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The effect of cow longevity on dynamic productivity growth of 
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H I G H L I G H T S  

• The average annual dynamic productivity growth of Dutch dairy farms over 2007-2013 was 1.1%. 
• Technical change was the main source of productivity growth of farms during 2007-2013. 
• Cow longevity has a positive association with productivity growth and technical change. 
• Technical inefficiency change is negatively associated with cow longevity.  
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A B S T R A C T   

Cow longevity is recognized as an important trait to improve farm economic performance while concurrently 
reducing environmental and social impacts. However, there is an economic trade-off between longevity and herd 
genetic improvement, which may influence the dairy farms’ efficiency and productivity growth over time. This 
study used a panel data of 723 Dutch specialized dairy farms over 2007-2013 to empirically measure the effect of 
longevity on dynamic productivity change and its components. First, the productivity growth estimates were 
obtained using the Luenberger dynamic productivity indicator. Then, the estimates were regressed on longevity 
and other explanatory variables using dynamic panel data model. Results show that the average dynamic pro
ductivity growth was 1.1% per year, comprising of technical change (0.5%), scale inefficiency change (0.4%) and 
technical inefficiency change (0.2%). Longevity is found to have a statistically significant positive association 
with productivity growth and technical change, implying that farms with more matured cows were also those 
farms that recorded increased productivity through technical progress. However, it has a negative association 
with technical inefficiency change, which might follow from the reduced milk productivity of old cows per unit 
of inputs used. Dutch dairy farms have a potential to raise productivity growth by reducing technical in
efficiencies associated with input utilization.   

1. Introduction 

The increased focus on milk productivity of modern dairy cows has 
been associated with a decline in the length of cow’s productive life (i.e., 
longevity), increase in incidences of health problems, decrease in 
fertility, and poor animal welfare (Hare et al., 2006; Oltenacu and 
Algers, 2005). Recently, cow longevity has attracted a growing attention 
as it contributes to the (economic, environmental and social) sustain
ability of milk and beef production of dairy farming. Increased longevity 
reduces investment costs associated with the rearing of fully productive 
heifers. A short herd life leads to increased replacement costs as a result 
of the limited potential for replacement heifers selection within a farm 

(Heikkilä et al., 2008). The reduction in the fertility of cows is the major 
contributing factor to decreases in the number of parities per cow’s 
lifetime, lifetime days in milk and longevity (Haworth et al., 2008). 
Subsequently, the possibility of raising own replacement heifers within a 
farm decreases. Moreover, farm profit increases with the number of 
lactations per cow’s lifetime, which is positively associated with 
longevity (Haworth et al., 2008). It has also been reported that increased 
longevity reduces the environmental footprint of dairy farming since 
fewer replacement heifers are required to be raised (Grandl et al., 2016; 
Bell et al., 2015; Van Middelaar et al., 2014; Hristov et al., 2013; 
Garnsworthy, 2004). Van Middelaar et al. (2014), for example, showed 
that an increase in cow longevity by 270 days1 leads to a reduction of 
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1 This is equal to the genetic standard deviation of longevity. 
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210 kg CO2-equivalent greenhouse gases emission per cow per year, for 
an income maximizing breeding objective. A reduced longevity is also 
an indicator of poor animal welfare (Bruijnis et al., 2013; Oltenacu and 
Algers, 2005), especially when cow culling is due to health and non
pregnancy problems, which are the main causes of culling (Pinedo et al., 
2010; Dechow and Goodling, 2008). Specifically, cow welfare improves 
if the increased longevity is achieved through an improved animal 
health management. 

However, there is an economic trade-off between increased longevity 
and herd genetic improvement as a result of not using genetically su
perior replacement heifers (De Vries, 2017). An increased longevity 
results in a longer genetic lag. Hence, a lower culling rate (i.e., increased 
longevity) implies that ‘the average cow is older and has a lower genetic 
merit than a herd of average age’ (De Vries, 2017). A farm with more old 
cows has lower performance (e.g., lower milk yield, and poor repro
duction and health) due to the lower genetic merit of the herd. There
fore, a longer genetic lag implies higher opportunity costs associated 
with the forgone farm performance as a result of not using the geneti
cally superior replacement heifers. The presence of such an economic 
trade-off and the heterogeneity of farms’ preferences for longevity may 
influence dairy farms’ productivity growth and resource use efficiency 
over time. Improving technical efficiency, i.e., producing the maximum 
possible outputs using the lowest possible inputs, is critical for intensive 
dairy farms to stay in business in the competitive global market while 
complying with the ever stringent environmental and societal re
quirements of farming. 

There have been several studies in the literature about the effect of 
increased longevity, for example, on farm profit (e.g., Haworth et al., 
2008; Heikkilä et al., 2008), on environmental footprints (e.g., Van 
Middelaar et al., 2014; Garnsworthy, 2004) and on animal welfare (e.g., 
Bruijnis et al., 2013; Oltenacu and Algers, 2005). However, to the best of 
my knowledge, there are no studies on the effect of cow longevity on 
farms’ technical efficiency and total factor productivity (TFP) growth 
over time. A farm is said to be technically efficient if a decrease in any 
input or an increase in any output is not possible without increasing 
some other inputs or decreasing some other outputs. TFP growth 
(hereafter referred to as productivity growth) refers to the residual 
output growth not explained by the input use growth (Rungsur
iyawiboon and Stefanou, 2008). Efficiency and productivity analyses 
have widely been used in the last two decades to measure the economic 
performance of dairy farms (e.g., Skevas et al., 2018; Oude Lansink 
et al., 2015; Atsbeha et al., 2012; Brümmer et al., 2002). TFP and effi
ciency analyses, unlike cost accounting analyses, take into account all 
farm inputs and outputs including nonmonetary inputs and outputs. 
However, previous studies, with very few exceptions in the agricultural 
economics literature (e.g., Ali et al., 2021; Serra et al., 2011), on farm 
productivity and efficiency analyses do not take into account the dy
namic (intertemporal) nature of investment decisions associated with 
breeding stock. Breeding stock is a crucial quasi-fixed input in dairy 
farming2. Dynamic (intertemporal) decisions such as investment de
cisions in quasi-fixed inputs affect current production (e.g. milk yield) 
while increasing future capital stock (e.g. breeding stock), which in turn 
affects the level of future production (Silva and Stefanou, 2003). Farms 
incur adjustment costs (e.g., search, transaction and learning costs) 
when doing investments in quasi-fixed inputs (e.g., breeding stocks, 
milking robots) (Silva and Stefanou, 2003). It is costly for farmers to 
adjust the level of quasi-fixed inputs instantly to their optimal levels 

because of financial constraints and technology-specific learning costs 
(Penrose, 1959). As a result, investments in quasi-fixed inputs involves 
an intertemporal decision that affects current production while 
increasing future capital stock and thereby affects production in all 
future periods. Immediately after technology adoption (e.g., milking 
robot), normally, a period of adjustment follows where productivity 
declines, since farmers engage in learning to adjust their production 
system to the new technologies (Jovanovic and Nyarko, 1996; Klenow, 
1998). Subsequently, the long-term impacts of technology adoption are 
expected to differ from their short-term impacts. The sluggish adjust
ments in quasi-fixed inputs because of the high adjustment costs and the 
resulting lag in technology adoption affect dairy farms’ efficiency and 
productivity growth over time (e.g., Skevas, 2016). Therefore, studying 
the effect of cow longevity on farms’ productivity growth requires a long 
term and dynamic perspectives since longevity involves both genetic 
improvement and investment in breeding stock. 

The objectives of this study were therefore (i) to measure the dy
namic productivity growth of dairy farms and its components (i.e., 
technical change, technical inefficiency change and scale inefficiency 
change), and (ii) to assess the effects of cow longevity on dynamic 
productivity growth, technical change, technical inefficiency change 
and scale inefficiency change. The study contributes to the literature in 
two ways by introducing the concept of ‘dynamic analysis’ in the two 
stages of the analysis. First, dynamic inefficiency and productivity scores 
were estimated by accounting for adjustment costs associated with 
changes in the quasi-fixed inputs of dairy farming (i.e., breeding stock, 
machineries and buildings). Second, a dynamic panel data modelling is 
used to assess the long term effects of cow longevity on dynamic pro
ductivity growth of farms and its components. The use of a dynamic 
panel data model accounts for the economic trade-off between longevity 
and genetic improvement of the herd, which are long term phenomenon. 
The empirical application employs a panel data of Dutch specialized 
dairy farms over the period 2007-2013. 

2. Materials and methods 

2.1. Decomposition of Luenberger dynamic productivity change 

A dynamic Luenberger productivity indicator (Kapelko et al., 2016; 
Oude Lansink et al., 2015) is used to measure the productivity and in
efficiency changes of Dutch dairy farms. Suppose there are J farms (j =

1, …, J) producing M outputs y = (y1,…, yM) by employing N variable 
inputs x = (x1,…,xN), H fixed inputs L = (L1,…, LH) and F quasi-fixed 
inputs K = (K1,…,KF) with F corresponding gross investments I = (I1,
…, IF). The dynamic production technology (Serra et al., 2011) that 
shows the relationship between outputs, and inputs and investments can 
be written as: 

Pt(yt : Kt, Lt) = {(xt, It) : xt, It can produce yt, given Kt,Lt} (1)  

where Pt is the production technology in time t. The production tech
nology is a closed and non-empty set with a lower bound, a strictly 
convex set, positive monotonic in variable inputs, negative monotonic in 
gross investment, increases with fixed and quasi-fixed inputs, and output 
is freely disposable (Silva and Stefanou, 2003). In the current study, a 
dynamic directional input distance function (Silva and Stefanou, 2003) 
is used to represent the dairy farm dynamic production technology since 
Dutch farmers had more autonomy to adjust inputs than outputs during 
the sample period (2007-2013) because of the milk quota. The dynamic 
directional input distance function (D→) can be expressed as: 

D→
t

i

(
yt,Kt, Lt, xt, It; gt

x, g
t
I

)
= sup

{∑
β :

(
xt

n − βgt
xn, It

f + βgt
If , y

t
m,K

t
f , Lt

h

)

∈ Pt

}

(2)  

2 Farm inputs can be classified into three types: variable, fixed and quasi- 
fixed. Variable inputs are inputs whose quantities depend on the level of 
output produced. Fixed inputs are inputs whose quantities cannot be adjusted in 
the short-term, and fixed costs are incurred regardless of the level of output. 
Quasi-fixed inputs are inputs whose quantities can to some extent be adjusted in 
the short run, but cannot be adjusted all the way to the optimal level due to 
constraints (adjustment costs). 
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where gt
x and gt

I are directional vectors associated with variable inputs 
and investments, respectively; β refers to the dynamic technical in
efficiency score. For a farm to become fully efficient (i.e., to move onto 
the production frontier defined by the fully efficient farms), the use of 
variable inputs should be contracted by β × gx while expanding gross 
investments by β× gI. Fig. 1 illustrates the computation of dynamic 
technical inefficiency. The frontier is defined by the three fully efficient 
farms (A, B and C). Farm E, which uses 5 units of variable inputs while 
doing 3 units investment, is inefficient compared to the other farms (i.e. 
it is far from the frontier). To become fully efficient (to reach to the 
frontier), Farm E has to reduce the use of variable inputs by 1.4 units 
while expanding its investment by 1.4 units. 

Data envelopment analysis (DEA) is used to estimate the dynamic 
directional input distances (i.e., β). Four DEA models, under constant 
returns to scale (CRS), are required to estimate Luenberger productivity 
growth scores: two single- and two mixed-period models Kapelko et al., 
2016; Oude Lansink et al., 2015). The single-period models (Eqs. 3 and 
(6) measure the performance of farms in time t (and t+1) relative to their 
respective technologies in time t (and t+1). The mixed-period models 
Eqs. 4 and (5), on the other hand, measure the performance of farms in 
time t (and t+1) relative to the technologies in time t+1 (and t), 
respectively. The four DEA models are: 

D→
t

i
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yt,Kt, Lt, xt, It; gt

x, gt
I

)
= maxβ1 , λ1

j
β1 (3) 
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where, λj is the peer weights or intensity vector for defining the refer
ence frontier and δf is the depreciation rate associated with the quasi- 
fixed inputs. Linear programming is used to solve Eqs. 3-6. In the 
empirical application of the current study, the quasi-fixed input 
constraint in Eqs. 3-6 is rewritten as net investment NI (where NIt =

Kt+1 − Kt). The actual values of variable inputs x and 20% of capital 
stocks K were used as directional vectors, i.e., (gx, gI) = (x,0.2 × Kf ). 
The use of 20% of capital stock as a directional vector for investment in 
quasi-fixed inputs is a common practice in the literature (e.g., Geylani 
et al., 2019; Kapelko et al., 2016; Oude Lansink et al., 2015) since it 
approximates the actual size of farm investments and as it allows to Fig. 1. Elaboration of dynamic technical inefficiency.  
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account for heterogeneity of investment between farms (Geylani et al., 
2019). 

The Luenberger dynamic productivity change (LPC) can be calcu
lated from the β estimates under CRS Eqs. 3-(6) as (Kapelko et al., 2016; 
Oude Lansink et al., 2015): 

LPC =
1
2
∗ (β2 − β4 + β1 − β3) (7) 

The dynamic LPC is computed as the arithmetic average of the pro
ductivity change measured by the technology at time t+1 (the first two 
terms in Eq. 7) and the productivity change measured by the technology 
at time t (i.e. the last two terms in Eq. 7) (Kapelko et al., 2016). Positive 
(negative) value of LPC indicates growth (decline) in productivity be
tween t and t+1. The LPC score can be decomposed into technical 
change3, technical inefficiency change4 under variable returns to scale 
(VRS) and scale inefficiency change (Kapelko et al., 2016; Oude Lansink 
et al., 2015)5. The dynamic technical inefficiency change measures the 
change in the position of a farm relative to the production technology 
(frontier) that is defined by the fully-efficient farms between two time 
periods whereas dynamic technical change measures the shift of the 
frontier between two time periods or over time. Dynamic scale in
efficiency change measures the change in the optimality of the scale/size 
of operation between two time periods (i.e. operating at too large or too 
small farm size). The dynamic technical inefficiencies under VRS (i.e., 
β1,VRS, β4,VRS) can be estimated by adding a convexity restriction 

∑J
j=1λ1

j 

= 1 in Eq. 3 and 
∑J

j=1λ4
j = 1 in Eq. 6. 

The decomposition of LPC is as follow. First, LPC is decomposed into 
dynamic technical change (TC) and dynamic technical inefficiency 
change under CRS (TICCRS): 

TC =
1
2
∗ (β4 − β3 + β2 − β1) (8a)  

TICCRS = β1 − β4 (8b) 

Then, TICCRS can be decomposed into dynamic technical inefficiency 
change under VRS (TICVRS) and dynamic scale inefficiency change (SIC) 
as: 

TICVRS = β1,VRS − β4,VRS (9)  

SIC = TICCRS − TICVRS (10)  

2.2. System generalized method of moments estimator 

A second stage dynamic panel data regression model is used to 
explain variations in productivity growth and inefficiency scores over 
time within ones farm and across farms, and specifically, to measure the 
effect of longevity on dynamic productivity growth and its components. 
The model can be written as: 

yit = α1i + α2t t +
∑R

r=1
γ1ryi,t− r

+γ2Lit +
∑K

k=1
γ3kZk,it + vit

(11)  

where yit is dynamic productivity growth and its components for farm i 
(i = 1, 2,…,N) in year t (t = 2, 3, …, T); α1i is farm fixed effect for farm 
i; α2t is a time dummies common to all farms; Lit is average cow longevity 
for farm i in year t; Zk,it is other explanatory variables (other than 
longevity) for farm i in year t; γ1, γ2 and γ3 are parameters to be esti
mated; r denotes number of lags for yt ; and vit is the error term that is 
independently and identically distributed: vit ∼ N(0, σ2). Average cow 
longevity is derived as (De Vries, 2017): 

Lit = Age at first calvingit + 1/Culling rateit (12)  

where age at first calving (years) and culling rate (decimal). 
Other explanatory variables (Zj,it) in Eq. 11 refer to factors that were 

not considered during the estimation of the inefficiency scores, yet ex
pected to influence the economic performance of farms directly or 
indirectly by affecting the reproductive and production performance of 
cows, and animal welfare as described in the following section. The time 
dummies are included in the model to capture year-specific idiosyn
crasies (e.g., the 2008 financial crisis, volatility of input and milk prices) 
that would explain some of the variations in the productivity and in
efficiencies of Dutch dairy farms. For example, the 2008 financial crisis, 
the substantial decrease in milk prices in 2008 and 2009 from the 2007 
spike, and the commodity price volatility are some of the major events 
occurred within the study period (2007-2013), which might have sig
nificant effect on the productivity growth of Dutch specialized dairy 
farms. 

Eq. 11 is estimated using the two-step Generalized Method of Mo
ments (GMM) estimator, also called the system GMM estimator (Are
llano and Bover, 1995; Blundell and Bond, 1998). This estimator uses 
the lagged differences for the equation in levels, and the moment con
ditions of lagged levels as instruments for differenced equation. The 
process of differencing does not remove farm fixed effects αi, other 
time-invariant variables, and cross-farm variations in levels. However, 
the standard error estimates of a system GMM estimator suffer from 
downward bias in small samples as shown by Windmeijer (2005) using 
Monte Carlo simulation. Windmeijer (2005) proposed a method for 
estimating a finite-sample corrected standard errors. In the present 
study, the system GMM estimator with robust standard errors (Wind
meijer, 2005) is applied in STATA Version 13 (StataCorp LP, College 
Station, Texas, USA). Eq. 11 is fitted with one lag for the dependent 
variables6. The Arellano–Bond test for the presence of serial correlation 
(autocorrelation), and the Hansen test of over-identifying restrictions for 
the joint validity of instruments are applied. 

2.3. Empirical Application 

The empirical application uses a dataset obtained from FLYNTH 
(www.flynth.nl), an accountancy firm. The dataset contains information 
on an unbalanced panel of 3,205 observations from 723 Dutch special
ized dairy farms over the period 2007-2013 (where a farm is observed, 
on average, for at least four years). This sample size consists of only 
specialized dairy farms to reduce farm heterogeneity. A specialized farm 
is defined as a farm that obtains, on average, at least 85% of its total farm 
revenue from the sales of milk and milk products. Observations with 
complete data on all the variables of interest are considered. Since DEA 
models are known to be very sensitive to the presence of outliers, ob
servations with outliers are removed from the sample by applying the 
Banker and Chang (2006) super-efficiency procedure of detecting out
liers. For each sample year (2007-2013), the super-efficiency scores 3 Dynamic technical change refers to the change in productivity between two 

time periods as a result of adoption of new technologies (innovations).  
4 A farm is said to be dynamic technically efficient if an increase in any 

output or an increase in any investment or a decrease in any input requires a 
reduction of at least one other output or investment, or an increase of at least 
one input.  

5 A farm is considered as (dynamic) scale inefficient if an increase in any 
output or an increase in any investment or a decrease in any input is possible by 
increasing or decreasing the scale of farm operation (i.e. farm size). 

6 The models with one lag provide the best specification in terms of serial 
correlation and joint validity of instrument post estimation results (see the 
Results section). 
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were estimated. Farms with a super-efficiency score of greater than 1.3 
were excluded7. 

Two outputs, two variable inputs, two quasi-fixed inputs with their 
corresponding net investments and two fixed inputs are defined for the 
empirical application. The outputs are milk production and other out
puts. Milk production is defined in kg as fat and protein corrected milk 
yield. Other output is measured as revenues (in euro) from other farm 
activities such as crop production and other livestock and livestock 
products (excluding milk). The two variable inputs are feed and other 
variable inputs, which are measured in euros. Other variable inputs are 
expenses on veterinary, energy, manure management, fertilizer, seed 
and other crop related expenses. The two quasi-fixed inputs are capital 
and breeding stock expressed in euros. Capital refers to the book value of 
machinery and buildings. Breeding stock refers to the value of the 
breeding stock, which is measured as the market value of existing ani
mals plus the purchase value of incoming animals minus the sales value 
of exiting animals8. Net investments (NI) associated with quasi-fixed 
inputs are derived from capital stocks as NIt = Kt+1 − Kt (where t re
fers to years, 2007-2014). The two fixed inputs are labor in annual 
working units and land in hectare. Since family members are the main 
source of labor in the sample farms, labor is considered as a fixed input. 
The variables that are measured in monetary units are deflated and 
expressed in constant 2010 prices. Using the EUROSTAT (2016) data
base, producer price indices (PPIs) were used to derive the implicit 
quantities as the ratio between value and PPI. The implicit quantity of 
capital is computed using a Törnqvist price index (Balk and Diewert, 
2001). 

In the second stage regression (Eq. 11), only factors that are related 
to the reproductive and production performance of cows, and animal 
welfare are included as explanatory variables. These factors were not 
included during the estimation of the inefficiency scores. However, they 
are expected to influence the economic performance of cows. The 
following explanatory variables were used in the model (Eq. 11): 
longevity, time dummies, automated milking system (AMS), calving 
interval (CI), death rate of cows, death rate of calves within two weeks 
after birth and access to grazing. Due to lack of data, other socio- 
economic variables (e.g., farming experience, subsidies, education 
level, off-farm income) are not included in the model. The effects of 
these omitted variables on productivity growth is captured by the error 
term. Subsequently, the problem of endogeneity due to omitted-variable 
bias is taken into account by the use of system GMM estimator. 

Longevity may have both a positive and negative effect on farm’s 
economic performance: (i) it reduces replacement cost and increase the 
number of cow’s lactation per cow’s lifetime (positive effect), and (ii) it 
increases the opportunity cost of herd genetic improvement following 
from the forgone performance from not replacing old cows with genet
ically superior heifers (negative effect). Moreover, an increased 
longevity is associated with improved animal welfare and reduced 
environmental footprints, which may have a positive association with 
farm performance through reducing health and environmental man
agement costs. The average longevity across farms and years is 5.93 
years for the sample Dutch specialized dairy farms. For an average 
Holstein Friesian Dutch dairy cow in 2013, the average actual age (i.e., a 
proxy for longevity) was 5.89 years (CRV, 2012). The natural logarithm 
of longevity is used in the empirical application. A longer CI increases 
the unproductive days of a cow and probably expenses associated with 
unsuccessful mating. As a result, a longer CI is expected to raise farms’ 

inefficiency and reduce farm’s productivity. Lawson et al. (2004) 
showed that, using a 1998 dataset for Danish dairy farms, an increase in 
CI by 1 month increases the technical inefficiency of farms by 0.01. 
Allendorf and Wettemann (2015) also reported that a longer CI increases 
the technical inefficiency of German dairy farms. The average CI across 
farms and years is 414 days per cow for the sample Dutch specialized 
dairy farms. AMS is included since it influences cows’ performance and 
welfare. Jacobs and Siegford (2012) stated that AMS has “the potential 
to increase milk production by up to 12%, decrease labor by as much as 
18%, and simultaneously improve dairy cow welfare by allowing cows 
to choose when to be milked”. The use of AMS is often combined with 
sensors. These sensors and data analysis programs in AMS improves 
farm management and performance via detection of estrus, abnormal 
milk, mastitis and other health parameters (Jacobs and Siegford, 2012). 
Moreover, the use of AMS is also positively associated with farmers’ job 
satisfaction (Hansen and Stræte, 2020). In the application, a dummy 
variable with values of 1 for the use of AMS and 0 otherwise is used. On 
average, about 15% of the observations (per year across farms) used 
AMS during the sample period. The loss of calves is expected to nega
tively affect farm’s productivity and efficiency since it reduces ‘other 
farm outputs’ and raises replacement cost. The loss of female calves 
affects rearing of replacement within a farm, and thereby increase 
replacement cost. The average death rate of calves across the sample 
farms and years was about 10% for the Dutch specialized dairy farms. 
Loss of cows reduces farm productivity per cow (i.e., it increases cost of 
production per cow while reducing farm revenue per cow). Loss of a cow 
at its prime production life time is a huge loss for farms. Moreover, it 
raises replacement investment and thereby affects farm’s performance. 
Allendorf and Wettemann (2015) reported that a higher death rate of 
cows and a higher replacement rate increase the technical inefficiency of 
German farms. The average death rate of cows across the sample farms 
and years was 3.3% for the Dutch specialized dairy farms. Access to 
pasture is regarded as very relevant to improve animal welfare. Access to 
longer grazing periods is associated with improved cow welfare through 
reduced lameness and leg injuries (Meul et al., 2012; von Keyserlingk 
et al. 2009). Meul et al. (2012) reported that the percentage of cows with 
lesions and lame cows was negatively associated with the duration of 
grazing period for Flemish dairy farms. In the present study, a dummy 
with values 1 for access to grazing, and 0 for zero-grazing is used. On 
average, about 81% of the sample Dutch dairy farms had access to 
grazing during the sample period. Table 1 presents the descriptive sta
tistics of all the variables used in the analysis. 

3. Results and discussion 

3.1. Dynamic technical inefficiency scores 

The average dynamic technical inefficiency scores over the period 
2007-2013 is presented in Table 2 under both CRS and VRS technolo
gies. The average dynamic technical inefficiency score under the VRS 
technology is 27% per year. This implies that if the farms were fully 
efficient over the sample period in the use of variable inputs and doing 
investments, ceteris paribus, they would have reduced the use of feed and 
other variable inputs by 27% while expanding their investments in capital 
and breeding stocks by 5.4% of the values of the capital stocks (= 0.2 ×

27%). That is, farms could have produced the same levels of outputs (i. 
e., fat and protein corrected milk and other outputs) by using the same 
amounts of fixed inputs (i.e., land and labor) while reducing the 
amounts of variable inputs needed (by 27%) and simultaneously 
increasing investments in quasi-fixed inputs (by 5.4% of the capital 
stocks). 

The average technical inefficiency scores of this study are within the 
available scores in the literature. Skevas and Oude Lansink (2020) 

7 According to Banker and Chang (2006, p. 1317), ‘… the use of a more 
stringent screen level such as 1 is likely to misclassify many uncontaminated 
efficient observations as outliers, while the use of a less stringent screen level 
such as 1.6 or greater may fail to remove many contaminated observations’.  

8 It is assumed that the livestock value represent the value of the breeding 
stock since the sample farms are specialised dairy farms, where at least 85% of 
the total farm revenue is obtained from milk production. 
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reported an average dynamic technical inefficiency score of 22% per 
year for Dutch specialized dairy farms9 over the period 2009-2016. 
Skevas et al. (2018), using a Stochastic Frontier Analysis (SFA) 

technique, reported an average annual dynamic technical inefficiency 
score of 35% for German dairy farms over the period 2001-2009. Both 
our sample period (2007-2013) and average inefficiency score (27%) are 
within the sample periods and average inefficiency scores of Skevas 
et al. (2018), and Skevas and Oude Lansink (2020). Steeneveld et al. 
(2012) reported an average static10 technical inefficiency score of 24% 
and 22%, respectively, for Dutch dairy farms with and without AMS for 
the production year 2010. In the present study, the 2010 average dy
namic technical inefficiency score is 31% (under VRS). The difference 
from the current study’s result might be due to differences in sample 
farms and the models employed (dynamic vs static). Serra et al. (2011) 
measured the inefficiency of Dutch dairy farms over the period 
1995-2005 using the SFA method, and reported an average annual dy
namic technical inefficiency score of 10.4%. The lower inefficiency 
scores of Serra et al. (2011) compared to the results of the current study 
could be explained by the differences in the sample periods (1995-2005 
vs 2007-2013) and the models used (SFA vs DEA). 

3.2. Decomposition of Luenberger dynamic productivity change 

Table 3 presents the results of the decomposition of the Luenberger 
dynamic productivity change into technical change, technical in
efficiency change and scale inefficiency change. The average produc
tivity growth of Dutch specialized dairy farms was 1.0% per year during 
the sample period (Table 3). This growth is comprised of technical 
change of 0.5% per year, scale inefficiency change of 0.4% per year and 
technical inefficiency change of 0.2% per year. The average dynamic 
productivity growth rate of 1.0% implies that, ceteris paribus, the use of 
feed and other variable inputs has reduced on average by 1.0% per year 
while expanding annual investments in capital and breeding stock by 0.2% 
of the capital stocks during the sample period. On average, technical 
change accounted for about 47% of the 1% annual productivity growth 
while scale inefficiency change accounted for about 39% of this growth. 
The average scale inefficiency change of 0.4% per year implies that 
productivity has increased as a result of improvement in the optimal 
scale of operation (by increasing or decreasing the farm size). The 
contribution of technical inefficiency change (0.2%) to productivity 
growth (1.0%) is very small despite the average technical inefficiency of 
Dutch specialized dairy farms being close to 30% per year. This implies 
that Dutch dairy farms have a potential to raise productivity growth by 
reducing technical inefficiency through improved management and 
utilization of available resources. 

The main driver of the fluctuation in productivity change was fluc
tuation in technical change during the sample period (Figure 2). This 
might be due to volatility of milk and input prices. For example, Oude 
Lansink et al. (2015) stated that milk price fluctuations ‘may explain the 
difficulties of producers to allocate resources efficiently from a technical 
and economic point of view in the long-run’. The negative correlation 
between milk price fluctuation and dynamic productivity growth11 im
plies that ‘farmers are conservative (pessimistic) regarding price ex
pectations and they devise production structures that are optimal in low 
price frameworks’ (Oude Lansink et al., 2015). As a result, farmers’ 
behavior is more conducive for achieving productivity growth during 
low milk price years than high price years. 

The result of the current study for the average productivity growth 
(1.0% per year) is lower compared to results in the literature. By using 
the Luenberger dynamic productivity indicator as in the current study, 
Oude Lansink et al. (2015) reported an average productivity growth of 
1.5% per year for Dutch dairy farms over 1995-2005. Skevas et al. 

Table 1 
Descriptive statistics of variables for Dutch specialized dairy farms over the 
period 2007-2014.  

Variables Mean Std. 
dev. 

Minimum Maximum 

Quantities          

Protein and fat corrected milk 
(kg) 

735003 329625 116582 2887738 

Other output (constant 2010 €)† 22145 11763 2424 97146 
Feed (constant 2010 €)† 51328 26923 4214 257999 
Other variable inputs (constant 

2010 €)†
43986 32459 2379 368217 

Land (ha) 46 20 9 194 
Labour (AWU) 1.7 0.6 0.8 5.0 
Capital (constant 2010 €)† 352020 295165 12493 2214533 
Breeding stock (constant 2010 €)† 79818 36435 13825 356374 
Net investment in capital 

(constant 2010 €)†
24201 127204 -869903 1439531 

Net investment in breeding stock 
(constant 2010 €)†

4400 11612 -76891 90824 

Cow (#) 83 36 16 387 
Prices     
Other output 1.081 0.101 0.898 1.202 
Feed 1.192 0.152 0.997 1.378 
Other variable inputs 1.055 0.046 0.989 1.097 
Capital 0.987 0.011 0.972 1.000 
Breeding stock 1.126 0.107 1.000 1.288 
Second-stage variables   
Calving interval (days) 414.02 29.91 356.00 996.00 
Automatic milking robot; dummy 

(Yes=1, No=0) 
0.15 0.36 0.00 1.00 

Death rate of calves within two 
weeks after birth (%) 

9.91 5.29 0.00 46.00 

Death rate of cows (%) 3.30 2.81 0.00 30.00 
Grazing; dummy (Yes=1, No=0) 0.81 0.39 0.00 1.00 
Culling rate (%) 26.24 7.13 2.00 61.00 
Age at first calving (years) 2.02 0.07 1.09 3.05 
Longevity‡ 5.93 1.70 3.38 52.08  

† Implicit quantities.‡Estimated within the dataset from age at first calving 
(years) and culling rate (decimal) using Eq. 12.  

Table 2 
Average dynamic technical inefficiency (TI) scores over 2007-2013 for Dutch 
specialized dairy farms.   

Dynamic TI under CRS 
technology †

Dynamic TI under VRS 
technology ‡

Year Mean Std. dev.  Mean Std. dev. 

2007 0.2596 0.1174  0.2362 0.1170 
2008 0.2630 0.1205  0.2408 0.1203 
2009 0.2873 0.1050  0.2617 0.1142 
2010 0.3283 0.0915  0.3140 0.1012 
2011 0.2837 0.1205  0.2733 0.1247 
2012 0.2721 0.1125  0.2661 0.1159 
2013 0.2711 0.1029  0.2622 0.1069 
Average 0.2830 0.1109  0.2691 0.1158  

† CRS, Constant returns to scale.  

‡ VRS, Variable returns to scale.  

9 In Skevas and Oude Lansink (2020), a specialised dairy farm refers to a farm 
whose revenues from sales of milk, milk products, and turnover and growth of 
cattle account for at least 67% of its total revenues, whereas in our study it is 
defined as a farm that obtains at least 85% of its total farm revenue from sales of 
milk and milk products. 

10 Unlike dynamic inefficiency scores, static scores are derived without ac
counting for the intertemporal linkages of farm decisions and the associated 
adjustment costs of investments in quasi-fixed inputs.  
11 In the present study, the correlation between dynamic productivity growth 

and milk price index was -33% during the sample period. 
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(2018), by employing a dynamic SFA, reported an average annual pro
ductivity growth of 1.7% (technical change of 1.9%, technical efficiency 
change of -0.2% and scale effect of 0.1%) for German dairy farms over 
2001-2009. Brümmer et al. (2002) also reported an average productivity 
growth of 2.9% per year for Dutch dairy farms over the period 
1991-1994 using a static model. This growth was as a result of technical 
change of 0.5%, technical efficiency change of 0.6% and scale effect of 
0.2%, whereas the respective values from the current study’s dynamic 
model for Dutch dairy farms over the period 2007-2013 are 0.5%, 0.2% 
and 0.4%. These differences between the results of Brümmer et al. 
(2002) and the current study could be explained by the differences in the 
models used (static vs dynamic) and the sample periods (1991-1994 vs 
2007-2013). Moreover, in the current study, the sample consists of only 
specialized dairy farms, where at least 85% of farm’s revenue is from 
milk. This could also be one of the reasons for the lower average pro
ductivity growth of the current study compared to the results from the 
literature. 

3.3. Effect of cow longevity on dynamic productivity change and its 
components 

Table 4 presents the estimation results of the two-step GMM for 
measuring the effect of cow longevity on dynamic productivity change 
and its components. Table 4 also reports the post estimation diagnostic 
test results (i.e., Wald test for the joint significance of the explanatory 
variables included in the model, the Arellano–Bond test for the presence 
of first- and second-order autocorrelation, and the Hansen test for the 

Table 3 
Decomposition of Luenberger dynamic productivity change for Dutch specialized dairy farms over the period 2007 to 2013.   

LPC† TC‡ TIC_VRS§ SIC¶  

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. 
2007/2008 -0.0578 0.050 -0.0369 0.105 -0.0279 0.119 0.0070 0.036 
2008/2009 0.0407 0.051 0.0461 0.097 -0.0181 0.099 0.0128 0.025 
2009/2010 0.1203 0.046 0.0751 0.098 0.0394 0.111 0.0058 0.027 
2010/2011 -0.0603 0.041 -0.0519 0.106 -0.0088 0.110 0.0004 0.021 
2011/2012 -0.0328 0.042 -0.0184 0.101 -0.0148 0.110 0.0004 0.014 
2012/2013 0.0354 0.040 0.0087 0.103 0.0258 0.110 0.0009 0.013 
Average 0.0101 0.076 0.0047 0.110 0.0015 0.111 0.0039 0.022  

† Luenberger productivity change.  

‡ Technical change.  

§ Technical inefficiency change under variable returns to scale.  

¶ Scale inefficiency change.  

Fig. 2. Decomposition of Luenberger productivity change over the period be
tween 2007/08 and 2012/13. 

Table 4 
Effect of cow longevity on dynamic productivity change and its components over 
2007-2013 for Dutch specialized dairy farmsa.   

LPC† TC† TIC_VRS† SIC†

Farm fixed effect -0.0308 -0.5824** 0.4903* 0.0477* 
First lag of 

dependent 
variable 

-0.3872*** -0.5224*** -0.5107*** -0.2028*** 

Dummy_2009 -0.0077** 0.0308*** -0.0573*** 0.0125*** 
Dummy_2010 0.1163*** 0.1155*** 0.0012 0.0056*** 
Dummy_2011 -0.0354*** -0.0076 -0.0090 -0.0005 
Dummy_2012 -0.0769*** -0.0496*** -0.0304*** -0.0006 
ln(longevity) 0.0133*** 0.0474*** -0.0353*** -0.0009 
Calving interval 0.0047 0.0795 -0.0651 -0.0075* 
Automatic milking 

system 
0.0011 -0.0009 -0.0010 0.0019* 

Death rate of calves 0.0002 0.0003 -0.0001 0.0000 
Death rate of cows 0.0008** 0.0019** -0.0011 0.0001 
Access of grazing -0.0026 0.0061 -0.0078 -0.0001 
Post estimation diagnostic test results‡

Wald Test§ 6082.840*** 1386.110*** 781.600*** 83.420*** 
Arellano-Bond Test 

for AR(1)¶ 
0.000 0.000 0.000 0.001 

Arellano-Bond Test 
for AR(2)¶ 

0.236 0.000 0.000 0.380 

Hansen Test¶ 0.825 0.309 0.347 0.981  

a The models are fitted using one lag for dynamic productivity change and its 
components (i.e., the dependent variable) and estimated using system GMM 
with Windmeijer (2005) corrected standard errors. ***, ** and * denote statis
tical significance at the critical 1%, 5% and 10% levels, respectively.  

† LPC, Luenberger productivity change. TC, Technical change. TIC_VRS, 
Technical inefficiency change under variable returns to scale. SIC, Scale in
efficiency change.  

‡ The number of observations, farms and instruments used in the models are 
2078, 659 and 13, respectively.  

§ The null hypothesis of the Wald test: the coefficients of the explanatory 
variables in the model are equal to zero.  

¶ In the Arellano-Bond test for first- (AR(1)) and second-order autocorrelation 
(AR(2)), and for the Hansen test of the joint validity of instruments, p-values are 
reported. The null hypotheses of the Arellano-Bond test for is: no autocorrela
tion. The null hypothesis of the Hansen test is: overidentifying restrictions are 
jointly valid.  
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joint validity of instruments). The Wald chi-squared test results show 
that longevity and the other explanatory variables included in the 
models are statistically significant, at the critical 1% level, in jointly 
explaining the variations in dynamic productivity change and its com
ponents. Although the Arellano–Bond test results show that there is a 
first-order autocorrelation, the null hypothesis of no second-order 
autocorrelation is not rejected at the critical 10% level (i.e., there is 
no problem of second-order serial correlation) for dynamic productivity 
change12. The Hansen test results also show that the instruments used in 
the model are jointly valid. 

The first lag of dynamic productivity growth is statistically signifi
cant in explaining the variations in dynamic productivity growth, 
implying the persistent nature of productivity. That is, farms with a 
productivity decline last year would observe more productivity decline 
in the current production period. Similarly, farms that were inefficient 
last year would become more inefficient in the current production 
period. All, but the 2010, time dummies have negative associations with 
productivity growth (i.e., farms’ productivity growth declined by about 
0.008 to 0.077 in each year compared to the 2007 reference year). 
However, the 2010 time dummy has a positive association with pro
ductivity growth and its components (i.e., compared to the 2007 refer
ence year, farms’ productivity growth increased by 11.6% in 2010, 
mainly attributed to technical progress). This might be due to the in
crease in milk price in 2010 from the 2009 drop, which could have 
encouraged farms to invest in technologies (that led to technical prog
ress) and to adjust their size of operations (that led to reduced scale 
inefficiency). 

Increased longevity has a positive and statistically significant, at the 
critical 1% level, association with dynamic productivity growth of Dutch 
specialized dairy farms. A 1% increase in average longevity is associated 
with a 0.013 increase in dynamic productivity growth, due to the pos
itive relationship between longevity and technical change. A 1% in
crease in average longevity is associated with a 0.047 increase in 
dynamic technical change, implying that farms with increased longevity 
are also those farms that achieved technical progress during the sample 
period. However, increased longevity has a statistically significant 
negative, at the critical 1% level, association with dynamic technical 
inefficiency change during the sample period. This implies that farms 
with more old cows are less efficient in utilizing their resources. This 
might follow from the reduced milk productivity of old cows per unit of 
inputs (e.g., feed, energy) used. Although Lawson et al. (2004) found a 
positive relationship between replacement rate (which implies reduced 
longevity) and static technical inefficiency scores for Danish dairy farms, 
the relationship was not statistically significant. However, Allendorf and 
Wettemann (2015) reported that a 1% increase in average replacement 
rate (which implies reduced longevity) led to a 0.0087 increase in the 
static technical inefficiency scores for German dairy farms. Both results 
are not directly comparable with the current study due to differences in 
the modelling approach (dynamic vs static) and sample periods used. In 
the current study, the association between longevity and scale in
efficiency change was not statistically significant. 

An increase in CI has a statistically significant negative, at the critical 
10% level, association with scale inefficiency change. An increase in CI 
by 1-d is associated with a 0.008 decrease in dynamic scale inefficiency 
change (i.e., CI is positively associated with scale inefficiency). Although 
statistically insignificant, CI has also a negative association with tech
nical inefficiency change (i.e., a 1-d increase in average CI is associated 
with a 0.065 increase in technical inefficiency). Similarly, Lawson et al. 
(2004) did not found a statistically significant relationship between CI 

and static technical inefficiency of Danish dairy farms. However, 
Allendorf and Wettemann (2015) reported that an increase in average CI 
by 1-d led to a 0.0016 increase in the static technical inefficiency of 
German dairy farms during 2007/08-2011/12. Both results are not 
directly comparable with current study due to differences in the 
modelling approach (dynamic vs static) and sample periods used. 

The use of AMS has a positive, although not statistically significant, 
effect on dynamic productivity growth of Dutch specialized farms during 
the sample period. This positive association was the result of its positive 
effect on scale inefficiency change. Farms that use AMS are more likely 
to operate in an optimal scale of operation (i.e., scale inefficiency of 
farms with AMS is lower by 0.002 than farms without AMS). The use of 
AMS does not have a statistically significant effect on dynamic technical 
change and technical inefficiency change. In line with our result, Stee
neveld et al. (2012) reported, using a 2010 dataset, the absence of a 
statistically significant difference in the static technical inefficiency of 
Dutch dairy farms with and without AMS although the farms with AMS 
had a slightly higher technical inefficiency (24% vs 22%). 

The loss of cows has a positive association with dynamic productivity 
growth and technical change of Dutch specialized dairy farms during the 
sample period. An increase in cow death rate by 1% is associated with a 
0.001 and 0.002 increase in productivity growth and technical change, 
respectively. This positive association might be attributable to the use of 
genetically superior replacement heifers (in place of the dead cows) that 
would led to technical progress. Although statistically insignificant, an 
increase in cow death rate is associated with an increase in dynamic 
technical inefficiency. Allendorf and Wettemann (2015) also reported 
that a 1% increase in the death rate of cows increases the mean static 
technical inefficiency of German dairy farms by 0.012 and 0.015 under 
CRS and VRS technologies, respectively. The results of Allendorf and 
Wettemann (2015) are not directly comparable with the current study 
due to differences in the modelling approach (dynamic vs static) and 
sample periods used. 

The results also show that access to grazing has a negative associa
tion with dynamic productivity growth and technical inefficiency 
change even though the associations are not statistically significant 
(Table 4). Farms with access to grazing have higher technical in
efficiency (0.008) than farms with zero-grazing. This may imply the 
trade-off between economic performance and animal welfare (since 
access to grazing is associated with reduced lameness, leg injuries, and 
improved animal welfare (e.g., Meul et al., 2012)). Similarly, Allendorf 
and Wettemann (2015) did not found a statistically significant differ
ence in the technical efficiency scores of German dairy farms with and 
without access to grazing. 

The current study employed a seven years panel data, which is too 
short to fully capture the effect of longevity on farm productivity and 
inefficiency changes by accounting for the economic trade-off between 
increased longevity and herd genetic improvement. Future studies could 
implement the procedure using long panel data and by including socio- 
economic variables in the second stage regression analysis to precisely 
estimate the effect of longevity. 

4. Conclusions 

Improving technical efficiency, i.e., producing the maximum 
possible outputs with the lowest possible inputs, is critical for farms to 
compete in the global market and comply with the ever stringent envi
ronmental and societal requirements of farming. Cow longevity is 
recognized as an important trait to improve farm economic performance 
while concurrently reducing environmental and societal impacts. 
However, there is an economic trade-off between longevity and herd 
genetic improvement. Increased longevity increases genetic lag that 
implies higher opportunity costs associated with the forgone farm per
formance as a result of not using genetically superior replacements. This 
economic trade-off and the heterogeneity of farms’ preferences for 
longevity may influence dairy farms’ productivity growth and 

12 The same model structure used for the dynamic productivity change is fitted 
for its components (i.e., technical change, and technical and scale inefficiency 
changes). As a result, the post-estimation results show the presence of second- 
order autocorrelation for technical change and technical inefficiency change 
models (Table 4). 
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inefficiency over time. This study used a panel data of 723 Dutch 
specialized dairy farms over 2007-2013 to empirically measure the ef
fect of longevity on dynamic productivity change and its components 
(technical change, and technical and scale inefficiency changes). The 
productivity growth estimates were, first, obtained and decomposed 
using the Luenberger dynamic productivity measure. Then, the esti
mates were regressed on longevity and other explanatory factors using 
dynamic panel data model (i.e., system GMM). Results show that the 
average dynamic productivity growth of Dutch specialized farms was 
1.1% per year, comprising of technical change (0.5%), scale inefficiency 
change (0.4%) and technical inefficiency change (0.2%). The contribu
tion of technical inefficiency change to productivity growth is very small 
despite the average technical inefficiency of Dutch specialized dairy 
farms being close to 30% per year. This implies that Dutch dairy farms 
have a potential to raise productivity growth by reducing technical in
efficiency through improved management and utilization of resources. 
Increased longevity is found to have a positive and statistically signifi
cant association with productivity growth and technical change, 
implying that farms with more matured cows are also those farms that 
recorded increased productivity through technical progress. However, 
increased longevity has a negative association with technical in
efficiency change, which might follow from the reduced milk produc
tivity of old cows per unit of inputs used. 
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