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Abstract
Forests play an important role in maintaining rainfall patterns worldwide by recycling water back
to the atmosphere through evapotranspiration. We present a novel spatiotemporal data-driven
model and assessment of the impacts of various deforestation scenarios on rainfall patterns in
sub-Saharan Africa, where rainfed agriculture is the main source of income and provides food for a
large part of the population. Our model is based on the convolutional long short term memory
neural network and uses a combination of climate and vegetation time-series data to predict
rainfall and to perform simulation experiments. Our results show that complete deforestation (i.e.
conversion of all humid forests to short grasslands) would greatly reduce rainfall magnitude in the
deforested areas. Above the equator, the large majority of areas not currently forested would also
receive less rainfall. However, complete deforestation would slightly increase rainfall in some parts
of Southern Africa and decrease it in other parts. The impacts of partial deforestation also differ
across Africa. In West Africa, even moderate tree cover loss (i.e. 30%) reduces rainfall magnitude
whereas in Central and Southern Africa, a threshold of 70% tree cover loss is required to reduce
rainfall magnitude. Deforestation of remaining humid rainforest areas is thus likely to dramatically
affect rainfed agriculture across the continent, in particular in the maize-based cropping systems
north of the equator.

1. Introduction

There is increasing evidence that deforestation affects
rainfall patterns (Lawrence and Vandecar 2014,
Spracklen and Garcia-Carreras 2015, Van Noord-
wijk and Ellison 2019). Forests have evapotranspir-
ation rates that are high compared to other ecosys-
tems and thereby recycle rainfall back into the atmo-
sphere where it becomes available to form clouds and
forms new rainfall (Ellison et al 2017). In addition,
forests affect cloud formation by releasing volatile
organic compounds that form nuclei for raindrops
(Kavouras et al 1998, Riccobono et al 2014). Finally,
forests lead to local cooling, affecting turbulence and
cloud formation (Li et al 2015). Consequently, the
transformation of forests to other land-use types
changes rainfall patterns. The effects of deforesta-
tion are noticeable at watershed to continental scales,
with changes in forests in one country or watershed

potentially affecting rainfall in other countries or
watersheds (Wang-Erlandsson et al 2018).

Deforestation has been forecasted to lead to lower
rainfall in the Amazon (Salazar et al 2015), and has
been linked to decreases in rainfall in eastern Aus-
tralia (McAlpine et al 2009), Kalimantan (McAlpine
et al 2018) and West Africa (Zeng 2003). However,
for most of Africa, the effect of deforestation on
rainfall has not yet been modelled, even though it
has been postulated that deforestation in the west-
ern part of Central Africa affects rainfall in the Nile
Basin (Gebrehiwot et al 2018). Across Africa, rain-
fall is derived from water evaporated in the Atlantic
or Indian Ocean and the major lakes spread across
the continent, or water resulting from evapotranspir-
ation in Africa’s humid ecosystems, in particular, the
Central African rainforest. As elsewhere in the trop-
ics, deforestation in Africa is rapid, and a major share
of forests in West Africa have already been lost. In
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relative terms, the forests of Central Africa, especially
in the Democratic republic of Congo and the Repub-
lic of Congo have been comparatively well preserved
(Hansen et al 2013, Keenan et al 2015). However
pressure on sub-Saharan African forests, from among
others smallholder and commercial agriculture, is
rapidly intensifying (Ordway et al 2017, FAO, UNEP
2020). Given that a major share of Africa’s population
is dependent upon rainfed agriculture (Gassner et al
2019), it is crucial to better understand how African
forests maintain rainfall patterns.

The objective of this paper is, therefore, to exam-
ine how sub-Saharan African forests maintain rain-
fall. Given the complexity of rainfall patterns and pre-
cipitationsheds, and the size of the African continent,
we deployed a novel spatiotemporalmachine learning
approach, leveraging on remote sensing and climate
reanalysis data to provide detailed insights into the
relationship between forests and rainfall patterns. The
development of the spatiotemporal machine learning
model is a key novelty in our paper and is highly signi-
ficant within the analysed range of deforestation (i.e.
the model reflects very well the effects that deforest-
ation has had on African rainfall to date). A second
innovation is our focus on Africa, where there is an
urgent need to clarify how ongoing land-use change
may affect rainfall patterns.

2. Methodology

2.1. Input data and pre-processing
We developed a convolutional long short-term
memory neural network (ConvLSTM) that predicts
daily rainfall over the African continent using climate
and vegetation input data.We regressed time-series of
daily rainfall from 2000 to 2012 at a spatial resolution
of 50 × 50 km covering the entire African continent
against time series of daily wind speed and direc-
tion, net solar radiation, air pressure on the surface of
the earth, evaporation from only water-bodies, tree
cover and leaf area index (LAI) using the ConvLSTM
(see next section). The covariates were selected to
minimize multicollinearity. Specifically, we excluded
atmospheric moisture contents from the covariates,
because moisture is strongly correlated with rain-
fall, and including it masks the effects of changes in
vegetation leading to changes in evapotranspiration
rates and thereby atmospheric moisture. In effect,
we masked evapotranspiration from land surfaces
which is highly correlated to vegetation data, but
we do include evaporation from oceans and large
lakes. The rainfall data and climate covariates were
obtained from the European Center for Medium-
Range Weather Forecasts’ Climate Reanalysis Data
ERA-Interim reanalysis dataset (Dee et al 2011). Tree
cover and LAI data were obtained from the moder-
ate resolution imaging spectroradiometer at 250 and
500 m spatial resolutions respectively (Dimiceli et al
2015, Myneni et al 2015). The vegetation covariates

were realigned to the spatial and temporal resolution
of climate covariates by computing the mean within
50× 50 km and temporally downscaled to daily time-
steps using fast Fourier transform (Cooley and Tukey
1965, Virtanen et al 2020).

2.2. Model setup and validation
The ConvLSTM that we developed is a variant of the
long short-term memory neural network (LSTM).
LSTMs are a type of recurrent neural network that
have the capacity to learn long-term dependencies
between input and output data (Hochreiter and
Schmidhuber 1997). Unlike simple recurrent neural
networks, LSTMs are able to retain information from
longer sequence patterns. LSTMs, however, are lim-
ited to one-dimensional data and hence are unsuit-
able for spatiotemporal problems. The ConvLSTM
addresses this limitation by replacing internal matrix
multiplication with convolution operations (Shi et al
2015). The ConvLSTM has convolutional structures
in both the input-to-state and state-to-state trans-
itions. As a result, it preserves the three-dimensional
spatial structure of input data. A ConvLSTM layer
determines the future state of a grid cell based
on the inputs and past states of the grid cell and
its local neighbours. Like LSTMs, each ConvLSTM
layer is made up of memory cells and three self-
parameterized gates that control information flow.
Equations (1)–(6) describe the generic details of a
ConvLSTM layer (Shi et al 2015). Memory cells,
Ct, accumulate information from input data over
long periods of time. Forget gate, ft determines which
information stored in the previous cell state, Ct−1,

would be discarded. Input gate, it, combines with
a tanh layer, gt, to update the previous cell state.
Input gate determines which information stored in
the previous cell state,Ct−1,would be updated and the
tanh layer determines which candidate information
from current input data,Xt, and previous output/hid-
den state, Ht−1, would be added to the memory cell.
The output gate, ot,determines which information
from the current cell state, Ct,would be propagated
to the current hidden state,Ht,and consequently will
become candidate information to be accumulated in
the cell state in the next sequence. The input, forget
and output gates are composed of sigmoid functions,
σ, ranging from 0 to 1, which determines the extent
of information flow through the gates. For instance,
if ft equals 0, the model completely discards informa-
tion stored in the previous cell state and if it equals 1 it
retains all previous information. W is weight, which
represents the strength of connection between units
in each layer; b is bias, which is analogous to a con-
stant in a linear function.⊙ denotes an element-wise
dot product; ∗ denotes the convolution operator

it = σ (Wi_xi ∗Xt +Wi_hi ∗Ht−1 +Wi_ci ⊙Ct−1 + bi) ,
(1)

2



Environ. Res. Lett. 16 (2021) 064044 C Duku and L Hein

ft = σ
(
Wf_xf ∗Xt +Wf_hf ∗Ht−1 +Wf_cf ⊙Ct−1 + bf

)
,

(2)

ot = σ (Wo_xo ∗Xt +Wo_ho ∗Ht−1 +Wo_co ⊙Ct + bo) ,
(3)

gt = tanh
(
Wg_xc ∗Xt +Wg_hc ∗Ht−1 + bc

)
, (4)

Ct = ft ⊙Ct−1 + it ⊙ gt, (5)

Ht = ot ⊙ tanh(Ct) . (6)

We formulated the interaction between forests and
rainfall patterns as a spatiotemporal regression prob-
lem, where the rainfall pattern (i.e. magnitude, dur-
ation and timing of peak rainfall) in a specific grid
cell is not only determined by antecedent climatic
and vegetation factors in that grid cell but also in
the immediate neighborhood (3 × 3 neighborhood
area). Our network structure consists of four stacked
ConvLSTM layers sandwiched between two stacked
convolutional neural network (CNN) layers and two
stacked transposed convolutional (deconvolutional)
layers. CNN’s are specialized in image recognition
and classification. They automatically learn a large
number of convolutional filters, and apply these fil-
ters on input data resulting in feature maps, which
indicate the locations and strengths of a series of
detected features in the input data. First, the input
data are fed into the CNN layers. The CNN lay-
ers transform the input data into a sequence of fea-
ture maps. This step is crucial because it reduces
dimensionality of initial input data to more manage-
able groups for processing while at the same time
largely preserving the spatial structure of input data.
Second, the sequence of feature maps are fed into the
stacked ConvLSTM layers, where actual spatiotem-
poral learning takes place. Finally, the transposed
convolutional layers are applied to the output of the
ConvLSTM layers to regain the spatial extent of the
input data and to map the sequences of feature maps
to a single output layer. For each time-step, the decon-
volutional layers transform extracted feature maps
into a single output layer representing the predicted
rainfall at that time-step.

We evaluated the predictive accuracy of ourmodel
by dividing the sequential input data into training and
test samples. The training sample contained sequen-
tial data from the beginning of the year 2000 to the
end of 2012, whereas the test sample covered the
beginning of 2013 to the end of 2015. The training
sample was used by the neural network to approxim-
ate the relationship between input variables and rain-
fall. The test sample, however, was an independent
data held out during the training process and which
was used to evaluate the performance of the model.

2.3. Simulation experiments
We deployed the trained model to quantify effects of
deforestation on rainfall using idealized deforestation
experiments at two spatial scales i.e. whole agroeco-
logical region and individual pixels. In both simu-
lation experiments, only vegetation input data were
changed and climate input data remained the same.
We assumed that changes in tree cover and LAI are
unlikely to substantially affect surface net solar radi-
ation, wind speed and direction and air pressure on
the surface of the earth. First, we simulated the effects
of large-scale complete and partial deforestation on
rainfall patterns in the Guineo-Congolian region. In
the complete deforestation scenario, tree cover and
LAI dynamics in this region were fully replaced by
short grassland whereas in the partial deforestation
scenarios, tree cover in the Guineo-Congolian region
was progressively reduced by 30%, 50% and 70%. The
LAI sequences of the partial deforestation scenarios
were computed using equation (7), where nLAI is the
LAI after tree cover loss, gLAI is grassland LAI which
is assumed to be the replacement vegetation after tree
cover loss, coverLoss is the magnitude of tree cover
lost (from 0 to 1), and f LAI is the LAI prior to tree
cover loss

nLAI= gLAI ∗ coverLoss+(1− coverLoss) ∗ fLAI.
(7)

In the Guineo-Congolian region, maximum daily
LAI ranges from 6 to 9 and maximum tree cover is
mostly above 50% whereas for short grassland, max-
imum tree cover is less than 1 and maximum LAI is
less than 1. The trained model simulated the effects
on rainfall magnitude, duration of the wet season
and timing of peak period. These rainfall indicators
were computed following Feng et al (2013) and using
equations (8)–(12). For each year, the annual rain-
fall total, Rk, the associated monthly rainfall distribu-
tion, pk,m, and the relative entropy, Dk are computed
from the monthly total rainfall rk,m and where qm is
the uniform distribution, for which each month has
a value of 1/12. Rainfall magnitude is calculated as
annual rainfall total,Rk. The centroid,Ck, and spread,
Zk, representing the timing of peak rainfall and rain-
fall duration respectively are calculated using the first
and second moments of rk,m.

Rk =
12∑

m=1

rk,m, (8)

pk,m = rk,m/Rk
, (9)

Dk =
12∑

m=1

pk,m log2

(
pk,m/qm

)
(10)

Ck =
1

Rk

12∑
m=1

mrk,m, (11)
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Figure 1. Comparison of observed and predicted temporal rainfall patterns sampled from four random locations (grid cells) (a),
(b), (c), (d); time ranges from 1 January 2013 to 31 December 2015, which is the validation period.

Zk =

√√√√ 1

Rk

12∑
m=1

|m−Ck|2rk,m. (12)

Second, for small-scale deforestation experiments, we
sampled individual grid cells with high tree cover and
LAI. Existing vegetation dynamics in these grid cells
were replaced by short grassland vegetation dynam-
ics.

3. Results

3.1. Model performance evaluation
We used a combination of statistical and graphical
approaches to evaluate the predictive accuracy of
the model. In general, our model can be considered
highly accurate. Using the test sample for evaluation,
the root mean squared error (RMSE), which is the
aggregatemagnitude of prediction errors across space
and time, was 5.3 mm d−1. The closer the RMSE is to
0.0, the better the absolute fit of the model. Based on
the test sample, a percent bias (PBIAS) of −6% was
recorded indicating that the model has the tendency
to underestimate daily rainfall during peak rainfall
events in the wet season. Given the low PBIAS, under-
estimation across space and time is either infrequent
and/or not substantial. The model explains 75% of
the variance in daily rainfall across space and time.
Figures 1(a)–(d) presents a comparison of predicted

and observed daily rainfall for four randomly selec-
ted pixels for different parts of Africa. It shows the
tendency of the model to underestimate peak rainfall
events. Figure 2(a) presents a scatterplot of predicted
daily rainfall versus observed daily rainfall for all grid
cells. It shows a high correlation between predicted
and observed daily rainfall in most grid cells. The
residual plot (i.e. difference between daily observed
and predicted rainfall for each grid cell) presented
in figure 2(b) shows that a substantial amount of
grid cells had an error of 0 or close to 0. This res-
ult could be influenced by the large number of dry
days in several grid cells. Even so, the results show that
the model is able to predict dry days as well as wet
days.

We also compared the spatial patterns of pre-
dicted and observed rainfall maps. Figure 3 shows
how our predicted rainfall and observed rainfall
align for mean monthly rainfall. Generally, predictive
accuracy of the model increases from daily to annual
rainfall. Nonetheless, the model adequately predicts
the spatial pattern and dynamics of rainfall across
Africa regardless of the time-step.

3.2. Effects of deforestation on rainfall patterns
The results clearly show that deforestation in the
Guineo-Congolian region affects both local and
remote rainfall magnitude, duration and timing of
peak rainfall. Themagnitude and direction of change,
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Figure 2.Model properties. (a) Scatterplot of observed and predicted daily rainfall—each dot compares observed and predicted
rainfall from a single grid cell (50× 50 km) for each day; (b) residual plot computed from difference between daily observed and
predicted rainfall for each grid cell; (c) variable importance of input data. In (c), uwind is eastward or westward component of
wind; vwind is northward or southward component of wind; evap is evaporation from only water surfaces including oceans and
lakes; rad is net solar radiation; surface_pressure is atmospheric pressure on the earth’s surface; and lai+ tree-cover is the
vegetation variable made up of tree cover and LAI. The mean squared error in the horizontal axis indicates the magnitude of
prediction error from permuting a specific variable.

Figure 3. Comparison of observed and predicted mean monthly spatial rainfall patterns from January (a) to December (l).
Monthly rainfall averaged over the validation period i.e. 2013–2015.
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Figure 4. Changes in rainfall pattern as a result of complete deforestation in the Guineo-Congolian region. (a) Change in mean
rainfall magnitude in the March–April–May season in mm season−1; (b) change in mean rainfall magnitude in June–July–August
season in mm season−1; (c) change in mean rainfall magnitude in October–November–December season in mm season−1; (d)
change in mean annual rainfall magnitude in mm yr−1; (e) change in mean duration of wet season in weeks; (f) change in timing
of peak rainfall in weeks. For rainfall magnitude, negative values indicate reduction in rainfall and positive values indicate
increase. For duration of rainfall, negative values indicate reduction in season length and positive indicate increase. For timing of
peak rainfall, negative values indicate early onset of peak rainfall and positive values indicate delay. The green boundary indicates
the Guineo-Congolian region, where deforestation was simulated. The black arrows indicate wind direction and speed.

however, vary depending on the proximity to defor-
ested areas and the location with respect to wind
direction. Figures 4(a)–(d) shows that conversion
of forests and vegetation in the Guineo-Congolian
region to short grassland reduces rainfall magnitude
substantially in the deforested areas and in large areas
above the equator, especially inWest Africa below the
Sahel. For instance, the Central African Republic and
South Sudan would lose around 50% of their cur-
rent average annual rainfall of about 1000 mm yr−1

(depending upon latitude). The Soudan-Sahel zone
including Burkina Faso, southern Niger, southern
Mali, northern Nigeria would lose around up to
40% of its annual rainfall. However, in Southern
Africa, the picture is mixed, with some areas, in
particular in the eastern part of the region, receiv-
ing more rainfall, and other areas receiving less
rainfall.

Duration of the wet season and timing of rainfall
are also likely to be affected by conversion of humid
forests to grasslands. Figure 4(e) shows that the dur-
ation of the wet season will likely reduce as a result
of deforestation in large areas of Africa. The worst
affected areas will be in the deforested areas and/or
the nearby areas where the wet season is likely to
be reduced by up to 2 weeks. These include Cent-
ral Africa Republic, South Sudan, Liberia and south-
western part of Ghana. Timing of peak rainfall will
also delay in large areas in West Africa, whereas peak

rainfall would be early in large areas in Central Africa
(figure 4(f)).

Our results also show that partial deforestation
produces different responses across Africa (figure 5).
In West Africa, tree cover loss and correspond-
ing LAI reduction (irrespective of the magnitude of
loss) within the Guineo-Congolian region consist-
ently reduce rainfall magnitude. The greater the tree
cover loss the greater the reduction in rainfall mag-
nitude. This indicates that West African countries,
especially, depend more on recycled evapotranspir-
ation for rainfall. This is more evident during the
West African dry seasons compared to wet seasons.
For example, in the deforestation simulation exper-
iments, the magnitude and spatial extent of rainfall
reduction in the June–July–August season (the wet
season) is considerably lower than in the March–
April–May and October–November–December sea-
sons (see figure 5). In Central and Southern Africa,
however, 50% tree cover loss (or less) increases rain-
fallmagnitude inmost deforested areas during all sea-
sons. Rainfall reduces only after a threshold of 70%
reduction in tree cover.

To examine if our model can also be used in sup-
port of efforts to account for the various services
provided by forests (e.g. Hein et al 2020), we simu-
lated the effects of conversion of specific forested grid
cells (50 × 50 km) to short grasslands. These grid
cells were selected in areas with high deforestation
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Figure 5. Changes in rainfall magnitude as a result of partial deforestation in the Guineo-Congolian region. (a) Change in mean
rainfall magnitude as a result of 50% tree cover loss during the simulation period; (b) change in mean rainfall magnitude as a
result of 70% tree cover loss. MAM refers to the March–April–May season, JJA refers to the June–July–August season and OND
refers to the October–November–December season. The green boundary indicates the Guineo-Congolian region, where
deforestation was simulated. The black arrows indicate wind direction and speed.

Figure 6. Change in mean annual rainfall magnitude (mm yr−1) as a result of complete deforestation in individual grid cells. The
green dashed boxes indicate areas where deforestation was simulated. The black arrows indicate annual average wind direction
and speed.

rates (e.g. West Africa and Central Africa). Figure 6
shows that in West Africa, local deforestation con-
sistently reduces rainfall magnitude in the deforested
location and the immediate neighboring areas. How-
ever, in Central Africa, it decreases rainfall locally and
increases rainfall, to a lesser extent, in remote loc-
ations. For example, local deforestation in northern
Liberia, reduces rainfall by about 80 mm yr−1 in the
north-west of Liberia as well as large areas of Sierra

Leone. But rainfall in the Central Africa increases by
about 10 mm yr−1 (figure 6).

4. Discussion

4.1. Uncertainties and limitations of the approach
As with any modelling approach, and in particu-
lar a data-driven continental scale model, there are
uncertainties and limitations in the model that we
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developed. A first point is that the model analyses
changes in rainfall patterns as they have occurred in
the period 2000–2015, and extrapolates the correla-
tion between deforestation and rainfall to the future
with a forest cover much lower than experienced in
the period 2000–2015. This effect, of course, is par-
ticularly relevant for the scenario where we defor-
est all humid tropical forests of Africa and replace
them with short grassland, and less so for the ana-
lysis where we deforest a single pixel (50 × 50 km)
in order to assess impacts on rainfall. In the first
case, the replacement forest cover that we analyse is
quite distinct from the set of forest covers that we
used as model inputs. Consequently, our forecast of
how rainfall would change as a function of com-
plete deforestation should be seen as illustrative—
showing a first estimate of the potential consequences
of the loss of African forests. A process-based ocean–
atmosphere–land surface model (e.g. McAlpine et al
2009) could bemore accurate in representing impacts
of forest losses that far exceed current deforesta-
tion patterns. However, configuring a process-based
ocean–atmosphere–land surface model at the scale
of Africa, with hydrological cycles and wind patterns
modelled at daily time-steps is challenging given the
number of parameters that would need to be calib-
rated. Moreover, even in case of process-based mod-
els the model parameters need to be estimated based
on rainfall and hydrological processes as they cur-
rently occur, and there will be substantial uncertainty
when the model is used to forecast rainfall under
strongly different forest covers. Hence, we believe
our current modelling approach is currently the best
possible option given data and computing limita-
tions. Improvements of our model could focus on
increasing spatial resolution of climate and vegetation
data to better capture local spatiotemporal processes.
Increasing spatial resolution, however, considerably
affects computational efficiency and would require
considerable increases in computational resources
for processing and data storage. The use of extens-
ive vegetation data beyond LAI and tree cover can
also better capture vegetation-climate interaction and
feedbacks. However, consistent and spatially-explicit
time-series data needed are mostly unavailable for
Africa.

Furthermore, our paper did not address feed-
backs in ecosystemdynamics (e.g. Scheffer et al 2001).
With increasing deforestation, positive feedbacks
(with negative societal consequences) may occur.
For instance, reduced rainfall generally increases
fire risks (Hoffmann 2003). Increased fire risks
may further exacerbate pressure on forests lead-
ing to further reductions in forest cover, in par-
ticular, in sub-humid conditions. Since we do not
consider such feedbacks in our analysis, we may
underestimate the effects of deforestation on rainfall
patterns.

4.2. Modelling forest-rainfall relationships
Our paper presents the impacts of an extreme scen-
ario, because some of the forests are protected and
also because the current land-use change is in part
to plantations, which have a higher evapotranspir-
ation rate than short grasslands and therefore lead
to a somewhat lower impact on rainfall patterns.
Nevertheless, in earlier work the effects of deforest-
ation have also been demonstrated using extreme
deforestation scenarios. Our results can be compared
with those of Abiodun et al (2008) who deploy the
International Centre for Theoretical Physics Regional
Climate Model and find that extreme deforestation
reduces average monsoon rainfall across West Africa
with approximately 50–400 mm yr−1. These values
are higher than what we find, but we note that their
scenario also involves deforestation in the sub-humid
forests ofWest Africa. Zheng and Eltahir (1997), in an
older paper, even find that the monsoon collapses in
West Africa should all tropical forests be replaced by
savannah vegetation. Our results are also well aligned,
both in terms of magnitude and spatial patterns, with
Semazzi and Song (2001), who model the effects of
replacing tropical rainforest with savanna grassland
with the National Center for Atmospheric Research
CCM3global climatemodel. They find rainfall reduc-
tions in deforested areas with 2–3 mm d−1 in July–
September and less than 1 mm d−1 during the wet-
ter autumn and spring months. Similar to our res-
ults, they find that deforestation results in substan-
tial rainfall reduction overMozambique but a rainfall
increase in other parts of Southern Africa, connec-
ted to changes in the trapped Rossby wave train activ-
ity generated by the mid-tropospheric latent heating
over the tropical forest region (McIntosh and Hen-
don 2018). Over Central and West Africa, the impact
of deforestation is primarily characterized by a reduc-
tion in rainfall (Semazzi and Song 2001).We conclude
that our results, although derived in an entirely dif-
ferent way (using machine learning instead of global
climate model), are comparable to the relatively few
studies using global and regional climate models to
assess the effects of deforestation in Africa.

4.3. Policy implications
It is clear that deforestation affects rainfall (e.g.
McAlpine et al 2009,McAlpine et al 2018, Salazar et al
2015). Our paper shows that also in Africa deforest-
ation will have major consequences for rainfall pat-
terns. In general terms, deforestation has been severe
in most West African countries (Hansen et al 2013,
CILSS 2016), and is still continuing, for instance,
in Ivory Coast where forests are still converted to,
among others, cocoa plantations (Barima et al 2016).
The Central African rainforest is still relatively well-
preserved, perhaps thanks to institutional and safety
challenges that occur in the two Congo’s. Never-
theless, deforestation continues across Africa, for
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instance in Tanzania and Zambia (Hansen et al 2013),
both as a consequence of large scale land conversion
and due to smallholders establishing new farms and
wood harvesting for firewood and charcoal produc-
tion. To date, many policy makers in Africa do not see
this as a serious concern, instead assuming that forest
loss is an acceptable part of economic development.

However, this paper shows that deforestation
will have major economic consequences for Africa.
In Africa, a large proportion of the population is
dependent upon rainfed agriculture (Gassner et al
2019). For instance, maize-based farming systems are
spread across Africa and provide food to some six
to seven hundred million people (Dixon et al 2001,
Van Ittersum et al 2016). Productivity of these systems
is constrained by water, and water shortages in dry
years tend to lead to crop failures. Climate change is
expected to reduce rainfall and increase temperatures
in large parts of Africa, reducing the growing season
(e.g. Duku et al 2018). At the same time, the popula-
tion of Africa is expected to double between now and
2050 (UN 2019). Hence, reductions in rainfall pat-
terns due to deforestation could have severe economic
and food security implications that urgently need to
be acknowledged in policy making.

Policy-making should also consider that the
forest-rainfall relationship is not always monotonic
and critical thresholds exist which, together with tele-
connection effects, call for transnational or regional
cooperation in forest management. For example, our
paper has shown that recycled evapotranspiration
from Central African humid forests (in addition to
the remaining humid forests in West Africa) is a sub-
stantial component of rainfall in water-scarce West
Africa. Evenmoderate tree cover loss inCentral Africa
thus reduces rainfall in West Africa. However, over
the deforested locations in Central Africa itself, our
model predicts that only tree cover loss above 70%
reduces rainfall. These different rainfall responses go
to show that specific effects depend on both local
and remote characteristics, and that these effects are
non-linear. Finally, our paper shows the import-
ance of considering the service ‘maintaining rain-
fall patterns’ in ecosystem services studies including
those of the Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services and the
System of Environmental Economic Accounting—
Ecosystem Accounting (e.g. Hein et al 2020). This
service is underestimated—it is not usually included
in either ecosystem services assessments or account-
ing efforts. Our paper lays out a potential approach
to map and quantify the specific contribution of
forest areas for maintaining rainfall patterns, thereby
allowing their mapping and inclusion in assessment
and accounts. In this context it is relevant to stress
the importance of scale: for example, the impact on
rainfall patterns of 1 hectare of forest, will not be
picked up by a continental or even sub-continental
scale model. However, the impacts of deforestation

of one grid cell in our model (2500 km2) are notice-
able, as illustrated in figure 6. Further discussions
are required to assess if it would be reasonable, for
the purpose of accounting for the services provided
by forests, to downscale this impact measured in a
2500 km2 grid cell to smaller grid cells, and if so how
this downscaling can best be done.

5. Conclusions

Our paper shows that, as in other continents, forests
in Africa are essential to sustain rainfall patterns.
Arguably, the service is evenmore important in Africa
than in any other place in the world because the con-
tinent has vast agricultural zones that are depend-
ent upon secondary rainfall (i.e. rainfall not gener-
ated from evaporation in oceans), a large and grow-
ing population for which rainfed agriculture is the
main source of income and food, and extensive areas
that are already constrained in cropping potential by
low rainfall. Unfortunately, there is as yet very little
consideration of this key ecosystem service provided
by African forests in policy and decision making.
This paper shows that complete deforestation (i.e.
conversion of humid forests to short grasslands)
greatly reduces rainfall magnitude in the deforested
areas. In remote locations, complete deforestation
reduces rainfall magnitude in areas above the equator
whereas large areas below the equator experience
slight increases in rainfall magnitude. The worst
affected areas are likely to be the Central African
Republic and South Sudan, where about 50% of
annual rainfall will be lost if the Central African
humid forests would be converted to grassland. The
Soudan-Sahel zone in West Africa would lose up to
40% of its annual rainfall in the extreme scenario of
complete forest loss. Complete deforestation would
also lead to a reduction in the duration of the wet
season with the worst affected areas experiencing a
reduction of up to 2 weeks. Partial deforestation,
however, produces differing rainfall responses in the
deforested areas of West and Central African humid
rainforests. In West Africa, even moderate tree cover
loss (i.e. 30%) reduces rainfall magnitude whereas in
Central Africa, a threshold of 70% loss of remaining
tree cover is required to reduce rainfall magnitude.
Below this threshold, tree cover loss in Central Africa
increases rainfall magnitude. Hence, it is of para-
mount importance to recognize the dependency of
African rainfed agriculture, especially cropland areas
above the equator and in West Africa, on forest con-
servation, and to protect remaining forests in order to
safeguard farmers’ livelihoods.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
lpdaac.usgs.gov/products/mod44bv006/.
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