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In the past decades, genomic prediction has had a large impact on plant breeding. Given
the current advances of high-throughput phenotyping and sequencing technologies, it is
increasingly common to observe a large number of traits, in addition to the target trait of
interest. This raises the important question whether these additional or “secondary” traits
can be used to improve genomic prediction for the target trait. With only a small number
of secondary traits, this is known to be the case, given sufficiently high heritabilities and
genetic correlations. Here we focus on the more challenging situation with a large number
of secondary traits, which is increasingly common since the arrival of high-throughput
phenotyping. In this case, secondary traits are usually incorporated through additional
relatedness matrices. This approach is however infeasible when secondary traits are
not measured on the test set, and cannot distinguish between genetic and non-genetic
correlations. An alternative direction is to extend the classical selection indices using
penalized regression. So far, penalized selection indices have not been applied in a
genomic prediction setting, and require plot-level data in order to reliably estimate genetic
correlations. Here we aim to overcome these limitations, using two novel approaches.
Our first approach relies on a dimension reduction of the secondary traits, using either
penalized regression or random forests (LS-BLUP/RF-BLUP). We then compute the
bivariate GBLUP with the dimension reduction as secondary trait. For simulated data
(with available plot-level data), we also use bivariate GBLUP with the penalized selection
index as secondary trait (SI-BLUP). In our second approach (GM-BLUP), we follow
existing multi-kernel methods but replace secondary traits by their genomic predictions,
with the advantage that genomic prediction is also possible when secondary traits are
only measured on the training set. For most of our simulated data, SI-BLUP was most
accurate, often closely followed by RF-BLUP or LS-BLUP. In real datasets, involving
metabolites in Arabidopsis and transcriptomics in maize, no method could substantially
improve over univariate prediction when secondary traits were only available on the
training set. LS-BLUP and RF-BLUP were most accurate when secondary traits were
available also for the test set.
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FIGURE 2 | Accuracy of genomic prediction methods in scenario 1, which for each value of A is estimated from 50 simulated data-sets (standard errors between 0.011

and 0.042). “GBLUP” is the univariate GBLUP, and the benchmark is the multivariate GBLUP based on Y4, ..., Y4, using the true (simulated) values of the variance
components (see section 2.8.1). Acronyms of the other methods are given in section 2; they use all secondary traits (Y2, . .., Yao01), without knowledge of (Yz, Y3, Ya)
being causal. A is the size of the causal effect of (Y2, Y3, Y4) on Yi. pg is the correlation between the direct genetic effects on Yi, ..., Yy; similarly, pe is the correlation

between the non-genetic effects. The total genetic correlation is function of A and pg. (A) pg = 0.5, pr = —0.5, (B) pg = 0, pe = 0, and (C) pg = 0.5, pr = 0.5.
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FIGURE 3 | Accuracy of genomic prediction methods in scenario 2, which for each value of A is estimated from 50 simulated data-sets (standard errors between 0.014
and 0.051). “GBLUP” is the univariate GBLUP, and the benchmark is the multivariate GBLUP based on Y4, ..., Y4, using the true (simulated) values of the variance
components (see section 2.8.1). Acronyms of the other methods are given in section 2; they use all secondary traits (Y», . .., Ya01), without knowledge of (Ya, Y3, Ya)
being causal. 1 is the size of the causal effect of (Y2, Y3, Y4) on Yi. pg is the correlation between the direct genetic effects on Y4, ..., Yy; similarly, pg is the correlation
between the non-genetic effects. The total genetic correlation is function of A and pg. (A) pg = 0.5, pr = —0.5, (B) pg = 0, pc = 0, and (C) pg = 0.5, pr = 0.5.
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3.2. Arabidopsis and Maize Data

Tables 1, 2 contain the accuracies for datasets 1-4 described
above, averaged over randomly sampled test sets (see section
2). Because the original individual plant (or plot) data were not
available, we could not compute the SI-BLUP here.

In scenario 1 (Table 1), none of the multi-trait methods
performed consistently better than univariate GBLUP. For the
second trait in data-set 1 (Salt5), RE-BLUP had accuracy 0.09, vs.
0.03 for univariate GBLUP; the latter had highest accuracy for the
first and third trait in dataset 1 (fungus, and drought and fungus
stress combined).

The remainder of this section we focus on scenario 2 (Table 2),
in which there were more substantial differences among methods.
For all datasets, methods based on multiple relatedness matrices
(Multi-BLUP and GM-BLUP) had accuracies similar to single-
trait GBLUP. As in the simulations, GM-BLUP gave only a
minor (if any) improvement over Multi-BLUP. The approaches
based on dimension reduction of the secondary traits (LS-BLUP
and RF-BLUP) appeared to give a substantial improvement over
univariate GBLUP, e.g., from r = 0.03 to r = 0.23 (LS-BLUP)
for the Salt5 trait in data-set 1, or from r = 0.55 to r = 0.65
(RF-BLUP) for Maize yield in data-set 3, with transcriptomics as
secondary traits.

LS-BLUP had the highest accuracy in all Arabidopsis datasets,
with a small but consistent improvement over RE-BLUP (0.02—
0.03 higher), also when optimized with the caret/scikit-learn
packages. This hyperparameter optimization appeared to be
rather important for the Maize data; using the default settings
from the randomForest package (as in the simulations), accuracy
was considerably lower (for yield and the transcripts for example,
r=0.65vs.r = 0.51).

For the maize data, RF/LS-BLUP improved accuracy for yield
from around 0.64 — 0.65 to 0.71 — 72 when plant height and
flowering time were included as secondary phenotypes, together
with the transcriptome data. None of the other methods could
exploit the additional data, and accuracies were similar to those
obtained with the transcripts alone. Prediction based on the
secondary traits alone (M-BLUP) had around zero accuracy in
all Arabidopsis data-sets, but r = 0.49 — 0.54 for the maize data,
similar to GBLUP and multi-BLUP.

4. DISCUSSION

Given the importance of genomic selection in plant breeding and
the rapid development of phenotyping technology, it becomes
increasingly important to know if and how the availability of
additional phenotypic traits can improve prediction accuracy for
a target trait. Here we proposed new methods to incorporate
large numbers of such additional traits in genomic prediction,
and compared these to existing methods, in simulated and real
data. In many of the simulated data-sets, some of our methods
indeed greatly improved univariate genomic prediction. In these
cases, the accuracy was often close to that of penalized selection
indices, without requiring plot-level data. In other cases, none
of the methods did very much better than univariate prediction,
while the multi-trait benchmark indicated that there is in fact

scope for improvement. This happens especially when genetic
and residual correlation have opposite sign. Moreover, our study
indicates that current methods do not perform well when the
secondary traits are available only on the training set (i.e., in
scenario 1): while there was often some improvement in many
of the simulations, accuracy in scenario 1 was hardly improved
for any of the real data-sets.

While scenario 1 is probably most common, scenario 2
(secondary traits being also observed for the test set) may
arise in a number of applications. In particular, it has become
increasingly common to screen large collections for metabolites
or other types of -omics data, and scenario 2 may also arise
in a biomedical context when biomarkers could be used to
predict disease. Our results for various stress traits in Arabidopsis
showed that metabolites can indeed improve accuracy, even if
they were measured in a different study. While Multi-BLUP and
the LS- and RF-BLUP require balanced data, the GM-BLUP is
more flexible, and can also handle an intermediate scenario where
only some of the secondary traits are measured for all (or some
of) the test genotypes.

Except SI-BLUP, all methods implicitly assume a causal
relationship between the secondary traits and the target trait.
In our simulations, accuracy was indeed suboptimal when this
relationship was weak or absent. However, in these cases the SI-
BLUP often performed poorly as well. The accuracy of LS-BLUP
and RF-BLUP may be improved if one could successfully address
the following two artifacts. First, the dimension reduction and
genomic prediction should ideally be carried out on different
subsets of the training set. In the populations we considered here,
this however led to poor estimation of variance components and
lower accuracies, because of the relatively small population size.
We therefore used the whole training set for both dimension
reduction and genomic prediction. The advantage of a larger
training set seems to outweigh the incurred overfitting, but this
may be different for larger populations, in which case sub-
sampling strategies like bootstrap aggregation (bagging) might be
useful. Second, specifically for LS-BLUP, the cross-validation in
the first (dimension reduction) step appears to select too many
variables. Often, this may still result in an accurate prediction
Y, on the training set, but for the prediction of breeding
values on the test set that leads to overfitting. The methodology
implemented in the hdi-package (Dezeure et al, 2015) might
resolve this issue, by first assessing significance of secondary
traits. Such improvements should at least guarantee an accuracy
that is never (much) below that of univariate GBLUP. Finally,
a remaining limitation of RE-BLUP and LS-BLUP is that the
dimension reduction relies on phenotypic rather than genetic
values, which is likely to stay sub-optimal in case genetic and
residual correlations have opposite sign.

We attempted to improve existing multi-kernel methods with
our GM-BLUP approach, replacing secondary traits by their
genomic predictions. Unfortunately, this led to only minor
improvements. In case secondary traits have high heritability,
there is little shrinkage and genomic predictions and trait
values are highly correlated, leading to similar accuracies. In
case secondary traits have lower heritabilities, the methods may
potentially differ more, but at the same time, in such a scenario
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TABLE 1 | Prediction accuracy in scenario 1, for various target and secondary traits in Maize and Arabidopsis.

Data sets Target trait Secondary phenotypes GBLUP GM-BLUP LS-BLUP RF-BLUP RF-BLUP*
1 Number of spreading lesions Metabolites 0.23 0.22 0.20 0.21 0.21
under fungus stress
Fresh weight of the rosette Metabolites 0.03 0.00 0.07 0.09 0.09
under Salt_5 stress
Number of spreading lesions Metabolites 0.19 0.18 0.16 0.16 0.15
under Drought_and_fungus stress
Number of damaged leaves and Metabolites 0.10 0.09 0.06 0.10 0.10
feeding sites under Caterpillar_3 stress
Fresh weight Metabolites 0.30 0.30 0.29 0.30 0.30
Flowering time (FT) [4] Transcripts 0.54 0.55 0.55 0.53 0.55
Plant height (PH) Transcripts 0.54 0.55 0.55 0.53 0.51
Yield Transcripts + FT+PH 0.53 0.53 0.54 0.52 0.52
Yield Transcripts 0.55 0.55 0.55 0.55 0.55

Acronyms of the methods are as in Figures 2, 3. For RF-BLUP*, we used the randomfForest package with the default settings; for RF-BLUFR, hyper-parameters were optimized using the
caret package (data-sets 1 and 2) or scikit-learn (data-set 3). For data-sets 1 and 2, reported accuracies are averages over 160 test sets (standard errors between 0.006 and 0.007),
except for RF-BLUR, where 50 sets were used (SE between 0.010 and 0.074). In dataset 3, 30 test sets were used for all methods (SE between 0.006 and 0.03).

TABLE 2 | Prediction accuracy in scenario 2, for various target and secondary traits in Maize and Arabidopsis.

Data sets Target trait

Secondary phenotypes GBLUP M-BLUP Multi-BLUP GM-BLUP LS-BLUP RF-BLUP RF-BLUP*

1 Number of spreading lesions Metabolites
under fungus stress
Fresh weight of the rosette Metabolites
under Salt_5 stress
Number of spreading lesions Metabolites
under Drought_and_fungus stress
Number of damaged leaves and Metabolites
feeding sites under Caterpillar_3 stress
Fresh weight Metabolites
Flowering time (FT) [4] Transcripts
Plant height (PH) Transcripts
Yield Transcripts + FT+PH
Yield Transcripts

0.23 —0.04 0.21 0.22 0.31 0.28 0.28
0.03 0.09 0.08 0.07 0.23 0.20 0.19
0.19 —0.02 0.16 0.17 0.27 0.25 0.23
0.10 0.05 0.06 0.07 0.14 0.12 0.11
0.30 0.00 0.29 0.30 0.32 0.30 0.28
0.55 0.54 0.55 0.55 0.66 0.65 0.54
0.54 0.53 0.54 0.55 0.66 0.64 0.53
0.53 0.49 0.50 0.52 0.72 0.71 0.49
0.55 0.52 0.53 0.54 0.64 0.65 0.51

Acronyms of the methods are as in Figures 2, 3. For RF-BLUP*, we used the randomfForest package with the default settings; for RF-BLUFR, hyper-parameters were optimized using the
caret package (data-sets 1 and 2) or scikit-learn (data-set 3). For data-sets 1 and 2, reported accuracies are averages over 160 test sets (standard errors between 0.006 and 0.012),
except for RF-BLUR, where 50 sets were used (SE between 0.010 and 0.074). In dataset 3, 30 test sets were used for all methods (SE between 0.006 and 0.03).

there is much less scope for improvement with multi-trait
methods in the first place. Both Multi-BLUP and GM-BLUP were
often less accurate than competing methods. To some extent
this may be explained by the absence of variable selection, or,
compared to RF-BLUP, the assumed linearity. Nonetheless, GM-
BLUP extended the use of Multi-BLUP to scenario 1, without ever
being less accurate.

For the case of a single secondary trait, Runcie and Cheng
(2019) studied the bias in accuracy estimates, when these are
based on the correlation with the observed phenotype, rather
than with the (unobserved) genetic effect. This can become
problematic when traits are measured on the same plants, in
which case the amount of bias is likely to vary among methods,
in particular when residual correlations between the target and

secondary traits are large. For the Arabisopsis and maize data
considered here, the bias should be constant, as all target and
secondary traits were measured on different plants. No bias
occurred for the simulated data, where we used the true genetic
values to assess accuracy. Nevertheless, further work is needed
to extend the methods presented here with reliable estimates of
accuracy, also in the case of traits measured on the same plants.
For the LS-BLUP, RE-BLUP and SI-BLUP, the parametric and
semi-parametric accuracy estimates of Runcie and Cheng (2019)
can in principle be computed, since all these methods reduce the
dimension of the secondary traits to one. This would however
require the sample-splitting or bagging schemes mentioned
above, and it is an open question how the different accuracy
estimates should be aggregated.
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Statistical methods for high-dimensional data often benefit
from initial screening, for example by removing variables with
very low marginal correlation (see e.g., Fan and Lv, 2008). In
the present context, screening should be based on heritability
and genetic correlation with the target trait. This is however
difficult for several reasons. First, as pointed out before, reliable
estimates of these correlations require plot-level data, at least for
the population sizes considered here. Moreover, bivariate mixed
models need to be fitted for each secondary trait, increasing
computation time. A more fundamental problem is that even
if accurate estimates were available, it would be difficult to
formulate an appropriate criterion and threshold. The well-
known criterion for a single secondary trait (whose heritability
times the squared genetic correlation with the target trait
should exceed the heritability of the latter) cannot directly be
generalized. For example, in one of our simulation settings (i.e.,
with A = 0 and pg = 0.5), each of the three relevant secondary
traits (Y2, Y3, Yy) has heritability 0.7, the heritability of the target
trait being 0.2. Consequently, we have 0.7 x p2 < 0.2 for each
secondary trait individually, while at the same time genomic
prediction using a mixed model for Y — Yy is more accurate than
with a mixed model for Y] alone.

More generally, the methods presented here could be extended
in several ways. First, for all of them, prediction relies on the
GBLUP: either bivariate GBLUP, or univariate GBLUP extended
with additional relatedness matrices. This corresponds to a
Gaussian prior on the marker effects, which could be generalized
to a mixture of Gaussians and a point mass at 0, as for example
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