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Abstract 

Xing, S. (2021). Differential Deposition of Intramuscular and Abdominal Fat in 
Chicken. PhD thesis, Wageningen University & Research, the Netherlands 

Fat deposition in domesticated chicken has received much attention in modern 
breeding and poultry production. The aim is for high intramuscular fat (IMF) 
content for better meat quality and low abdominal fat (AF) for higher feed 
efficiency. Fatness traits are complex quantitative traits influenced by many 
variants in the genome some of which are likely to affect gene expression during 
development. Despite the ever-increasing amount of sequencing data, knowledge 
of fatness phenotypes and the underlying genes and variants is still limited. In this 
thesis, a new chicken SNP genotyping array is described based on SNPs segregating 
in local Chinese breeds and commercial lines. The new array offers potential 
benefits in breeding programs aimed at increasing both the meat quality and the 
feed efficiency. Furthermore, I describe the IMF and the AF deposition during 
development. I explore the transcriptomes of chicken breast muscle, AF, and liver 
in different stages. More specific, I provide time course transcriptome profiles for 
breast muscle, AF, and liver in chicken and identify developmentally dynamic genes 
in the three tissues. Weighted gene co-expression network analysis (WGCNA) 
results demonstrate that the expression of L3MBTL1, TNIP1, HAT1, and BEND6 
genes correlate to both high breast muscle IMF and low AF weight in breast muscle 
and AF while ACSBG2 gene expression in liver is correlated to high AF weight. I 
finally provide the transcriptome analysis in breast muscle and AF from high-IMF-
low-AF and low-IMF-high-AF chickens at marketing time. The expression of ACSM3 
and CYP2AB1 correlate to both high IMF and low AF weight in breast muscle and 
AF, respectively. Together, I provide a comprehensive overview of gene expression 
affecting IMF and AF deposition in chicken. The results described in this thesis 
provide new insights in chicken fat deposition and allow further SNP array updates 
and improvements on meat quality in the selection process. 
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1.1 Introduction 

Meat has been a crucial protein source of homo sapiens diet for more than 1 million 
years (Carmody and Wrangham, 2009; Wood, 2017). Over the past 10,000 years, the 
meat supplied by domesticated animals gradually exceeded that by hunting and 
fishing. Chicken (Gallus gallus domesticus) is the most abundant domesticated 
animal. It initially was derived from the red jungle fowl (Fumihito et al., 1994; Wang 
et al., 2020) around 9500 ± 3300 years ago (West and Zhou, 1988; Rubin et al., 2010; 
Wang et al., 2020). Up to now, there are  1,825 different recognized chicken 
breeds/lines/strains across the world (DAD-IS-FAO, 2021). Compared with traditional 
breeds, the breast meat quality of modern commercial chicken lines has declined 
after recent decades of intensive selection (Abeni and Bergoglio, 2001; Musa et al., 
2006). Intramuscular fat (IMF) content influences chicken meat quality in many 
aspects, e.g., juiciness, flavour, and tenderness (Chizzolini et al., 1999; Zhao et al., 
2007). However, merely increased IMF selection tends to cause high abdominal fat 
weight (AFW) which will reduce the chicken production efficiency (Zhao et al., 2007; 
Jiang et al., 2017). The studies aimed at identifying the regulatory genes during 
tissues development and fat deposition are important to further expand chicken 
production possibilities and catch the demand of consumers. 

Glossary 

IMF: Intramuscular fat, deposited inside skeletal muscle fibers. 

AF: Abdominal fat, deposited inside the abdominal cavity, packed between the 
organs. 

SNP: Single nucleotide polymorphism. 

Genotyping array: A kind of DNA chip, used for massive parallel detection of SNP 
alleles by hybridization technology. 

DDGs: Developmentally dynamic genes, reflecting the gene expression and 
biological changes across developmental stages. 

Hub gene: A driver gene with high correlation and connectivity in a candidate 
module. 

TF: Transcription factor, controlling the rate of transcription of DNA genetic 
information (gene) to messenger RNA. 
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1.2 Meat-type chicken industry 

1.2.1 Meat-type chicken production  

As an important animal protein resource for human beings, global chicken meat 
production grows slowly but stably (Xin et al., 2021). In 2000, 59.64 million tons of 
chicken meat were produced  worldwide (USDA, 2001), while in 2020, that had 
increased to 100.59 million tons (USDA, 2021). USA, China, Brazil, and the European 
Union are the 4 major chicken meat producing countries/regions (Figure 1.1). The 
fast increase in chicken production both in developed and developing 
countries/regions is mainly driven by the lower production costs with respect to pork 
and beef (Trapp, 2019). Nowadays, the USA is the biggest chicken meat producing 
and second biggest exporting country, while China, Japan, Mexico, Saudi Arabia are 
the major importing countries.  

 
 

Figure 1.1 Top 10 countries/regions of chicken meat production in 2020 
Note: Chicken paws are excluded. Unit in the y-axis is 1000 tons.  Data resource: Economics, 
statistics and market information system of USDA (USDA, 2021). 

1.2.2 Chicken meat quality 

Meat quality is generally characterized by the compositional quality and the 
deliciousness factors such as appearance, smell, juiciness, tenderness, and flavour. 
Chicken meat is a kind of widely accepted white meat (Linseisen et al., 2002). To 
meet the growing demands of consumers and the increase of the worldwide 
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population, meat-type chicken has been intensively selected at an industrial scale for 
the mass market (Schmidt et al., 2009). Modern chicken genetic selection studies 
mainly focused on body weight (Siegel, 1962), feed efficiency (Pym and Nicholls, 
1979), fecundity (Lamoreux et al., 1943), disease resistance (Waters, 1945), and 
animal behavior/welfare (Komai et al., 1959; Dawkins and Layton, 2012). With the 
intensive selection on faster growth and a heavier body weight, the incidence of 
chicken breast muscle abnormalities or myopathies increased e.g., deep pectoralis 
muscle myopathy or so called green muscle disease (Bianchi et al., 2006), white 
striping (Mudalal et al., 2014), spaghetti meat (Baldi et al., 2018), wooden breast 
(Sihvo et al., 2014), and PSE-like meat (pale, soft, and exudative meat) (Barbut, 1998). 
In the slaughterhouse, such abnormalities or myopathies cause chicken carcass 
condemnation and economic losses  (Zanetti et al., 2018). Recently, the new trend 
of slow-growing chickens is popular to meet society complains. Consumers generally 
consider slow-growing chicken to have better meat quality than fast-growing broilers. 

By estimating the heritability, genetic and phenotypic correlations between meat 
yield and quality traits in chicken, previous research concluded that selection for 
higher body weight may reduce the meat quality but that it is possible to improve 
meat quality by genetic selection (Zerehdaran et al., 2012). 

1.3 Fat deposition in chicken and the molecular pathways 
involved 

1.3.1 Fat origin and functions 

Fat is a kind of loose connective tissue, mostly composed of adipocytes (Chizzolini et 
al., 1999). The origin of adipocytes is complex and studied mainly in mammals. 
According to the colour, fat can be divided into white adipose tissue, brown adipose 
tissue, and beige adipose tissue (Cannon and Nedergaard, 2004). White adipocytes 
have a big droplet that contains triacylglycerols and these cells mainly differentiate 
from mesenchymal stem cells in the mesoderm (Rosen and MacDougald, 2006). 
Brown adipocytes, with a high mitochondrial content, originate from specific 
precursors and are controlled by the transcriptional regulator PRDM16 (PRD1-BF1-
RIZ1 homologous domain containing 16) (Seale et al., 2008). It has been suggested 
that beige adipocytes are derived from white adipocytes (Reitman, 2017). However, 
another study reported that the previously identified brown fat in adult humans are 
composed of beige adipocytes (Wu et al., 2012). The development of adipocytes can 
be divided into hyperplasia and hypertrophy, which are both correlated with fat 
deposition (Cartwright, 1991). 
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Fat tissue is important for energy storage (Harms and Seale, 2013) and adaptive 
thermogenesis. In the last decades, an endocrine role of adipose was discovered , 
where adipocytes were shown to secrete adipokines like leptin, TNFα, IL-6, resistin, 
and adiponectin (Kershaw and Flier, 2004). Chickens were considered to only have 
white fat tissue. An excess of fat can also lead to type 2 diabetes (Montague and 
O'rahilly, 2000), insulin resistance (Kern et al., 2001), and inflammatory disease 
(Marette, 2003) in humans. Understandably, similar studies are still very limited in 
chickens. 

1.3.2 Fat deposition 

According to the location, the adipocyte tissues can be classified as follows: 1. 
Abdominal fat, also known as visceral fat or organ fat, is located within the 
abdominal wall surrounding organs. 2. Ectopic fat, which is the storage of 
triglycerides in tissues, that are supposed to contain only small amounts of fat, such 
as, liver, skeletal muscle, and heart. The fat located inside the skeletal muscle fibers 
is also called intramuscular fat (IMF). 3. Subcutaneous fat, which is located beneath 
the skin. 4. Bone marrow adipose tissue, also known as marrow adipose tissue 
(MAT), is a poorly understood adipose depot that resides in the bone.  

Abdominal fat (AF), also called central fat or visceral fat, is the most dominant type 
of fat in the mature animal body. In the chicken industry, the excess abdominal fat 
has been one of the main reasons for the decrease in economic efficiency (Fouad 
and El-Senousey, 2014). AF weight is more variable than total fat and IMF (Jennen, 
2004). AF stands for approximately 2-3% of body weight, e.g., in Jingxing-Huang 
chicken, abdominal fat holds 2.9 ± 1% in live body weight (Xing, 2020, unpublished 
data). 

Intramuscular fat (IMF) is a kind of ectopic fat, which is also deposited in the heart 
and pancreas (Birbrair et al., 2013). IMF content plays a key role in various quality 
traits of meat (Chizzolini et al., 1999; Hocquette et al., 2010). Previous research has 
shown that for meat type animals, adipocyte numbers increased most rapidly in the 
abdominal wall, while the least rapidly in the intramuscular depot (Allen, 1976). IMF 
content varies between species, between lines, and between muscle types in the 
same animal. Moreover, it also varies with age, gender, feed, and even during the 
season (Hocquette et al., 2010). 

Subcutaneous fat (SF) and bone marrow adipose tissue (MAT) are also a part of the 
chicken body fat content. The SF is the major non-visceral fat and is found between 
the hypodermis and the fascia. In chicken, SF is widely distributed but mainly 
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grouped together in the axilla and haunch’s connective tissue. SF is widely studied in 
human and can be easily measured by computed tomography. SF is almost 
impossible to measure in living chicken because of the feathers and therefore was 
poorly studied in chicken until recently. A recent study described that chicken SF 
deposition is another important energy supply tissue during late embryonic periods 
and the first days after hatch (Zhao et al., 2021). MAT accounts for 70% of the bone 
marrow volume in adult humans (Fazeli et al., 2013). MAT research mainly focused 
on humans and accelerated marrow adipogenesis has been associated with several 
chronic diseases and aging (Rosen et al., 2009). Although both tissues are part of the 
chicken body fat content, they play a minor role and are not considered in our study. 

The main components of IMF are triglyceride and phospholipids. The phospholipids 
approximately represent 20% to 50% of all the lipid, which equals about 0.5% to 1% 
of the weight of fresh muscle. In AF and SF, the main component is triglyceride (Fu 
et al., 2013).  

1.3.3 Fat deposition influencing chicken meat production and quality  

Fats in meat are important nutrients for humans because they are the structural 
component of cell membranes, essential fatty acids (FA) providers, and fat-soluble 
vitamins facilitators (Andueza et al., 2017). In animal production, excessive fat is 
considered to be dietary energy-wasting and because the feed accounts for around 
70% of the total costs,  excessive fat reduces carcass yield (Emmerson, 1997). While 
abdominal fat (AF) can be removed from the carcass after slaughtering and 
subcutaneous fat can be trimmed from the external surface of meat before 
consuming, IMF cannot be trimmed as in chicken it is almost invisible by the naked 
eye (Chizzolini et al., 1999). Due to the energy demands of egg laying (Scanes et al., 
1987) and other hormonal functions (Cui et al., 2012), hens have more abdominal 
fat than males (Marx et al., 2016). The excessive fat accumulation in broiler hens 
negatively affects their reproductive performance both in egg quality (Cahaner et al., 
1986) and the egg number from the first egg to 40 weeks (Zhang et al., 2018), which 
will further reduce broiler production. 

When serving to consumers, both the composition of raw meat (Saláková et al., 2009) 
and the cooking procedures (Park et al., 2020) greatly influence the final flavour. In 
the raw meat composition field, IMF content plays a major role in broiler meat 
quality. A decrease of IMF will decrease the juiciness and flavour of the meat 
(Chizzolini et al., 1999). A previous study reported the pectoral muscle IMF content 
in partridge to be negatively correlated with the shear force (Wen et al., 2020), which 
means the IMF content positively affects the tenderness of poultry meat. 
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1.3.4 Pathways involved in FA biosynthesis 

Many hormones and growth factors have been shown to be related to lipid 
metabolism. The lipid metabolism pathways include glycerolipid, 
glycerophospholipid, ether lipid, and sphingolipid metabolism. Moreover, 
glycerolipid is the major component of fat, and consists of glycerol and FA.  

 
 

Figure 1.2 Chicken PPAR signaling pathway (https://www.genome.jp/pathway/map03320).  

Fatty acid synthesis, transportation, and storage is a complex process. In Figure 1.2 
an example is shown of one of the most important fat deposition pathways, the PPAR 
(peroxisome proliferator-activated receptor) signaling pathway. In chicken, the liver 
is the central organ for lipid metabolism where around 90% of the FA is de novo 
synthesized (O'Hea and Leveille, 1969). The hepatic fatty acid synthase protein 
synthesizes lipids that are secreted in very low-density lipoprotein (VLDL). VLDL and 
chylomicrons transport endogenous and exogenous (dietary) lipids to cells, 
respectively. The fatty acid translocase (FAT), also called cluster of differentiation 36 
(CD36) and fatty acid transport proteins (FATP), both located in the cell membrane, 
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facilitate uptake of FA into cells by fatty acid binding protein (FABP)  (Jensen-Urstad 
and Semenkovich, 2012). The FAs can subsequently activate the PPARs and retinoid 
X receptor (RXR) complex. Then the PPARs, as TFs, activate the downstream 
pathways e.g., lipid metabolism, adipocyte differentiation, and adaptive 
thermogenesis. Different PPAR isoforms are expressed in different tissues, e.g., 
PPARα is expressed in liver and skeletal muscle, whereas PPARδ is expressed in 
skeletal muscle adipocytes, and PPARγ is expressed in adipocytes (Berger and Moller, 
2002).

1.4 Jingxing Huang Chicken as the study animal

1.4.1 Origin of Jingxing Huang Chicken

Jingxing Huang breed is a dwarf yellow-feathered meat-type chicken, which was 
initially developed from a cross of Beijing-You chicken (China), Beijing-Huang chicken
(China), and White Bro chicken (France). Among the three base ancestors, Beijing-
You chicken has commonly been considered a high-quality meat chicken breed
(Zheng, 1988; Zhang, 2011).

Figure 1.3 Male and female Jingxing-Huang chickens. 

1.4.2 Rearing, phenotyping, and selection methods

The IMF-up selection line was originally developed in the animal experiment station 
of the Institute of Animal Sciences, Chinese Academy of Agricultural Sciences in the 
year 2000. Founder animals consisted of 40 sires and 400 dams, which were 
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randomly selected from the base population of Jingxing-100 chicken. The selection 
maintained 1 generation per year (Zhao et al., 2006). 

In each generation, two batches of fertilized eggs were hatched. Chickens had ad 
libitum access to water and feed, which was based on a corn-soybean type diet 
throughout generations (Table 1.1).  

Table 1.1 Feed energy levels and crude protein rate in different rearing stages. 

Diet Period (weeks) Energy (MJ/Kg) Crude Protein (%) 
Starter diet 0 – 8 12.1 20 
Grower diet 9 – 18* 11.7 17 
Pullet diet 19 – 24 11.5 16 
Adult diet 25 and afterwards 11.5 16 

Note *: Slaughtering test was performed in this period (13 to 14 weeks). 

The mean family IMF value was used as individuals’ phenotype. All the selected sire 
breeders had a higher mean family IMF content than the population IMF content. At 
maximum, 3 full-sib male breeders in any family were selected. For each mate, there 
is no inbreeding within 3 generations for the sire and dams. 

The balanced selection line (IMF-up and abdominal fat percentage-down selection 
line) was randomly chosen from the base population of the IMF-up selection line in 
the year 2008. Then the two lines were independently selected. In each generation, 
25 to 30 sire families were selected for breeding the next generation. The sires in the 
balanced selection line have higher family IMF values and lower abdominal fat 
percentage (AFP) values than the population average value (Jiang et al., 2017).  

The birds used in this thesis for whole genome sequencing (Liu et al., 2019) and 
developmental transcriptome studies (Xing et al., 2020) were derived from the IMF-
up selection line (Zhao et al., 2006; Zhao et al., 2007). 

1.5 Aims and outline of this thesis 
In this thesis, I aim to provide new insight on the possibilities to improve the IMF 
content while at the same time reducing the AF content in commercial meat-type 
chickens. First, I joined a new mid-density chicken SNP genotyping array 
development, which has already been used for commercial genomic selection, 
GWAS for feed efficient trait (Li et al., 2021), and to study diversity of different 
chicken breeds (Liu et al., 2020). Second, I used transcriptome data in breast muscle, 
AF, and liver (three important tissues relevant for fat deposition) to study the gene 
regulation in different tissues and the corresponding correlation with IMF and AF 
deposition. 
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In Chapter 2, SNPs are selected and used in the design of a new SNP genotyping array 
derived from five different resources i) whole genome sequencing data of 
representative local breeds and commercial broiler lines, ii) significant results of 
GWAS on interesting traits, iii) candidate genes of economic traits, iv) residual feed 
intake related, and v) previous genotyping data. The newly developed SNP 
genotyping array was validated by genotyping 313 animals derived from 13 different 
chicken breeds/lines. In Chapters 3 and 4, gene expression in breast muscle, AF, and 
liver during tissue development in the IMF-up selected chicken line are addressed. 
In this study I used 9 representative developmental stages. By profiling gene 
expression, I provided a useful resource for transcriptome data for these 3 tissues. 
After quantifying gene expression between adjacency stages, differentially 
expressed genes and enriched pathways are identified. Using clustering analysis, 
developmentally dynamic genes and transcription factors are identified at different 
time points. In Chapter 5, I describe the correlations between gene expression and 
breast muscle IMF content and AFW in Jingxing-Huang chickens. Applying a weighted 
correlation network analysis, new hub genes correlated to breast muscle IMF 
content and AFW are identified in marketing time. Finally, in Chapter 6 the 
knowledge contributions of chicken genotyping and gene regulation with the overall 
findings in this thesis are discussed. Moreover, I discuss future utilization and new 
possibilities of fat related traits selection in chickens.  
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Abstract 
Background: China has the richest local chicken breeding resources in the world 
and is the world’s second largest producer of meat-type chickens. Development of 
a moderate-density SNP array for genetic analysis of chickens and breeding of 
meat-type chickens taking utility of those resources is urgently needed for 
conventional farms, breeding industry and research areas. 

Results: Eight representative local breeds or commercial broiler lines with 3 pools 
of 48 individuals within each breed/line were sequenced and supplied the major 
SNPs resource. There were 7.09 million - 9.41 million SNPs detected in each 
breed/line. After filtering using multiple criteria such as preferred incorporation of 
trait-related SNPs and uniformity of distribution across the genome, 52,184 SNPs 
were selected in the final array. It consists of: (i) 19.2 K SNPs from the genomes of 
yellow-feathered, cyan-shank partridge and white-feathered chickens; (ii) 6.0 K 
SNPs related to economic traits from the Illumina 60 K SNP Bead Chip, which were 
found as significant associated SNPs with 15 traits in a Beijing-You crossed Cobb F2 
resource population by genome-wide association study analysis; (iii) 7.6 K SNPs 
from 861 candidate genes of economic traits; (iv) the 1.0 K SNPs related to residual 
feed intake; and (v) 18.4 K from chicken SNPdb. The polymorphisms of 9 extra local 
breeds and 3 commercial lines were examined with this array, and 40 K - 47 K SNPs 
were polymorphic (with minor allele frequency >0.05) in those breeds. The MDS 
result showed that those breeds can be clearly distinguished by this newly 
developed genotyping array. 

Conclusions: We successfully developed a 55K genotyping array by using SNPs 
segregating in typical local breeds and commercial lines. Compared to the existing 
Affy 600K and Illumina 60K arrays, there are 21.4 K new SNPs included on our Affy 
55K array. The results of the 55K genotyping data can therefore be imputed to 
high-density SNP genotyping data. The array offers a wide range of potential 
applications such as genomic selection breeding, GWAS of interested traits, and 
investigation of diversity of different chicken breeds. 

 

Key words: Chicken, commercial line, Genotyping array, SNP   
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2.1 Introduction 

With a total of 107 chicken breeds, China has one of the richest local breed 
resources (Zhang, 2011). This diverse chicken genetic resource is a vital part of the 
diversity of biological genetic resources around the world and provides excellent 
material for breeding new varieties or to genetically improve breed. 

China is the second-largest broiler producer and consumer all over the world, 
which accounts for approximately 40% of the chicken production across the globe 
(FAOSTAT, 2018). In China, chicken is the second largest meat product after pork, 
making up to 17% of the total meat production. Chicken meat is mainly obtained 
from the introduced white feather broilers and domestic, yellow-feathered meat-
type chickens (meat-type local chicken breed, meat-type bred variety and a 
relevant strain containing the consanguinity of Chinese indigenous chicken), each 
accounting for half of the consumption. However, the current challenge is how to 
effectively protect and maintain the existing local varieties. On the other hand, 
improving breeding efficiency will accelerate breeding of new chicken lines. The 
genome-wide SNP chips, also known as SNP array, arranges up to 25 million of DNA 
marker flanks on glass or special silicon chip to form the SNP probe array. It’s 
function is based on base pairing between the chip fixed DNA marker flanks with 
the target genome, to accurately identify the genetic information. 

Genotyping arrays have been developed for pig (Ramos et al., 2009), cow 
(Matukumalli et al., 2009), dairy cattle (Dash et al., 2017), sheep (Anderson et al., 
2014), salmon (Houston et al., 2014), and buffalo (Iamartino et al., 2017). In 
chicken, the first 3 K genotyping array was developed in 2005 with 3,072 SNPs 
(Muir et al., 2008). After that, in 2008, Groenen et al. (2011) developed a 60K bead 
chip for chicken which evenly covered the whole genome. To date, the only 
available commercial array for chicken is the Chicken Affy 600K SNP Array (Axiom 
Genome-Wide Chicken Genotyping Array), which was developed by Kranis et al. 
(2013) The other arrays are privately owned by commercial companies. The array 
provides an important tool for the genetic diversity analysis, breeds relationship 
analysis, GWAS, quantitative character positioning analysis of QTL, selective 
evolution investigation, and Genomic Selection (Derks et al., 2018). Up till now the 
most efficient ways for SNP genotyping, biodiversity measuring, QTL mapping and 
genomic selection is using SNP arrays. These applications provide improved 
technical support for the conservation of indigenous breeds and development of 
new genetic lines/breeds. 
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One pitfall of all current chicken SNP arrays is the bias towards western commercial 
lines. The current chicken arrays, however, lack the genomic variation information 
of Chinese indigenous breeds. Therefore, it is imperative to develop a new type of 
genome-wide SNP chip with moderate flux in the chicken breeding industry that 
also contains the genetic variation information specific to Chinese indigenous 
breeds. Overlap with the current arrays of the different platforms (Axiom and 
Illumina) is essential to link the commercial SNP arrays. 

Through whole genome re-sequencing of a variety of Chinese native breeds and 
commercial chicken lines, integrating SNPs associated with economic traits 
detected in cross breeds (either indigenous or commercial), a new publicly 
available moderate density (55K) chicken array (IASCHICK) has been developed. 

2.2 Results 

The SNPs selection was performed in four groups. The roadmap is shown in Figure 
2.1, and the establishment of the four groups is indicated in the following 
paragraphs. 

 
Figure 2.1. The roadmap for the design of the new chicken 55K SNP array. 

Genome re-sequencing of chickens supplying the first SNP group 

Eight Chinese local chicken breeds or inbred lines were selected for whole genome 
sequencing. Each breed/line holds 3 pools of 16 individuals per library without 
individual barcodes (Table 2.1). The data summary of each library is provided in the 
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Supplemental table 2.1. The number of SNPs per breed/line varied from 7.09 M to 
9.41 M SNPs. The average number of detected SNPs was 8.61 M in the local lines, 
and 7.73 M in the commercial broilers. The total number of SNPs detected overall 8 
breeds/lines was 15.2 M. The SNPs with minor allele frequency (MAF) < 0.05 and 
with low ΔF were excluded for further steps. The 140.0 K SNPs, which allelic 
frequencies distinct to the control breeds, were subsequently used as the first 
group of candidate SNPs. 

Table 2.1 Sequenced chickens and the number of SNPs detected from different breeds. 

Type Breeds 
Individuals 

in each 
pool* 

No. of 
pools 

Number of 
detected SNPs 

(with QC ≥ 20) ** 

Local Yellow-
feathered 

chicken 

Beijing-You 16 3 8,505,214 

Jingxing-Huang 16 3 8,349,627 

Sanhuang 16 3 9,405,319 

 Cyan shank 
partridge  

Cyan shank partridge  
(fast growth rate) 

16 3 8,954,795 

Cyan shank partridge  
(mediate growth rate) 

16 3 8,884,232 

Commercial 
white-

feathered 

Cobb maternal line 16 3 7,093,225 

Cobb paternal line 16 3 8,372,769 

Recessive White 16 3 7,556,464 

 Total   15,312,402 

*Each pool contained 8 males and 8 females. 
**Based on Gallus_gallus-4.0. 

Selection of the second group of candidate SNPs based on the GWAS of 15 traits 

The 7.4 K SNPs were demonstrated to have the top 1% genome-wide significance in 
15 traits and were selected as the second group of SNPs. The details are shown in 
Supplemental file 2.2. 

Selection of the third group of candidate SNPs based on the genes associated 
with economic traits 

SNPs in the regions of 861 candidate genes related to economic traits were used 
according to previous studies of gene/protein expression profiles. A total of 66.4K 
SNPs in 383 genes for breast muscle and intramuscular fat development in 
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embryonic and post-hatching periods (Liu et al., 2017), 24.7 K SNPs in 286 genes for 
body fat metabolism (Huang et al., 2018), 32.6 K SNPs in 146 genes for disease 
resistance (Li et al., 2018), and 7.2 K SNPs in 46 genes that exhibited possible 
influence on other chicken economic traits (Fan et al., 2015) were selected 
(Supplemental table 2.3). Flanking SNPs located within 5 Kb up- and down-stream 
of the selected SNPs were also considered. 

According to the SNPs detected by genome resequencing of the previously 
mentioned 8 breeds, 15.2 K candidate SNPs were selected from 118,470 K SNPs on 
all those genes, which had priority with mutations in exons, splicing regions, 
promotors, and the 3’ and 5’ untranslated regions (UTRs). 

In addition, a batch of 0.8 K SNPs from an unpublished capture sequencing of 
chicken chromosomes 11, 16, and 19 were included in the third candidate group 
(Supplemental table 2.4). The SNPs were significantly related to high IgY levels in 
Beijing-You and White Leghorn chickens. 

There were 16.0 K candidate SNPs that were selected for the design of the final 
genotyping array. 

The fourth group of candidate SNPs are derived from whole genome sequences of 
low- and high-RFI chickens 

Whole genome sequencing of low- and high-RFI chickens were performed to locate 
the genomic variants for RFI based on differences in allelic frequency between 
high- and low-RFI chickens as described in our previous study (Liu et al., 2018). The 
selected 4.3 K SNPs (3.7 K RFI related SNP in Beijing-You chickens and 0.6 K RFI 
related SNPs in Cobb chickens) were used as the candidate SNPs for the design of 
the final genotyping array in the next step. 

Designing the Affy 55K genotyping array 

Based on the above four groups of candidate SNPs, a custom-made algorithm was 
used to fix the final array. Finally, 52,184 SNPs were selected for the final array. The 
mean physical distance of SNPs in each involved chromosome is show in Table 2. 
The priority 1 SNPs (the SNPs in group 2, 3 and 4) and 25 insertions and deletions 
were first placed on the final SNP panel. The next step was addition of the priority 2 
SNPs (the SNPs in group 1). The remaining 18.4 K SNPs were selected for the blank 
windows in the whole chicken genome which the SNPs in the four groups do not 
cover. 
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Table 2.2 The number of SNPs of the 55K array on each chromosome and their distance*. 

Chromosome Number of SNPs Mean Distance (K bp) 
1 10,228 19.21 
2 7,077 21.14 
3 5,196 21.44 
4 4,589 19.91 
5 2,705 22.10 
6 1,750 20.36 
7 1,684 21.63 
8 1,314 22.81 
9 1,236 18.98 

10 1,399 14.59 
11 1,373 14.67 
12 1,389 14.34 
13 1,041 17.67 
14 1,118 14.43 
15 761 16.71 
16 81 7.37 
17 724 14.31 
18 736 14.94 
19 725 13.74 
20 867 16.04 
21 503 13.53 
22 153 30.00 
23 321 17.76 
24 390 15.98 
25 106 26.67 
26 339 15.36 
27 277 20.22 
28 317 15.91 
Z 3785 21.67 

Summary 52,184  
* The distance between SNPs based on Gallus_gallus-5.0. 

The SNPs positions of 55K array are given in Supplemental table 2.5. The selected 
SNPs were derived from the following five groups (Table 2.3): (i) 19.2 K SNPs from 
whole genome sequencing of the eight chicken breeds/lines; (ii) 7.4 K trait-related 
SNPs from the Illumina 60K SNP Bead Chip, which were found as SNPs significantly 
associated with 15 economic traits; (iii) 16.0K SNPs from 861 candidate genes of 
target traits and high IgY level related region; (iv) 4.3 K SNPs related to chicken RFI; 
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and (v) 18.4 K from chicken SNPdb. In the final genotyping array, 99.85% of the 
SNPs could be annotated (Table 2.4). The distribution of SNPs on the chromosomes 
is shown in Figure 2.2. 

 
Figure 2.2 The chromosome-wise SNP density of the 55K SNP array. Chromosome length 
shows in left axis (based on galGal-5) and SNP density shows in right axis. 

Table 2.3 The number of SNPs from five candidate groups in the final 55K array. 

Resource Category Number of SNPs in 55K array 
Ⅰ. Genome Re-sequencing of eight breeds  
       White-feathered 12,555 
       Yellow-feathered 3,940 
       Cyan-shank Partridge Chicken 2,724 
Ⅱ.  SNPs based on GWAS of 15 traits  5,980 
Ⅲ.  SNPs on the candidate genes 7,630 
Ⅳ.  SNPs related to RFI  943 
V.  SNPs from chicken SNPdb 18,412 

Total 52,184 
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Table 2.4 Summary of the SNPs effect prediction in 55K array. 

Item Count 
Percent 

(%) 

Total number of SNPs in the panel 52,184  

Annotation possible 52,108 99.85 

intergenic variant 16,106 30.86 

intron variant 25,275 48.43 

intron variant & noncoding transcript variant 3,981 7.63 

missense variant 590 1.13 

missense variant & splice region variant 13 0.02 

synonymous variant 1,601 3.07 

Splicing 187 0.36 

start/stop gained/lost/retained 12 0.02 

3 prime UTR variant 1,358 2.60 

5 prime UTR variant 229 0.44 

upstream gene variant (1kb) 871 1.67 

downstream gene variant (1kb) 1014 1.94 

noncoding transcript exon variant 871 1.67 

The comparisons of the Affy 55K array with the existing chicken arrays (Affy 600K 
array, and Illumina 60K) 

All the SNPs of the current 55K array, Affy 600K array (Kranis et al., 2013), and 
Illumina 60K array (Groenen et al., 2011) were mapped to the latest chicken 
genome (GRCg6a). The overlap of the 3 arrays is shown in Figure 3. There are 6,740 
SNPs (13%) which overlap between the Affy 55K array and the Illumina 60K array. 
When comparing to the Affy 600K array, there are 24,227 SNPs that overlap 
between the 55K array which accounts for 46%. There are 21,412 new SNPs 
included in 55K array compared to the existing arrays. 

 

 

 



2. A new chicken SNP genotyping array 
 

34 
 

 

Figure 2.3 The comparison of the overlap of the SNP positions among the Affy 55K array, 
Affy 600K array and Illumina 60K array. 

Validation of the 55K array in 13 chicken breeds/lines 

All samples from 10 Chinese local breeds (Chahua, Dagu, Liyang, Luhua, Qingyuan, 
Silkie, Wenchang, Bai’er, Xianju, and Jingxing-Huang) and 3 commercial lines 
(Hubbard, Cobb, and White Leghorn) were genotyped with the new 55K array. 

The average call rate for each breed ranged from 97.0% (Qingyuan) to 98.7% 
(Cobb). Across all populations, 76.7% to 88.0% of the 52,184 SNPs were 
polymorphic, with MAF ≥ 0.05. The average MAF ranged from 0.22 (Bai’er chicken) 
to 0.27 (Wenchang chicken) (Table 2.5). 

Table 2.5 Number of polymorphic loci in local breeds and introduced lines. 

Breeds Average Call Rate (%) Polymorphic loci* Mean MAF** 
Chahua 97.56 42.3K 0.242 
Qingyuan 97.00 45.2K 0.267 
Wenchang 97.10 46.5K 0.277 
Luhua 97.21 44.4K 0.261 
Liyang 97.23 40.4K 0.229 
Dagu 97.46 43.7K 0.253 
Bai'er 97.36 40.0K 0.222 
Xianju 97.13 40.1K 0.235 
Silkie 97.03 45.0K 0.258 
Hubbard 97.88 46.1K 0.269 
Cobb 98.70 45.2K 0.237 
White Leghorn 97.99 43.5K 0.249 

*MAF > 0.05, 
**Across all 52.2 K loci. 
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An MDS analysis was performed using the genotyped data to investigate the ability 
of the 55K panel to detect population stratification in the validated samples. Figure 
4 shows the relative coordinates of individuals when plotted using the two largest 
principal components. Individuals originating from the commercial broilers, 
Hubbard and Cobb tightly clustered. The Chinese indigenous meat-type breeds 
clustered together. The two Chinese indigenous egg-type breeds, Xianju and Bai’er, 
clustered together. The remaining local breeds (mainly characteristic of meat-
types) were located relatively close to each other compared to egg-type breeds and 
commercial broilers. The commercial layer White Leghorn chickens were placed 
relative far away from to the Chinese local breeds and commercial broilers in Figure 
2.4. 

 

Figure 2.4 Results of multidimensional scaling analysis of 12 breeds/lines. The scatters show 
the individuals’ position in the MDS plot, different colors represent different breeds/lines. 

The linkage disequilibrium (LD) in Jingxing-Huang chicken and Cobb paternal line 
chicken respectively, were calculated. Figure 2.5 a and b shows the LD decay of the 
Jingxing-Huang and Cobb paternal lines for chromosome 1 and 2, respectively. The 
average levels of LD between adjacent SNPs in Jingxing-Huang breeds of 
chromosome 1 is 0.61 and for chromosome 2 is 0.58, whereas in the Cobb line 
these LD levels are 0.56 and 0.46, respectively. The mean LD level decay is around 
0.22 in 40 Kb. The r2 of LD in the Jingxing-Huang chickens is larger than that in the 
Cobb paternal line. Supplemental figure 2.1 and 2.2 shows the r2 of LD decreasing 
with the increased SNPs distance in the two populations in whole genome level. 
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Figure 2.5 The LD decay plots. (a). from the Cobb and Jingxing-Huang (JXH) chickens in 
chromosome 1; (b). from Cobb and JXH chickens in chromosome 2. 

2.3 Discussion 

The selection of the 52,184 SNPs was performed in four groups and NCBI SNPdb 
using several criteria. The first group includes 140 K SNPs screened in genome 
sequences of eight Chinese local and commercial chickens. The Beijing-You chicken 
and Guangxi Sanhuang chicken are representative of Chinese, yellow-feathered 
chickens, which possess excellent meat quality and flavor (Qi et al., 2010). Two 
Cyan-shank partridge lines possess meat flavor and appearance that are usually 
chosen by consumers. The Jingxing-Huang line is widely used in local breeding 
programs because of its dwarfism, feed-saving and space-saving characteristics 
(Merat, 1984). The Cobb paternal line is a type of fast-growing line. The Recessive 
White chicken is a fast-growing line, which is popular in Chinese breeding programs 
because it can improve the growth rate of commercial generations without 
changing the appearance of offspring, when crossed with local colorful breeds. The 
SNPs with high ΔF between the local breeds and the commercial lines were used to 
determine the polymorphisms that have a larger difference in allelic frequency 
between breeds/lines. The main aim of whole-genome sequencing of different 
chicken breeds is to detect SNPs, although the pooled sequencing might generate 
potential bias. 

The second, third and fourth groups are those potentially associated with economic 
traits, including 7.4 K SNPs associated with weight, carcass, immune and meat 
quality traits and 16.0 K SNPs for breast muscle, body fat and reproduction traits. 
Improving feed efficiency is an important goal in poultry industry to reduce costs. 
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RFI was considered independent of body weight and weight gain, selection for RFI 
would improve the feed efficiency without changing the economic traits (Aggrey et 
al., 2010). For special interests, 4.3 K SNPs were selected from a whole genomic 
sequencing research of low- and high- RFI Cobb and Beijing-You chickens. The 
strategy for the first selection of SNPs in candidate genes for the array is that these 
SNPs have a higher potential to be in linkage disequilibrium (LD) to the causative 
SNPs for the target traits. Finally, the last 18.4 K SNPs were selected from chicken 
SNPs database to make all SNPs cover the whole genome evenly. The average 
distance among SNPs is 22 kb generally (Figure 2). Due to specific selection on 
immune genes, a high SNP density on chromosome 16 is observed. Based on the 
limited information and substandard assembly (galGal-5.0) of the micro-
chromosomes, we could not obtain SNPs of sufficient quality on all the micro-
chromosomes. In summary, the setting of the algorithm was to select SNPs with 
relevant function and even distribution across the genome in terms of physical 
distance and obtain a representation of SNPs fron local or commercial breeds. 

When comparing to the Affy 600K array, there are 24,227 SNPs that do overlap 
with the 55K array which accounts for 46%. The reason for this high percentage of 
overlap is that the 18.4 K SNPs for filling the gaps in the whole chicken genome 
were selected from chicken SNPdb, and the probe validated SNPs hold a high 
priority. This result showed that there were 21.4 K new SNPs included on the Affy 
55K array compared to the two existing arrays. The results indicate that imputation 
of the 55K genotyping data to the high-density SNPs genotyping data is possible. In 
the new 55K genotyping array, 69% of SNPs are within genes (non-intergenic 
variant), the proportion is higher than the proportion in the Affy 600K array (54%), 
and lower than the proportion in Illumina 60K array (86%). 

To investigate the ability of our 55K panel to detect polymorphisms and population 
structure in local or commercial breeds/lines. Nine Chinese local breeds (Chahua, 
Dagu, Liyang, Luhua, Qingyuan, Silkie, Wenchang, Bai’er, and Xianju) and 3 
commercial lines (Hubbard, Cobb, and White Leghorn) were tested. The average 
call rate for each breed ranged from 97.0% to 98.7%. Across all populations, 76.7% 
to 88.0% SNPs were polymorphic (Table 2.5), which indicates that the 55K 
genotyping array can be used to determine genetic variation both in various local 
Chinese breeds and in commercial meat-type and egg-type breeds. 

According to the results of MDS analysis (Figure 2.4), individuals originating from 
the commercial broilers, Hubbard and Cobb clustered together tightly and the two 
Chinese indigenous egg-type breeds, Xianju and Bai’er, clustered together. It might 
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be due to the fact that the two breeds were selected in the same direction 
(Resources, 2011). This result was supported by a previous study on the genetic 
diversity of Chinese domestic fowls based on a  mtDNA analysis (BAO Wen-bin, 
2008). The inter-population net nucleotide divergence (Da) between Xianju and 
Bai’er was 1.006, which was lower than the Da (1.115) between Xianju and Dagu 
chickens. The remaining local breeds (mainly characteristic of meat-types) were 
located relatively close to each other compared to egg-type breeds and commercial 
broilers. The commercial layer White Leghorn chickens were placed relative far 
away from the Chinese local breeds and commercial broilers. The relative proximity 
of Chinese local meat-type chicken and Chinese egg-type chicken in the MDS plot 
might be due to their shared region and ancestry. Thus, the MDS results are also in 
agreement with the existing knowledge of the lines/breeds and are also in 
agreement with the previous studies, which showed phylogenetic relationships 
among different chicken breeds. 

The linkage disequilibrium (LD) in the Jingxing-Huang breeds and Cobb paternal line 
were calculated and compared. The mean LD level decay to around 0.22 in 40 Kb. 
This result is similar to the previous result (Fu et al., 2015). The r2 of LD in the 
Jingxing-Huang breed is larger than that in Cobb paternal line. The Jingxing-Huang 
is an inbred line that has a relatively small effective population size whereas that of 
the Cobb paternal line is three to four times larger. 

In China, yellow-feathered indigenous chickens are highly diverse (more than 100 
local breeds and 70 crosses). The major obstacle in applying genomic selection for 
improvement of local breeds is the cost of genotyping array. The 55K array has a 
medium SNPs density, is cost-efficient, and optimal for Chinese local breeds 
compared with the existing 600K commercial array. Furthermore, the 55K 
genotyping array incorporated known SNPs loci that possess a high potential for 
association with economic traits and traits that are expensive and difficult to 
measure, which will be interesting for both GWAS and genomic selection (GS) 
projects. 

With the rapid development of next-generation sequencing technologies and 
reduction of the costs, genotyping by sequencing will be the focus of future 
research. In the current phase, however, the genotyping by sequencing system is 
more complex and not as solid as the SNP array. The array genotyped data can be 
easily analyzed and standardized according to constant array SNP positions. The 
batch effect can be excluded by different laboratories and companies. 
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2.4 Conclusions 

In conclusion, we developed an Affy 55K genotyping array that was designed to use 
SNPs that are segregating in Chinese local chicken breeds and commercial 
lines/breeds, and with large number of SNPs that are associated with economic 
traits. Compared to the existing Affy 600K and Illumina 60K arrays, 21.4 K new SNPs 
were included on the 55K SNP array. The results from our Affy 55K genotyping 
array can be imputed to the high-density SNP genotyping data. This array offers a 
wide range of potential applications, such as the evaluation of germplasm 
resources of chicken breeds, investigation of diversity of different chicken breeds, 
implementation of genome-wide association studies and genomic selection. 

2.5 Methods 

Animals 

For whole genome sequencing, 384 chickens were sampled from eight local breeds 
or inbred lines (Table 2.1). Chickens were supplied by Institute of Animal Sciences 
of CAAS (local breed Beijing-You, inbred Jingxing-Huang line), Jiangsu Lihua Co. Ltd. 
(Cyan-shank Partridge lines with fast and mediate growth rates, respectively), 
Institute of Poultry Sciences of CAAS (Sanhuang chicken and Recessive White 
chicken), Xinguang Nongmu Co. Ltd. (paternal and maternal line of Cobb in parental 
generation). In addition, 15 to 21 chickens in each breed/line were used for SNP 
array evaluation, which were sampled from 9 local breeds and 3 commercial lines. 
Chickens were supplied by the Institute of Poultry Sciences of CAAS (Bai’er chicken, 
Chahua chicken, Dagu chicken, Liyang chicken, Qingyuan chicken, Silkie, Wenchang 
chicken, Luhua chicken and Xianju chicken), Xinguang Nongmu Co. Ltd. (paternal 
lines in parent generation from Cobb and Hubbard), the Institute of Animal 
Sciences of CAAS (White Leghorn). Two groups with 87 and 100 chickens from 
Jingxing-Huang and Cobb, respectively were also used for SNP array evaluation. The 
blood samples used in this study were all collected from chickens under the 
veterinary supervision and the Guidelines for Experimental Animals established by 
the Ministry of Science and Technology (Beijing, China), and with the approval of 
Animal Ethics Committee of the Institute of Animal Sciences. No anesthesia or 
euthanasia methods were used. There was no evidence at health examination that 
any of the involved chickens had clinical diseases caused by the sampling. 

Whole genome re-sequencing 

Genomic DNA was isolated from blood samples by the phenol-chloroform method. 
DNA quality was evaluated by gel electrophoresis and Nanophotometer. The 
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individual DNA samples (48 from each breed/line) were pooled to construct three 
libraries, with each library containing 8 males and 8 females. The libraries were 
constructed using the Nextera DNA Library Preparation Kit (Illumina Inc., San Diego, 
CA) according to the manufacturer’s standard protocol. All libraries were 
sequenced on the Illumina Hiseq2500 (2 × 125 bp). 

Genome sequence alignment and detection of the first Group of candidate SNPs 

Reads were filtered for low quality ( > 10 consecutive nucleotides with Phred scores 
< 10), adaptor sequences, and sequences without a quality control-passed paired 
read using NGSQC toolkit (v2.3.3) (Patel and Jain, 2012). Sequence coverage for 
each trimmed pool is shown in Table S5. Filtered sequenced reads were mapped to 
the reference genome (Gallus_gallus_4.0) by BWA software (v0.7.10) (Li et al., 
2009). PCR duplicates were removed with rmdup function in Samtools (version 
0.1.1.18) (Li et al., 2009). SNPs were identified and genotyped for each data set 
with mpileup function in Samtools, then called by VarScan (Koboldt et al., 2009). 
Only those highly confident variants supported by both methods were kept for 
downstream analyses. SNP calling parameters were described by Liu et al., (2018). 
SNPs with MAF < 0.05 and INDELs in each breed/line were filtered by vcftools (Petr 
et al., 2011). To calculate the allele frequency between Chinese indigenous breeds 
and commercial lines (ΔF). We used Beijing-you chicken, Jingxing-Huang chicken, 
Sanhuang chicken, and the two lines of cyan-shank partridges minus the MAFs of 
Cobb paternal line, as well as the MAFs of Recessive White chicken, and the 
paternal and maternal generation of Cobb minus the MAFs of Beijing-You chicken, 
respectively. The SNPs with low ΔF were excluded. The value of ΔF was adjusted for 
140K SNPs reserved in local breeds and commercial lines to generate the first group 
of candidate SNPs. The threshold of ΔF in local breeds and commercial lines are 
0.609 and 0.731, respectively. SNPs acquired through genome re-sequencing of 
eight breeds/lines supplied the major data for the first group of SNPs in the array. 
SNPs specific for chromosome W were removed and were not considered in the 
current designing. There are also 25 INDELs of special interest, which were defined 
as Priory 1. 

Selection of the second group of candidate SNPs based on GWAS analysis of 15 
traits 

The second group of candidate SNPs was selected according to a GWAS analysis of 
15 traits. Phenotype and genotype data were generated from the CAAS chicken F2 
resource population as previously described (Sun et al., 2013). Briefly, the 
population was derived from a cross between local Beijing-You chickens and 



2. A new chicken SNP genotyping array 

 
 

41 
 

commercial Cobb broilers (Cobb-Vantress, Inc.). Weight, carcass, immune and meat 
quality traits were measured from 367 F2 chickens. The 15 traits were as follows, 
(a.) body weight at day 28 and day 42, (b.) carcass traits including total weight 
percentage after slaughtering, breast muscle weight percentage, leg muscle weight 
percentage, abdominal fat percentage, (c.) meat quality traits including the breast 
muscle intramuscular fat ratio, ultimate pH (24 h), meat lightness, redness value 
and yellowness value of breast muscle, (d.) immune traits including IgY level to 
sheep red blood cell, the heterophil and lymphocyte ratio, IgY level in serum, and 
the average red blood cell backlog. 

SNPs were genotyped by using Illumina 60K SNP Bead chip for chicken (Groenen et 
al., 2011). All phenotypes have been described by Sun et al. (2013). To maximize 
the polymorphism resources for SNP array, the GLM procedures were used for the 
GWAS which was performed using the PLINK software (version 1.07) (Purcell et al., 
2007) with 42,585 SNPs passed quality control. The SNPs with top 1% lowest p-
values were used in the following procedures. 

Selection of the third group of candidate SNP based on the associated genes for 
target traits 

Known candidate genes for economic traits were collected and used for the SNP 
array design. All genes were identified through previous research by our group (Cui 
et al., 2012; Liu et al., 2016; Liu et al., 2017; Huang et al., 2018). We retrieved total 
861 genes related to skeletal muscle and intramuscular fat development, chicken 
fat metabolism, and salmonella enteritidis resistance (Supplemental table 2.2). The 
SNPs were annotated by the Ensembl tool VEP (Mclaren et al., 2016). Mutations 
and the SNPs in exons, splicing regions, and UTRs were selected out. A maximum of 
5 candidate SNPs was selected out for each gene. 

In addition, the SNPs in this group also included 0.8 SNPs detected from a set of 
capture sequencing of Chr. 11, Chr. 16, and Chr. 19 of White Leghorns and Beijing-
You chickens with low or high serum IgY (Liu et al., unpublished, Supplement Table 
S3). 

Selection of the fourth group of candidate SNPs for RFI 

The fourth group candidate SNPs were selected from a whole genomic re-
sequencing research of low- and high- RFI Cobb and Beijing-You chickens. SNPs 
calling results showed that 8.51 M and 8.48 M SNPs were detected in low- and 
high-RFI Beijing-You chickens, respectively; 8.35 M and 8.37 M SNPs were detected 
in low- and high-RFI Cobb chickens, respectively. The SNPs with Fst value <5% in 



2. A new chicken SNP genotyping array 
 

42 
 

each breed were excluded followed by SNPs with mean ΔF < 0.35 between low- 
and high-RFI chickens. Through the above filtering processes, 3.7 K SNPs assigned 
to 1,137 candidate genes in Beijing-You chickens and 0.6 K SNPs (448 genes) in 
Cobb chickens were reserved (Liu et al., 2018). 

Selection of the SNPs from chicken SNPs database 

The first four groups cannot cover the whole genome evenly. In the fifth group, 
SNPs were selected from chicken SNPs database from NCBI 
(ftp://ftp.ncbi.nih.gov/snp/organisms/archive/chicken_9031/). 

SNP screening according to the scoring of probes 

All the SNPs’ positions were transformed from WASHUC2.1 (Illumina 60K), and 
Gallus_gallus-4.0 (Affy 600K) to Gallus_gallus-5.0 (Affy 55K) by the LiftOver tool on 
UCSC Genome Browser. The five candidate groups above, in silico validation, was 
performed using the AxiomGTv1 algorithm of APT, which generated an output 
score file containing p-convert values, signifying the SNP array quality and list of 
recommended and non-recommended SNP probes. For a high-quality SNP array 
design, non-recommended SNP probes were all excluded in the following 
procedure. 

SNPs selection procedure for the final 55K array 

The final SNPs selection was done in multiple steps using several criteria. The 
roadmap is shown in Figure 1. 

A custom-made algorithm was applied as described below. According to the 
Gallus_gallus-5.0, the chicken genome length is about 1.2 Gb. To ensure the probe 
position evenly distributed in the chicken genome, the whole genome was 
distributed by windows with 22 Kb length. The backward window started from the 
probe position of the forward probe position. The selection of the final array was 
performed on each chromosome separately. The first four groups of SNPs were 
divided as 2 priorities. The SNPs in group 2, group 3, group 4, and the INDELs in 
group 1 were defined as priority 1, and the SNPs in group 1 were defined as priority 
2. 

1. a) The selection of the SNPs in priority 1. If there is no SNP in a 22kb window, the 
window will be reserved. b) If there are one or two SNPs in the window, the SNP(s) 
was reserved. c) If there are 3 or more SNPs in a window, only 2 SNPs in this 
window will be reserved, which can make the SNPs even distributed in this window 

according to the following formula. SD2= . In the 
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formula above, the S and E are the start position and the end position of the 
window respectively; and Ni and Nj are the target SNPs position in the window. The 
SNPs Ni and Nj which can minimum the SD2, will be reserved. 

2. The selection of priority 2 SNPs. Each window reserved 1 or 2 SNPs will be 
skipped. The windows without SNP will be filled by one SNP of priority 2 according 
to the formula described above. 

3. The windows without any SNP will be filled by 1 SNP from the NCBI SNPdb of 
chicken, while the validated SNPs will have a priority for filling. 

The final array contains 55 K probes for 52 K SNPs, which were manufactured by 
Affymetrix® using photolithography. The redundant probes are used for 
interrogating each SNPs (Gunderson et al., 2005; Syvänen, 2005). The final 52K 
SNPs were annotated by the online tool Ensembl VEP (Zerbino et al., 2018). 

The comparisons of the 55K Affy array with the existing arrays (Affy 600K array, 
and Illumina 60K) 

All SNP positions were transformed from WASHUC2.1 (Illumina 60K), Gallus_gallus-
4.0 (Affy 600K) and Gallus_gallus-5.0 (Affy 55K) to GRCg6a by the LiftOver tool on 
UCSC Genome Browser. All SNP positions of the three genotyping arrays were 
compared. SNPs on the 600K and 60K array were also analysed by Ensembl VEP 
(Mclaren et al., 2016). Overlapping Venn plot was performed by the Calculate and 
draw custom Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/). 

Validation of the 55K array in 13 chicken breeds/lines 

The genomic DNA from 12 breeds/lines (Chahua, Dagu, Liyang, Luhua, Qingyuan, 
Silkie, Wenchang, Bai’er, and Xianju, Hubbard, Cobb, and White Leghorn) and two 
lines with larger populations (Jingxing-Huang and Cobb) were isolated as 
mentioned above. The genotyping was done on Axiom® arrays using the Affymetrix® 
GeneTitan® system according to the procedure described by Affymetrix 
(http://media.affymetrix.com/support/downloads/manuals/axiom_genotyping_-
solution_analysis_guide.pdf ) in the Beijing Compass Biotechnology Co., Ltd 
(Beijing, China). 

Basic genotype statistics for each marker, including call rate, MAF, Hardy-Weinberg 
Equilibrium (HWE), allele and genotype counts were calculated using the Quality 
Assurance Module from the SNP Variation Suite version 7 (SVS; Golden Helix Inc., 
Bozeman, Montana: www.goldenhelix.com). The following quality control criteria 
(filtering) were used to remove SNPs with less than 95% call rate for further 
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analysis. The SNPs with less than 0.05 MAF. SNPs were tested for HWE (P <0.001) 
to identify possible typing error. Samples with more than 10% missing genotypes 
were removed from the study. 

The MDS was performed using the genotype data of the SNPs from the 55K panel 
on all breed samples (n = 226) to assess the utility of the panel in detecting 
population structure. Population structure between 12 breeds was carried out 
using PLINK software (version 1.90b3) (Purcell et al., 2007) with the MDS method, 
and the plot was performed by ggplot2 (Wickham, 2009). The linkage 
disequilibrium in 2 populations was performed by GAPIT (Alexander E et al., 2012). 
The LD decay plot performed by PopLDdecay software is presented as whole 
genome levels and as chromosome levels with the parameter of min break point 
size of 5 Kb and small break point size of 40 Kb (Zhang et al., 2019). 
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Abstract 

Fat traits are important in the chicken industry where there is a desire for high 
intramuscular fat and low abdominal fat. However, there is limited knowledge on 
the relationship between the dynamic status of gene expression and the body fat 
deposition in chicken. Transcriptome data were obtained from breast muscle and 
abdominal fat of female chickens from 9 developmental stages (from embryonic 
day 12 to hatched day 180). In total, 8545 genes in breast muscle and 6824 genes 
in abdominal fat were identified as developmental dynamic genes. Weighted 
correlation network analysis was used to identify gene modules and the hub genes. 
Twenty-one hub genes were identified, e.g., ENSGALG00000041996 a candidate for 
high intramuscular fat and CREB3L1 related to the low abdominal fat weight. The 
transcription factor L3MBTL1 and the transcription factor co-factors TNIP1, HAT1, 
and BEND6 showed a correlation to high breast muscle IMF and low abdominal fat 
weight in this study. Our results provide a resource of developmental 
transcriptome profiles in chicken breast muscle and abdominal fat. The candidate 
genes can assist in the selection for increased intramuscular fat content or a 
decrease in abdominal fat weight which would contribute to the improvement of 
these traits. 

Key words: chicken, intramuscular fat, abdominal fat, transcriptome, tissue 
development   
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3.1 Introduction 

Lipid metabolism, regulation, and deposition play a very important role not only in 
relation to obesity in humans but also in livestock production because of its close 
relationship with tasty and healthy food supply for humans. For global meat 
consumption, chicken meat is the second largest, providing one fourth of meat 
resource (http://www.fao.org/faostat/en/#home). In the Chinese meat-type 
chicken industry, yellow-feathered dwarf chickens are used in one-third of the 
breeding system. High intramuscular fat (IMF) content contributes to high meat 
quality, as a result, increasing IMF deposition is a desirable goal in meat-type 
chicken breeding. Genetic selection, nutritional strategies, and management 
practices have been shown to enhance fat deposition and IMF in swine (Reiter et 
al., 2007) and cattle (Pethick et al., 2001). However, unlike the muscle type of pork 
and beef, the marbling in chicken muscle meat is almost invisible. In chicken, an 
increased IMF in muscle tissue will result in an increase in abdominal fat (AF) 
deposition in the chicken body (Jiang et al., 2017). Excess of AF influences animal 
welfare and becomes a waste product for human consumption after slaughter, 
therefore resulting in considerable economic losses (Jiang et al., 2017). Thus, an 
increase of IMF and a reduction of AF deposition are important goals of meat-type 
chicken production. 

Fat can be deposited at different sites in the chicken body: around abdominal 
tissues (AF, also called visceral fat or central fat), in bones (marrowfat), 
subcutaneous (subcutaneous fat), and in the muscle (IMF). The IMF content plays a 
key role in various quality traits of meat and it varies between different chicken 
breeds/lines, tissue types, and also varies with age, gender, feeding, and even 
during the season (Hocquette et al., 2010). AF is the most dominant fat tissue in 
the mature animal body. Fat tissue is composed of adipocytes, which mainly 
differentiate from mesenchymal stem cells (MSCs) (Pittenger et al., 1999). 
Adipocyte differentiation should be characterized by 2 phases, the determination 
phase (hyperplasia) and the terminal differentiation phase (hypertrophy) 
(Symonds, 2012). Although it has been suggested that the number of adipocytes 
will not increase after adulthood, in humans, prolonged times of obesity can also 
result in an increase in the number of adipocytes (Schmitz et al., 2016). For meat-
type animals, at the cellular level, the adipocyte number increases most rapidly in 
the abdominal wall and minimal in the intramuscular depot (Allen, 1976). Chicken 
fat deposition varies during the different developmental stages. In embryonic 
stages, the fat deposition starts in the muscle (IMF) before deposition around the 
abdomen, while at the fast-growing stage this is the other way around. 
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The gain in fat depends on the adipocyte’s ability to synthesize and store lipids. The 
molecular mechanisms underlying fat deposition and its regulation are still 
insufficiently understood but there is a close relationship between adipocyte 
development and expression of specific genes in pre-adipocytes. This involves 
genes related to adipocyte differentiation, transcription regulators and genes 
related to lipid metabolism (Ono et al., 1990). The transcription factors (TFs) PPARγ, 
C/EBPs, and ADD1 (SREBP1) are involved in the regulation of adipocyte 
differentiation. PPARγ was shown to be a necessary regulator of induced 
differentiation of adipocytes (Kim et al., 2014). C/EBPα plays a very important role 
in adipocyte differentiation (Tang and Lane, 1999) and activates genes such as aP2, 
PEPCK, and SCD1, that all contain TF binding sites for C/EBPα (Farmer, 2006). 

RNA sequencing has been used in studies of chicken pre-adipocytes development 
at the cellular level (Guo et al., 2018), chicken fat deposition in vivo (Zhuo et al., 
2015), and embryonic adipocytes development (Na et al., 2018). Adipogenesis has 
been shown to be a multi-step process, regulated by both enhancers and inhibitors 
(Tontonoz et al., 1994; Ross et al., 2000). Several tissues are involved in the 
regulation of fat deposition and the contribution of these tissues changes during 
development. Previous studies have mainly focused on IMF and AF separately or 
mainly focused on one or two developmental stages (Resnyk et al., 2017). 
Therefore, this study focuses on multiple time points of development and the 
transcriptome dynamic changes of two different fat-related tissues to achieve more 
completable knowledge on the molecular mechanism of fat deposition in chicken. 

3.2 Materials and methods 

Animals Genetic Background, Phenotypes, and Samples Collection 

The parental generation used in this study was selected from an inbred dwarf 
yellow-feathered Jingxing-Huang IMF-up selected chicken line, which is a widely 
used Chinese local meat-type chicken line (Jiang et al., 2017). Twenty roosters and 
60 hens (1 male mated to 3 females) were selected to produce the animals of the 
experimental generation for the phenotype recording and sample collection. In the 
experimental generation, 2 batches of eggs were incubated. Sample collection was 
subsequently performed at the following 9 developmental stages: E12 (embryonic 
day 12), E17, and D01 (day 1 after hatching), D07, D21, D56, D98, D140, and D180. 
Chickens were reared with ad libitum access to feed and water. Tissue sampling of 
the animals was approved by the animal ethics committee of the Institute of 
Animal Sciences, Beijing, China. The following phenotypes were recorded: body 
weight, breast muscle weight (BMW), and AF weight. The organ growth curve of 
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breast muscle (BM) and AF was fitted by the Logistic model using the Origin 
software. BM and AF samples were collected from every animal and developmental 
stage except for AF from stage E12 to D01, where no obvious AF tissue is observed. 
From developmental stages E12 to D21, hematoxylin-eosin (HE) and Red Oil O stain 
were used on the BM samples and the relative amount of BM IMF during these 
phases was measured by the Red Oil O-stained section. From D21 to D180, the IMF 
content in BM of the chickens was determined by the Soxhlet extraction method 
(Soxhlet, 1879). The relative breast muscle IMF content from E12 to D07 was 
calculated by the IPP software from 10 captured images of Red Oil O-stained 
sections. The genders of the embryo were determined by a length polymorphism in 
the intron of the CHD1 gene by performing a PCR and analysis of the fragments 
using agarose gel electrophoresis (Griffiths and Korn, 1997). The sequences of the 
primers are forward primer: 5’-GTTACTGATTCGTCTACGAGA-3’, and reverse primer: 
5’-ATTGAAATGATCCAGTGCTTG-3’. Finally, three full-sib families were used as 
experimental chickens. Each full-sib family provided one chicken for samples for 
RNA-seq in each stage. the middle of AF and the pectoralis major of BM samples 
from 27 female chickens were used for RNA extraction (Table S3.1). Additionally, in 
the embryonic period, it is not possible to divide the pectoralis major and pectoralis 
minor, the whole breast muscle was used for RNA isolation. 

RNA sequencing and data quality control 

The QIAGEN RNeasy Kit was used to isolate total RNA, and genomic DNA was 
removed by using the TIANGEN DNase KIT. The RNA concentration and RNA 
integration number were assessed by Nanophotometer and Nanodrop, 
respectively. The RNA samples with RIN > 7 were used to isolate mRNA from total 
RNA by the Dynabeads mRNA DIRECT Kit (Invitrogen) followed by library 
construction. Un-stranded specific RNA sequencing libraries were sequenced on 
the Illumina Hiseq2500 (2x125 bp). Library construction and sequencing were 
commercially performed by Berry Genomics, Beijing, China. Obtained sequences 
were trimmed for the sequencing adaptors and for low-quality reads (N > 10% in a 
read) by Trimmomatic (Bolger et al., 2014). The sequence data quality of each 
sample was controlled by FastQC (Andrews, 2010). 

Transcriptome Profiling and differentially expressed genes (DEGs) Detection 

All trimmed transcriptome data was aligned to the chicken reference genome 
(GRCg6a) and annotation file (Gallus.gallus.GRCg6a.95.gtf) by the STAR software 
(version 2.5.3) (Dobin et al., 2013). Data was assembled by the Stringtie software 
(version 1.3.3b) (Pertea et al., 2015). Gene and transcript level raw counts were 
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calculated using the Stringtie provided Python script with the parameter l = 125. 
The accuracy of the assembled files was evaluated by gffcompare (version 0.10.1). 
The protein coding genes and the long non-coding genes were all considered in the 
downstream analysis. Gene expression level normalization was performed by 
DESeq2 (Love et al., 2014), which is based on the experimental design as Stage + 
Tissue + Family. The normalized gene expression data were used for downstream 
analysis. The within tissue PCA plots were performed by the distance of the 
samples calculated by rlog, the PCA for all samples was performed by the distance 
of the samples calculated by vst function of DESeq2 (Love et al., 2014). Using the 
Benjamini-Hochberg method (Benjamini and Hochberg, 1995) with adjusted-p < 
0.05, genes with an expression fold change (FC) > 1.5 or FC < 0.67, were considered 
as DEGs, which is based on the experimental design as Stage. 

Pathway Analysis 

The KEGG enrichment and GO enrichment were performed by clusterProfiler 
package version 3.11.1 (Yu et al., 2012) with org.Gg.eg.db package version 3.8.2 
(Carlson, 2019) and KOBAS 3.0 (Chen et al., 2011).  

Statistical analysis 

The student t-test was performed using basic R (version 3.6.0) after using the 
function of the shapiro.test (for normality test) and the bartlett.test (for 
homogeneity test of variance). The data sets, which do not fit the normal 
distribution, were compared by the rank sum test (Kassambara, 2017). LSD-test 
was performed by agricolae package (version 1.3.1) (De Mendiburu, 2014). 
Significance was stated at P < 0.05. 

Development dynamics genes (DDGs) identification in 2 tissues 

The normalized gene expression data for the different developmental stages of BM 
and AF were used in the DDG analysis. Genes with average raw counts lower than 1 
were excluded. The DDGs were identified by maSigPro package (Ana et al., 2006; 
Nueda et al., 2014). By considering the expression distribution as the negative 
binomial model and the Benjamini and Hochberg procedure to adjust the FDR, 
significant genes were selected with the forward method using r2 > 0.7. Gene 
expression patterns in tissues pairwise comparison was performed with the same 
parameters described above. The list of TFs and TF co-factors (TFCF) was acquired 
from AnimalTFDB (v.3.0) (Hu et al., 2018). 

Weighted gene co-expression network analysis (WGCNA) 
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All samples were used in the WGCNA except three BM outlier samples (Figure 
S3.1). The remaining BM samples for the WGCNA did cover all the stages. A 
weighted genes co-expression analysis was performed by WGCNA package 
(Langfelder and Horvath, 2008) with default settings and minor modifications. The 
minModuleSize was set to 100 and mergeCutHeight was set to 0.3 for tissue-stage 
specific module detection (soft-threshold = 9). A tissue-stage matrix for each RNA-
seq sample was built for correlation to identify the modules. For the WGCNA within 
tissue data set, suitable soft-threshold power values were chosen based on the 
approximate scale-free topology for each analysis (soft-threshold =18 for BM in E12 
to D21 data set, soft-threshold = 10 for BM in D07 to D180 data set, and soft-
threshold = 5 for AF data set). By using the step-by-step topology overlap matrix 
(TOM), module detection, and similar module merging functions (minModuleSize = 
30), gene modules co-expression clustering dendrograms were built (Langfelder 
and Horvath, 2008). The module-traits associations were quantified, and the 
corresponding correlations were adjusted by the method of Benjamini-Hochberg. 
The P-value of interested module-traits corresponding correlations less than 0.01 
were used for further analysis. To identify the hub genes in the interesting 
modules, a customized hub gene filtering method was used. The gene network of 
each module was filtered as follows: a) the edges with weight lower than 0.15 were 
removed, b) the nodes with a connectivity number smaller than 10 were removed, 
c) the nodes with an average expression below 10 were removed, for controlling 
the false positive rate, d) finally, the gene is ranked by the summation of weight 
value. Genes co-expression networks were performed by Cytoscape software 
(version 3.7.0) (Shannon et al., 2003) with the edges provided by WGCNA 
‘exportNetworkToCytoscape’ function. 

3.3 Results 

For the RNA sequenced chickens, the IMF ratio of BM and the AF weight at the 9 
different stages were determined (Table S3.2). The fitted growth curve of BM and 
AF for each of the three full-sib families during development are shown in Figure 
S3.2, and both the breast muscle weight and abdominal fat weight follows a logistic 
regression (R2 > 0.99). On the day of hatch (D01), the IMF ratio of BM was relatively 
high and then dropped to a low level at D07, similar with E12 and E17. From D21 to 
D98 IMF ratios stayed relatively constant after which it gradually increased to 
7.04% at D140 (Figure 3.1K). The HE stained section of BM from embryonic day 12 
to day 21 showed that the diameter of muscle fiber increased according to the 
developmental stage (Figure 3.1A to 3.1E). The AF weight (AFW) weekly gain from 
D56 to D98 and D98 to D140 was significantly higher than those between the other 
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developmental stages, whereas D140 to D180 showed a decrease in AFW weekly 
gain (Figure 3.1L). 

 
Figure 3.1 The phenotypes of the chickens used for RNA-Seq. (A–E) The HE-stained breast 
muscle sections in E12, E17, D01, D07, and D21. (F–J) The Red Oil O-stained breast muscle 
sections in E12, E17, D01, D07, and D21. The (K) IMF percentages and (L) average abdominal 
fat weight (gram); error bars are the standard deviations. 

Transcriptome Profiling 

To obtain insight in the transcription of genes during the 9 different developmental 
stages, transcriptome data was obtained from BM and AF from 3 individuals per 
stage. In total, 45 RNA-seq libraries were constructed and sequenced (Table S3.2). 
After trimming adaptors and removing low-quality reads, an average of 28.58 
million reads per library were aligned to the chicken reference genome (GRCg6a) 
with a mean alignment ratio of 92.48% over all libraries (Table S3.3). In total, 
21,853 genes were detected among all samples with 20,891 genes expressed in BM 
and 20,719 genes expressed in AF across all the tested developmental stages. 
Among which, 90.41% (19757/21853) of genes both expressed in BM and AF. The 
overlap of the BM and AF expressed genes is shown in Figure S3.3. The genes raw 
read counts in each library are shown in Table S3.4. The most highly expressed 
genes in BM and AF are ACTA1(actin alpha 1) and MT-CO1(Cytochrome c oxidase 
subunit 1), respectively. 

To explore whether the expression profiles correlate with the developmental 
stages, a combined PCA of BM and AF expressed genes was performed (Figure 3.2) 
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as well as individual PCA for BM and AF, respectively (Figure S3.4a and Figure 
S3.4b). As expected, there is a strong separation of the two tissues (Figure 3.2) 
whereas limited separations were observed for the developmental stages in the 
two tissues. 

 

Figure 3.2 PCA plot of BM and AF samples at different developmental stages. The legends 
represent tissue plus developmental stage. The PCA was calculated by the vst function of 
DESeq2 package based on the normalized raw gene counts. 

The stage specific expressed gene numbers varied from 55 to 708 for BM and from 
80 to 694 for AF (Table S3.5, Table S3.6 and Figure S3.5a). The KEGG enriched 
pathways of the genes specifically expressed in different developmental stages are 
shown in Figure S3.5b and Figure S3.5c, e.g., the genes specially expressed in D01 
enriched for fatty acid related pathways, such as fatty acid elongation, biosynthesis 
of unsaturated fatty acids, and fatty acid metabolism. The number of differentially 
expressed genes (DEGs) detected between the adjacent developmental stages 
varied from 13 to 1432 for BM and from 48 to 1177 for AF (Table S3.7). The number 
of DEGs between the early stages is higher than between the latter stages. The 
number of DEGs between D140 and D180 both in BM and AF is very limited. The 
KEGG enrichment pathways of DEGs between adjacent stages in BM and AF are 
shown in Figures S3.6a and S3.6b. In the early stages of both BM and AF, the DEGs 
are enriched in cell cycle and cell adhesion molecules pathways. The DEGs between 
D21 and D56 in BM are enriched in glycerolipid metabolism. The DEGs between 
D56 and D98 in AF are enriched in steroid biosynthesis pathway. 
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Developmentally Dynamic Genes (DDGs) 

The genes which showed significant temporal changes in expression were 
identified in the two tissues and these genes were considered as developmentally 
dynamic genes. The DDGs reflect the changes across developmental stages in gene 
expression regulation as well as in biological processes. In the BM data set, 8545 
genes were identified as DDGs, including 425 TFs and 392 TF cofactors. In the AF 
data set, 6824 DDGs were identified including 357 TFs and 305 TF cofactors (Table 
S3.8). On average around 1/3 of these DDGs overlap between the two tissues 
(Figure 3.3a to 3.3c). The TFs and TF cofactors of BM and AF DDGs are enriched in 
similar pathways e.g., cellular senescence and AGE-RAGE signaling pathways in 
diabetic complications (Figure S3.7). The full list of DDGs is presented in Table S3.9. 
There is 37.48% and 31.48% of all currently identified TFs dynamically expressed in 
BM and AF, respectively. 

 
Figure 3.3 BM and AF DDGs overlap. a. Overlap of DDGs between BM and AF. b. Overlap of 
DDGs TFs between tissues. c. Overlap of DDGs TF co -factors between BM and AF. 

Expressed Genes in Different Developmental Stages 

From the whole data set, we investigated the stage-specific expressed genes in 
breast muscle and abdominal fat by weighted gene co-expression network analysis 
(WGCNA). The genes with similar expression patterns were clustered by the 
topology overlap matrix. The merged cluster dendrogram is shown in Figure 3.4a. 
In total, 34 co-expression gene modules were detected. A module can be 
considered as a group of clustered genes and is color-coded. The module-trait 
relationships of AF and BM are shown in Figure 3.4b and the co-expressed gene 
modules were positively correlated with the developmental stages and the tissues. 
The genes in the cyan, light-yellow, black, and red modules are mainly expressed 
during the early stages of BM and are enriched for cell cycle, DNA replication, 
spliceosome, and mismatch repair pathways. The genes in the brown, white, 
purple, and grey60 modules expressed at embryonic stage day 12 of BM are 
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enriched for terms like cell cycle, spliceosome, RNA transport, DNA replication, 
mismatch repair, and homologous recombination. 

 

Figure 3.4 WGCNA results of BM and AF as a consensus data set. a. Cluster dendrogram of 
the BM and AF. b. Module-stages-tissue relationship of BM and AF. 
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Detection of Hub Genes and Transcription (co) Factors Related to High IMF in 
Breast Muscle 

To detect the hub-genes and the related transcription (co) factors involved in 
breast muscle IMF deposition, we performed the WGCNA on two different BM data 
sets. The rational for two separate analyses is that BM has two adipocyte 
development phases. Thus, a WGCNA analysis on the whole BM data set could 
result in potential false results. The first phase is from developmental stage E12 to 
D21 and is mainly related to the adipocyte hyperplasia, and the second phase is 
from D07 to D180 mainly related to the adipocytes hypertrophy. Consequently, 
developmental stages D07 and D21 were included in both phases. 

The module cluster dendrogram of the WGCNA results of the first phase in the BM 
data set (E12 to D21) is shown in Figure 3.5a and the module-trait relationship is 
shown in Figure 3.5b. There are 22 modules clustered in the first phase BM gene 
co-expression data set (Figure 3.5a). The grey60 and light-yellow modules were 
significantly positively correlated with BM IMF content (P = 0.002 and P = 0.01, 
respectively, Figure 3.5b). The network of eigengenes for this data set is shown in 
Figure S3.8a. The co-expression network of the grey60 module is shown in Figure 
3.5c. After filtering the edges with weight, connectivity, and the filtered weight 
summary of each node, the genes ENSGALG00000053368, COX6A1, ATG9B, and 
ENSGALG00000041996 were identified as the hub genes in the grey60 module 
(Table 3.1). ENSGALG00000041996 contacted genes are enriched in e.g., carbon 
metabolism, valine degradation, fatty acid metabolism, 2-Oxocarboxylic acid 
metabolism, and fatty acid elongation pathways. In the light-yellow module, 
LOC107050564 and ENSGALG00000048510 were identified as the hub genes 
(Figure 3.5d). The detected TFs MYCN and HOXB1, the TF-cofactor RNF168 and 
ENSGALG00000008349 are involved in the light-yellow module. 
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Figure 3.5 WGCNA results of the first phase BM data set. a. Module cluster dendrogram. b. 
Module-trait relationship. The upper number in the block is the module’s corresponding 
correlation with the bottom trait and the lower number is the p-value of the corresponding 
correlation. c. Filtered co-expression network of the grey60 module. d. Filtered co-
expression network of the light-yellow module. The yellow nodes in c and d are the 
identified hub genes, involved TFs and TF co-factors. 

Twenty-nine co-expression modules were detected for the second BM phase (D07-
D180, Figure 3.6a), and the module-trait-stage relationships are shown in Figure 
6b. The significant positive modules for BM IMF percentage are the brown module 
(P = 0.003), the dark-green module (P = 0.005), and the dark-grey module (P = 
0.008). The network of eigengenes for this data set is shown in Figure S3.8b. After 
within module edges filtering, no hub genes remained in the dark-green module. 
The genes GIPC2 and UBE2V2 in the brown module and LOC112532140 and 
ENSGALG00000053632 in the dark green module were detected as hub genes 
related to the high breast muscle IMF percentage in phase2. The involved TFs and 
genes enriched pathways are shown in Table 3.1.  
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Figure 3.6 WGCNA results of the second phase BM data set. a. Module cluster dendrogram. 
b. The module-trait relationship. 
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Table 3.1 Hub genes, TFs, and enriched pathways identified in each phenotype related 
module of breast muscle. 

Data set Module Hub genes TFs* KEGG pathway** 

BM 
Phase1 

grey60 
ATG9B, COX6A1, 
ENSGALG00000041996, 
ENSGALG00000053368 

 HOXB1 

Carbon metabolism, 
leucine and isoleucine 
degradation, TCA cycle, 
fatty acid metabolism, 
fatty acid elongation 

light 
yellow 

LOC107050564, 
ENSGALG00000048510 

MYCN - 

BM 
Phase 2 

brown 
GIPC2, MLF1, UBE2V2, 
ENSGALG00000015443, 
ENSGALG00000030350  

MYOD1 
Protein processing in 
endoplasmic reticulum 

dark grey 
ENSGALG00000050515, 
JCHAIN, LOC112532140 

EGR2, EGR3, 
IRF5, KLF4, 
L3MBTL1, 
LITAF, 

PLEK, 
SMAD7B 

Cytokine-cytokine 
receptor interaction, 
neuro active ligand-
receptor interaction, C-
type lectin receptor 
signaling pathway 

* Detailed TFs and TF co-factors and pathways shows in Table S11. 
**No pathway enriched in the light-yellow module in the BM phase1 dataset. The detailed 
pathway shows in Table S12. 

Detection of Hub Genes and Transcription (co) Factors Related to Abdominal Fat 
Weight 

For the abdominal fat genes expression data in the WGCNA, the module cluster 
dendrogram (Figure S3.9a) and the module-trait relationship (Figure S3.9b) 
identified 24 modules. The network of eigengenes for AF expression data is shown 
in Figure S3.9c. The turquoise module (P = 1e-06) is significantly positively related 
to AF weight. After filtering the within interaction edges, the genes such as EIF3J, 
EPM2A, SH3BGRL, ENSGALG00000047756, and CHMP4B were identified as hub 
genes. The turquoise module membership vs gene significance on AFW is shown in 
Figure S3.9d. 
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The yellow module, with 1099 genes, is significantly negatively related to AFW (P = 
0.009). The yellow module membership vs gene significance for AFW is shown in 
Figure S3.9e. Several hub genes were identified, such as MASTL, CENPE, MCM4, 
CREB3L1, and PKB. The genes of the solute carrier family, such as SLC1A3, SLC2A10, 
SLC3A1, SLC6A8, and SLC7A2 were also involved in the co-expression network. The 
complete list of involved TFs and TF co-factors derived from the WGCNA is 
provided in Table S3.10 and S3.11. The TFs involved and genes enriched in the 
pathways are shown in Table 3.2. 

The TF L3MBTL1 and the TF co-factors TNIP1, HAT1, and BEND6, all involved in the 
IMF positively related module of the second phase of the BM data set, overlapped 
with the AFW negatively related module of the AF data set. 

Table 3.2 Hub genes, TFs, and enriched pathways identified in AFW related module of AF. 

Module Correlation 
Hub 

genes 
TFs* KEGG pathway** 

turquoise 
Positively 

correlated 

to AFW 

EIF3J, 

EPM2A, 

CALM1 

PPARD, CEBPB, 

CEBPD, EGR2, 

EGR4, FOS, 

MXD4, RREB1, 

TWIST2, XBP1 

Endocytosis, Lysosome, 

mRNA surveillance 

pathway, and 

Proteasome 

yellow 
Negatively 

correlated 

to AFW 

MASTL, 

CENPE, 

MCM4, 

CREB3L1 

FOXM1, 

CREB3L1, 

MYBL2, GATA4, 

TULP3, RFX5, 

L3MBTL1 

Cell cycle, Protein 

processing in 

endoplasmic reticulum 

3.4 Discussion 

Time course RNA sequencing has been widely used to study cellular differentiation 
(Ma et al., 2018), tissues development (Cardoso-Moreira et al., 2019), and aging 
(Baumgart et al., 2016). We provide new insight on the transcriptome changes in 
chicken between different development stages of breast muscle and abdominal fat. 
Although the Jingxing-Huang IMF-up selected chicken population is an inbred line, 
the experimental chickens have similar genetic background. The 3 biological 
replicates cannot cover all the population transcriptome changes. The PCA result 
indicates that the transcriptome changes of the late developmental stages are 
smaller than those of the early stages. The number of stage specific expressed 
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genes of early stages are higher than those of later stages. The IMF ratio of BM 
displays a peak around the day of hatch followed by an increase from D98 to D180 
which agrees with an earlier study focusing on the stages around the day of hatch 
(Liu et al., 2017). On the day of hatch, the IMF content is high (13.6%), then the IMF 
content remains in a low level until D140. This might be caused by the fact that the 
breast muscle grows a lot during this period. The genes specifically expressed in BM 
during stage D01 are enriched for fatty acid elongation and biosynthesis of 
unsaturated fatty acids, indicating that these pathways may contribute to the high 
IMF phenotype in BM. After hatch, most of the breast muscle IMF deposition starts 
around D98, while the AF deposition starts from D07 and accelerates from D56. 

Genes with significant changes in expression at different developmental stages 
were considered as DDGs. We used DDGs to reflect the transcriptome of BM and 
AF changes during development in cell type abundance, gene regulation, and the 
proportion of cells undergoing division (Pantalacci and Sémon, 2015). The number 
of DDGs in BM (8545) and AF (6824) is somewhat higher than the average number 
of DDGs detected in Red jungle fowl (RJF) in the brain, cerebrum, heart, kidney, 
liver, ovary and testis (Cardoso-Moreira et al., 2019). There are several possible 
explanations for the observed differences e.g., the tissues, sequencing technology, 
time points, and species. The number of DDGs in BM is higher than that in AF, 
showing that BM tissue has more genes that change in expression during the 
developmental period assessed in this study than AF tissue. This could be due to 
the higher number of cell types in BM compared to AF. Furthermore, the number 
of TFs and TF co-factors decreased during development, which is consistent with 
earlier research in other animals (Bolger et al., 2014). Thus, as the development 
process proceeds, the required number of TFs becomes lower. 

WGCNA is a powerful tool for identifying genes that are associated with the 
phenotypes under study (Langfelder and Horvath, 2008). WGCNA can also be used 
to identify tissue- or stage- specifically expressed gene modules (Gao et al., 2018; 
Ma et al., 2018). To investigate the expressed genes in different developmental 
stages, we performed the WGCNA for BM and AF tissues as consensus data set. 
Thirty-four modules were detected, indicating that the gene expression varies a lot 
between the developmental stages. There are 2157 genes in the salmon, green, 
and light-yellow modules with more than 39% genes with unknown function. The 
genes in the turquoise module are expressed higher in AF compared to BM and are 
enriched in the PPAR signaling and fatty acid metabolism pathways, which are 
known to be involved in fat deposition. 
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We initially performed the WGCNA on the complete BM data set. We found that 
IMF positively related modules are like the positively related D01 stage modules, 
representing the IMF deposition during the early period. This may be an issue to 
cause potential false-positive errors in the early stages of adipocyte differentiation 
as well as false-negative errors in the late stage for fat deposition. Therefore, two 
separate WGCNAs were performed for the hyperplasia and the hypertrophy phases 
of the BM data. The hyperplasia phase is covered by E12 to D21 and the 
hypertrophy phase includes the stages D07 to D180. For the abdominal fat dataset, 
there are only samples from D07 to D180. Hence, no separation of phases was 
necessary. There are different ways to identify the hub genes for WGCNA results. 
E.g. the WGCNA package provides a function for hub gene detection (Langfelder 
and Horvath, 2008), and the genes with kME > 0.95 can also be considered as the 
hub genes (Gao et al., 2018). However, in this study, there are several large 
modules, which may be driven by several hub genes. Then, we used the expression 
level of genes, the weight of connected genes, and the connectivity number of 
genes as the criteria for the detection of hub genes. 

In the WGCNA results of the first phase BM data set, the hub gene 
ENSGALG00000041996, a lncRNA, may regulate CD36 and ACADL. The 
ENSGALG00000041996 connected genes in breast muscle phase 1 dataset enriched 
pathways are shown in Figure S10. This would make sense because fatty acids are 
transported via fatty acid binding protein (FABP), fatty acid translocase (FAT/CD36), 
and cell membrane diffusion (Stump et al., 1993). The acyl-CoA dehydrogenase 
long chain gene (ACADL) plays a role in catalyzing the first step of mitochondrial 
fatty acid beta-oxidation (Indo et al., 1992). Both the CD36 and ACADL belong to 
the PPAR signaling pathway. While, the PPAR signaling pathway can also induce 
and activate the expression of aP2 and PEPCK, which are specifically expressed in 
fat tissue (Tontonoz et al., 1995). This suggests that the unannotated gene 
ENSGALG00000041996 may play a key role in fat deposition during early 
developmental stages of BM. In the second phase BM data set WGCNA, the brown 
module is significantly positively correlated with the BM IMF. MYOD1 is the only TF 
in the brown module. MYOD1 is also connected with the hub gene GIPC2 (Figure 
6c). This may indicate that the TF MYOD1 regulates genes in the brown module 
through GIPC2 thereby affecting muscle development and IMF deposition. The 
remaining hub genes, e.g., ENSGAL0000005538, LOC107050546, 
ENGSGALG00000015443, and ENSGALG00000030350 may play so far unidentified 
roles in IMF deposition. The phenotypes BMW and IMF give a very similar pattern. 
However, we cannot distinguish genes that associate with muscle development or 
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IMF deposition. The identified hub genes and involved TFs in the BM data set can 
be used as candidate genes for high IMF chicken selection. 

To identify the hub genes involved in the AF deposition, we performed WGCNA in 
the AF data set. There is no obvious relationship between the hub genes and the 
lipid metabolism, e.g., EIF3J (eukaryotic translation initiation factor 3 subunit J), 
EPM2A (epilepsy, progressive myoclonus type 2A), and CALM1 (calmodulin 1). 
However, the TFs PPARD and CEBPB are involved in the turquoise module, which is 
positively correlated to AFW. The gene PPARD is expressed in multiple tissues in 
adult mouse (Higashiyama et al., 2007) and regulates glucose metabolism and 
insulin sensitivity (Chih-Hao et al., 2006). CEBPB seems to be synergistic in 
promoting lipogenesis in AF of cockerels (Resnyk et al., 2017). The TF CREBP3L1 
(cAMP responsive element binding protein 3 like 1) is involved in the AF weight 
negatively correlated yellow module. The gene CREBP can reduce lipogenesis as 
well as glycolysis in mice (Katsumi et al., 2004). The genes which belong to the 
solute carrier family, were not present in the center of the yellow module. This may 
indicate that the genes of the solute carrier family play some role downstream of 
lipid metabolism. 

In chicken breeding there is a desire of producing chicken with high IMF and low 
AF. From our study we found some promising candidate genes. Especially the TF 
L3MBTL1 and the TF co-factors TNIP1, HAT1, and BEND6, which were identified as 
significantly positively related to the high IMF and significantly negatively related to 
the low AFW could be relevant biomarkers for chicken breeding. RT-q-PCR of the 
four TFs/TFCFs in breast muscle of the Jingxing-Huang chickens and Cobb chickens 
in a large number of individuals, showed that the expression of TNIP1 and HAT1 in 
the high IMF group is significantly higher than in the low IMF group (Li et al., 2020). 

3.5 Conclusion 

In this chapter, the transcriptome dynamics of chicken BM and AF in different 
developmental stages is described. This is an important resource for studying IMF 
and AF in chicken. Developmental dynamics genes and involved TFs were 
identified, which may play key roles in tissue development. In addition, we 
identified several regulatory hub genes that potentially can be used in breeding to 
improve IMF content in muscle and meanwhile reduce the AFW. 
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Abstract 

Background: Liver is the central metabolic organ of animals. In chicken, knowledge 
on the relationship between gene expression in the liver and fat deposition during 
development is still limited. A time-course transcriptomic study from the 
embryonic (day 12) to the egg-producing period (day 180 after hatch) was 
performed to profile slow-growing meat type chicken liver gene expression and to 
investigate its correlation with abdominal fat deposition. 

Results: The transcriptome profiles showed a separation of the different 
developmental stages. In total, 13,096 genes were ubiquitously expressed at all the 
tested developmental stages. The analysis of differentially expressed genes 
between adjacent developmental stages showed that the biosynthesis of 
unsaturated fatty acids pathway was enriched from Day 21 to Day 140 after hatch. 
The correlation between liver gene expression and the trait abdominal fat weight 
(AFW) was analysed by weighted gene co-expression network analysis. The genes 
MFGE8, HHLA1, CKAP2, and ACSBG2 were identified as hub genes in AFW positively 
correlated modules, which suggested important roles of these genes in the lipid 
metabolism in chicken liver. 

Conclusion: Our results provided a resource of developmental transcriptome 
profiles in chicken liver and suggested that the gene ACSBG2 among others can be 
used as a candidate gene for selecting low abdominal fat weight chickens. 

 

Key words: chicken, liver, time course, transcriptome, abdominal fat  
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4.1 Introduction 

In chicken, transcriptional analysis on fat deposition were mainly aimed to 
understand the mechanisms of fat deposition in different depots e.g., visceral fat 
(Resnyk et al., 2015) and intramuscular fat (Liu et al., 2019). Liver is the central 
metabolic organ and it provides many essential endocrine and exocrine functions 
including fat synthesis (Zorn, 2008). In mammals, the liver provides around 70% of 
de novo synthesized fatty acid, whereas, in chickens, the liver provides around 90% 
of de novo synthesized fatty acid (O'Hea and Leveille, 1969). Our knowledge of 
chicken liver gene expression during different developmental stages and how it 
regulates the lipid deposition is still limited.  

In the last decades, new insights into the liver-visceral adipose axis grew rapidly 
(Cornide-Petronio et al., 2019). An important factor influencing the liver lipid flux is 
the adipose tissue (Azzu et al., 2020). In the fasted state, lipolysis is the main 
contributor to the increased fatty acid (FA) turnover rate, whereas, in the fed state, 
both the disability of adipose tissue to take up lipids and the failure of insulin to 
suppress lipolysis can increase the FA turnover rates (Azzu et al., 2020). In addition, 
the liver can also facilitate lipolysis of adipose tissue (Mandard et al., 2006). 

Liver is mainly composed of hepatocytes and biliary epithelial cells, which 
differentiated from the endoderm (Zorn, 2008). Gene expression differed in 
chicken liver at 5 embryonic stages between chickens divergently selected for 
abdominal fat (AF) and showed enrichment of the fatty acid metabolism and the 
peroxisome proliferator-activated receptor (PPAR) signaling pathways (Na et al., 
2018). Chen et al. (2019) studied the transcriptome in the chicken liver after 2 
weeks of high-fat feeding and found the differentially expressed genes (DEGs) 
mainly enriched in the cell cycle and PPAR signaling pathways (Chen et al., 2019).  

However, gene expression during liver development and its relationship with 
adipose deposition in chicken has been investigated only to a limited extent. Here 
we present the results of gene expression in chicken liver at different embryonic 
(from embryo day 12) until egg-production (up to day 180 after hatch) stages and 
find potential regulator genes for abdominal fat deposition by combining the time 
course, co-expression, and genomic analyses.  
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4.2 Material & Methods 

Chicken phenotypes and samples collection 

In this study we used chickens from the 16th generation of an intramuscular fat-up 
selected line. The selection line originates from the Jingxing-Huang chicken, which 
is a yellow-feathered slow-growing dwarfism line. The genetic background of these 
experimental chickens has been described in our previous studies (Zhao et al., 
2006; Jiang et al., 2017). At each of the following 9 developmental stages: E12 
(embryonic day 12), E17, and D1 (day 1 after hatching), D7, D21, D56, D98, D140, 
and D180, liver samples of 3 female chickens were collected. Chickens were reared 
with ad libitum access to feed and water. The chickens were slaughtered without 
fasting to avoid activation of the fasting-feeding cycle of gene expression 
regulation. The growth curve of body weight (BW), liver weight (LW), and 
abdominal fat weight (AFW) were fitted by the Logistic model using the Origin 
software (version 2018). Abdominal fat percentage (AFP) was calculated by 
AFW/BW. Abdominal fat growth rate (AFGR) was calculated as (AFWlater - 
AFWformer)/Time. The lower margin of the liver was collected for RNA isolation and 
RNA-sequencing of the 27 female chickens. Oil Red O stain was used on the liver 
sections for developmental stages E12, E17, D1, and D21.  

RNA sequencing and data quality control 

The QIAGEN RNeasy Kit was used to isolate total RNA, and genomic DNA was 
removed by the TIANGEN DNase KIT. The RNA concentration was assessed by 
Nanophotometer. RNA integrity number (RIN) was assessed by Nanodrop analysis. 
The RIN value of all total RNA sample was larger than 7 and RNA library 
construction was performed by Berry Genomics (Beijing, China). Poly-A enriched 
RNA samples were isolated by Dynabeads mRNA DIRECT Kit (Invitrogen). The non-
stranded specific RNA libraries were sequenced on the Illumina Hiseq2500 (paired 
end at125 bp). After trimming of the sequencing adaptors and low quality reads (N 
> 10% in a read) by Trimmomatic (version 0.39) with default parameters (Bolger et 
al., 2014), the quality of the sequencing data was assessed by FastQC (version 
0.11.5) (Andrews, 2010). 

Transcriptome profiling and differentially expressed genes (DEGs) detection 

The transcriptome data were aligned to the chicken reference genome (GRCg6a) 
and annotation file (Gallus.gallus.GRCg6a.95.gtf) by STAR (version 2.5.3) (Dobin et 
al., 2013) and assembled with Stringtie (version 1.3.3b) (Pertea et al., 2015). Raw 
gene counts were performed by using a Python script provided by Stringtie with 
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parameter l=125 (Pertea et al., 2016). Gene expression level normalization was 
performed by DESeq2 (version 1.22.2) (Love et al., 2014) in R (version 3.6.1), based 
on the experimental design as Family + Stage. The normalized gene expression data 
were used for all downstream analyses. The list of transcription factors (TF) and 
transcription co-factors were extracted from AnimalTFDB (v.3.0) (Hu et al., 2018). 
Transcriptome PCA plots were performed by sample distances calculated by rlog 
function of DESeq2 (Love et al., 2014). Genes with the expression fold change (FC) > 
1.5 or FC < 0.67 and with the Benjamini-Hochberg method (Benjamini and 
Hochberg, 1995) adjusted-p < 0.05 were considered as DEGs. 

Development dynamics genes (DDGs) identification and genes expression pattern 

The DDGs were identified by the maSigPro package (version 1.46.0) (Ana et al., 
2006; Nueda et al., 2014) applying a negative binomial model for the expression 
distribution and using the Benjiamini and Hochberg procedure to adjust the false 
discovery rate. Significant genes were selected by the forward method with r2 > 
0.7. Gene expression pattern analysis followed the design of a single series time 
course. The parameters used for gene pattern clustering: counts = TRUE, 
min.obs=10, and rsq=0.6. The k.mclust = TRUE was used to calculate the optimal 
clusters number.  

Weighted gene co-expression network analysis (WGCNA) 

A weighted genes co-expression analysis was performed by the WGCNA (version 
1.41) package (Langfelder and Horvath, 2008) with minor modified parameters. By 
using the step-by-step topology overlap matrix (TOM) construction (soft-
threshold=8) and setting the minModuleSize to 30 for module detection. The co-
expression network of a given module were filtered by edges with weight < 0.15. 
Finally, genes with edge number less than or equal to 10 were filtered out. Gene 
co-expression networks were performed by the Cytoscape software (version 3.6.0) 
(Shannon et al., 2003) with the edges provided by the WGCNA 
‘exportNetworkToCytoscape’ function. The genes with the highest Σweight were 
identified as hub genes. The time course impulse expression of ACSBG2 were 
performed by ImpulseDE (version 3.11) (Sander et al., 2017). 

QTL information 

The chicken AFW related QTL regions were collected from chicken QTL data base 
(release 41) (Hu et al., 2019). The UCSC tool lift-over (http://genome.ucsc.edu/cgi-
bin/hgLiftOver) was used to transform the chicken AFW QTL regions from galGal-
5.0 to GRRCg6a. The candidate gene detected in this study (ACSBG2) and AFW 
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related QTL region were visualized by Gviz (version 1.34.1) and related packages in 
R.  

Pathway analysis 

KEGG enrichment analysis resulting in dot plots and bar plots was performed using 
clusterProfiler package (version 3.11.1) with p.adj < 0.05 as significant (Yu et al., 
2012) and org.Gg.eg.db package (version 3.8.2) (Carlson, 2019). 

Statistical analysis 

Student’s t-test was performed by R (version 3.6.0) using the functions shapiro.test 
for normality test and bartlett.test to test for homogeneity of the variance. The 
data sets which did not fit the normal distribution were compared by the rank-sum 
test. The Least-Significant-Difference-test were performed by the agricolae package 
(version 1.3.1)(Mendiburu, 2017). All significances were set at P < 0.05. 

4.3 Results 

The phenotype of liver, BW, and AFW during development 

BW, LW, and AFW were obtained from the 27 chickens used for RNA-seq. The fitted 
curves for body weight and liver weight are shown in Figure 4.1 A and B. The BW 
and liver weight fitted a logistic regression model. Compared with the stages from 
D07 to D56, the AF deposition increased from D56 to D140, with more than 8 
grams per week (Figure 4.1C). The lipid analysis of the early developmental stages 
using the Oil Red O-stained section of the liver (Figure 4.1D to 4.1G) show that 
there is no obvious lipid staining at E12. From E17 to the first day after hatching, 
the lipid started to deposit in the liver. While at D21, very limited lipid is seen in the 
hepatocyte, adipocytes have appeared. The phenotypic data is provided in 
supplementary Table S4.1.  
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Figure 4.1 The phenotypes of BW and liver weight during development. A. The RNA-
sequenced chicken body weight fitted curve. B. The sequenced chicken liver weight fitted 
curve. C. to F. The Oil-Red-O-stained sections of the liver in E12, E17, D1, and D21, 
respectively. Red color are the stained lipid or adipocytes. 

Transcriptome profiling during liver development  

To observe the difference at the transcriptomic level for the 9 different 
developmental stages, 27 RNA-seq libraries were constructed and sequenced. On 
average 30.61±4.39 million trimmed reads were obtained per library and the mean 
uniquely mapped alignment ratio was 93.78% (Table S4.2). In total, 20,496 out of 
24,356 genes (Gallus.gallus.GRCg6a.95.gtf) were detected as expressed (read count 
>1) across the 9 developmental stages of which 13,096 were ubiquitously 
expressed at all stages. The total number of genes expressed at each stage ranged 
from 15,373 in D180 to 17,222 in E12 (Table 4.1). 

To explore whether the gene expression profiles correlated with the 
developmental stages, we performed a PCA plot (Figure 4.2). In general, the 3 
samples of each stage clustered together. The resolution at D7 to D98 is less 
distinct compared to the other time points. The gene expression level of each 
sample is provided in Table S4.3.  
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Figure 4.2 The PCA plot of liver samples in different developmental stages. Different colors 
represent different development stages. 

The number of stage-specific expressed genes varied from 63 to 343 (Table 4.1 and 
Table S4.5). Stage specific expressed genes enriched KEGG pathways are shown in 
Figure S4.1. The number of switched on/off genes are presented in Table 4.1. 
Switched on genes varied from 796 (D1) to 1,505 (D98), whereas for the switched 
off genes, it varied from 942 (D7) to 1,989 (D140). The KEGG enrichment results for 
the switched on and off genes are presented in Figure S4.2 and S4.3, respectively. 
At stage D98, the switched-on genes were enriched in alpha-linolenic acid 
metabolism, arachidonic acid metabolism, and ether lipid metabolism pathways. 
The switched-off genes at D140 are enriched in ether lipid metabolism, alpha-
linolenic acid metabolism, and melanogenesis. Most of the TFs for the stage-
specific expressed genes and switched-on/off genes belong to the Homeobox 
family (Table S4.5 to S4.7). 
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Table 4.1 The number of expressed, specific expressed, and switched-on/off genes. 

Developmental 
stage 

Expressed 
genes 

Specific 
expressed genes* 

Switched-on 
genes* 

Switched-off 
genes* 

E12 17,222 343 ** ** 

E17 17,131 311 1,169 1,261 

D1 15,963 108 796 1,963 

D7 16,429 118 1,408 942 

D21 16,225 279 1,219 1,423 

D56 16,399 136 1,406 1,232 

D98 16,764 324 1,505 1,140 

D140 15,615 87 840 1,989 

D180 15,373 63 943 1,185 
* The list of specifically expressed gene and switched-on/off genes and the involved TFs and 
TFCFs in each stage are presented in Table S4.5 to S4.7. 
** There are no switched-on/off genes at the E12. 

Differentially expressed genes (DEGs) between adjacent stages of liver 
development 

The numbers of DEGs between the developmental stages varied from 45 (D21 vs 
D56) to 4411 (E12 vs D180), and detailed information of the genes is shown in 
Table S4.8. The number of DEGs between adjacent stages are highest for D01 vs 
D07 and D56 vs D98 (Figure 4.3A). KEGG pathway enrichment analysis results of the 
detected DEGs are presented in Figure 4.3B. There are no KEGG enriched pathways 
detected for the E12 vs E17 nor between the D7 vs D21 comparisons. The 
biosynthesis of unsaturated fatty acids pathway was enriched for the comparison 
of D21 vs D56, D56 vs D98, and D98 vs D140. Fatty acid degradation and PPAR 
signaling pathways were enriched for the comparison of D56 vs D98 and D98 vs 
D140. 
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Figure 4.3 The number of DEGs and KEGG enrichment. A. The number of DEGs between 
adjacent developmental stages. The red and blue stand for up- and down-regulated gene 
numbers, respectively. B. The KEGG enriched pathways of DEGs between different 
developmental stages. The color represents adjusted p-value. The spot size represents the 
enriched gene ratio. 

Developmentally dynamic genes (DDGs) and gene expression patterns in liver 

To study gene expression changes during liver development, genes with significant 
temporal changes (DDGs) were clustered. Across all the tested stages, 8974 genes 
were identified as DDGs, including 340 TFs and 261 TF co-factors (Table S4.9). The 
top 20 enriched GO terms for these TFs of DDGs are shown in Figure 4.4. Processes 
like DNA templated transcription, RNA biosynthetic process, and regulation of 
transcription were enriched. 
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Figure 4.4 Top 20 enriched GO terms for TFs of DDGs. 

Hub genes in liver development and lipid deposition 

To detect the hub-genes involved in liver growth, lipid metabolism, and abdominal 
fat deposition, WGCNA were performed (Figure S4.4A and S4.4B). In total, 30 co-
expression modules were obtained (Figure S4.4C). The module-trait relationship is 
presented in Figure 4.5. The red module, involving 847 genes, is significantly 
positively correlated with liver weight (p=2e-04), AFW (p=7e-06) and AFP (p=0.001). 
A group of 323 genes within the royal-blue module is significantly positively 
correlated to AFW (p=0.003) and AFP (p=0.003). The turquoise module, with in 
total 4,852 genes, is significantly negatively correlated to liver weight (p=2e-04), 
AFW (p=0.002), and AFP (p=5e-05). The turquoise module is also positively 
correlated to the embryonic period E12 (p=1e-04) and E17 (p=0.006). The dark-
orange module which include 216 genes significantly correlated to liver weight 
(p=0.001), AFW (p=0.01), AFP (p=0.002), and AFGR (p=0.01). 
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Figure 4.5 The liver expressed genes WGCNA module-trait relationship. The color represents 
the correlation between module and trait. The upper-number and lower-number are the 
corresponding correlations and p value.  

The MFGE8 (milk fat globule-EGF 8 protein), HHLA1 (HERV-H LTR-associating 1), 
CKAP2 (cytoskeleton associated protein 2), and ACSBG2 (Acyl-CoA synthetase 
bubblegum family member 2) genes were identified as hub genes in these 4 
modules, respectively. Pathway enrichment analysis of the genes in the four 
modules are presented in Table 4.2. The protein processing in endoplasmic 
reticulum, Protein export, Cell cycle, DNA replication, and Fanconi anemia 
pathways are enriched. The co-expression network with the detected hub genes is 
shown in Figure S4.5 A to D. We found chicken QTL 24370 (chr28:1,761,021-
1761061) and QTL 24371 (chr28:1,751,075-1,751,115) (D’Andre et al., 2013) 
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associated to chicken AFW that overlap with the ACSBG2 gene (chr28:1,746,737-
1,763,012). The expression pattern of ACSBG2 may indicate that the ACSBG2 was 
impulse regulated at D98 stage (Figure S4.6). 

Table 4.2 The identified hub genes, and enriched pathways. 

Module Positively 
correlated to Hub genes Significantly enriched KEGG pathway 

Red AFW MFGE8 Protein processing in endoplasmic 
reticulum and Protein export 

Royal blue AFW HHLA1 No pathway enriched 

Turquoise AFW CKAP2 Cell cycle, DNA replication, and Fanconi 
anemia pathway 

Dark orange AFW and AFGR ACSBG2 No pathway enriched 

 

Figure 4.6 The region of ACSBG2 covers 2 chicken AFW QTLs at chromosome 28. 

4.4 Discussion 

We profiled the transcriptome during liver development from early embryonic 
stages to the egg-producing period in chicken. The relatively large differences of 
the transcriptomes during development shows a large variation of the number of 
expressed genes in liver. Nevertheless, the changes in the transcriptome from D7 
to D56 are relatively small. The KEGG enrichment result of temporal and 
ubiquitously expressed genes suggest that different biological processes are active 
during development. For example, D56 specific expressed genes are enriched for 
several fatty acid related pathways, e.g., linoleic acid metabolism. Furthermore, 
D98 switched on genes also are enriched in linoleic acid metabolism pathway but 
switched off again in D140. This may be caused by changes in the feed composition. 
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But it also may indicate that during D56 to D98, the linoleic acid metabolism 
becomes more important in liver lipid metabolism. 

We identified 8,974 DDGs in this study, a number that is higher to the DDGs 
detected in the Red jungle fowl using both genders (Cardoso-Moreira et al., 2019). 
The reasons of this difference can be the different library construction methods 
used (single-end vs paired-end), different reference genomes used (galGal4 vs 
GRCg6a), different genders, as well as different time points that were used. 

WGCNA is a powerful tool to analyze complex transcriptome data sets (Langfelder 
and Horvath, 2008). From the modules correlating with these traits, we identified 
MFGE8, HHLA1, CKPA2, and ACSBG2 as hub genes. The first three hub genes, 
however, do not seem to be directly related to lipid metabolism. Therefore, more 
research is needed to determine the roles of these hub genes in liver fat 
metabolism in chicken, but it should be noted that some of these hub genes may 
be false positives caused by the positive correlation between liver weight, AFW, 
and BW.  

Interestingly, although the corresponding correlation to AF percentage of the dark-
orange module is lower than the red and the royal-blue modules, when we focused 
on the AF growth rate, the hub gene of dark-orange module, ACSBG2, shows more 
potential relationship with lipid metabolism. ACSBG2 encodes the acyl-CoA 
synthetase bubblegum family member 2 protein and can catalyze hexadecenoic 
acid to the hexadecanoyl-CoA. It is involved in the fatty acid metabolism, fatty acid 
degradation, adipocytokine signaling, PPAR signaling, and thermogenesis pathways. 
It also plays an important role downstream of FAT/CD36, which can acquire the 
free fatty acid from the outside of the cell. The ACSBG2 gene was first cloned and 
identified in human in 2006 and shown to be specifically expressed in testis and the 
brainstem (Pei et al., 2006). In chicken, it is expressed in many tissues like e.g. 
brain, cerebellum, heart, kidney and ovary, and highly expressed in testis (Cardoso-
Moreira et al., 2019) and liver (Figure S4.6). The expression of ACSBG2 was tested 
in the liver and hypothalamus tissues of fast- and slow-growing chicken by using 
the Affymetrix Genechip ® Chicken Genome array (D’Andre et al., 2013). They 
found 2 SNPs in the gene to be significantly associated with abdominal fat weight. 
This suggests that ACSBG2 might be a good candidate gene for selection for slim 
chicken. A study comparing the transcriptomes of the intestine and muscle, 
between divergent feed efficient broilers, showed that ACSBG2 influences the 
muscular lipid utilization and was among the highest expressed genes in muscle 
(Henry et al., 2018). We however did not find high expression of ACSBG2 in breast 
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muscle at the nine different developmental stages of the same 27 slow growing 
chicken used in this study (Xing et al., 2020). This difference between the studies 
may be caused by using different chicken breeds that differ in their growth rate. 

4.5 Conclusion 

In the current study, we provided a useful gene expression data resource for 
chicken liver during development. The results suggest that the candidate gene 
ACSBG2 among potentially other detected genes can further contribute to chicken 
breeding with the aim of low abdominal fat weight. 
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Abstract 

Background: High intramuscular fat (IMF) in chicken breast muscle (BM) improves 
meat flavor, while abdominal fat (AF) is a waste after slaughter. Although differences 
in expression levels of specific genes have been shown to affect fatness phenotype, 
the knowledge on the correlations between gene expression and multiple fatness 
traits is still limited. To explore gene expression regulation on IMF and AF deposition 
in chicken, we used BM and AF transcriptome data of high-IMF-low-AF and low-IMF-
high-AF chickens from a slow growing dwarf line at marketing time. 

Results: In total, 13,344 and 19,582 genes were expressed in BM and AF, 
respectively. Weighted gene co-expression analysis (WGCNA) resulted in 2 modules 
that are significantly positively correlated to triglyceride content of BM (p < 0.05) and 
significantly negatively correlated to AF percentage (p < 0.05). We identified ACSM3 
and CYP2AB1 as hub genes in the BM and AF datasets, respectively. 

Conclusion: Our results provide new insight on gene expression both influencing 
breast IMF and AF deposition in chicken. ACSM3 and CYP2AB1 can be considered as 
candidate genes for increased breast muscle IMF content and decreased AF weight 
selection in chickens. 

 

Key words: chicken, RNA-seq, co-expression, intramuscular fat, abdominal fat 
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5.1 Introduction 

Chicken meat is a very important resource in animal protein intake of humans (Xin 
et al., 2021). Intramuscular fat (IMF) content in chicken breast muscle (BM) 
influences the meat quality e.g. flavour and juiciness (Chizzolini et al., 1999), while 
abdominal fat (AF) is a waste after slaughter, decreasing the economic efficiency 
(Fouad and El-Senousey, 2014). In the chicken industry, increased IMF and decreased 
AF is a long-term preferred breeding goal. Lipid droplets, composed of triglycerides 
(TGs),  hold most of the volume of adipocytes (Wang et al., 2017a). TGs have been 
used as an indicator for breast muscle IMF content (Chen et al., 2017; Liu et al., 
2019). 

Differences in gene expression have been shown to influence the fat deposition 
(Resnyk et al., 2013). By comparing transcriptome data from an abdominal weight 
selection fat-line and a lean-line chicken, a large number of differentially expressed 
genes (DEGs) involved in the synthesis, metabolism, and transport of lipids were 
identified in AF (Resnyk et al., 2013). Similar results were obtained by comparing AF 
DEGs between high- and low-growth chickens (Resnyk et al., 2017). A comparison of 
DEGs in the major pectoralis between high and low TGs chickens, showed that the 
peroxisome proliferator activated receptor (PPAR) signaling, fatty acid degradation, 
and the steroid biosynthesis pathways may regulate the differential lipid deposition 
in BM (Liu et al., 2019). The DEGs between IMF- and AF-derived preadipocytes and 
DEGs enriched pathways were also analyzed and PPAR signaling and Extracellular 
Matrix-receptor interaction pathways were shown to be enriched in preadipocytes 
differentiation (Zhang et al., 2019). The different DEGs of AF and BM in these studies 
are the result of differences in genetic background, sample numbers, transcriptome 
library construction technologies, and data analytical methods. To limit the influence 
of variation in these external factors, a consensus co-expression network analysis, 
commonly used to analyze multiple data set e.g., abdominal fat RNA-seq datasets of 
different chicken breeds, was performed in multiple broiler lines to identify genes 
correlated with abdominal fat deposition in chicken (Yuan and Lu, 2021). These 
previous studies focused on the gene expression influencing AF and IMF deposition 
independently. Knowledge on gene expression correlated to both BM IMF and AF 
deposition, however, is lacking. 

Weighted co-expression analysis is a powerful tool to study the correlation between 
gene expression and phenotypes (Langfelder and Horvath, 2008). In the present 
study therefore, we aimed to use this approach to identify genes influencing fat 
deposition in both breast muscle and abdominal fat in chicken.  
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5.2 Material & Methods 

Animals and phenotyping 

The chickens used in this study are from the Chinese locally developed Jingxing-
Huang chicken, a dwarf yellow feathered meat-type chicken line. Chickens were 
reared with ad libitum access to feed and water. There were 240 male chickens 
slaughtered at 98 days after hatching and phenotyped for body weight, slaughtering 
weight (SW), breast muscle weight (BMW), and abdominal fat weight (AFW). Part of 
the major pectoralis of breast muscle and abdominal fat was snap-frozen and stored 
in liquid nitrogen. For breast muscle IMF content, we measured the triglyceride (TG) 
value of the major pectoralis, which represents the main content of IMF. The 
remaining major pectoralis samples were stored at -20 ℃ for analysis with the 
Triglyceride Assay Kit (Nanjing Jiancheng Bioengineering Institute) with 3 
measurement replicates for each sample. TG content is shown as mmol/L. 

Library construction and sequencing data quality control 

To maximize the variation both in IMF and AF, we selected 8 individuals from the 
high-IMF-low-AF group and 10 individuals from the low-IMF-high-AF group. The BM 
and AF samples from these 18 birds with significant differences (p<0.01) in both BM 
TG content and AFW, were used for transcriptome library construction. Total RNA of 
the BM and AF samples were isolated using the RNAprep Pure Tissue Kit (TIANGEN). 
The RNA concentration was measured by Nanophotometer. Oligo(dT) enriched 
transcriptome library construction was commercially performed by IGENECODE, 
Beijing, China. The un-stranded specific RNA libraries were sequenced on the 
NovaSeq 6000 (2×150 bp). Sequencing adaptors were trimmed by Trimmomatic 
(version 0.39) (Bolger et al., 2014). We assessed the quality of the obtained 
sequencing data by FastQC (version 0.11.5) (Andrews, 2010). Venn diagram 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to calculate the 
intersection between the analyses and to draw Venn diagrams of the output. 

Transcriptome data alignment, assembly, and gene expression profiling 

An index was built using the chicken reference genome (GRCg6a) and annotation file 
(Gallus.gallus.GRCg6a.102.gtf) for read alignment. The transcriptome data were 
aligned to the chicken reference genome using STAR (version 2.5.3) (Dobin et al., 
2013) and assembled with Stringtie (version 1.3.3b) (Pertea et al., 2015). Raw gene  
counts were performed by using the Python script provided by Stringtie with 
parameter l=150 (Pertea et al., 2016). Genes with average raw counts > 1 in BM and 
AF were considered as expressed genes. PCA plots of gene expression in BM and AF 
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were performed by sample distances calculated by vst function of DESeq2 (version 
1.30.1) (Love et al., 2014).  

Gene co-expression network construction 

To study the correlation between phenotypes and gene expression, weighted gene 
co-expression analysis was performed using the WGCNA package (version 1.70-3) 
(Langfelder and Horvath, 2008). Raw gene counts of all expressed genes in BM and 
AF were used in this analysis. Genes with low expression level were filtered by the 
gsg function with default parameter. To construct the scale free co-expression 
network, a suitable soft threshold (power) is needed. By raising the soft threshold, 
the weighted gene co-expression network weakens the low correlations and 
emphasizes high correlations (Langfelder and Horvath, 2008). When the R2 of the 
scale free topology model fit reaches 0.9, the soft threshold (power) was used for 
downstream topology overlap matrixes (TOM) construction. The TOMs were 
constructed with minModuleSize = 50. Similar modules were merged with 
height=0.25. The remaining parameters were default.  

Module-traits relationship analysis 

The Benjiamini-Hochberg method was used on module-trait association 
quantification. Gene co-expression networks were performed by the Cytoscape 
software (version 3.6.0) (Shannon et al., 2003) using the 
‘exportNetworkToCytoscape’ function with the edges provided by WGCNA. As 
previously described (Xing et al., 2020), the gene with the highest Σweight was 
considered as hub gene in each module. The biological function networks of hub 
genes were provided by STRING database (version 11) (Szklarczyk et al., 2019).  

5.3 Results 

Chicken phenotypes 

The body weight (BW), breast muscle weight (BMW), abdominal Fat weight (AFW), 
and triglyceride (TG) phenotypes obtained from the 18 chickens used for RNA-seq 
were used to compare these phenotypes between the two groups of Jingxing Huang 
chicken. Significant differences (p<0.01) are observed for TG and AFW between the 
high-IMF-low-AF and low-IMF-high-AF groups (Figure 5.1). And there is no significant 
difference between groups in BW (p=0.13, Figure S5.1) and BMW (p=0.76, Figure 
S5.2). The detailed phenotypes for individuals used in this study, are provided in 
Table S5.1. 
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Figure 5.1 The TG content and AFW of chickens. The TG content (a) and AFW (b) are 
significantly different between the two groups (p=4.6e-5 and p=4.4e-5 respectively). 

Transcriptome profiling and gene expression 

To analyze BM and AF gene expression in the two groups, 36 RNA-seq libraries were 
constructed and sequenced from the 18 individuals (Table S5.2). On average, 21.27 
million trimmed reads were obtained for each library. After alignment, the mean 
uniquely mapped alignment ratio was 84.45% (Table S5.3). We detected 13,344 
genes expressed in the BM dataset and 19,582 expressed in the AF dataset. There 
are 13,041 genes expressed in both tissues (Figure S5.3). The PCA of the expression 
data (Figure 5.2), shows a strong separation of BM and AF in the first dimension 
explaining 88% of the variation. The BM samples cluster together while the AF 
samples are divided in the second dimension. However, the second dimension only 
explains 2% of the variation. Also, no clustering is observed for the samples derived 
from the two different phenotype groups (Figures S5.4 and S5.5). The gene 
expression level of each sample is provided in Table S4.  
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Figure 5.2 PCA plot of expressed genes per sample showing strong separation of BM and AF 
samples. The PCA plots of BM and AF showing the selection of the individual samples are 
provided in Figures S5.4 and S5.5, respectively. 

BM and AF gene co-expression network construction 

The soft threshold for the BM (soft threshold=8) and AF (soft threshold=10) data sets 
were selected to construct the scale-free network for the two datasets (Figure 5.3). 
Then we constructed gene co-expression networks for the BM and AF datasets, 
respectively. Constructing the topology overlap matrixes (TOMs), for the gene co-
expression data sets, resulted in 25 gene modules for BM (Figure S5.5) and 26 gene 
modules for AF (Figure S5.6), respectively. 
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Figure 5.3 Soft threshold selection for BM and AF datasets. R2>0.9 (red lines in a and c) for 
scale free independence fit index (y-axis,) for BM (a) and AF (c), and the soft threshold was set 
to 8 (BM) and 10 (AF), respectively. The mean connectivity (degree, y-axis) showed the mean 
nodes connectivity in the scale free network for different soft thresholds for BM (b) and AF 
(d). 

BM gene expression module-trait relationships 

To reveal the corresponding correlation between phenotypes and gene expression 
modules in BM, we determined the module-trait relationships (Figure 5.4). For the 
BM data set, a group of 522 genes within the cyan module is significantly negatively 
correlated with AFW (corresponding correlation = -0.56, p = 0.02) and significantly 
positively correlated with TG (corresponding correlation = 0.54, p = 0.02) (Figure 5.4). 
The cyan module gene list is provided in Table S5.5. 
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Figure 5.4 The module-trait relationship of BM. The color represents the correlation between 
module and trait. The upper number and lower number are the corresponding correlations 
and p value, respectively. 

AF gene expression module-trait relationships 

For the AF WGCNA results, a group of 498 genes within the light-cyan module is 
significantly negatively correlated with AFW (corresponding correlation = -0.60, p = 
0.01). This module is also significantly positively correlated with breast muscle TG 
content (corresponding correlation = 0.56, p = 0.02) (Figure 5.5). The light-cyan 
module gene list is provided in Table S5.6. 
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Figure 5.5 The module-trait relationship of AF. The upper number and lower number are the 
corresponding correlations and p value, respectively. 

Hub genes in BM and AF datasets 

Hub genes are expected to play an important role within networks. In the cyan 
module of the BM dataset, the Acyl-CoA synthetase medium-chain family member 3 
gene (ACSM3) is identified as a hub gene because it has the highest connectivity to 
other genes. In the light-cyan module of the AF dataset, the cytochrome P450 family 
2 subfamily AB polypeptide 1 gene (CYP2AB1) is identified as a hub gene. The 
networks of ACSM3 and CYP2AB1 are shown in Figure 5.6. 
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Figure 5.6 The networks of ACSM3 and CYP2AB1.

5.4 Discussion

Chicken fatness traits are economically important traits. Chickens with high skeletal 
muscle IMF and low abdominal fat are desired. Yuan et al. (2020) used chickens with 
extreme AFW in fat and lean groups to detect the relationship between gene co-
expression and AFW. In this study, we selected birds from high-IMF-low-AF and low-
IMF-high-AF groups to increase the phenotypic variation for the gene co-expression 
networks analysis. No significant difference for BW and BMW is seen between the 2 
groups, limiting the influence of BW and BMW on breast muscle IMF and AF. The 
large difference between the BM and AF expression profiles prohibited performing 
a consensus co-expression network analysis.

The detected gene ACSM3 is involved in the fatty acid biosynthesis, fatty acid 
elongation, butanoate metabolism, glycerophospholipid metabolism, and 
glycerolipid metabolism pathways (Kanehisa and Goto, 2000). Although ACSM3 is 
not very well studied in chicken, in human it has been shown to catalyze the 
activation of medium-chain length fatty acids (Watkins et al., 2007). It has been 
shown that when providing perfluorooctane sulfonate to fertilized eggs, which is 
similar to naturally occurring fatty acids,  ACSM3 expression in the embryo was 
downregulated (Jacobsen et al., 2018).  ACSM3 showed higher expression in
primordial germ cells than in gonadal stromal cells and embryonic fibroblasts 
(Rengaraj et al., 2013). A study in cattle indicated that the differential expression of 
ACSM3 is related to differences in fatty acid metabolism (Berton et al., 2016). This 
suggests that ACSM3 is a potential candidate gene for selection of IMF and AF 
deposition in chicken. 
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The exact function of CYP2AB1 is still not known. In the mouse gene expression atlas, 
CYP2AB1 is highly expressed in adult lung, mammary gland, spleen and 
subcutaneous fat (Yue et al., 2014). CYP2AB1 belongs to cytochromes P450 super 
family. In mammals, the cytochromes P450 enzymes oxidize steroids, fatty acids, and 
xenobiotics (De Montellano, 2005). In human, the CYP2 sub-family proteins are 
oxygenases, which catalyze mainly the metabolism of synthesis of cholesterol, 
steroids, and other lipids (Murray, 2016). CYP2J2 decreased expressed in adipose 
tissue of obese individuals (Wamberg et al., 2013) and mesenteric arteries of obese 
rats (Zhao et al., 2005). This suggested that CYP2AB1 may play an important role in 
chicken fat deposition. 

5.5 Conclusion 

In this study, we detected 2 gene co-expression modules in chicken AF and BM, that 
are significantly positively correlated to TG content and negatively correlated to 
AFW. Our results point to ACSM3 and CYP2AB1 as potential interesting candidates 
to select for increased breast muscle IMF content and decreased AFW in chickens. 
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6.1 Introduction 

Our world is facing a problem of increased demands for food. The chicken industry 
has seen a steady increase in production because of the different farm animals, 
chickens have the lowest feed conversion ratio and are therefore ideal to provide 
animal protein requirements of humans at low cost. Fat deposited in different 
tissues of chicken influences both the production efficiency and product quality. 
This thesis focused on different fat related tissues and aimed to reveal the genes 
and variants affecting fat deposition in chicken. The results presented in this thesis 
provided further insights into gene regulation during developmental stages in the 
liver, breast muscle and abdominal fat (AF). Finally, I also presented the results of a 
new SNP genotyping array and its use for selection on fatness traits.  

The influence of subcutaneous fat (SF) on chicken meat quality is lower than that of 
intramuscular fat (IMF), while it is also lower in relation to feed efficiency than AF. 
Moreover, due to methodological difficulties of SF measurements, limited studies 
on SF are performed (Zhao et al., 2021). Therefore, SF is not further studied in my 
thesis. The chicken abdominal fat weight (AFW) is commonly considered to be a 
high heritability trait (Le Bihan-Duval et al., 1998; Zerehdaran et al., 2004; Jiang et 
al., 2017). In this general discussion, I will focus on the relationship between IMF 
and AF, the difficulties in chicken IMF genetic studies, and the current 
methodological limitations of genotyping arrays. Furthermore, I discuss the 
opportunities and challenges with transcriptome profiling in terms of chicken fat 
deposition studies from a developmental perspective. Finally, I discuss future 
possibilities to select chicken fatness traits using new technologies, and advantages 
of international cooperative projects. 

6.2 Complexity of IMF genetics 

As quantitative traits, fatness deposition in different tissues of the chicken is 
influenced by many different factors. These include, adipocyte differentiation and 
development, nutritional supply e.g. the amount of daily dietary fat digestion and 
absorption, lipid metabolism including the synthesis, degradation , and transport of 
fatty acids in and between cells (Griffin et al., 1982), diseases like non-alcoholic 
fatty liver syndrome (Tan et al., 2020), environmental factors like temperature (Lu 
et al., 2007) and behavior, as well as the interactions between these different 
factors (Leenstra, 1986). To obtain progress in optimizing chicken fat deposition on 
the short-term in can be obtained by adjusting the feed contents and limiting feed 
intake, a breeding approach is the preferred long-term approach. In this section, I 
will discuss the genetics underlying IMF deposition and the correlation between 
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IMF and AF. I also discuss the challenges that researchers face when working on a 
low heritability trait like IMF. 

6.2.1 Intramuscular fat vs abdominal fat 

Chicken IMF can only be measured after slaughter and the IMF measurement 
procedure with Soxhlet extraction (AOAC, 1990) is time and labor consuming, 
explaining the limited number of IMF heritability studies. Chicken AF traits include 
abdominal fat weight (AFW) and abdominal fat percentage (AFP), where AFP is the 
AFW to body weight ratio of an individual. Until now, there are not a lot of research 
(table 6.1) reported the genetic and phenotypic correlations between IMF and AF 
in chickens.  

Table 6.1 Overview of some IMF percentage heritability studies in chicken breast muscle 
IMF. 
  

Source breeds Bird 
No.  Gender heritability 

Genetic 
correlations 
with AFW 

Phenotypic 
correlations 
with AFW 

Ref# 

White 
Plymouth Rock 

1,467 Both 0.08 0.02  0.05  a 

Jingxing-Huang 1,428 Both 0.22 0.26 * b 
Beijing-You 1,069 Male 0.11 0.66 -0.09 c 

Slow growing 1022 Both 0.18 * * d 
Jingxing-Huang 1,335 Male 0.16 0.61 0.27 e 

 

Notes:  * Not given. 
# Ref: a: (Zerehdaran et al., 2004); b: (Zhao et al., 2006); c: (Chen et al., 2008); d: (Chabault 
et al., 2012), the breast muscle IMF genetic correlation with AFP is 0.32±0.21; e: (Jiang et al., 
2017) 

The reported heritability of chicken breast muscle IMF content varied from 0.08 to 
0.22 in the different lines or breeds used (Table 6.1). The results indicate that the 
different genetic backgrounds of chicken could lead to different results for 
correlations between IMF and AF. Furthermore, Zerehdaran et al., (2004) tested 
the IMF percentage in minor pectoralis muscle, while Zhao et al., (2006) and Jiang 
et al., (2017) used the major pectoralis (Figure 6.1) for this phenotype, which likely 
is another reason for the different heritability for breast muscle IMF reported in 
these studies.  

Either way, the chicken breast muscle IMF percentages can be considered as a low 
heritability trait. This causes challenges in the increased emphasis of selection on 
chicken breast muscle IMF. 
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Figure 6.1 The major pectoralis (left) and the minor pectoralis (right) of Jingxing-Huang 
chicken at marketing age (120 days). 

The correlation between IMF and AFW is another important aspect. If the two traits 
were negatively correlated both in genetic and phenotypic aspects, the selection 
for increased IMF content and decreased AFW would be easier. Zerehdaran et al. 
(2004) reported that the genetic and phenotypic correlations of IMF percentage 
and AFW in 2 outcross broiler dam lines, which originated from the White 
Plymouth Rock, are very low (0.02 and 0.05, respectively). These results differ from 
the study in the IMF-up selection line and balanced selection line of Jingxing-Huang 
chicken with a genetic correlation of 0.67 and a phenotypic correlation of 0.27 
(Jiang et al., 2017). Jiang et al. (2017) also reported that after 5 generations of 
selection, the IMF percentage in the IMF-up selection line increased 17.6%, while 
the AFP significantly increased 18.7%. This contradicts the requirements of the 
chicken industry which want to increase IMF and a decrease or unchanged AFP 
mainly because more AF means more energy wasted from feed. However, in the 
balanced line of Jingxing-Huang chicken, after 5 generations’ selection, the IMF 
percentages increased 11.4% and the AFP decreased 1.5%. While the 1.5% 
decrease in the balanced selection line seems not a significant result, moving from 
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an increase of 19% to a decrease almost 2% suggests that it is possible to select 
chickens with high IMF and low AFP, and thus control the amount of IMF and AF. 

6.2.2 IMF, a low heritability quantitative trait 

Until now, 132 traits/disorders have been identified that show Mendelian 
inheritance and of which some have been used in modern chicken breeding (OMIA, 
2021). However, none of these are related to fat deposition traits. According to 
animal QTL database, 489 QTLs have been reported to be associated with chicken 
fatness traits, of which 25 are associated with IMF percentage and 233 with AFW, 
respectively (Hu, 2021). A study based on an advanced intercross line, was the first 
to report suggestive evidence of IMF percentage QTLs detected on chicken 
chromosomes 1 and 27 (Jennen et al., 2005).  

Since then, 12 QTLs on chicken breast muscle IMF percentage have been identified 
(Hu, 2021), but confirmation of QTLs between studies is hardly found. Potential 
reasons can be differences between the minor allele frequencies of causative or 
representative SNPs in the populations studied, different degrees of linkage 
disequilibrium (LD) within these populations, differences in the number of 
phenotyped individuals, and differences in the genetic structure of the cohorts, 
thereby affecting the power of the experiment. I would like to highlight that to 
improve the power in future research on heritability of chicken breast muscle IMF 
an advanced crossed population should be used, because of its higher phenotypic 
variation and shorter LD compared to the previously used pure lines (Table 6.1).  

In the other farm animal species IMF, AF, and back fat is well studied in pigs. A 
functional regulatory structural variant in the porcine MYH3 gene was identified to 
influence IMF (Cho et al., 2019), and a causative SNP in the porcine MYH4 gene was 
detected to increase meat IMF content (Xiong, 2017). The MYH family drives the 
mammalian skeletal and cardiac muscle contraction (Weiss et al., 1999). Although, 
the MYH3 and MYH4 genes do not exist in chicken, the predicted myosin heavy 
chain 1G and predicted myosin heavy chain 1F are the homologous genes of the 
mammalian MYH3 and MYH4 genes, respectively. I suppose that these genes may 
play an important role in chicken IMF content. Without doubt further 
identifications are needed. 

6.3 Genotyping arrays: Advantages and limitations to 
study IMF 

Since the publication of the first chicken reference genome sequence (International 
Chicken Genome Sequencing Consortium, 2004) and the initial identification of 2.8 
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million SNPs (International Chicken Polymorphism Map Consortium, 2004), a 
variety of genotyping arrays with different SNP densities have been produced (Muir 
et al., 2008; Groenen et al., 2011; Kranis et al., 2013; Liu et al., 2019a; Liu et al., 
2021) that have been used extensively in studies focusing on genome wide 
associations (Luo et al., 2013; Li et al., 2021), linkage disequilibrium (Fu et al., 
2015), population structure (Fleming et al., 2016), and for genomic selection (Liu et 
al., 2019b). In this section, I discuss the results of genome wide association studies 
(GWAS) and a genomic selection application for the chicken breast muscle IMF 
trait. 

6.3.1 GWAS for breast muscle IMF content 

GWAS have been widely used in studying the relationships between population 
genetics and traits since 2007 (Visscher et al., 2017). The different GWAS results for 
chicken breast muscle IMF are derived using different populations (Table 6.2).  

Table 6.2 SNPs significantly associated with breast muscle IMF. 
  

Breeds Population size  SNPs No.* Located Chromosomes Ref# 
F2 of Beijing-You × Cobb 367 5 1, 3, 4, 5, and Z a 

Jinghai Yellow 200 3 2 b 
Beijing-You 724 2 2 and 5 c 

Slow growing line 595 3 5 d 
F2 of reciprocal crosses 272 NA 14 e 

 

Notes: * GWAS identified significant trait associated SNPs number; # Reference: a (Sun et al., 
2013); b (Zhang et al., 2015); c: The significance of two SNPs associated with breast muscle 
IMF did not reach the genome wide value (Liu et al., 2013); d: (Allais et al., 2019); e: F2 of 
reciprocal crosses between the genetically and phenotypically extreme inbred chicken lines 
New Hampshire and White Leghorn (Nassar et al., 2013). 

The development of 60K genotyping array (Groenen et al., 2011), has enabled 
performing GWAS of breast muscle IMF in chicken. In 5 different studies (Table 
6.2), a total of 13 SNPs were reported to be associated with chicken breast muscle 
IMF. The SNP density is too low to identify the causative mutations underlying the 
identified QTL and additional whole genome sequencing (WGS) is needed for fine 
mapping and identifying the actual causal variants. As the price of next generation 
sequencing has decreased considerably over the past 10-15 years, an increasing 
number of studies has used sequencing data to detect the potential candidate 
genes of fat deposition related traits in chicken (Moreira et al., 2018).  

Genotyping arrays have several advantages and disadvantages compared to WGS. 
First, the cost of GWAS is an important aspect when performing a GWAS. Until 
now, using a medium-density SNP genotyping array is usually considered as more 
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cost efficient than using WGS. In addition to the direct sequencing costs of WGS, 
the data processing also is more complicated and time consuming than that for 
array data. Furthermore, the analysis pipelines of SNP genotyping data are well 
developed. The repeatability of genotyping array data is also better than that of 
WGS. Additionally, the repeatability of WGS also depends on the library 
construction, sequencing depth, data processing software, and SNP filtering 
criteria. Even so, the SNP density of WGS is much higher than using a genotyping 
array and insertions and deletions can be considered. Importantly, the causative 
mutations are more likely to be found using WGS data. To obtain DNA information 
from a large number of chickens, array data combined with WGS and imputation 
might be an alternative, cost-effective approach. 

6.3.2 Genomic selection in chicken breast muscle IMF 

Genomic selection was first suggested in 2001 (Meuwissen et al., 2001), and 
became feasible when methods were developed that allowed the simultaneous 
genotyping of tens of thousands of SNPs. This in turn made it possible for the 
method to be massively applied by the breeding industry. In chicken, genomic 
selection has been assessed for a wide variety of traits including growth and 
carcass traits (Liu et al., 2014b), feed efficiency (Liu et al., 2017), antibody response 
(Liu et al., 2014a), and reproduction traits (Wolc et al., 2011). 

It has been shown that genomic selection with re-training could reduce 75% of the 
rearing and 82% of the phenotype recording in layers in achieving the breeding goal 
(Wolc et al., 2011). This implicates that, genomic selection can be cost-effective to 
be used in the selection of IMF, because measuring the IMF content test is labor 
and time consuming. Genomic selection was used in Beijing-You chicken using the 
breast muscle IMF content as the sole trait (Liu et al., 2019b). The results showed 
that compared with the control group (random mating), IMF improved 9.2%, after 
1 generation of genomic selection, while IMF improved 10.38% in the family-based 
selection group (Liu et al., 2019b). The difference in selection response might be 
caused by the limited size of the training population used. Additionally, the low 
heritability of IMF might have resulted in a low genomic prediction accuracy. 

The new developed chicken 55K SNP genotyping array has been used in several 
genomic selection progress in yellow-feathered meat-type chickens in China. Now, 
the genotyping array has been updated to the third version with more economic 
traits related locus. It accelerated the Chinese chicken breeding progress and 
played a good demonstration effect. 
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6.4 Developmental and tissue specific regulation of gene 
expression 

According to the central dogma, gene expression is the bridge between DNA and 
protein (Crick, 1970). The FarmGTEx (Farm Animal Genotype-Tissue Expression) 
cooperation project (Liu et al., 2020) that has recently been initiated, is aiming to 
provide a comprehensive atlas of tissue-specific gene expression and genetic 
regulation in livestock. One major objective of my thesis was to identify the 
candidate genes influencing IMF and AF using gene expression data obtained from 
relevant tissues at different developmental stages. In this section, I discuss the 
gene expression data as a future resource for fatness trait studies and the use of 
the identified correlations between gene expression and quantitative traits. 

There is a gene expression database related to the development of multi organs in 
red jungle fowl (Cardoso-Moreira et al., 2019). This database provides gene 
expression data for brain, cerebellum, heart, kidney, liver, ovary, and testis during 
development. The data is illustrative for the transcriptome complexity between 
tissues. The differences in the timing of key events during the development of the 
gonads were identified. And the result of gene expression range gradually decrease 
during development is similar with the results obtained in chapter 3 and 4. The 
resource of 7 tissues however is still limited and transcriptome data from additional 
tissues are needed. 

Gene expression data can be a useful resource for detecting causative mutations 
underlying important phenotypic traits. For instance, Xiong et al., (2017) found a 
526 Kb QTL region significantly associated with longissimus dorsi IMF content in pig. 
This region harbors 9 genes but 3 of these are not expressed. Furthermore, only 
the MYH4 gene expression level was significantly correlated with IMF content. 
Finally, a SNP in the MYH4 gene was identified as a causative SNP and shown to be 
regulating the binding of nuclear regulatory proteins. In this thesis, I provide the 
transcriptome profiling of breast muscle, liver, and abdominal fat during 
development as well as marketing time. The data can assist further candidate 
genes identification of fatness traits in chicken. 

6.5 Future of chicken fatness traits selection  

6.5.1 The reference genome 

 A primary goal of genome research in the agricultural field is to use genomic 
information to improve selection (Rexroad et al., 2019). Recently, in human, a 
complete reference from telomere to telomere of all human chromosomes has 
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now been assembled (Miga et al., 2020; Nurk et al., 2021). The genome 
information of previous unresolved gaps made the integrated phenotype-genotype 
research. Chicken was the first agricultural animal for which a reference genome 
was assembled (International Chicken Genome Sequencing Consortium, 2004). The 
reference genome of chicken was derived from a female of UCD001, an inbred line 
of red jungle fowl. In the latest assembled chicken reference genome, all the micro-
chromosomes (chromosome 29 to 39) were assembled (NCBI genome, 2021).  
Compared with the previously assembled reference genome (build galGal6), the 
higher level of completeness can provide further insight between the genotype and 
phenotype. By updating the SNPs array with probes focusing on the more complete 
reference genome including the newly assembled micro chromosomes and 
improvement of the other chromosomes, will be beneficial to find potential 
associations with traits which were not possible in the past. 

6.5.2 Integrated analysis of multi omics data 

Chicken fatness traits are complex and quantitative. Filling the gap between 
chicken fatness genotype and fatness phenotype not only requires accurate 
phenotypes but also a complete functional genome annotation. The Functional 
Annotation of ANimal Genomes project (FAANG) aims to provide a comprehensive 
insight of functional elements by integrating multi omics assays e.g., assay for 
transposase-accessible chromatin sequencing (ATAC-seq), chromatin 
immunoprecipitation sequencing (ChIP-seq), and whole genome bisulfite 
sequencing (WGBS) (The FAANG Consortium et al., 2015; Clark et al., 2020). For 
instance, skeletal muscle and adipose are among the target tissues for these 
assays. Obtaining regulatory elements maps associated to genes including variation 
in these elements are important to detect variation in gene expression related to 
certain traits, like enhancer were provided. Another important improvement is 
getting access to long read sequencing to get information on sequence haplotypes 
and in case of RNA of complete sequenced transcripts (Kuo et al., 2017). These long 
read sequences are also very important to detect structural variation present in the 
genomes which might be related to traits (Giuffra et al., 2019). By using data 
provided by the FAANG project, researchers can obtain deeper insight in the 
transcribed loci and elements involved in their regulation. The data provided by 
FAANG includes knowledge of modified histones, DNA methylation, chromatin 
accessibility, and spatial conformation of chromatin. In the future, these data can 
help researchers identify the candidate genes or causative mutations related to 
fatness traits.  
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6.5.3 Gene editing 

Gene editing combined with genomic selection has been suggested to be used in 
cattle to reduce the dehorning costs (Carlson et al., 2016). Unlike mammals, gene 
editing in poultry is much more difficult because  of the difficulties for accessing 
and manipulating the zygote (Mizushima et al., 2010) and therefor lag far behind 
those in mammals. Two studies reported the generation of single SNP modified live 
chickens by using Transcription Activator-Like Nuclease (TALEN) and Clustered 
Regularly Interspaced Short Palindromic Repeats (CRISPR), respectively (Park et al., 
2014; Oishi et al., 2016). Although the success rates of both gene editing methods 
are still low in chicken, I can imagine that it must be popular and improvements in 
the technology and methods will make it more accessible soon. I think it is easier to 
perform gene editing at causative variations for monogenetic traits. But for the 
polygenetic quantitative traits, like IMF content and abdominal fat, the causative 
variations are still difficult to identify. What is more, even if the causative variations 
have been identified, the number of causative variations likely run in the hundreds 
perhaps even thousands for the low heritability traits. Until now, it is not possible 
to edit the multiple target mutations together in one operable round. 

6.6 Conclusions 

In this thesis, I got information on differential expression of genes during 
development in different tissues. By detecting hup genes related to fat deposition, 
variation in those genes can be used with existing variation of known genes related 
to fat deposition and fat formation to improve IMF in chicken breast muscle. 
Adding these variants to existing SNP arrays will further enrich chip information, so 
that it can play a greater role in the selection of fatness traits in chicken. 
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Domesticated animal meat production and quality are closely related to muscle 
growth and fat deposition. Fat deposition is determined by adipocyte 
differentiation and development. Fatness related genes and the regulation of their 
expression play an important role in fat deposition. In this thesis, I describe chicken 
breast muscle intramuscular fat (IMF) and abdominal fat (AF) deposition during 
development. I provide gene expression profiles in breast muscle, liver, and 
abdominal fat. By using transcriptome analyses to obtain new insights into the 
correlation between gene expression and fat in chickens, I identified new fatness 
related candidate genes. The new understanding of gene expression and chicken 
fat deposition can potentially be used in chicken breeding. 

In Chapter 2, I describe the development of a new chicken SNP genotyping array. 
The SNPs on the array are based on i) whole-genome sequencing from 5 Chinese 
traditional local breeds and 3 commercial lines, ii) top significant associated SNPs 
for 15 traits of interest, which were identified using the 60 K chicken SNP array, iii) 
SNPs from candidate genes e.g., differentially expressed genes for IMF in fast- and 
slow-growing chickens, iv) SNPs related to feed efficiency, and v) SNPs from a 
commercial 600 K genotyping array. The genotyping results of the newly developed 
SNP array in 13 different breeds/lines show a high genotyping rate and the 
breeds/lines can be clearly distinguished. The SNP array has been utilized for 
genomic selection in chicken, genome-wide association studies, and to characterize 
population structure and diversity of different selection lines. 

Chapter 3 focuses on a study to identify candidate genes of breast muscle IMF and 
abdominal fat deposition. Described are the IMF and abdominal fat deposition 
during development in a slow-growing chicken line. Fat accumulation in breast and 
abdomen both accelerate from day 56 after hatching. Transcriptome profiling of 
chicken breast muscle and abdominal fat during developmental stages resulted in 
the clustering of developmentally dynamic genes. Hub genes affecting these traits 
were identified e.g., ENSGALG00000041996, a candidate for high breast muscle 
IMF, and CREB3L1, related to low abdominal fat weight. The transcription factor 
L3MBTL1 and the transcription factor co-factors TNIP1, HAT1, and BEND6 showed a 
correlation to both high breast muscle IMF and low abdominal fat weight.  

The objective of Chapter 4 is to provide a comprehensive understanding of the 
gene regulation in chicken liver during development. RNA-seq data of liver samples 
from the embryonic stage to the egg-laying stage, which were derived from slow-
growing female chickens, were generated to identify differentially expressed genes 
between adjacency stages. The differentially expressed genes were enriched in 
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pathways for fatty acid metabolism, biosynthesis of unsaturated fatty acids, fatty 
acid degradation, and PPAR signalling. To identify hub genes during liver 
development, a cluster analysis of the developmentally dynamic genes was 
performed. This resulted in the identification of ACSBG2 as a candidate gene 
correlated to abdominal fat weight. The ACSBG2 gene overlaps with 2 abdominal 
fat weight QTLs on chromosome 28.  

In chapter 5, we further explore gene expression regulation of IMF and abdominal 
fat deposition in chicken. We used breast muscle and abdominal fat RNA-seq 
transcriptome data of high-IMF-low-AF and low-IMF-high-AF chickens from a slow 
growing dwarf line at marketing time. To avoid external influencing factors, we 
employed the weighted gene co-expression analysis on the transcriptome data. 
Two hub genes, ACSM3 in breast muscle and CYP2AB1 in abdominal fat, were 
identified which are both significantly positively correlated to IMF and significantly 
negatively correlated to low abdominal fat weight. 

Finally, in chapter 6, the general discussion, I discuss the complexity of chicken IMF 
genetics. I address the advantages and limitations to study chicken IMF deposition 
by genotyping arrays. Concerning the correlation between gene expression and fat 
deposition, the potential usage of RNA-seq on fatness studies is discussed. I end my 
general discussion by emphasizing the future of chicken fatness traits selection. 
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