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Abstract. Traditional laboratory methods for acquiring soil information remain important for assessing key
soil properties, soil functions and ecosystem services over space and time. Infrared spectroscopic modeling can
link and massively scale up these methods for many soil characteristics in a cost-effective and timely manner.
In Switzerland, only 10 % to 15 % of agricultural soils have been mapped sufficiently to serve spatial decision
support systems, presenting an urgent need for rapid quantitative soil characterization. The current Swiss soil
spectral library (SSL; n = 4374) in the mid-infrared range includes soil samples from the Biodiversity Mon-
itoring Program (BDM), arranged in a regularly spaced grid across Switzerland, and temporally resolved data
from the Swiss Soil Monitoring Network (NABO). Given that less than 2 % of the samples in the SSL originate
from organic soils, we aimed to develop both an efficient calibration sampling scheme and accurate modeling
strategy to estimate the soil carbon (SC) contents of heterogeneous samples between 0 and 2 m depth from 26 lo-
cations within two drained peatland regions (School of Agricultural, Forest and Food Sciences (HAFL) data set;
n = 116). The focus was on minimizing the need for new reference analyses by efficiently mining the spectral
information of the SSL.

We used partial least square regressions (PLSRs), together with five repetitions of a location-grouped, 10-fold
cross-validation, to predict SC ranging from 1 % to 52 % in the local HAFL data set. We compared the validation
performance of different calibration schemes involving local models (1), models using the entire SSL combined
with local samples (2), commonly referred to as spiking, and subsets of local and SSL samples optimized for
the peatland target sites using the resampling local (RS-LOCAL) algorithm (3). Using local and RS-LOCAL
calibrations with at least five local samples, we achieved similar validation results for predictions of SC up
to 52 % (R2

= 0.93 to 0.97; bias= -0.07 to 1.65; root mean square error (RMSE)= 2.71 % to 3.89 % total
carbon; ratio of performance to deviation (RPD)= 3.38 to 4.86; and ratio of performance to interquartile range
(RPIQ)= 4.93 to 7.09). However, calibrations using RS-LOCAL only required five or 10 local samples for very
accurate models (RMSE= 3.16 % and 2.71 % total carbon, respectively), while purely local calibrations required
50 samples for similarly accurate results (RMSE < 3 % total carbon). Of the three approaches, the entire SSL
spiked with local samples for model calibration led to validations with the lowest performance in terms of R2,
bias, RMSE, RPD and RPIQ. Hence, we show that a simple and comprehensible modeling approach, using RS-
LOCAL together with a SSL, is an efficient and accurate strategy when using infrared spectroscopy. It decreases
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field and laboratory work, the bias of SSL spiking approaches and the uncertainty of local models. If adequately
mined, the information in the SSL is sufficient to predict SC in new and independent study regions, even if the
local soil characteristics are very different from the ones in the SSL. This will help to efficiently scale up the
acquisition of quantitative soil information over space and time.

1 Introduction

Soil, the “skin” of the Earth, is a vital part of the natural envi-
ronment and essential for global ecosystem services, includ-
ing food and fiber production, water filtration, climate regu-
lation and carbon sequestration (Schmidt et al., 2011; Tiessen
et al., 1994). We gained our scientific understanding of soil
through long and strenuous soil surveys complemented by
careful chemical, physical, mineralogical and biological lab-
oratory analysis. These conventional methodologies continue
to be important for understanding complex soil processes,
especially at specific locations. However, they can be expen-
sive, time consuming and sometimes imprecise, making it
difficult to continuously monitor soil properties over space
and time. Applications worldwide have prompted the de-
velopment of more time- and cost-efficient quantitative ap-
proaches to soil analysis that complement conventional lab-
oratory techniques (Viscarra Rossel et al., 2010).

Diffuse reflectance infrared Fourier transform (DRIFT)
soil spectroscopy is a nondestructive, fast and inexpensive
method that can predict soil properties and constituents by
linking measured soil spectral patterns to reference values,
which are usually attained via conventional laboratory meth-
ods (Stenberg et al., 2010). Accurate predictions can be made
due to underlying relations between measured spectral pat-
terns and absorbance features of soil characteristics, such as
color and both mineral and organic constituents (Nocita et al.,
2015). Organic and inorganic carbon, as well as soil tex-
ture, are commonly accurately predicted using spectroscopic
modeling approaches (Viscarra Rossel et al., 2006; Wijewar-
dane et al., 2018; Clairotte et al., 2016; Dangal et al., 2019).
Model predictions for cation exchange capacity (CEC), ex-
changeable Ca2+ and Mg2+, soil pH, and several others have
also shown promising results (Guillou et al., 2015; Reeves
and Smith, 2009; Madari et al., 2006; Viscarra Rossel et al.,
2008).

Soil spectroscopy can be performed using different wave-
lengths in the visible (vis), near-infrared (NIR) or mid-
infrared (mid-IR) portions of the electromagnetic spectrum.
The main advantage of mid-IR spectroscopy (frequency of
4000 to 400 cm−1 and wavelength of 2500 to 25 000 nm) un-
der laboratory conditions is that the spectra hold more infor-
mation on the mineral and organic composition of soil be-
cause the fundamental molecular vibrations occur mostly in
this range (Janik et al., 1998; Reeves and Smith, 2009). More
specifically, the mid-IR range differentiates more between
vibrations of molecular bonds, in contrast to the vis-NIR,

where absorptions are broader and have more overlap. The
more distinct absorption peaks and spectral features allow for
a better separation of the soils’ inorganic and organic compo-
nents. Hence, potentially more precise and targeted spectral
inference of a broad variety of mineral and organic soils can
be made using mid-IR measurements.

The slight disadvantage is that often more sample prepa-
ration is needed compared to samples measured in the vis-
NIR range. For spectroscopy in the mid-IR, unlike in the NIR
range, for example, the soil has to be finely ground in order
to optimize the signal-to-noise ratio (Guillou et al., 2015).
This, however, makes it especially efficient to use prepared
(legacy) soil data sets for mid-IR spectroscopy models.

In the soil spectroscopy modeling community, most cur-
rent research efforts are focusing on minimizing the differ-
ences in performance between local (e.g., location or field
specific) models versus large-scale (e.g., national, continen-
tal or global) models. On the one hand, this may be be-
cause the choice of the statistical model itself only results in
slight performance variability, depending on the complexity
of the soils. Traditional chemometric approaches (e.g., par-
tial least squares regression (PLSR); e.g., Janik and Skjem-
stad, 1995), machine learning (e.g., regression tree methods;
e.g., Clairotte et al., 2016; Dangal et al., 2019) and deep
learning (e.g., convolutional neural networks; e.g., Padarian
et al., 2019a, b) have all been used fairly successful. On the
other hand, the focus of these studies may be explained by
the fact that, in the past, large-scale models still tended to
perform less accurately than small-scale models (Guerrero
et al., 2016; Stevens et al., 2013). The two reasons for lower
accuracy are a higher soil heterogeneity across larger spatial
scales, which leads to a higher variability in spectral patterns
and the limitations of statistical models in dealing with such
variability. Another reason is inharmonious sample prepara-
tion, measurement protocols and instruments (Nocita et al.,
2015). Therefore, local models used to predict soil properties
for a specific location or region were initially favored (Wet-
terlind and Stenberg, 2010; Stevens et al., 2013; Guerrero
et al., 2016; Sila et al., 2016; Viscarra Rossel et al., 2016a),
but these had to be recalibrated using new samples and labo-
ratory analysis for every new region.

More recently, however, methods were developed to use
large soil spectral libraries (SSLs) to predict soil proper-
ties locally at new locations, further minimizing the time
and expenses required for sampling and laboratory work.
Currently, several countries have established SSLs using
archived, legacy and new soil data, such as the Czech Repub-
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lic (Brodský et al., 2011), France (Gogé et al., 2012; Clairotte
et al., 2016), Denmark (Knadel et al., 2012), China (Shi et al.,
2014), the United States (Wijewardane et al., 2018; Dangal
et al., 2019), Brazil (Demattê et al., 2019) and Switzerland
(Baumann et al., 2021). Continental, e.g., Australia (Vis-
carra Rossel et al., 2008) or Europe (Stevens et al., 2013)
and global SSLs have also been established (Viscarra Rossel
et al., 2016a; ICRAF, 2020). The operational value of SSLs
lies in the ability to pull representative information (either
the actual soil spectra or learned model “rules”) from them,
requiring less new local samples and laboratory analysis.
These methods can be summarized as spiking (Shepherd and
Walsh, 2002; Brown, 2007; Wetterlind and Stenberg, 2010;
Seidel et al., 2019), subsetting (Araújo et al., 2014; Lobsey
et al., 2017), memory- or instance-based learning (Ramirez-
Lopez et al., 2013; Gholizadeh et al., 2016) or transfer learn-
ing (Padarian et al., 2019a). Spiking can be defined as adding
local soil samples to a general SSL. Subsetting can generally
be defined as dividing the SSL into smaller partitions based
on characteristic features (e.g., geographic regions, soil type,
etc.) or a specific method. One such method is memory- or
instance-based learning, in which soil samples that are sim-
ilar or related to the target local samples are retrieved from
memory and merged to calibrate a new model. Finally, trans-
fer learning is the process of sharing intra-domain informa-
tion and rules learned by general models to a local domain
(Pan and Yang, 2010).

In this study, we used the resampling local, or RS-LOCAL,
algorithm developed by Lobsey et al. (2017) because it com-
bines several advantages of all four methods listed above.
RS-LOCAL is a data-driven method to subset a SSL, using
spectra from local samples. The subset includes these local,
or spiked, samples for calibration and may, thus, be summa-
rized as instance-based transfer learning. In two case stud-
ies in Australia and New Zealand (Lobsey et al., 2017), the
reduction in the SSL by means of local performance-based
selection (RS-LOCAL) gave better results than constraining
the SSL feature space by spectral similarity (memory-based
learning).

We chose to specifically focus on soil carbon (SC) from
peat soils in our mid-IR spectroscopic modeling approaches,
using different data sets for several reasons. First, scientists
agree that SC is an indispensable soil property for assessing
agricultural lands (e.g., Noellemeyer and Six, 2015). Second,
Cardelli et al. (2017) pointed out that spectroscopic model-
ing has almost only been used for mineral soils, stating the
need for soil spectroscopy of more diverse data sets that in-
clude organic soils. Third, we argue that, currently, organic
soil samples are underrepresented in SSLs, and that this is a
problem because the agricultural use of drained organic soils,
or peatlands, is a subject of immense debate in multiple sec-
tors of society. On the one hand, drained organic soils be-
long to the most fertile agricultural areas (Ferré et al., 2018),
especially due to their high soil organic matter (SOM) con-
tent and the release of plant nutrients during mineralization.

On the other hand, drained peatlands are a major source of
greenhouse gas emissions (e.g., Parish et al., 2008; Joosten,
2010; Leifeld and Menichetti, 2018), are susceptible to wind
and water erosion (Zobeck et al., 2013), enhance subsidence
of agricultural parcels due to compaction and rapid mineral-
ization and are prone to flooding (Leifeld et al., 2011). As a
result, often only a substrate consisting of a thin organic hori-
zon above a geologic and/or water-logging substrate remains.
These factors have made crop production on such locations
increasingly expensive; expenses may include drainage ren-
ovation or adding allochthon sand to the soil, among other
measures (Ferré et al., 2018).

Due to the ongoing discussion of optimizing the land use
of drained organic soils between stakeholders with agricul-
tural, socioeconomic and environmental interests, there is
a need to use the advantages of mid-IR soil spectroscopic
modeling to quantitatively characterize these soils. It is un-
known whether current SSLs can ultimately be used to make
location-specific land use decisions, particularly for small-
scale heterogeneous regions made up of a variety of mineral
and organic soils. In the current soil spectroscopy literature,
there is, to our knowledge, no study about partitioning a SSL
using RS-LOCAL with mid-IR spectroscopy, especially for
a specialized organic soils data set. Unlike Padarian et al.
(2019a), who demonstrated the application of transfer learn-
ing at a continental scale, this study looks into the application
of transfer models from a national to local scale, specifically
for peat soils.

The aim of this study is to compare mid-IR spectroscopic
modeling approaches for SC from peat soils using different
data sets, namely (1) a local data set specifically from drained
peatlands, (2) the Swiss SSL spiked with local samples and
(3) RS-LOCAL subsets containing local and representative
SSL samples. The goal is to develop both an accurate model-
ing strategy for predicting SC ranging between 1 % to 52 %
and an efficient calibration sampling scheme to minimize the
number of new samples required.

2 Methods

2.1 Soil data: the Swiss SSL and the School of
Agricultural, Forest and Food Sciences (HAFL) data
set

The current Swiss SSL in the mid-IR range consists of 3723
topsoil (0 to 20 cm) samples from 1094 locations from the
Biodiversity Monitoring program (BDM; e.g., FOEN, 2018;
Meuli et al., 2017) and 572 topsoil samples from 71 loca-
tions from the National Soil Monitoring Network (NABO;
Fig. 1 and Table 1; e.g., NABO, 2018; Gubler et al., 2015).
The Swiss SSL is described in full detail in Baumann et al.
(2021). Less than 2 % of the samples in the SSL originate
from organic soils.

We introduce a data set from the Bern University of Ap-
plied Sciences, School of Agricultural, Forest and Food Sci-
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Figure 1. Spatial grid of BDM locations (green dots), NABO long-term monitoring locations (gray squares) and the purposive sampling
design of peatlands in the Seeland and St. Galler Rheintal regions, which constitute the HAFL locations (orange dots; NABO, 2018; Gubler
et al., 2015; FOEN, 2018; Meuli et al., 2017; Baumann et al., 2021).

Table 1. Summary statistics of all samples in the HAFL data set, which is, in this study, also referred to as the local data set, and the BDM
and NABO data sets. The latter two together constitute the current Swiss SSL, which contains carbon reference measurements from 4295
samples from 1150 different locations (Baumann et al., 2021). Q1 and Q3 refer to the first and third quartiles, respectively.

Data set Type Locations Samples (n)
Total carbon (%)

Skewness
Min Q1 Median Mean Q3 Max

HAFL Local 26 116 1.41 11.73 25.45 24.76 35.17 52.23 0.14
BDM Swiss SSL 1079 3723 0.12 2.73 4.15 5.49 6.48 58.34 4.04
NABO Swiss SSL 71 572 1.12 1.97 3.260 3.97 4.70 27.32 3.84

ences (HAFL), which was set up using a purposive sam-
pling design to specifically study drained peatlands and or-
ganic soils. This local HAFL data set (n= 116) contains soil
samples from between 0 and 2 m depth from a range of nat-
ural and disturbed Histosols from 26 different locations in
the Seeland and St. Galler Rheintal regions of Switzerland
(Fig. 1 and Table 1; IUSS Working Group WRB, 2014).
These samples originate from either undisturbed and water-
logged organic horizons, mineralized organic horizons under
agricultural use, horizons with sandy or calcareous substrate
material or horizons containing a mixture of these character-
istics.

2.2 Mid-IR soil spectroscopy measurements and
preprocessing

All samples were dried, sieved (< 2 mm) and finely ground
using a ball mill to maximize the signal-to-noise ratio (Guil-
lou et al., 2015). The samples were measured with a VER-
TEX 70 Fourier-transform infrared (FTIR) spectrometer

with a high throughput screening extension (HTS-XT) from
Bruker (Massachusetts, USA). We used a spectral range of
7500 to 600 cm−1 and a spectral resolution of 2 cm−1 so that
each spectrum comprised of reflectance values at 6901 wave-
lengths. On each 24-well plate, there is a fixed gold panel as
the reflectance background, and three NABO standards and
two subsamples of 10 different samples were measured using
the HTS-XT extension. This means that 10 samples with two
different measurements were analyzed per plate, maximizing
the signal-to-noise ratio by averaging the two measurements.
Reflectance spectra were transformed to apparent absorbance
and recorded as such. OPUS software was used for correct-
ing atmospheric water and CO2.

We tested several preprocessing steps in order to increase
the information content for modeling and to reduce the
collinearity between consecutive wavelengths. We tested us-
ing a Savitzky–Golay (SG) filter with a first and second
derivative, as well as a first-, second- and third-order poly-
nomial (Savitzky and Golay, 1964). The window size (res-
olution) of 35 variables (70 cm−1) was kept constant. In-
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stead, we tested different resolutions by selecting either all
variables, every fourth or every eighth variable to reduce
collinearity and redundancy among predictors. The combi-
nation of preprocessing steps used for all final modeling ap-
proaches was chosen that resulted in the lowest root mean
squared error (RMSE) across the cross-validated calibration
(see Sect. 2.4 below).

We used the simplerspec package for the R statisti-
cal language for reading spectra and metadata from Bruker
OPUS binary files into a R list, gathering spectra into a data
structure of a list, resampling spectra to new wavenumber
intervals, averaging spectra of replicate scans and prepro-
cessing the raw spectra with the parameters described above
(Baumann, 2020).

2.3 Reference chemical analysis

In order to guarantee that reference data for all mid-IR spec-
troscopy models were measured using the same standard soil
chemical analysis methods, we prepared and measured SC
in the local HAFL data set using the same procedures as
for the Swiss SSL (Baumann et al., 2021). Briefly, all the
dried, sieved (< 2 mm) and finely ground samples were mea-
sured for total carbon content by dry combustion, using the
CHN628 Series Elemental Determinator from the Labora-
tory Equipment Corporation (LECO Corporation, St. Joseph,
MI, USA). We used a soil standard sample with a mean to-
tal carbon content of 2.372 %. In order to compare the mea-
surement accuracy and accordance between the two differ-
ent CHN628 Series Elemental Determinator machines used
for the Swiss SSL and HAFL samples, representative sam-
ples were selected using a two-step process. The data were
separated into two clusters using the K-means clustering al-
gorithm (Hartigan and Wong, 1979), followed by using the
Kennard–Stone (KS) algorithm for each cluster separately
(Kennard and Stone, 1969). The KS algorithm is a determin-
istic approach that uses Euclidean or Mahalanobis distance
to select a set of samples uniformly distributed in principal
component (PC) space (Kennard and Stone, 1969). Within
the Swiss SSL, NABO and BDM samples used the same ma-
chine (Baumann et al., 2021).

2.4 Spectroscopic modeling

We resampled the data using five repetitions of a location-
grouped, 10-fold cross-validation for all of our models to de-
termine the optimal number of components in model tuning,
as well as evaluating the model performance using the hold-
out samples. The predicted carbon content was calculated in
each model using the hold-out values of the measured, pre-
processed and averaged mid-IR spectra. For the final models,
the calculated average (mean) predictions over these five rep-
etitions with the chosen number of components are shown.
To avoid overfitting, we used the one standard error rule, i.e.,
instead of choosing the tuning parameter associated with the

lowest RMSE, we chose the simplest model within one stan-
dard error (SE) of the empirically optimal model (e.g., Hastie
et al., 2009).

We used partial least squares regressions (PLSRs; e.g.,
Wold, 1975; Wold et al., 1983, 1984, 2001) to predict SC.
We tuned the PLSR using 1 to 10 components, and the final
model for the number of components was chosen according
to the one SE rule.

All spectroscopic models were evaluated for their perfor-
mance using the RMSE, the ratio of performance to devia-
tion (RPD; Williams and Norris, 1987, Eq. 5), the ratio of
performance to interquartile range (RPIQ), the bias and R2.
The RPD is suitable for normal distributions, while the RPIQ
is more suitable for non-normal distributions (Bellon-Maurel
et al., 2010). Since different definitions of R2 exist, we used
the equation of the mean squared error skill score (SSmse;
Wilks, 2011), also known as the model efficiency coefficient
(MEC; Nash and Sutcliffe, 1970) to indicate the R2.

Given the large range of SC in these data sets, we also as-
sessed the RMSE, RPD and RPIQ by increments of 10 % SC
for all model validations. Hence, we calculated these met-
rics for all samples for which the measured SC values are
between 0 % and 10 % SC, 10 % and 20 % SC and so on. In
this manner, we expected to detect for which range of SC
prediction error increases or decreases.

One advantage of repeated cross-validation is that model
imprecision can easily be assessed for each prediction (Ŷ )
using the standard deviation (SD) and mean (Ȳ ) of the pre-
dictions across five repetitions, respectively. In this study, the
SD is shown as error bars for each prediction (Ŷ ) and was
also calculated for each overall summary statistic assessing
the model performance.

2.5 Calibration schemes

2.5.1 Local models

Spectroscopy becomes time- and cost-efficient when mini-
mizing the amount of laborious chemical reference analysis.
Therefore, it makes sense to split the local HAFL data into
a calibration and validation subset (Fig. 2). In this manner,
the validation can be used to determine how many samples
are needed to accurately and precisely calibrate a model. We
selected n= 15, 20, 25, 30, 40, 50 and 58 representative lo-
cal HAFL calibration samples by using the KS algorithm for
the first five PCs. We did not build models using less than
15 samples. These selected samples were then used to cali-
brate iterations of PLSR models (Fig. 2). In an application of
the method described, reference data would only have to be
measured for the selected samples used for calibration. Each
calibrated model iteration was validated using the same 58
remaining local samples never used for any of the calibration
iterations.

https://doi.org/10.5194/soil-7-193-2021 SOIL, 7, 193–215, 2021



198 A. Helfenstein et al.: Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library

2.5.2 SSL spiked models

In the next step, we utilized the Swiss SSL in iterations of
model calibrations to see if predictive performance can be
improved while further reducing the number of new local
samples needed for reference analysis (Fig. 2). Also, we ex-
pected a large amount of additional data from the SSL to im-
prove model robustness and reliability (Lobsey et al., 2017).
With the help of all SSL samples containing carbon reference
data (n = 4295), we were able to include iterations of PLSR
calibrations spiked with as few as n= 3, 5, 7 and 10 local
HAFL samples. Further iterations with the same n= 15,20,
25, 30, 40, 50 and 58 local HAFL samples as for the local
models were also calibrated. Just as with the local models,
each iteration was validated using the same 58 remaining lo-
cal samples never used for any of the calibration iterations.

2.5.3 Models using RS-LOCAL subsets

In the third approach, we tested whether representative sub-
sets of the SSL using the RS-LOCAL algorithm improved
the accuracy of predicting SC of the local HAFL samples
(Fig. 2). The RS-LOCAL algorithm was used to data-mine
the SSL for samples suitable for local or location-specific
calibrations according to similarities of spectral signatures
between the local HAFL and SSL soil samples (Lobsey et al.,
2017). Local HAFL samples were selected in the same man-
ner as in local and SSL spiked models, resulting in iterations
of the same samples as before (Fig. 2). This variable was de-
fined in the RS-LOCAL algorithm as m (Lobsey et al., 2017);
so, in our case, m= 3, 5, 7, 10, 15, 20, 25, 30, 40, 50 and 58
for each respective iteration. RS-LOCAL used m data to re-
sample, evaluate and then remove irrelevant data from the
SSL so that only the most appropriate data for deriving a lo-
cal calibration remained in a new SSL subset K . K and m

together formed a RS-LOCAL data set, which was used for a
calibration. In addition to the SSL and m data, three param-
eters were needed for RS-LOCAL as follows (Lobsey et al.,
2017):

– k – the number of SSL samples randomly selected in
the resampling step and also the target number of SSL
samples returned by the algorithm

– b – the number of times each sample in the SSL was
tested, on average, in each iteration of the algorithm

– r – the proportion of SSL samples removed in each it-
eration of the algorithm.

In order to optimize the tuning parameters, we performed a
full factorial combination of k (50, 100, 150 and 300), b (40,
50 and 60) and r (0.05 and 0.01) based on recommendations
of the developers (Lobsey et al., 2017). The size of K re-
mains the same for all values of m, only as long as k, b, r and
the size of the entire SSL remain constant. As in the other
modeling approaches, each iteration was validated using the

Figure 2. The number of samples used in each calibration (C) and
validation (V) scheme using HAFL, BDM and NABO data sets
for (a) local, (b) SSL spiking and (c) RS-LOCAL approaches. The
same 58 local HAFL samples never used in calibration were used
to validate each modeling approach and iteration. Note different the
scales on the y axes.

same 58 remaining local samples never used for any of the
calibration iterations.

3 Results

3.1 Spectral preprocessing and analysis of local HAFL
spectra

The lowest RMSE was achieved in the cross-validated cal-
ibration when using a SG filter with a first derivative and
second-order polynomial (Savitzky and Golay, 1964) in
combination with a window size of 35 points (70 cm−1) and
selecting only every eighth variable. This resulted in 209
variables between 634 and 3962 cm−1, which formed the
predictors for subsequent modeling. Reducing the number of
variables did not have an effect on model performance but
reduced collinearity and redundancy, increased the simplic-
ity of the model and decreased the computation time (Ap-
pendix A). An example of the PLSR tuning based on the
number of chosen components in each repetition according
to the one SE rule is shown using all local HAFL samples in
Appendix B.

The raw and preprocessed measured mid-IR spectra of the
local HAFL soil samples (n = 116) were clearly distinct in
relation to the SC content, ranging from 1 % to 52 % (Fig. 3a
and b). Mineral and organic soil samples showed different
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Figure 3. The raw (a) and preprocessed (b) mid-IR spectra of all the local HAFL soil samples (n = 116) colored by total carbon content
(percent).

absorbance patterns in both the raw and preprocessed mid-
IR spectra. Preprocessed absorbance values showed a clear
pattern according to the SC content almost across the entire
spectrum and particularly, but not exclusively, around 800,
1050, 1900, 2050, 2900 and 3600 cm−1.

A principal component analysis (PCA) of the preprocessed
spectra of the local HAFL samples clearly revealed a vari-
ance in the distribution of the soil samples related to the SC
content (Fig. 4). The first two PCs together explained 53.5 %
of the total variance in the preprocessed spectra. Figure 4 also
exemplifies one possible local calibration scheme, whereby
the HAFL data is split into 20 representative samples used
for calibration, 58 samples used for validation and the re-
maining samples. We also compared the similarity of soil
samples from different depths at the same location by col-
oring the first two PCs by location (Appendix C). However,
the preprocessed spectra from the same locations generally
showed little similarity; there was no distinct pattern as there
was for the SC content.

3.2 Comparing local HAFL to SSL data

When comparing the three data sets, we found that the lo-
cal HAFL data set showed a different SC distribution and
covered a different range in soil variability than the Swiss
SSL (Table 1 and Fig. 5). The relatively small HAFL data
set originating from peaty soils had a uniform continuous
distribution, whereas the BDM and NABO data had a pos-
itively skewed distribution with regard to SC (Table 1). Al-

though the BDM data set contained the highest single value
of SC, over 98 % of soil samples in the Swiss SSL originated
from mineral soils. In contrast, more than half of the HAFL
samples ranging from 1 % to 52 % were classified as organic
soils. The first and second PCs – which together covered
40.3 % of the total variance – also revealed a clear overlap
of preprocessed mid-IR absorbance variance for the BDM
and NABO data sets (Fig. 5). There was less overlap in the
variance of the preprocessed mid-IR absorbance values of
the Swiss SSL and the HAFL data set. In the PCA space, the
BDM and NABO data sets show a similarly shaped convex
hull and almost identical centroid (mean), whereas the cen-
troid is very distinct for the HAFL data set (Fig. 5). In Fig. 5,
122 samples, of which 20 are the local HAFL samples, were
used as a RS-LOCAL subset to calibrate a model.

3.3 Predicted SC using (1) local, (2) SSL spiking and
(3) RS-LOCAL subsets

We predicted SC content (Ŷ ) of the HAFL, BDM and NABO
data sets using mid-IR soil spectroscopic PLSR models and
compared them to the reference chemical measurements (Y ).
This is exemplified for each modeling approach in the case
of 20 local HAFL samples in Fig. 6. For models using an RS-
LOCAL subset, we found the best overall validation results
using k = 100, b = 50 and r = 0.05 and, therefore, chose
these parameter values for all results shown here. The in-
fluence of RS-LOCAL parameter k on validation results is
shown in Appendix D. Decreasing r to 0.01 had little influ-

https://doi.org/10.5194/soil-7-193-2021 SOIL, 7, 193–215, 2021



200 A. Helfenstein et al.: Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library

Figure 4. PC1 vs. PC2, computed via scaled and centered PCA, of the preprocessed local HAFL soil spectra (n = 116) colored by total
carbon content (percent). The axes labels show the relative amount of variance explained (percent) in parentheses. In this example, n = 20
representative samples were selected using the KS algorithm for calibrating a local model.

ence on model performance and greatly increased the com-
putation duration. There appeared to be no spatial correlation
between chosen RS-LOCAL locations and target HAFL lo-
cations (Appendix E).

For calibration, all modeling approaches showed a high
fit (R2 > 0.9) and low overall bias (≈ 0; Fig. 6a). The SSL
spiking calibration scheme showed the lowest RMSE value.
However, the accuracy of the spiked SSL calibration de-
creased and bias increased in the upper range of SC, which
also explains the lower RPIQ value compared to local and
RS-LOCAL calibration schemes. The RS-LOCAL calibra-
tion revealed the best model performance according to the
RPD (6.92). The local PLSR, using only 20 samples, showed
the lowest overall calibration accuracy based on the RMSE
(3.72 % total carbon).

All model validations showed a similar fit (R2
= 0.93 to

0.97). However, the bias, RMSE, RPD and RPIQ values
differed among the three scenarios (Fig. 6b). The valida-
tion of the local PLSR had the lowest bias (0.53), but the
validation of the RS-LOCAL subset had the best perfor-
mance overall (RMSE= 2.82 % total carbon, RPD= 4.67
and RPIQ= 6.82). The validation of the spiked SSL scheme
revealed the lowest prediction accuracy overall, especially
with increasing values of measured SC. The error bars rep-
resenting the SD of predictions across five resampled repe-
titions showed that there was the highest prediction uncer-
tainty across repetitions in the validation of the local mod-
eling approach. As with 20 local samples, validation statis-
tics also show a good performance of PLSR models us-
ing RS-LOCAL subsets that contained as few as 5, 7 and
10 local samples (R2

= 0.93 to 0.96; bias= 0.2 to 1.651;

RMSE= 2.71 % to 3.89 % total carbon; RPD= 3.38 to 4.86;
and RPIQ= 4.93 to 7.09; Appendix F).

We compared R2, bias, RMSE, RPD and RPIQ as indi-
cators of overall model performance depending on the num-
ber of local HAFL samples in each calibration scheme for
all three modeling approaches, i.e., (1) local, (2) SSL spik-
ing and (3) RS-LOCAL subsets (Figs. 7 and 8). R2 was a
poor indicator of model performance and did not show sub-
stantial differences between modeling approaches and cal-
ibration schemes (Fig. 7). Local models showed the low-
est bias, regardless of the number of samples used during
calibration (Fig. 7). The bias of validations of spiked SSL
models only lowered slightly as the number of local samples
was increased and remained large overall (> 3). Bias was re-
duced significantly in validated models of RS-LOCAL sub-
sets when at least five local samples were included and con-
tinued to decrease slightly with the increasing number of lo-
cal samples. Models with five and 10 samples stand out with
very little bias.

Model accuracy (RMSE) varied considerably between
calibrations and validations when SSL samples were used
during calibration (Fig. 7). There was less of a differ-
ence between calibration and validation in local models,
where the RMSE decreased with the increasing number of
local samples in model calibration. As with model bias,
the RS-LOCAL subsets again showed a threshold or min-
imum of five samples in order for the RMSE of model
validations to lower significantly. Model validations of lo-
cal and RS-LOCAL subsets showed very similar accuracy
overall (RMSE≈ 3 % total carbon). However, only five or
10 local samples were required to achieve an accuracy of
RMSE= 3.16 % or 2.71 % SC, respectively (Fig. 7 and Ap-
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Figure 5. PC1 vs. PC2 and the convex hulls and centroids (mean) in the PCA space of the preprocessed soil spectra of the local HAFL
data set (n= 116) and the BDM and NABO data sets, which make up the current Swiss SSL (n = 4295). Here, the PCs were computed via
unscaled and uncentered PCA, since it showed the data distribution better than a scaled and centered PCA. The axes labels show the relative
amount of variance explained (percent) in parentheses. In this example, the same representative local HAFL samples (n = 20) selected in
Fig. 4 were used by RS-LOCAL to subset representative samples from the SSL (n = 102), which were used together for model calibration
(n = 122).

pendix F). In contrast, local modeling approaches required
50 local samples to achieve a RMSE of < 3 % SC.

Local and RS-LOCAL models also revealed similar and
better model performance than SSL spiking modeling ap-
proaches (Fig. 8). Both RPD and RPIQ gradually increased
in local models with increasing numbers of local HAFL sam-
ples in calibration. As with bias and RMSE, RPD and RPIQ
values also indicate high-prediction accuracy with as few as
five or 10 local HAFL samples when calibrating with RS-
LOCAL subsets (RPD= 4.08 and 4.66 and RPIQ= 5.96 and
6.81, respectively).

Prediction accuracy in model validations was highest for
mineral soils, or ranges of SC between 0 % and 20 % for all
modeling approaches (Fig. 9). Local and RS-LOCAL mod-
eling approaches showed better predictive performance for
samples with higher SC. In local modeling approaches, sam-
ples with 0 % to 20 %, and especially 10 % to 20 % SC,
were predicted increasingly well with an increasing number
of local HAFL samples in the model calibration. Soils be-

tween 0 % and 10 % SC were predicted with the highest accu-
racy with the SSL spiking approach. However, samples with
> 10 % were predicted with higher accuracy using local and
RS-LOCAL calibration schemes. Validations of RS-LOCAL
calibration schemes again showed a threshold around five lo-
cal HAFL samples. After this threshold, RMSE, RPD and
RPIQ results for samples with > 20 % remained constant
with an increasing number of local samples during calibra-
tion. In contrast, samples containing 0 % to 20 % SC were
considerably more unstable, depending on the number of lo-
cal samples during calibration.

4 Discussion

We found that, first, mid-IR spectra can be used to pre-
dict SC up to 52 % with R2

≥ 0.94, negligible bias and
RMSE= 2.8 % to 3.6 % total carbon using validated local
PLSR models (RPD= 3.6 to 4.69; RPIQ= 5.32 to 6.85).
Second, and most importantly, time-consuming and expen-
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Figure 6. Predicted (Ŷ ) vs. observed (Y ) total carbon content (percent) by calibrating a PLSR with 20 local HAFL samples (a) and validating
it with the remaining local HAFL samples (n= 96) (b). A PLSR was calibrated using only 20 local HAFL samples (1), adding the entire
SSL to the 20 local HAFL samples (2) and using a RS-LOCAL subset of the SSL also containing the 20 local samples (3). The error bars
signify the SD, and where none are present, the components remained identical across five repetitions and, thus, SD= 0.

sive field and laboratory measurements can be reduced for
new locations when using a SSL together with RS-LOCAL.
In our study, only 10 local HAFL samples were required
in a RS-LOCAL subset to achieve a similar validation
performance as with at least 50 local samples in a local
model (R2

= 0.96; bias≈ 0.2; RMSE≈ 2.7 % total carbon;
RPD= 4.86; and RPIQ= 7.09; Figs. 7 and 8). This is a ma-
jor improvement on local models without a SSL because not
only does it reduce field and laboratory expenses but also
because no reliable model can be calibrated using such lit-
tle data. Furthermore, a SSL subsetting method, such as RS-
LOCAL, combined with a simple model, such as PLSR, is
easy to understand and requires little computational power
compared to alternative machine or deep learning approaches
(e.g., Padarian et al., 2019a, b).

4.1 Spectral patterns reflect mineral and peat
composition

The measured and preprocessed mid-IR soil spectra and PCA
results of all local HAFL samples revealed a high correlation
between the spectral absorbance values and a broad range of
SC content overall (Figs. 3 and 4). According to past stud-
ies that assessed variable importance, we assumed that soil
texture and mineralogical and organic composition influence
mid-IR spectral absorbance the most (Madari et al., 2006;
Bornemann et al., 2010; Calderón et al., 2011). SOC (soil
organic carbon), for example, is known to be related to a
variety of bands that represent absorptions due to organic
molecules such as proteins with C–O, C=O and N–H bonds
(Viscarra Rossel and Behrens, 2010). Local HAFL samples
containing both a high number of organic compounds and
carbonates created distinct absorbance bands around 1450,
1460, 2855 and 2930 cm−1 for aliphatic C–H constituents
(Madari et al., 2006) or around 1320 cm−1 for hydroxyl
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Figure 7. R2, bias and RMSE values in percent of total carbon (RMSE in logarithmic scale) vs. the number of local HAFL samples used in
local HAFL (a), local combined with SSL (b) and RS-LOCAL subsets (c), where k= 100. Error bars represent the SD between resampled
repetitions, and where not present, there was no variation in the respective summary statistic across five repetitions. Dashed lines between
data points do not represent real measurements and are only for visual guidance.

groups bonded to carbon (C–O–H) (Bornemann et al., 2010)
and around 2500 cm−1 for carbonates (Calderón et al., 2011).
Future studies should investigate whether the overlapping
of spectral signals for organic and mineral components in-
creases at high SC concentrations implies that spectral ab-
sorbance patterns above a certain threshold of SC no longer
differentiate substantially.

4.2 RS-LOCAL improves model performance and
increases efficiency

The RS-LOCAL approach, using representative local and
SSL samples, was found to be the best of the three compared
approaches. It significantly reduces the number of reference
measurements that need to be made at new locations for five
samples. In addition, the RS-LOCAL approach helps remove
the strong bias of spiked SSL calibrations (Figs. 6 and 7),
increasing the underestimated predictions of SC in the up-
per range. Finally, the additional samples provided from the

SSL also reduce the uncertainty of SC predictions of resam-
pled repetitions in the PLSR models, as can be seen from the
smaller error bars of the residuals. Predictions of SC from
0 % to 10 % became more accurate when using additional
samples from the SSL in the RS-LOCAL subset (Fig. 9).

We postulate that SC prediction accuracy of organic soil
samples, using SSL-derived models, may be improved in
future studies by adding more peat soil data to the Swiss
SSL (Baumann et al., 2021), specifically for samples at dif-
ferent decomposition and mineralization stages. One of the
most important characteristics of a high-quality SSL is that it
contains the highest possible variation in soil characteristics
within its designated area (Viscarra Rossel et al., 2016a). The
SC distribution and the spectral principal component space
of the HAFL compared to the BDM and NABO samples
showed that the soil variability in the HAFL samples is only
marginally covered by the current SSL (Table 1 and Fig. 5).

The use of our modeling approach, the PLSR of RS-
LOCAL subsets, to predict soil properties at new locations

https://doi.org/10.5194/soil-7-193-2021 SOIL, 7, 193–215, 2021



204 A. Helfenstein et al.: Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library

Figure 8. RPD and RPIQ vs. the number of local HAFL samples used in local HAFL (a), local combined with SSL (b) and RS-LOCAL
subsets, where k= 100 (c). Error bars represent the SD between resampled repetitions, and where not present, there was no variation in the
respective summary statistic across five repetitions. Dashed lines between data points do not represent real measurements and are only for
visual guidance.

for future studies and applications depends on the level of
accuracy needed. For organic soils on a farm or landscape
level, an accuracy of approximately 2 % to 3 % total carbon
is suitable for quantifying SC. On the one hand, this range
of accuracy is not useful for mineral soils, which, in Switzer-
land for example, contain average (mean) topsoil SOC con-
centrations of 2 % on arable locations and 2.5 % on tempo-
rary grassland locations (Leifeld et al., 2005). On the other
hand, our validation results using the SSL spiking approach
show that samples with 0 % to 10 % SC were constantly pre-
dicted with a RMSE < 1 % SC and RPD above 2 (Fig. 9).
This implies that, when targeting mineral agricultural soils,
mid-IR spectroscopic models making use of a SSL deliver
the required accuracy for applications and end-users. These
findings are supported by Baumann et al. (2021).

Few studies, to our knowledge, have predicted organic
soils up to 52 % total carbon using mid-IR soil spectroscopy
without splitting model calibration for mineral and organic
soils. One exception is the mid-IR SSL of the United States,
which contains about 2000 organic soil samples (Wijewar-
dane et al., 2018; Dangal et al., 2019). Nocita et al. (2014)
predicted SOC for croplands, grasslands, woodlands and or-
ganic soils separately from about 20 000 samples from the
Land Use/Cover Area frame Survey (LUCAS) across Eu-
rope using vis-NIR spectroscopy. For the model using only
organic soil data with a range of 12.0 % to 58.68 % SOC, pre-

dictions were less accurate (RMSE= 5.114 % SOC) than in
this study (Nocita et al., 2014).

One advantage of the RS-LOCAL–PLSR approach used
here is that the statistical modeling is simple and produces
easy-to-understand models compared to other transfer and
deep learning approaches (Padarian et al., 2019a, b). Using
spectral- or model-based information from SSLs by spiking,
subsetting and memory, instance and transfer learning may
even be beneficial for parts of the world lacking legacy soil
data or funding to establish their own SSL. In other words,
the SSL of one region may be used to predict locally for an-
other region that does not have a SSL. This is comparable
to the concept of homosoil in digital soil mapping (Mallavan
et al., 2010).

However, there are still some drawbacks. As mentioned by
Padarian et al. (2019a), spiking and subsetting are dependent
on the size of local and global data sets and may still bias
the predictions towards the local data set rather than fully
using valuable global information, which generates less ro-
bust models. Although transfer learning of model rules, or
network weights, showed promising results on a continental
scale (Padarian et al., 2019a), it has not been tested when
transferring national spectral knowledge to a field scale.

Ultimately, soil spectroscopy has the potential to speed
up the quantification of soil properties for soil mapping and
monitoring. Several studies have shown how this affects soil
maps and associated uncertainties (Brodský et al., 2013; Vis-
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Figure 9. RMSE (in percent of total carbon and logarithmic scale), RPD and RPIQ of validation results vs. the number of local HAFL
samples used in local HAFL (a), local combined with SSL (b) and RS-LOCAL subsets (c), where k= 100. Observations (Y ) were grouped
in increments of 10 % SC, and the validation metrics were calculated separately for each group. Dashed lines between data points do not
represent real measurements and are only for visual guidance.

carra Rossel et al., 2016b; Ramirez-Lopez et al., 2019) but
only on a farm scale. It still remains to be implemented in a
large-scale soil information system.

5 Conclusions

This study reveals that, if adequately mined, the information
in a SSL is sufficient to predict soil carbon of a new study
region with very different soil characteristics. Whereas past
spectroscopy studies mostly focused on mineral soils, these
model validations of SC ranging between 1 % to 52 % show
that using as few as five new samples, in combination with
RS-LOCAL and a SSL, yield promising results. This ap-
proach decreases the time and cost of field and laboratory soil
analysis, reduces the bias of large-scale spectroscopy or SSL
spiked models and the uncertainty of small-scale local mod-
els. Including more organic soil samples in the Swiss SSL
will make it more robust for future modeling applications
(Baumann et al., 2021). This case study for assessing SC in

drained peatlands under agricultural management shows that
an operative SSL is useful for scaling up quantitative soil in-
formation over space and time.

https://doi.org/10.5194/soil-7-193-2021 SOIL, 7, 193–215, 2021



206 A. Helfenstein et al.: Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library

Appendix A: Number of spectral variables

Figure A1. R2, bias and RMSE values in percent total carbon (RMSE in logarithmic scale) of model validations vs. the number of local
HAFL samples used in local HAFL (a), local combined with SSL (b) and RS-LOCAL subsets of the SSL (c), where k= 300 . These
validation metrics are shown for models using all spectral variables as opposed to only every eighth variable, which is a preprocessing step.
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Appendix B: Number of chosen components

Figure B1. (a) Predicted Ŷ vs. observed Y total carbon (percent) of all local HAFL samples using a PLSR. (b) Illustrative example of PLSR
tuning, showing the calculated RMSE (percent total carbon) vs. the number of components used in each repetition. This model used seven
components in the first and fifth repetition and eight components in the second, third and fourth repetition, according to the one SE rule.
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Appendix C: Variance in local HAFL samples over
depth

Local HAFL soil samples from different depths of the same
location were diverse. This may be due to pedogenetic for-
mation conditions unique to peatlands near bodies of wa-
ter and anthropogenic influence. The Seeland and St. Galler
Rheintal regions are characterized by an extreme diversity
of intact peat, decomposed and mineralized peat, calcare-
ous lacustrine sediments and fluvial sand, silt and clay de-
posits, depending on past river flow conditions (Bader et al.,
2018; Burgos et al., 2018). Anthropogenic influences, such
as changing the course of and channeling of rivers, lowering
lake and groundwater tables and draining peatlands, further
complicate soil characterization. These conditions create a
mosaic of extremely heterogeneous soil characteristics that
vary vertically, depending on soil depth, as strongly as they
vary horizontally across the entire three study areas that are
part of the HAFL data set (Fig. C1).

Figure C1. PC1 vs. PC2, computed via scaled and centered PCA, of the preprocessed local HAFL soil spectra (n = 116) colored by
location, in contrast to Fig. 4. The axes labels show the relative amount of variance explained (percent) in parentheses. In this example,
n = 20 representative samples were selected for calibrating a local model using the KS algorithm, and the rest of the data were used for
validation (n = 96).
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Appendix D: Influence of RS-LOCAL parameter k on
validation results

Figure D1. R2, bias and RMSE (percent total carbon) of the validation of RS-LOCAL modeling approaches, using different numbers of
local HAFL samples in model calibration, when altering the RS-LOCAL parameter k. The RMSE is on a logarithmic scale.
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Appendix E: Geographical position of chosen
samples by RS-LOCAL

We mapped the locations from which RS-LOCAL selected
samples from the SSL for calibration together with 20 local
HAFL samples (n= 334; k= 300; Fig. E1). There appeared
to be no spatial correlation between chosen RS-LOCAL lo-
cations and geographical distance from the local HAFL loca-
tions. In other words, locations chosen by RS-LOCAL sug-
gest that spectrally relevant soil samples from SSL for pre-
dicting SC in local HAFL samples are not confined to nearby
areas in terms of geographical distance. This may be linked
to the heterogeneity of soils found in these drained peatlands;
in between layers of organic soils, sampled soil layers also
contain geologic substrate material from lacustrine carbon-
ates, dense clay or fluvial sand depositions. We speculate that
this soil and spectral diversity at local HAFL sampling loca-
tions may explain why RS-LOCAL even selected relevant
SSL samples originating from the Alps. This ultimately sug-
gests that RS-LOCAL is able to use segments of soil spectra
from a variety of similar but also dissimilar locations to pre-
dict new local soil samples.

Figure E1. A map showing BDM (green dots) and NABO (gray squares) locations from which RS-LOCAL subset samples (n = 314, k= 300)
for a RS-LOCAL calibration (n = 334). All HAFL locations (orange dots) are shown underneath BDM and NABO locations to allow a better
focus on locations chosen by RS-LOCAL.
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Appendix F: Predicted vs. observed RS-LOCAL
subsets for five, seven and 10 local HAFL samples

Figure F1. Predicted (Ŷ ) vs. observed (Y ) total carbon content (percent) by calibrating a PLSR of a RS-LOCAL subset with five (1), seven
(2) and 10 (3) local HAFL samples (a) and validating each with 58 local HAFL samples (b), respectively. The error bars signify the SD, and
where none are present, the components remained identical across five repetitions and, thus, SD= 0.
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