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Abstract: Long-lasting precipitation deficits or heat waves can induce agricultural droughts, which
are generally defined as soil moisture deficits that are severe enough to negatively impact vegetation.
However, during short soil moisture drought events, the vegetation is not always negatively affected
and sometimes even thrives. Due to this duality in agricultural drought impacts, the term “agricul-
tural drought” is ambiguous. Using the ESA’s remotely sensed CCI surface soil moisture estimates
and MODIS NDVI vegetation greenness data, we show that, in major European droughts over
the past two decades, asynchronies and discrepancies occurred between the surface soil moisture
and vegetation droughts. A clear delay is visible between the onset of soil moisture drought and veg-
etation drought, with correlations generally peaking at the end of the growing season. At lower
latitudes, correlations peaked earlier in the season, likely due to an earlier onset of water limited
conditions. In certain cases, the vegetation showed a positive anomaly, even during soil moisture
drought events. As a result, using the term agricultural drought instead of soil moisture or vegetation
drought, could lead to the misclassification of drought events and false drought alarms. We argue
that soil moisture and vegetation drought should be considered separately.

Keywords: agricultural drought; soil moisture; NDVI

1. Introduction

Due to climate change and enhanced land-atmosphere feedback, droughts and their
impacts will likely become more severe over the coming decades [1–3]. Droughts are
generally considered to be induced by a precipitation deficit relative to normal conditions,
which, when persisting over longer time periods, results in insufficient water supply to
meet the demands of both human activities and the environment [4]. As a result, the
impacts of droughts can range from decreased crop yield and damage to ecosystems, to
land subsidence, insufficient drinking water, and the disruption of transport.

To monitor and quantify drought across the terrestrial part of the hydrological cycle,
numerous drought indices have been developed over the past decades. These can be
divided into indices for the three main drought types [5]. Meteorological droughts are de-
fined as a prolonged period with below-normal precipitation. These droughts are typically
quantified with the Standardized Precipitation Index (SPI) [6], reflecting the current dogma
that droughts are measured relative to the mean climate as well as the climate variability at
that location.

Meteorological droughts can propagate into hydrological droughts [7], which entail
below-normal (ground) water levels or river discharge [8], and are generally evaluated
using e.g., reservoir levels, the Standardized Runoff Index, or the Streamflow Drought
Index [4,9]. Lastly, agricultural droughts reflect droughts in the soil moisture. The few
studies that provide explicit definitions of agricultural drought, agree that it concerns a
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soil moisture deficit severe enough to hamper vegetation growth, agricultural production,
or crop yield [5,10,11].

Other definitions exist (e.g., [12]); however, these also relate the soil water status to the
(agricultural) vegetation state. Due to its direct relation to food production (through crop
yield) and water management (through irrigation), agricultural drought is often the key
focus of drought monitoring and forecasting.

In line with their definition, agricultural droughts have traditionally been quantified
based on the soil moisture conditions in the root zone (e.g., [13–16]). The well-known
and widely-used (e.g., [17,18]) Palmer Drought Severity Index (PDSI) [19] calculates a sim-
ple water budget based on the monthly values of precipitation and the potential evapo-
transpiration, in combination with parameters that have been optimized to ensure similar
PDSI values correspond to similar impacts on vegetation and crop yield even in different
climate conditions.

The development of high-resolution land surface models applied at continental scales
also allows a more physically-based alternative to PDSI, which can account for the local
soil and vegetation properties. In other cases, ranked or standardized in situ or remotely
sensed soil moisture observations have been used directly as an agricultural drought
index (e.g., [20–22]). Helped by the readily available satellite observations of vegetation in-
dices, such as NDVI, EVI, SIF, fPAR, NIRv, and VOD, other studies have focused on the use
of these vegetation indices to quantify agricultural drought [23–25].

Similarly, [26] developed two separate indices for agricultural drought monitoring:
one focused on soil moisture (SMDI), and the other on evapotranspiration (ETDI) deficits.
In other studies, other combinations were made to quantify agricultural drought, such as
precipitation, potential evapotranspiration, and soil moisture [27]. The current definition of
agricultural droughts described earlier, i.e., a soil moisture deficit severe enough to hamper
vegetation growth, thus, does not seem to be compatible with a single index that describes
either its cause (soil moisture deficit) or its impact (hampered vegetation growth).

Whereas soil moisture and vegetation-based indices both aim to quantify agricultural
drought, the relation between soil moisture and vegetation is characterized by considerable
complexity and nonlinearity. This complexity was already acknowledged late in the nine-
teenth century, when [28] stated that “a drought affecting agriculture is a complex result of
many considerations” [29]. Although combined indices have since been proposed as a so-
lution to circumvent the nonlinear relation between soil moisture and vegetation [30–32],
it is questionable whether agricultural drought and its impact can be adequately quantified
by a single normalized index across climate gradients.

From the small scale to the continental scale, distinct water- and energy-limited soil
moisture regimes can be identified [33], with the relation between soil moisture and the
evaporative fraction often being represented by a bilinear relation [34]. Above the so-called
critical moisture content, which is an absolute value of soil moisture, evapotranspiration
and plant functioning will not be limited nor affected by a lack of precipitation.

In fact, in humid climates, increased incoming solar radiation during meteorologi-
cal drought periods can even enhance evapotranspiration [35] often leading to positive
anomalies in vegetation indices, relative to the mean conditions, despite relatively dry
conditions [36–39], as illustrated in Figure 1.

We hypothesize that because of this duality in agricultural drought impacts, the use
of the term agricultural drought is ambiguous, because vegetation impacts might depend
on the absolute rather than relative soil moisture conditions, in a way that differs from
a simple delayed response. The threshold behaviour associated with the “absolute” critical
moisture content is clearly at odds with the current dogma that drought and its impacts
should be expressed relative to the mean conditions.



Remote Sens. 2021, 13, 1990 3 of 15

Figure 1. The ambiguity of agricultural drought. Normalised agricultural drought indices across
a range of climates or mean soil moisture (SM) contents can show contrasting signs due to the non-
linearity between the soil moisture and vegetation water uptake. In water-limited (arid) climates,
a normalised soil moisture drought (i.e., negative SM anomaly) will generally be accompanied by
a drought in the vegetation indices (i.e., a negative growth anomaly). In humid climates, where the
soil moisture generally does not limit the evapotranspiration and plant functioning, normalised soil
moisture indices might indicate drought, whereas vegetation indices might show positive anomalies,
as long as the soil moisture is above the absolute critical soil moisture content.

To address the issues surrounding the definition of agricultural drought, we aim to
characterize the synchrony and similarity between droughts in the soil moisture and veg-
etation using readily available long-term (2000–2018) gridded data sets of precipitation,
vegetation functioning, and remotely sensed soil moisture. We additionally aim to con-
tribute to the debate on the use of drought indices (for agricultural drought in particular),
and how routine global-scale Earth observation products can be used for this.

The relation between soil moisture and vegetation during drought periods has been
studied [40–44], and significant correlations have been found, in addition to a lag be-
tween the soil moisture and vegetation response [41,42], especially in water-limited ecosys-
tems [43]. Such lags are not expected in humid areas where the soil moisture content,
though relatively low, might not decrease below the absolute critical moisture content.

Based on the aforementioned studies, and the concept of critical soil moisture [20,33],
we hypothesize that the link between soil moisture and vegetation droughts is more
direct in the water-limited Mediterranean region, whereas a more complex behaviour is
expected in the more humid Northern Europe depending on the intensity and duration
of the drought. Though a move toward the more unambiguous separate use of the two
drought types has started over the past years (e.g., [45]), there are ongoing challenges
related to the understanding, quantification, and operational monitoring of agricultural
drought at larger (sub)continental scales that encompass a range of climate conditions.

Here, we investigate the relation between the surface soil moisture and vegetation
drought, as observed in negative (<−1) anomalies in soil moisture and NDVI from routine
and widely-used Earth observation products. We investigate six widespread meteorological
drought events that occurred over the past two decades in Europe, including the severe
2003 and, more recent, 2018 events, that occurred in water- as well as energy-limited regions.
In addition, we critically evaluate the practice of using soil moisture to predict the observed
agricultural drought (i.e., the vegetation impact) (e.g., [13,16,46–48]).
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2. Data and Methods
2.1. Data

Daily remotely sensed surface soil moisture (SM) data were obtained from the ESA
Climate Change Initiative Combined soil moisture data set (ESA CCI SM v04.5) [49–51],
with a 0.25° resolution, spanning January 1979 until December 2018. The combined CCI
algorithm includes the masking of uncertain soil moisture estimates, for instance in the case
of frozen soil, water bodies, or dense vegetation [52], though masking can be insufficient at
times [53]. The information contained in the satellite soil moisture data mainly contains the
surface soil moisture content, rather than the root-zone soil moisture content [42], where
the latter has a more direct impact on the vegetation performance.

Regardless, remotely sensed data were deemed the most suitable for this study due
to the long time period and large spatial scale of the analysis, and the unavailability
of root zone soil moisture measurements on such scales. Existing large scale root zone
soil moisture data sets are either inferred from surface soil moisture using land surface
models (e.g., [54–56]) or using water balance models (e.g., [57–59]). For a comparison
between the performance of modelled soil moisture and satellite soil moisture products,
we refer to [60].

As we used the surface soil moisture rather than the root zone soil moisture, the possi-
bility exists that we overestimated any observed asynchrony between the water content
and vegetation. This will be accounted for in the discussion of our results. The monthly
precipitation data were collected from the NASA GPM IMERG final precipitation L3 data set
with a 0.1° spatial resolution [61,62] from June 2000 until February 2020.

The monthly Normalized Difference Vegetation Index (NDVI) data were gathered
from the MODIS data set on a monthly timescale with a 0.05° resolution, spanning February
2000 to December 2018 (MODIS MOD13C2) [63,64]. Although MODIS vegetation indices
are available on a 16-day resolution, we opted for a monthly mean rather than a temporal
composite, to have a more consistent sensing date throughout the data set.

In addition to the NDVI—a measure for the amount of live green vegetation and, thus,
the crop health [65]—numerous other products exist that reflect the vegetation water status
and/or productivity. These include other indices based on optical (NIR, RED, and BLUE)
imagery (e.g., NIRv and EVI) or on microwave data (e.g., VOD). Though each of these
different indices might produce slightly different results in this analysis, their application
should not affect the fundamentally different response of the soil moisture and vegetation
to meteorological drought.

Soil moisture and vegetation data were spatially and temporally resampled to the low-
est spatial and temporal resolution and time span of both data sets, resulting in a monthly
0.25° resolution from 2000 to 2018, and cropped to our European study area
(11◦W–45◦E, 35–72◦N). On this time scale, we assumed that large-scale patterns in both the
soil moisture and vegetation would remain similar, although lags between the surface soil
moisture and vegetation patterns were expected [22] due to travel time toward the root
zone. The main vegetation evolution occurs on a monthly timescale, not on a day-to-day
basis, as near-surface soil moisture does. For comparison purposes, the monthly timescale,
which is common in drought analyses, is, thus, more appropriate.

Both the soil moisture and NDVI data sets were then masked to only include grid
cells where at least 80% of the area was covered by agricultural activities, to ensure any
ambiguity based on land cover was removed from the equation. The 80th percentile was
chosen as a trade-off between sufficient agricultural areas and a sufficient number of grid
cells in the resulting mask. The 2018 ESA CCI land cover map [66] was used as the basis of
the mask. The categories included in the present analysis are rainfed, irrigated, and mosaic
cropland and grassland (IDs 10, 11, 12, 20, 30, and 130), resulting in the mask shown
in Figure S6. All of the used data sets have been extensively validated (e.g., [60,67–70]);
therefore, a validation was not conducted here.
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2.2. Drought Event Selection

To study the relation between negative soil moisture and vegetation anomalies,
growing seasons where significant precipitation deficits occurred were selected based
on the 6 month aggregated Standardized Precipitation Index (SPI6) [6]. The SPI6 was com-
puted from the precipitation data (Section 2.1) contained in our reference period (2000–2018)
using a Gamma distribution. The SPI6 in September of each year was compared, as that
reflects the integrated precipitation deficit over a typical growing season (Apr–Sep).

A fixed growing season was chosen for the drought event selection, though we are
aware that differences exist in the onset of the growing season, when high and low lat-
itudes are compared. This will be accounted for in the discussion of the results. Inter-
connected grid cells over relatively large areas with a moderate to extreme precipitation
deficit (SPI6 < −1) [71] were chosen, resulting in the six selected seasons/areas as indicated
in Figure 2: the 2002 precipitation deficit over the Baltic states and north-western Rus-
sia [72], the 2005 event on the Iberian Peninsula [32] and the infamous 2003, 2015, and 2018
events over central Europe [73–75]. Due to the large north–south extent of the 2018 event,
this event was split into two parts (hereafter referred to as “2018N” and “2018S”). Grid
cells in these selected areas were then used for further analysis as discussed below.
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Figure 2. Properties of the selected summer droughts. Left: the location and spatial extent, right:
SPI6 over the selected growing season (red), compared to the distribution of SPI6 in the remaining
growing seasons for the same region.

2.3. Analysis

To allow for a fair comparison between anomalies of different variables, and to remove
seasonal variations from the drought definition, the data were normalized by subtracting
the long-term monthly mean from the SM/NDVI at each time step in a grid-wise manner,
and subsequently dividing by the long-term (2000–2018) monthly standard deviation. This
resulted in values between approximately −3 and +3, indicating negative and positive
anomalies, respectively, which can be directly compared with SPI6.

Other indices, such as the ESSMI [15] for soil moisture data, or the VCI [76] for NDVI
data, are available and comparable to normalization; however, a more general approach
was adopted here to increase the comparability of two different variables. We recognized
anomalies in SM (SMA) and NDVI (NDVIA) below −1 as grid cells in soil moisture drought
and vegetation drought, respectively, to include moderate, severe, and extreme droughts
in the analysis [71]. To account for seasonality in the variables, data for each month of
the year were taken separately, and grid cells with less than 7 data points were removed
from the analysis.

After the data normalization, for agricultural grid cells belonging to each event,
the percentage of the selected grid cells in drought was determined for each variable. Then,
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for each selected grid cell in each event and time step, the Pearson correlation between
SMA and NDVIA was quantified. While correlation is useful for an overview of the
similarity between two variables, it is not sensitive to bias or scale errors [77,78]. Skill
scores, on the other hand, provide a more in-depth and well-rounded view on the use of
soil moisture as a predictor for agricultural impact.

As soil moisture indices are often used as a proxy for vegetation drought (e.g., [13–16]),
predictions using soil moisture drought are implicitly assumed to be skilful. Therefore,
the number of Hits (H), Misses (M), Correct Rejections (CR), and False Alarms (FA) were
determined for a case where the soil moisture drought (SMA < −1) was used to predict
the vegetation drought (NDVIA < −1). These were used to compute five different skill
scores, each highlighting a different aspect of the prediction accuracy. First, the Frequency
Bias (FB) is given by:

FB =
H + FA
H + M

(1)

and expresses the difference between the mean drought frequencies. Next, the Frequency of
Hits (FOH) is a measure of discrimination that shows the fraction of forecasted vegetation
droughts that were correct, which is given by:

FOH =
H

H + FA
(2)

The Frequency of Misses (FOM) is given by:

FOM =
M

H + M
(3)

and expresses the fraction of observed vegetation droughts that are incorrectly forecasted
by the soil moisture drought. The Hanssen–Kuipers score (HK) [79] measures the ability of
the soil moisture drought to discriminate between (or correctly classify) vegetation drought
events and non-events:

HK =
H

H + M
− FA

FA + CR
. (4)

Lastly, the Odds Ratio (OR) [80] is used to measure the strength of the association
between soil moisture and vegetation drought:

OR =
H · CR
FA · M

. (5)

We refer to [81] for an overview of these skill scores as well as their advantages
and disadvantages.

3. Results

A general check of the full data time series, including all land cover types, revealed
that, during each event, asynchronies between the spatial patterns in the soil moisture
and vegetation anomalies were widespread. Figure 3 shows the spread of different drought
types during the 2015 growing season and serves as an illustration for these asynchronies,
which occur in all green and purple grid cells (See Figures S1–S5 for other events).

Regionally more humid areas, such as mountain ranges and high latitude regions,
can be easily distinguished by their relatively low Pearson correlations between the soil
moisture and NDVI anomalies (Figure S7), in line with our hypothesis where we suggest
that low correlations could be found in energy-limited regions, though other factors may
play a role in this correlation, such as high local heterogeneity in the topography, soil
moisture, and other vegetation types, as compared to the remaining region. Furthermore,
correlations between the anomalies were low in April and generally increased toward
September; however, in some areas, the correlations peaked in August.
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Figure 3. Synchrony between the soil moisture and vegetation droughts during the 2015 growing season
in the agricultural grid cells. Note the asynchronous development of soil moisture and vegetation
drought, with soil moisture drought dominating in May–June, and vegetation in April and September.
Similar figures for the other drought events are included in the Supplementary Materials (Figures S1–S5).

Not all of the six studied events were equally affected by deficits in SM and/or NDVI.
A comparison between drought extents using the fractions of the area affected by a soil
moisture and/or vegetation drought is provided in Figure 4. The 2002, 2015, and both
2018 events are characterised by a clear overlap between the “NDVI” and “Both” lines,
indicating that an area affected by a vegetation drought also has a soil moisture drought.
Interestingly, in 2003 and 2005, some vegetation droughts occurred in the absence of a soil
moisture drought.
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Figure 4. The growing-season evolution of the percentage of area in soil moisture and/or vegetation
drought in the selected agricultural grid cells in each studied meteorological drought event. Panels
show the six events, where the vegetation (NDVI, green) and soil moisture (SM, purple) grid cells
in drought (defined as an anomaly <−1) are shown separately, as well as the percentage of grid cells
affected by droughts in both variables simultaneously (orange).

Figure 5 shows the severity of each drought event for both the vegetation and soil
moisture and the Pearson correlation between NDVIA and SMA. Asynchrony between
the two variables is visible in the irregular shape of the arrows and the deviation of
the linear regression from the 1:1 line. Generally, a delay can be distinguished between the
negative SMA and NDVIA values. This delay was expected as discussed in Section 2.1.
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Interestingly, positive anomalies were more common in NDVIA than in SMA, showing
that soil moisture droughts do not always negatively affect vegetation, and can sometimes
even coincide with the opposite, i.e., positive, impacts in vegetation. High monthly
correlations between SMA and NDVIA generally occurred later in the growing season
as shown by yellow colours in Figure 5. For example, in the 2002 event, the NDVIA-SMA
correlation increased from −0.45 in May to 0.68 in July, and correlations in the 2003 (2005,
2015, 2018N, and 2018S) event peaked in September (Sep, Aug, Sep, and Jul), at 0.51 (0.49,
0.68, 0.77, and 0.71).

2015 2018N 2018S
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Figure 5. The relations between anomalies in the soil moisture (SM) and vegetation (NDVI). Pan-
els show the six drought events, with both soil moisture and vegetation drought defined when
the anomaly <−1. The point density in the background indicates the number of grid cells with
a certain combination of anomalies in soil moisture and vegetation. The centroids of each month are
chronologically connected with an arrow and shaded by the Pearson correlation in that month if
p ≤ 0.05.

Given the clear asynchrony and discrepancy in the soil moisture and vegetation under
water-limited conditions, it is relevant to question how well soil moisture-based indices,
such as the widely-used SSMI and PDSI, perform when targeting to quantify vegetation
drought. The skill scores of the agricultural drought impacts, as reflected in NDVIA < −1
and as predicted using SMA < −1, are shown in Figure 6. From the low density of
lines in the parts of the skill score plots shaded green, it is clear that the overall skill was
rather low.

Similar to the Pearson correlation, the skill scores generally increased in August. Over-
forecasting, i.e., when more droughts were forecasted using soil moisture than there were
droughts observed in vegetation, as seen in a FB > 1, generally occurred in the begin-
ning of the growing season, whereas underforecasting (FB < 1) occurred near the end of
the growing season. The respective increase and decrease in FOH and FOM show the result
of the changing frequency bias.

The HK, showing the accuracy of events minus the accuracy of non-events, was rather
stable throughout the growing season although it peaked in the second half as did the OR,
which showed the number of correct forecasts. None of the drought events stood out in all
of the skill scores. A sensitivity analysis showed that different thresholds for the drought
selection and skill scores did not substantially change the results.
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Figure 6. Skill scores for the soil moisture drought as a proxy for vegetation drought. The background
colours indicate the quality of the skill scores (see Methods for their description), and the lines show
different drought events.

4. Discussion
4.1. Soil Moisture Regimes

Our results showed that, in some cases, most notably during the 2003 and 2005
meteorological droughts, vegetation growth was not obviously limited by the current
water content but possibly by other factors, such as the energy, heat stress, antecedent low
soil moisture conditions, or pests and diseases. Since these events were located further
south than most other selected events, energy limitations could be ruled out. Heat stress
could well have been the limiting factor for vegetation, as well as antecedent soil moisture
(Figures S9–S12).

Additionally, we showed, using a correlation analysis, that a general pattern in which
NDVI remains largely unaffected by small anomalies in the SM content when vegetation is
energy limited as is often the case at the start of the growing season. Under water-limited
conditions, which are more likely to occur near the end of the growing season, higher
correlations were found, consistent with the results of [36]. The southernmost 2005 event
is the only event in which correlations peaked early in the season, which can be related
to the water-limited conditions that are likely to occur earlier in the Mediterranean than
in the geographic locations of the other events.

The extremely low correlations in the beginning of the 2002 event might also have been
caused by the low temperatures that can occur early in the year in these latitudes, under
which soil moisture estimates are highly uncertain [52,53], and the growing season might
not have started. Finally, the skill scores were generally found to improve in the second
half of the growing season; however, we expect the usefulness of end-of-season NDVIA
prediction to be limited for agricultural purposes. These results do confirm our hypothesis
that there is a more direct link between the soil moisture and vegetation state under water-
limited conditions, i.e., when the available water content is below the critical soil moisture,
although this is only the case at the end of summer, instead of solely being related to
geographical location.
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4.2. Data Sets

The complexity of agricultural droughts is not a local or regional issue but a global
one and, thus, should be considered that way. While this study was performed over
the European continent, it covers a range of climates found around the globe, from arid
regions in the Mediterranean to boreal regions in northern Scandinavia. It is therefore
expected that the behaviour will be similarly asynchronous in other regions. The limitations
of this approach are on a local scale, rather than a global scale, due to the low spatial
resolution of the analysis. Even though each data set was carefully selected based on the
length, spatial resolution, and validation results over Europe, resulting in a selection of
data sets best suited for this analysis, uncertainties are inherent to any type of data, and the
results should, therefore, be interpreted with care.

In complex landscapes, high-resolution information can sometimes reveal a range
of anomalies, even containing contrasting signs that are not visible at a coarser scale [82].
The normalising of the soil moisture data in this study can be criticised, because soil
moisture data can show bimodality [83,84]. In addition, a data set length of 18 years can
be considered short when compared to the traditional 30-year reference period as recom-
mended by the WMO [85].

On the other hand, uncertainties due to areal properties are decreased, because the
grid cell values are compared to other values of the exact same grid cell, while the resulting
anomalies can easily be compared to other grid cell values. This, next to the possibility to
fairly compare different variables, led to the decision to use a standard normalisation for
both the vegetation and soil moisture data, regardless of the method’s limitations.

In this research, we used available long-term satellite records of soil moisture and NDVI.
Whereas current satellite soil moisture products are limited to the soil surface, a soil mois-
ture drought assessment is ideally based on observations over the entire root zone. How-
ever, such observations are currently only available in several regional-scale observation
networks [86]. By opting for surface soil moisture estimates rather than root zone soil
moisture data, we performed this study using observations only.

On the other hand, the asynchrony between the surface soil moisture and vegetation
index is likely larger than the asynchrony between the root zone soil moisture and vegeta-
tion, and thus asynchronies found here might be overestimated. For that reason, a skill
score analysis was performed with a one month lag in the surface soil moisture (to account
for the travel time to the root zone), which did not show large differences compared to
the analysis presented in this paper (Figure S8).

4.3. Separating Soil Moisture and Vegetation Droughts

The inherently complex and nonlinear relation between soil moisture and vegetation
status has important implications for drought monitoring where a distinction is tradition-
ally made between meteorological, agricultural, and hydrological drought events. Though
it might seem to be a logical step, based on our results, to redefine agricultural droughts
from the traditional definition as a soil moisture drought, to be identical to vegetation
droughts, this would disregard any information contained in the soil moisture anomalies.

For instance, it would be unclear whether any negative vegetation anomalies are
caused by water stress, or by other factors, such as diseases or heat stress. We, therefore,
argue that a distinction is necessary between soil moisture drought (reflecting water status)
and vegetation drought (reflecting the impact of the drought on vegetation). This is
particularly true when evaluating droughts across climate zones. The distinction between
soil moisture drought and vegetation drought is important because shorter soil moisture
droughts can even have a positive rather than negative impact on productivity, thus, risking
the misclassification of drought events and false drought alarms.

5. Conclusions and Outlook

Agricultural droughts are generally quantified using anomalies in soil moisture;
however, our results show that a clear asynchrony and discrepancies existed between the
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surface soil moisture drought and the impact of these droughts on vegetation. Occasionally,
soil moisture droughts even coincided with positive anomalies in the vegetation. In some
of the studied events, a vegetation drought could not be attributed to a soil moisture
drought alone.

While the asynchrony of soil moisture and vegetation droughts is not a novel find-
ing (e.g., [22]), the term agricultural drought is still being used as a synonym for soil
moisture drought (e.g., [13,16,46–48]). To overcome this duality in the definition of agricul-
tural droughts and to prevent false drought alarms, drought monitoring and prediction
may benefit from a move away from the combined term agricultural drought (which can lead
to confusion between soil moisture and vegetation effects) toward two separate terms: soil
moisture drought and vegetation drought, each with their own indices and use in drought
monitoring and forecasting.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/10/1990/s1, Figures S1–S5: Illustrations of each drought event. Figure S6: Grid cells included
in the analysis. Figure S7: Spatial overview of correlation between soil moisture and NDVI anomalies.
Figure S8: Skill score analysis with a one month lag. Figures S9–S12: Average time series of soil
moisture (anomalies) and NDVI (anomalies) prior to and during the drought events.
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