use δ18O in the explanation. However, an argument could be made that

instead of δ18O, we could have used CO2. Especially in the link from productivity to “cli-

mate”, the explained mechanisms heavily rely on ocean alkalinity which is more closely

linked to CO2 than to δ18O. Furthermore, since CO2 and δ18O are closely linked, the anal-

ysis with CO2 should give similar results and is therefore a good additional evaluation

about the robustness of our results.

The analysis with CO2 yields very similar results as the analysis with δ18O (Supplementary

Fig. S7.10 - S7.11). One small change is that the link from CO2 to Ba has a negative time-

lag, so the link between these two variables is a bidirectional link in this situation.
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Figure S7.10: CCM result where δ18O is replaced by CO2, giving very similar results as Fig.

7.4 in the main text.
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Figure S7.11: CCM time-lags result where δ18O is replaced by CO2, giving very similar

results as Fig. 7.5 in the main text.





Chapter 8

Synthesis

Els Weinans
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Main findings

The main objective of this thesis was to explore how data-driven methods can be used

to study the behaviour of complex systems. Here I will shortly recap how the chapters

contribute to this overall goal and point to some limitations of the work presented. My

main findings consist of three sections: 1) resilience in multivariate systems (chapters

2-5), 2) extracting information from chaotic attractors (chapters 2, 7), and 3) finding

the best methods (all chapters).

Resilience in multivariate systems

Detecting slowing down of a system as an indication for a loss of capacity to recover and

possibly for an upcoming critical transition, has received considerable attention (Scheffer

et al., 2009). In most studies on resilience indicators, the proposed indicators are applied

to one-dimensional systems, and therefore the multivariate nature of complex systems was

somewhat underrepresented (Boettiger et al., 2013). Various studies have contributed to

this knowledge gap (Held and Kleinen, 2004; Chen et al., 2012; Bathiany et al., 2013;

Boerlijst et al., 2013; Suweis and D’Odorico, 2014; Chen et al., 2019). The first chapters in

this thesis too, consider the issues related to applying resilience indicators to multivariate

systems.

In chapter 2 I question how and if resilience indicators could be applied to systems

that need to respond quickly and adequately to changes in the environment, instead

of aiming for a baseline value at all cost. Various subsystems of the human system,

such as mood, the heart, or bones, can undergo rapid change. It has been suggested

that these rapid changes can be manifestations of tipping points towards illnesses such as

depression (Leemput et al., 2014), atrial fibrillation (Nannes et al., 2020) and osteoporosis

(Homminga et al., 2004). However, for human subsystems a loss of functioning may not be

preceded by slowing down, but instead by a lack of responsiveness, allowing for different

kind of resilience indicators based on the complexity of the signal, which I will clarify in

the next section on ‘extracting information from chaotic attractors’.

In chapter 3 I extend on the idea of ‘degenerate fingerprinting’ (Held and Kleinen,

2004), where data is first projected on a ‘dominant mode’ after which the one-dimensional

resilience indicators can be applied. Previous work has shown that this mode can provide

information about the vulnerable variables in the system, i.e. the ‘hotspots’ (Bathiany

et al., 2013). The mode in degenerate fingerprinting is found by a Principal Component

Analysis (PCA). In chapter 3 I explore if Min/Max Autocorrelation Facors (MAF) can be

an alternative. MAF is a method that finds the modes (the directions in phase space) that

have the highest or lowest autocorrelation. The main reason for exploring MAF, is that

previous work on one-dimensional resilience indicators suggested that autocorrelation-

based indicators might be more robust to noise than variance-based indicators (Dakos
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et al., 2012b). Since MAF is an autocorrelation-based alternative to a PCA, I hypothesized

that it could improve the robustness of methods that use a PCA. Indeed, my simulations

demonstrate that MAF was more robust to PCA for one example of a ‘complex noise

regime’, where I distributed the noise unevenly over the variables. However, this came

at the cost of requiring data of a larger length and, as with all autocorrelation-based

indicators, higher resolution.

In chapter 4, we explore if the properties of mutualistic systems allow for an extrapolation

of the direction of the dominant mode to predict the future state of a complex system,

after a tipping point has passed. The hypothesis that mutualistic interactions lead to more

predictable behaviour has been proposed before, for example by Suweis and D’Odorico

(2014). We found that this predictable behaviour could be used to find a pointer to the

future state, provided that there are no complex dynamics such as oscillations in the

system.

In chapter 5, I compare the multivariate indicators of resilience loss that were pro-

posed by others and by ourselves to find which indicator is best to use in which scenario.

The simulations in this chapter clearly demonstrate that different scenarios require dif-

ferent methods. We confirm that autocorrelation-based indicators require high resolution

whereas variance-based indicators require a simple noise regime. Furthermore, we found

that major problems can occur for all indicators when only a subset of the variables are

measured, a problem identified earlier by Boerlijst et al. (2013). It is possible that fu-

ture work will find ways to extract the relevant information from the variables that are

observed. However, it is also possible that the information of the upcoming transition is

simply not present in all the variables. This chapter suggests a cautious interpretation of

all work on resilience indicators in multivariate systems.

Extracting information from chaotic attractors

Some systems are not situated in equilibria and might not be subject to tipping points

but are complex because their dynamics are chaotic. Taken’s theorem describes how for

chaotic systems, time lags of one variable can be used to reconstruct the attractor of the

full dynamical system (Takens, 1981). The idea behind this theorem is that when variables

interact with each other, information from one variable is embedded in the other variable,

and thus in principle you don’t need all variables to determine some overall properties

(such as the Hurst exponent) of the system (as explained in the introduction of this

thesis).

In chapter 2 I explore not only resilience, but also the meaning of several indicators

of complexity, with applications to the human system. While studying previous work,

I found out that complexity has several definitions, some are conceptual (such as the

description of how complexity should have an optimum between complete order and com-

plete disorder, i.e. figure 2 in chapter 2, as explained in Huberman and Hogg (1986)),
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others are mathematical (such as a Kolmogorov complexity approximation by Grass-

berger and Procaccia (1983b)). Nevertheless, I found out that many of them find a basis

in Taken’s theorem by analysing time-lagged versions of one variable. It is now, almost

40 years after the above mentioned articles, still an exciting insight that time lagged ver-

sions of a variable contain information about full system functioning. The current data

availability stimulates re-exploration of these tools. In this chapter, I demonstrate how

resilience indicators and complexity indicators can be used to determine the resilience and

responsiveness of human subsystems, and as such can together tell us something about

the functioning of each subsystem. Even though the two processes have been extensively

described, the connection between the two remains unclear. This chapter attempts to

unify the theoretical framework of the two indicators by describing different functions of

human subsystems (i.e. regulated or effector variables). Furthermore, it elucidates how

being close to a tipping point can be dangerous because it increases the chance to tip to

another state, but being far from a tipping point can be dangerous as well because this

could lead to a loss of responsiveness. I shortly illustrate this idea with the Ising Spin

model. I do realize that this simplistic model, although interesting, does not yet proof

the usability of complexity and resilience indicators for the human system. Therefore I

propose an outline where simplistic models, realistic models, and real data are all required

before we will be able to succesfully apply this framework. For the human system, the

subsystems mentioned in chapter 2 (the heart, bones, mood and balance) seem like a

good place to start.

In 2012, Sugihara and colleagues suggested that reconstructed attractors are not only

indicative of complexity, but could also be used to detect causality, a method called Con-

vergent Cross-Mapping (CCM) (Sugihara et al., 2012). In 2015, van Nes and colleagues

used this method to find causal links in the climate system (Van Nes et al., 2015a), demon-

strating that the current climate data is of sufficient quality and quantity to use CCM

(something which was not the case previously (Grassberger, 1986)). This has invited for

a variety of studies applying reconstruction methods to climatic time series (Hirata et al.,

2016; Trauth et al., 2019; Huang et al., 2020). In chapter 7, I explore the use of CCM

to detect causal links, with the ultimate goal of finding an explanation for the saw-tooth

shape of the glacial-interglacial cycles. The currently available literature has described

all links as possible causal links in the network, which makes it difficult to pinpoint the

dominant drivers. Our CCM analysis suggests the presence of one dominant loop from

ocean ventilation to biological productivity to climate, back to ocean ventilation. This

loop provides a possible explanation for the shape of the observed oscillations. The CCM

method is known to be sensitive to noise and it requires much data (Mønster et al., 2017).

It is possible that as data quality increases, we will detect causal links that are currently

unclear. One example in our analysis is the time series of North-East Atlantic δ13C (a

proxy for ocean ventilation), which was not clearly distinguishable from noise. As data

quality is increasing in all domains, the method has the potential to unravel causal links
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and feedbacks in systems from other scientific fields, as demonstrated by recent studies

in ecology (Sugihara et al., 2012), physiology (Heskamp et al., 2014; Verma et al., 2016)

and social systems (Luo et al., 2014).

Finding the best methods

For all chapters in this thesis, I made a comparison between methods. For some chapters

this is very explicit, such as chapter 2 on finding similarities and differences between

DIORs and complexity quantification tools, or chapter 5 on comparing different multi-

variate indicators of resilience loss. For other chapters, this choice was made behind the

scenes, for example in chapter 6 - 7 where I wanted to focus on the particular domains

(language change and the carbon cycle respectively) more than on the methodological

issues. I have come to realize that most people, including myself, are looking for a way

to tell which method is the best to use (i.e. highest performance/most robust), but in

all cases I came to the conclusion that it depends. It depends on the type of data that

is available (see chapter 5) and on the type of system under investigation (see chapter

2). Perhaps, this is not a satisfying answer to the question: “What is the best method?”,

but I have come to appreciate the answer, as it nicely captures the complexity of the

subject and it demonstrates that no method is wrong (although some methods are use-

less for a certain application) (Qiao et al., 2015). This links a little bit to the ‘no free

lunch’ theorem in optimization that states that averaged over all optimization problems,

all optimization algorithms perform equally well (Adam et al., 2019).

In chapter 6 - 7 I had a wide range of choices for methods to consider. The methods

I used in these chapters were well-suited for the data, but other choices could have been

made and comparing many different methods could have been a study by itself. For in-

stance the language development over time studied in chapter 6 is without a doubt an

incredibly complex system (Freeman and Cameron, 2008). In this chapter, we did not

aim for a true understanding of these complexities, but instead we wanted to identify

patterns to form an hypothesis that could ultimately lead to fundamental understanding.

Our analysis was thus an exploratory journey through the data. We found that a PCA

was particularly useful to detect patterns in the data. The input for this PCA were the

time series for the 5000 most used words in the English language. The principal compo-

nents were relative combinations of words that together changed in time in a correlated or

anticorrelated matter. We found that the PCA could disentangle the temporal behaviour

of words like ‘God’, ‘mind’, and ‘love’ (words relating to intuition) from words like ‘com-

pany’, ‘committee’, and ‘duty’ (words related to institutions), without having any prior

knowledge about the meaning of these words. Since these words appeal to the imagina-

tion, this inspired us to dive deeper and check the behaviour of different words related

to intuitive vs rational thinking in multiple languages. We are aware of the limitations

of the google books dataset (see for example Pechenick et al. (2015)), but since there is

currently no better data available and the results seem robust for different language sets,
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we think the patterns we detect are worth further investigation.

Considerations

Here, I like to address some philosophical considerations about science in general, that

I pondered during the writing of this thesis. The three considerations are 1) the search

for universal patterns, 2) the benefits of fundamental and interdisciplinary science, and

3) the remarkable human ability to find and explain non-existent patterns.

Universal patterns

Ivar Ekeland writes in ‘Mathematics and the unexpected’: “The fisherman who tries

to disentangle his lines bases his hopes of succeeding on the fact that the lines were

straight and clear to begin with. There is no similar a priori knowledge underpinning

Ptolemy’s or Kepler’s efforts – only their faith in the hidden harmony of the cosmos”

(Ekeland, 1990). Like Ptolemy and Kepler, many scientific endeavors have focused on

finding universal patterns. This thesis is no exception to that rule. However, there is

no law that states that such a “hidden harmony of the cosmos” (or hidden harmony to

complex systems) actually exists. This raises the question why so many scientist strive

for universal patterns.

Answering this question is beyond the scope of this thesis, but I would like to mention two

points that helped me justify this search for universality. Firstly, one theory that explains

two findings is always preferred over two separate theories for those two findings, based

on the principle of parsimony, also known as occam’s razor (Blumer et al., 1987). I believe

that most people would agree with me that the main impact of for example Newtons laws

was that they unified observations here on earth with observations in space, and the main

impact of Darwin’s work on evolution was that it provided a theory that accounted for

multiple different observations in one unified theory (Darwin, 1909). Secondly, science has

a component of beauty in it, not unlike the arts. Indeed, mathematical equations elicit a

response in the same regions in the brain that light up when listening to music or looking

at art. This even happens for people that do not have a mathematical background (Zeki

et al., 2014). Furthermore, ‘elegance’ or ‘simplicity’ are often used as guiding principles

for scientific studies (MacArthur, 2021). Perhaps, most beauty is experienced in unified

theories.

Fundamental science and interdisciplinarity

Some scientific studies have unforeseen consequences. For example, in 1962 Osamu Shi-

momura and colleagues were working on the question: “why do jellyfish glow?”. During

their studies, they identified a green fluorescent protein (Shimomura et al., 1962). 32 Years

later, this protein allowed for the monitoring of gene expressions and protein localization
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in living animals (Chalfie et al., 1994), a breakthrough for many medical applications,

which resulted in a Nobel Prize in 2008. This example clearly demonstrates that curiosity

driven science can have large and unpredictable impacts.

I started my introduction with mentioning climate change, biodiversity loss and science

skepticism as three challenges that are currently faced by science and society. The prob-

lems have many facets and either result from or affect (or both) multiple different scientific

and societal areas. It is therefore not surprising that more effort is put into creating inter-

disciplinary research teams that tackle these issues (Jacobs and Frickel, 2009; Okamura,

2019). The work in this thesis too, has evolved from collaborations with computer sci-

entists, psychologists, ecologists, mathematicians, climatologists and medical specialists

and I am currently unsure where I should put myself on that list (perhaps as an applied

mathematician). These collaborations are not always easy, as it can take some time to

find a common language, but they are certainly interesting.

Many training programs have appeared in recent years to accommodate interdisciplinary

approaches to scientific problems. One example is the bachelor programm bèta-gamma

at the University of Amsterdam that I followed myself. However, in later career stages,

interdisciplinary projects seem to be discouraged, as funding success decreases as a re-

search team becomes more interdisciplinary (Bromham et al., 2016). The main benefit

of fundamental science (the unforeseen applications to different topics than originally de-

signed for) can only be given a chance if scientists are allowed the time to explore what

is going on outside their own field of research.

Explaining non-existent patterns

Human brains have an extremely well-developed ability for pattern detection and process-

ing (Mattson, 2014). This ability is so well-developed that humans are notoriously bad at

detecting randomness (Williams and Griffiths, 2013). For example, when the music plat-

form spotify was launched, it had an option for a random shuffle of a playlist. However,

its users sent complaints that the playlists were not random at all. It turned out that lis-

teners found patterns in the random algorithm that spotify used. For example, a playlist

does not “feel” random if it plays two songs of the same artist in a row, something which

can occur in a purely random order. Therefore, the current ‘shuffle’ option in spotify

is not random anymore, but instead it avoids clusters, and the complaints have stopped

(Poláček, 2014). Our pattern-finding ability has allowed us to even detect non-existent

patterns.

Another more personal example happened to me while preparing chapter 7 of this thesis.

In the first version that I prepared, I had accidentally reversed the time axis of the dust

data-set. Since the CCM method that I used for the analysis works with reconstructions

of chaotic attractors, this mistake was not immediately clear to me just from the analysis.

The causal network that was generated from this analysis was meaningless as it was based
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on a mistake. It was an interesting experience that based on the available literature I was

able to find an explanation for all the links that were mistakenly found. It seems like we

are not only good at detecting non-existent patterns, but also at finding explanations for

these non-existent patterns.

Statistical tests and good null-models can help to objectively identify patterns, but choos-

ing the right null-model is not always a trivial task (Gotelli and Ulrich, 2012). Addition-

ally, in systems where many possible relationships have been suggested to exist, such as

the climate system (Daruka and Ditlevsen, 2016; Crucifix et al., 2017), any finding can be

explained. Therefore, our intuition about a pattern and our ability to explain a pattern,

are not always indicative of the truth.

Awareness of this problem might help to avoid the pitfall. Furthermore, it can be a

good idea to have several people double-check the analysis and code (for a programming

study), a practice which is perhaps more common in software engineering that in science

(Bacchelli and Bird, 2013). Last, I am in favour of motivating scientists to publish their

code alongside with their papers. This can feel scary, especially since most scientists are

not trained as software engineers (Barnes, 2010). However, it is of paramount impor-

tance for science to be transparent and reproducible, which includes sharing code (Toelch

and Ostwald, 2018). Fortunately, various initiatives have developed outlines and offer

guidance (see for example the FAIR initiative, which advocates Findability, Accessibility,

Interoperability and Reusability of software (Lamprecht et al., 2020)).

Prospect

The work performed in this thesis raises several questions. I here want to reflect on four of

them: 1) Can knowledge about resilience also lead to knowledge on useful interventions?

2) Are the models that I used of the right level of complexity? 3) What is the effect of

multiple interacting scales? 4) What can noise teach us?

Can knowledge about resilience also lead to knowledge on useful interventions?

Detecting the vulnerable variables in a multivariate system can be used as a predictive

tool, as we have described in chapter 3 - 4. One interesting implication of having

a direction where a system is most likely to leave the current equilibrium, is that this

direction could also provide a direction that offers most opportunity for change in case

the current equilibrium is an unwanted situation. In that sense, our studies could help

to choose interventions. This idea is receiving interest in various fields. For example, in

health care Timothy Buchman seems positive about this premise, as he writes: “Today’s

physicians are already testing to ‘see if the network is right’; tomorrow’s physicians may

well use therapies to ‘make the network right’” (Buchman, 2002). Also in studies on

social-ecological systems this concept has received considerable attentions for example

by influencing feedbacks in marine ecosystems (Nyström et al., 2012) or interventions on
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resilience in governance (Lebel et al., 2006).

Are the models of the right level of complexity? The framework described in

chapter 2 about resilience and complexity quantification tools is a quite simplistic and

general framework that might need extensions to serve the specific complexities of each

particular subsystem. Evans et al. (2013b), warn that the preference for simple models

has “limited progress in ecology”. This suggests that even though these simplistic theories

might guide our thinking about the world from a systems perspective, it might not always

lead to knowledge about the specifics of the system under study.

I encountered the mismatch between theory and practice when I learned about the work

of Eus van Someren about insomnia (see for example Van Someren and Riemersma-Van

Der Lek (2007)). We hypothesized that changes in sleep stages might be better understood

by using the MAF analysis as described in chapter 3. However, the cyclic behaviour of

the data, the noisiness, the fact that the surface EEG data is a proxy of the real brain

activity, and the redundancy in the data all created challenges that made us decide that

the current theory is not well equipped for the current data. I still think it is an interesting

idea to explore sleep as a complex dynamical system, and it is exciting to see that other

attempts were more successful (for example de Mooij et al. (2020)).

What is the effect of the multiple interacting scales that constitute a complex

system? In the introduction, I state that complex systems have interactions on different

time scales. However, in the analysis done in this thesis, I have simplified systems so far

that I only investigate their behaviour on one scale. Adding multiple scales in models often

results in complicated analysis tools, both for different scales in time (Koutsoyiannis, 2001)

and in space (Thuiller et al., 2003). In many scientific areas the importance of different

scales is acknowledged, for example in climate science (Franzke et al., 2020), human

physiology (Goldberger et al., 1990; Gormally and Romero, 2020) and forest ecosystems

(Blanco et al., 2020). However, in simple models, this phenomenon is underrepresented.

Obviously, the effect of different scales cannot be tested in a isolated way as it relies

on multiple interactions by definition. However, even in simple models these effects can

be explored, as demonstrated for example by Van Der Laan and Hogeweg (1995) and

Chaparro-Pedraza and de Roos (2020). Before we can successfully apply these theoretical

ideas to real data, this step deserves some more attention.

What can noise teach us? The work in this thesis is largely inspired by studies that

exploit the natural fluctuations, or the noise, of a system to infer some properties of the

system’s behaviour (Scheffer et al., 2009). Using noise as a way to obtain information,

instead of a nuisance to get rid of, is a relatively new idea which, I believe, could be

expanded further. In most modelling studies, noise is implemented as Gaussian, white,

and additive and it is the same for all variables (Boettiger, 2018). If this assumption is

loosened, systems may show significantly different results (Arani, 2019), suggesting that

the indicators seem more generic than they are, because they are often tested for one



228 Synthesis

particular noise regime. In chapter 3 and chapter 5 I have played around with the

noise regime slightly, by changing the way it was distributed over the variables or by

using multiplicative noise, which affected the resilience indicators under study, but I did

not take a systematic approach to unravel the details of the possibilities of complex noise

regimes. Therefore more insights in the effects of other noise distributions, other noise

colors, and differently correlated noise are required, especially to strengthen the link with

the real world where complex noise regimes seem to be the rule rather than the exception

(Shoemaker et al., 2020).

Concluding remarks

With this thesis, I hope to have contributed to our understanding of the behaviour of

complex systems. A complete understanding of complex systems is a goal that is too am-

bitious for one lifetime. However, the time seems ripe to embrace what Stephen Hawking

has called “the century of complexity” (Hawking, 2000). The current widespread interest

in complexity thinking has created a strong interdisciplinary scientific community, which

has greatly inspired the work presented here, and which is ready to tackle the challenges

ahead.
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Johan S Eklöf, Carl Folke, Henrik Österblom, Robert S Steneck, Matilda Thyresson,

and Max Troell. Confronting feedbacks of degraded marine ecosystems. Ecosystems,



250 REFERENCES

15(5):695–710, 2012.

Keith Oatley and Jennifer M Jenkins. Human emotions: Function and dysfunction.

Annual review of psychology, 43(1):55–85, 1992.

Atsushi Obata. Climate-carbon cycle model response to freshwater discharge into the

North Atlantic. Journal of Climate, 19:5479–5499, 2007.

Keisuke Okamura. Interdisciplinarity revisited: evidence for research impact and dy-

namism. Palgrave Communications, 5(1):1–9, 2019.

Toshinori Okuyama and J Nathaniel Holland. Network structural properties mediate the

stability of mutualistic communities. Ecol. Lett., 11(3):208–216, 2008.

Marcel GM Olde Rikkert, Vasilis Dakos, Timothy G Buchman, Rob de Boer, Leon Glass,
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Summary

Complex systems are systems whose behaviour arises from the interaction between dif-

ferent elements. The dynamics of complex systems are highly unpredictable and are

characterized by interactions on different scales and nonlinear responses. In chapter 1 I

point to how these properties complicate the analysis of complex systems. Additionally,

I explain that the analysis of complex systems requires a range of approaches, such as

simplistic models, realistic models, experiments, and time series analysis. The latter is

the focus of this thesis.

Two popular tools to analyse complex systems are resilience indicators and complexity

indicators. In chapter 2 I address the use of these indicators, with applications to systems

related to the human system, such as the heart, mood, bones and balance. I explore

how resilience indicators can be used to infer a systems capacity to recover from small

perturbations and can be used to signal upcoming ‘tipping points’ related to some diseases,

such as atrial fibrillation or depression. Complexity indicators can be used to infer when

a system looses responsiveness and can be used to infer a loss of complexity which is

related to old age and some diseases such as congestive heart failure. I propose that the

variables that constitute ‘the human system’ have different functions. Some variables

aim for homeostasis, i.e. they seek an equilibrium. For these variables, their capacity to

recover (their resilience) seems like a good statistic to quantify their functioning. Other

variables aim for high responsiveness, i.e. they need to adapt quickly in order to keep

the first variables within their healthy range. For these variables, their complexity seems

like a good statistic to quantify their functioning. Lastly, I observe that some variables

are balancing between these different functions, and therefore both indicators play an

important role to assess a person’s health.

Currently, the most popular methods to infer a system’s resilience are lag-1 autocor-

relation and the variance of a time series. As these quantification tools are based on

single time series, it is not always clear how to adapt these tools to multivariate com-

plex systems, since multivariate systems can show a different recovery pattern to different

perturbations. In Chapter 3 I propose a novel usage of a known statistical tool called

Min/Max Autocorrelation Factors (MAF). This tool was developed as an alternative to

PCA, but instead of finding the direction of highest variance (as with PCA), it finds the



direction of the highest autocorrelation. I propose that this direction of highest autocor-

relation can be used to tell which perturbation in the system is most dangerous, in the

sense that perturbations in this direction will lead to the slowest recovery of the system.

Furthermore, if the system is subject to tipping points, this ‘dangerous direction’ will

likely also be the direction where the system can most easily shift to another state.

An obvious next question is what this future state might look like. This question is

addressed in chapter 4. We use the fact that most complex behaviour, such as oscillations

or reactivity, arise from delayed negative feedbacks. Therefore, positive feedbacks, which

are at the core of mutualistic networks, are expected to give rise to relatively simple

dynamics. We find that this relative simplicity allows for extrapolation of the direction of

lowest resilience, found by PCA in this chapter, to predict the future state after a tipping

point has passed. Therefore, this tool is a valuable addition to our toolbox to analyse

complex systems as it provides a way to predict not just when something is about to

happen, but also what might happen.

A clear comparison between different multivariate indicators of resilience (of which the

indicators in chapters 3-4 are examples) is lacking. Therefore in chapter 5 I investigate

how different methods relate to one another, if there are methods that are preferred

over others and under which conditions the different methods are expected to correctly

predict an upcoming tipping point. I demonstrate that there is not one best indicator to

warn for an upcoming transition, but that instead it depends on the scenario that the

system is subject to. For instance, when data resolution is low, variance-based indicators

outperform autocorrelation-based indicators, but for systems with a complex noise regime

autocorrelation-based indicators outperform the variance-based indicators. Lastly, this

chapter demonstrates that signals can become unreliable when not all variables can be

observed. As this scenario is extremely relevant for empirical studies, where one can never

be sure that all variables are included, this suggests a cautious interpretation of all work

on multivariate resilience indicators.

In chapters 6-7 I explore the applications of time series analysis tools for complex systems

to two real world datasets. In chapter 6, I systematically analyze word-use in millions

of books from 1850-2019. I demonstrate with PCA that there are two dominant modes

of change. The first captures the general trends of world popularity over time, with on

one side words like ‘crown’, ‘iron’ and ‘wit’ and on the other side words like ‘computer’,

‘privacy’, and ‘taxi’. The second mode seems to disentangle human nature related words,

such as pronouns and emotions, from words related to rational decision, procedures and

systems. The behaviour on this second mode is remarkably similar to the sentiment of

language over time. I demonstrate that the rational/procedures/systems words show a

steady increase from 1850 onwards. This increase stagnates around 1980 and afterwards

these types of words show a clear drop. The words related to humans/emotions/sapiens

show the exact opposite behaviour. We propose that the increase of sentiment laden words



we observe in the past 20 years could be a reaction to several decades of rational thinking.

The fact that the strong increase in sentiment laden words is accompanied by an increase

in the use of facebook, suggests that this shift from rational thinking to intuitive thinking

is strengthened by the increasing popularity of social media.

In chapter 7 I use climate data of the past 800.000 years to infer causal links in the carbon

cycle. I use sediment cores to determine Ba/Fe (a proxy for biologial productivity), δ18O

(a proxy for climate and ice cover), and δ13C (a proxy for ocen ventilation) and ice cores

to determine dust and CO2 (a proxy for climate and alkalinity). One mystery of the

glacial-interglacial cycles is their saw-tooth shape of slow cooling and rapid warming.

This behaviour hints at the existence of nonlinear processes in the system, for which a

possible mechanism could be a feedback loop. As all possible links have been described,

it is hard to pinpoint the dominant drivers. Here, I demonstrate that a causal detection

method based on Taken’s theorem called convergent cross-mapping (CCM) can elucidate

causal links in the system and results in one dominant causal loop from ocean ventilation

to biological productivity to climate back to ocean ventilation. This loop forms a potential

explanation for the shape of the glacial-interglacial cycles.

In chapter 8 I reflect on the findings of the previous chapters. Furthermore, I share

my thoughts on three philosophical considerations. Firstly, I notice how the work in this

thesis, as many scientific endeavors, looks for universal patterns even though there is no

rule that states that those universal patterns exist. I speculate that perhaps scientists

are looking not only for ‘truth’ but also for ‘beauty’, and experience most beauty in

universal patterns. Secondly, I describe how many scientists are driven by curiosity and

that curiosity-based research can lead to unexpectedly far-reaching findings. However,

I observe that even though training programs seem to emphasize fundamental research

and interdisciplinarity, funding success decreases for interdisciplinary teams. I hope this

changes in the future, as all the major issues that are currently faced by science and society

require an interdisciplinary team of creative minds to be solved. Lastly, I remark how

humans are skilled in finding and explaining patterns, such that they even find and explain

patterns that do not exist. I propose that science can learn from software developers in

the sense that we should thoroughly check and test every step of the process.
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