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A B S T R A C T   

A cold chain is a complex system. It must deal with the requirements of cost efficiency, timeliness, product 
quality, and environmental impacts as well as the specific technical challenges in handling perishable cargo. 
Taking an action to accomplish one of these goals might fail in achieving another goal. Hence, one of the most 
important challenges in cold chain management is to identify solutions balancing cost, quality, and environ-
mental concerns. Additionally, multiple stakeholders are involved in cold chains who have different perceptions 
of the product quality, economic, and sustainability aspects. There can be a conflict of interests between 
stakeholders in the chain. Considering the complexity of cold chains, tailored solutions must be designed to trade 
off different objectives in cold chain design. This paper aims at presenting an agent-oriented simulation 
framework to support decision-making in the design and operation of cold chains to trade off cost, emission, and 
quality. To illustrate the simulation framework, a case study of a global banana supply chain is presented and 
discussed. In the numerical study, the slow streaming strategy and the in-transit quality management system are 
analysed. The results show the capability of the presented model to analyse different scenarios and evaluate the 
influence on total logistics cost, emission, and the quality of perishable products. The numerical study results 
show a trade-off between reducing energy consumption and preserving product quality when changing the vessel 
speed. Furthermore, integrating quality management with logistics activities could optimize the operational costs 
and emission along the chain; however, the quality might be lower than a post-transport quality management 
system.   

Introduction 
A cold chain includes a series of processes consisting of storing, 

handling, and transportation of perishable products – for which 
temperature-controlled environments must be maintained from the 
harvesting to the final consumption to deliver safe and high-quality 
products to consumers (Hundy, Trott, & Welch, 2008). Apart from the 
commonly used objectives in supply chain management – cost reduction 
and responsiveness – cold chain management also has to deal with re-
quirements regarding product quality and environmental impact (Beh-
dani, Fan, & Bloemhof, 2019). As a result, cold chain management 
should aim to preserve the quality of perishable products, which is 
affected by the microbiological, physiological, biochemical, and/or 
physical activities occurring throughout the chain (James & James, 
2010). To slow down the quality decay speed, extra energy is used to 
supply refrigeration units during storage and transportation, which 
contributes to operational cost and emissions. Thus, since it is energy- 

intensive to guarantee optimal transport conditions it is particularly 
important to consider sustainability issues in cold chain design. The total 
energy consumption of refrigeration in the food industry is about 8% of 
worldwide electric energy consumption, of which the post-harvest 
transport takes a large share (Wu, Beretta, Cronje, Hellweg, & 
Defraeye, 2019). In terms of carbon footprint, post-harvest transport 
equates to about 2.5% of the emissions on CO2 equivalent (Zilio, 2014). 
Furthermore, improper handling during cold chains may cause food loss. 
Globally, post-harvest losses account for around one-third of total pro-
duction, including the loss during transportation (FAO, 2011). There-
fore, managing cold chains to reduce waste and energy consumption is 
essential to reduce the environmental impact. 

Cost-efficiency remains important in cold chain management. 
Specialized facilities – such as reefer, refrigerated trucks, and cool 
warehouses – are required, which leads to high investments (Behdani 
et al., 2019). As an example, the price of a reefer is 3–5 times higher than 
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a dry container of the same size (Rodrigue and Notteboom, 2020). 
Additional quality control processes – e.g., precooling, cold disinfesta-
tion treatment, and post-harvest ripening – are necessary to control the 
product quality, which requires not only extra energy but also handling 
during the operation (Defraeye et al., 2016). The objectives of cost ef-
ficiency, quality, and sustainability as well as the specific technical 
challenges in handling perishable cargo make the cold chain a complex 
system. 

One of the most important challenges in cold chain management is to 
identify management solutions that balance cost, quality, and environ-
mental concerns, since improving product quality and environmental 
quality may come at a cost (Fan, Behdani, & Bloemhof-Ruwaard, 2020). 
For example, cold disinfestation treatment is used for citrus fruits to 
remove pests, which reduces the quality loss and waste; however, more 
energy is used for refrigeration since the temperature needs to be kept 
about 5-8℃ lower than the normal temperature for a few days (Defraeye 
et al., 2016). This shows a conflict between the objectives of energy 
consumption reduction (which further reduces cost and emission) and 
preserving product quality. Another example is adopting the slow 
steaming strategy by liner shipping companies, which reduces fuel usage 
of the main engine. However, this strategy increases the shipment time 
and likely therefore requires more energy for cooling (Cheaitou & Car-
iou, 2012). A longer shipment time may thus also influence product 
quality. This is a similar situation to intermodal freight transport (IFT), 
which is an alternative for trucking for dry cargo to reduce cost and 
emissions. The advantages of IFT for perishable cargo are not straight-
forward. With IFT, the fuel consumption for the shipment can be 
reduced by using trains or barges; however, the transit time is usually 
longer for IFT compared with trucking that energy usage for cooling is 
higher (Fan, Behdani, Bloemhof, & Zuidwijk, 2019). For cold chains, 
when considering reducing total energy consumption, the conflict be-
tween the direct fuel usage of the main engine and that of refrigeration 
unit needs to be traded off. Therefore, it is important to consider the 
specific characteristics of cold chains in the decision-making process to 
trade off the conflicts between objectives, e.g., cost efficiency, quality, 
and environmental impacts in designing tailored solutions for cold 
chains. 

Additionally, multiple stakeholders (e.g., shippers and transport 
operators) are involved in cold chains who have different perceptions of 
the product quality, economic, and sustainability aspects. There can be a 
conflict of interests between stakeholders in the chain. For example, 
truck drivers may voluntarily shut down the refrigeration unit to save on 
fuel costs, may need to leave doors open for a too long time during 
deliveries, or may be forced by local legislation to cut idling time 
(Rodrigue & Notteboom, 2015). In such situations, the product quality 
may be influenced due to a possible breach of cold chain integrity. 
Therefore, for cold chain management, the potentially conflicting ob-
jectives need to be traded off in a multi-actor setting along the supply 
chain. 

Considering the aforementioned complexities in optimizing cold 
chain management in a multi-actor setting this study aims to trade off 
the conflicting objectives in cold chain design, i.e., cost efficiency, 
quality, and CO2 emission. To achieve this, an agent-oriented simulation 
framework is developed to support multi-criteria decision-making in 
designing the structure and processes in cold chains. With the frame-
work, different scenarios can be experimented to support decision- 
makers comparing the results in terms of different objectives. 

Following this introduction, section 2 presents a literature review 
discussing approaches applied to cold chain management. In section 3, 
the main concepts of the agent-oriented simulation framework are 

described. The framework is applied to a case of a global banana supply 
chain. Section 4 presents the case and the results of different scenarios to 
show the potential of the simulation model to evaluate the trade-offs 
between cost, quality, and CO2 emissions. Finally, section 5 presents a 
discussion and concluding remarks. 

1. Literature review 

In this section we review multi-criteria decision support models 
developed for optimizing cold chain management. These models may be 
classified into three categories: mathematical programming models, 
analytical models, and simulation models (Zhu et al., 2018). 

1.1. Mathematical programming and analytical models for cold chain 
design 

Mathematical programming has been used to a great extent in cold 
chain management, of which linear programming and mixed-integer 
programming are the dominant modelling approaches (Soto-Silva, 
Nadal-Roig, González-Araya, & Pla-Aragones, 2016). Reviews of multi- 
criteria decision-making models for cold chains can be found in Zhu 
et al. (2018) and Banasik, Bloemhof-Ruwaard, Kanellopoulos, Claassen, 
and van der Vorst (2018). Considering the objectives, greenhouse gas 
emission, of which CO2 is most used, and energy consumption are the 
most popular topics in addition to operational costs (Zhu et al., 2018). 
Little attention has been given to quality loss and waste (Banasik et al., 
2018). Considering the modelling scope, most of the studies focus on the 
distribution of perishables. For example, Leng et al. (2020) and Govin-
dan, Jafarian, Khodaverdi, and Devika (2014) solve the location routing 
problems for food supply chain network design to minimize logistics 
costs, waiting time, and CO2 emission. Giallanza and Puma (2020) and 
Stellingwerf, Kanellopoulos, van der Vorst, and Bloemhof (2018) 
develop models to solve vehicle routing problems considering cost and 
emission minimization. Another topic covered by the literature is pro-
duction planning for specific supply chains, for example, Banasik, 
Kanellopoulos, Bloemhof-Ruwaard, and Claassen (2019, 2017) develop 
models for a mushroom supply chain. Some research considers the 
design of the whole chain, for instance, Soysal, Bloemhof-Ruwaard, and 
Van Der Vorst (2014), Rohmer, Gerdessen, and Claassen (2019), and 
Mohebalizadehgashti, Zolfagharinia, and Amin (2020) discuss meat lo-
gistics network problems considering the objectives of minimizing cost 
and emissions. 

There are limitations of mathematical programming models. Firstly, 
most of the studies consider the parameters to be deterministic for 
modelling simplicity and computational effort needed to achieve a so-
lution, which makes the models less realistic (Banasik et al., 2018). A 
limited number of studies use stochastic approaches to cope with the 
stochastic feature of real-life cases, for example, Hosseini-Motlagh, 
Samani, and Saadi (2020) develop a multi-objective hybrid stochastic 
fuzzy-robust programming model for wheat supply chain network 
design. Banasik et al. (2019) develop a multi-objective stochastic pro-
gramming model for the production planning of a mushroom supply 
chain. Their results show that accounting for stochasticity in model 
parameters provides a more accurate representation of the trade-off 
between conflicting objectives. Secondly, interactions between multi-
ple stakeholders are less frequently modelled by using mathematical 
programming. Only a few papers along these lines are found in the 
literature, such as Miranda-Ackerman, Azzaro-Pantel, and Aguilar- 
Lasserre (2017) develop a multi-objective optimization framework for 
an orange juice supply chain dealing with multiple conflicting objectives 
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from different stakeholders, i.e., the customer, the focal company, and 
the natural environment. Considering the multi-objective of multiple 
stakeholders in decision-making is necessary which prevents to make 
decisions in a segmented empirical manner (Miranda-Ackerman et al., 
2017). 

Among the analytical approaches, some studies use game theory- 
based models for coordinating the supply chain among different actors 
(Hu et al., 2019). Cost-sharing, revenue and profit-sharing, tariff, and 
wholesale price contracts are the most used coordination contracts be-
tween supply chain members (Agi, Faramarzi-Oghani, & Hazır, 2020). 
Current research focuses mainly on a two-echelon supply chain (e.g., 
manufacturer-retailer), see for example Jonkman, Kanellopoulos, and 
Bloemhof (2019) and Lau, Shum, Nakandala, Fan, and Lee (2020). 
However, in a cold chain, many actors are involved with different 
(conflicting) objectives. Furthermore, similar to mathematical pro-
gramming models, a wide majority of the models presented in the 
literature use deterministic demand (Agi et al., 2020). 

1.2. Simulation for cold chain design 

Simulation is another commonly used method in cold chain man-
agement, which proves to be able to handle stochasticity and carry out 
an assessment of scenarios of the studied system (Borodin, Bourtem-
bourg, Hnaien, & Labadie, 2016); however, it is less often employed for 
multi-criteria decision support (Zhu et al., 2018). Only a few papers 
discuss simulation models for cold chain management. Although simu-
lation models are less used, it is capable to reveal trade-offs between 
multiple objectives. On the strategic level, Van Der Vorst, Tromp, and 
Van Der Zee (2009) develop a discrete-event simulation (DES) to assess 
different designs of cold chain configuration. The DES includes food 
quality models and sustainability indicators. On the operational level, 
Haass, Dittmer, Veigt, and Lutjen (2015) develop a simulation to analyse 
the quality-driven distribution strategy. Different order exchange sce-
narios are evaluated by comparing the waste, delay, and CO2 emission. 
However, it is difficult to use DES to model the autonomous decision- 

Fig. 1. A framework for conceptual modelling (Robinson, 2004 page 53; Van Der Vorst, 2000).  

Fig. 2. Scope of the cold chain ontology: the main concepts and relations.  
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making behaviours of multiple actors since DES models define the en-
tities in the system as passive objects with pre-defined characteristics 
(Behdani, 2013). Although Van Der Vorst et al. (2009) consider actors’ 
behaviors by control flows, it would be difficult to capture the decision- 
making processes on an individual level if the model is scaled up to a 
large number of heterogeneous actors. 

Agent-based simulation (ABS) offers a natural way to model a supply 
chain in a multi-actor setting (Behdani, Adhitya, Lukszo, & Srinivasan, 
2012). ABS can model supply chains with a two-tier architecture con-
sisting of a social layer and a physical layer (Behdani, 2013; Holmgren, 
Davidsson, Persson, & Ramstedt, 2012). In the social layer, each actor 
can be modelled as an autonomous agent making decisions to achieve 
the goals and having interactions with other actors (Holmgren et al., 
2012). Physical components of cold chains can be modelled as objects 
performing logistic activities (Holmgren et al., 2012). 

A review of literature on applications of ABS on the agri-food supply 
chain can be found in Utomo, Onggo, and Eldridge (2018). Considering 
the research scope, some papers focus on production, for example, Krejci 
and Beamon (2015) and Happe, Kellermann, and Balmann (2006). 
Farmer agents and market agents are modelled to explore coordination 
decisions. Some research focuses on the delivery, such as Viet, Behdani, 
and Bloemhof (2020) develop an ABS for a floriculture supply chain to 
study the performance of anticipatory shipping at a crossing facility. 
Fikar (2018) develops an ABS for e-grocer to solve the dynamic routing 
problem. Considering their research scope, a planner agent, truck agent, 
and customer agents are modelled. The performance of the cold chain is 
evaluated in terms of service level, cost, travel distance, product quality. 
In the context of global cold chains, Namany, Govindan, Alfagih, McKay, 
and Al-Ansari (2020) build an ABS to analyse the performance of tomato 
importing indicated by economic and environmental cost considering 
two types of agents: importers and exporters. In their model, the logistics 
processes of the cold chain are not specified explicitly. At present, the 
ABS for cold chain management only captures limited types of agents 
since the research scope is often only a segment of cold chains, such as 
production (at the origin) and distribution/city logistics (at the desti-
nation). However, various related factors of other stages of cold chains – 

such as food losses during ocean transportation and port operation – are 
not considered, which is also important in evaluating the quality 
delivered to final customers (Fikar, 2018). 

1.3. Contribution of this work 

Comparing different modelling approaches, an ABS is the most 
suitable approach to model the stochasticity of parameters, show the 
performance on different dimensions (i.e., economic, environmental, 
and social), as well as consider the interactions between multiple 
stakeholders. 

With the growth of the global food trade, there is a transformation of 
the traditional cold chain to a chain of global nature with long-haul 
intercontinental transportation (Behdani et al., 2019). Therefore, we 
analyse the trade-offs between the multi-objective of multiple stake-
holders in the context of global cold chains. Previous studies have 
focused on either a segment of a cold chain or limited types of agents. 
However, modelling both the logistic activities and the behaviours of 
stakeholders in global cold chains are important. In this research, an ABS 
framework is developed for global cold chains. In this framework, the 
detailed logistics processes from the distribution centre of an exporter to 
that of an importer are included. The actors and resources involved are 
defined as individual agents with specific behaviours. The model is 
generic that can be used by decision-makers to try out scenarios of 
different cold chains by changing attributes of agents, specifying 
particular decision rules, or changing the cold chain configuration. 
Furthermore, cost, CO2 emission, and quality models are specified to 
measure the performance. 

2. A generic agent-oriented simulation framework for cold chain 
management 

In this section, the conceptual model of an ABS is introduced through 
four key components: model content, design variables, inputs, and 
outputs (Fig. 1). 

Fig. 3. Conceptual framework of a global cold chain.  
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2.1. Model content 

Fig. 2 shows the scope of the cold chain ontology. The most impor-
tant concept is the actor. This represents private parties that are involved 
in the design and operation of the chain and the public parties who are 
not directly involved in the operations but play a regulatory/ 

supervisory/policy-making role. During specific modelling, the actors 
can be further specified to individual organizations and even de-
partments in the organizations – if needed. Actors have objectives, 
which are measured by Key Performance Indicators (KPIs). For market 
players, a fundamental objective is maximizing profit, which is highly 
relevant to the cost and product quality (Fan et al., 2020). Besides, there 
is a growing interest in minimizing environmental impacts (Castelein, 
van Duin, & Geerlings, 2019). For public parties, creating social value 
and promoting local and national sustainable development are some 
primary goals. Actors in a cold chain own or rent resources to support 
their activities. In general, there are four main types of activities in the 
design of each agent (representing actors in the system): making de-
cisions, exchanging information, handling reefers, and handling cargo, 
which is related to three main flows in the chain: reefer flow, cargo flow, 
and information flow. Cargo flow is an important concept since different 
perishable products have different requirements on the transport condi-
tions. Finally, information flow contains different types of data (e.g., 
cargo type, volume) that is exchanged between actors (and can possibly 
support their decision making). 

Based on the main concepts, a conceptual framework of a global cold 
chain has been developed (Fig. 3). The process is triggered by an order 
sent by an importer. After receiving the order, perishable goods are 
loaded into reefers at the exporter’s distribution centre (DC). Then, the 
full reefers are transported to an export port to be loaded onto vessels. 
The vessels ship the full reefers to an import port where the terminal 
operator discharges the vessel, stores and plugs the reefers, and loaded 
them onto the next modalities, which can be barges or trucks. Besides, 
customs control is conducted for a fraction of reefers. In general, a 
quality control process will be conducted after ocean transport at a 
specific facility. After the quality control, the reefers are shipped to the 
importer’s DC, and the cargo is unloaded. After that, the empty reefers 
are repositioned (mostly back to the empty depot in the seaport). Since 
port authority and other public authorities are not directly involved in 
the operation, they are excluded from this research. The rules defined by 
the public parties can be reflected in other actors’ behaviours. The 
detailed sequence diagrams can be found in a digital supplementary file. 

2.2. Supply chain scenarios and design variables 

A supply chain scenario can be described from four elements (Van 
Der Vorst & Beulens, 2002):  

(1) Chain configuration, which is related to the structure and facilities, 
the parties involved in the cold chain. A design could be relo-
cating facilities or integrating quality control with logistics pro-
cesses (Van Der Vorst, Kooten, & Marcelis, 2007).  

(2) Chain control structure, that represents the actors responsible for 
making a set of decisions that control the operational activities 
aiming at realizing objectives (Van Der Vorst, 2000, page 156). 
Therefore, actors and decisions are two important components of 
the chain control structure. Different actors operate in a cold 
chain including shippers, freight forwarders, carriers, terminal 
operators, and customs authorities. They make decisions on their 
operational activities and interact with each other to complete a 
shipment. Fig. 3 shows the actors’ activities/decisions and the 
relationships between them. We further elaborate on the activ-
ities and interactions between actors in the supplementary file, in 
which sequence diagrams – showing the relationships between 
actors and resources for different segments in a cold chain – are 
presented. An example of an element in a chain control structure 
is a maritime carrier (an actor) applying the slow steaming 
strategy (a decision). As we discussed earlier, this strategy may 
reduce the cost/emission for maritime carriers, yet it may not be 
preferred by shippers due to the longer transit time that may 
influence the product quality. 

Table 1 
Notation for quality, cost, and CO2 emission calculation.  

Set and indices 

I  Set of operational stage,I = {1,⋯,Z+}

J  Set of type of handling,J = {RE,CGO}

L  Set of customer order,L = {1,⋯,Z+}

M  Set of customer 
i  Index of operation stage,i ∈ I  

j  Binary index to distinguish type of handling, i.e., reefer handling (RE) and 
cargo handling (CGO),j ∈ J  

l  Index of order of a customer,l ∈ L  

m  Index of customer,m ∈ M  

Parameters 
A  Rate constant 
chijm  Unit handling cost in stage i of type j for customer m  
crij  Unit cost of the energy for cooling in stage i of typej  
csijm  Unit storage cost in stage i of type j for customerm  
ctijm  Unit transport cost in stage i of type j for customerm  
dij  Transport distance in stage i for typej  
Ea  Activation energy 
ehij  Emission factor of energy used in stage i of typej  
erij  Emission factor of energy used for cooling in stage i of typej  
etij  Emission factor of energy used for transport in stage i of typej  
fhij  Unit energy consumption for cargo/container handling in stagei  
ftij  Unit energy consumption of main engine of container transport modality 
k  Quality degradation rate of banana during transportation and storage 
kij  Quality degradation rate in stage i of typej  
kr  Quality degradation rate of banana during ripening process 
kref  Quality degradation rate at the reference temperature 
njlm  Number of reefer/cargo of order l from customerm  
q0  Initial quality 
qi  Product quality at the end of stagei  
R  Gas constant 
sij  Surface of cargo handling equipment/reefer used in stagei  
t  The actual throughput time from the exporter DC to banana arrival at the 

ripening centre 
td  The average throughput time from vessel arrival at the port of destination to 

banana arrival at the DCs. 
tf  The average distribution time from the ripening centre to the DCs 
tij  Duration of stage i of typej  
Tij  Setpoint temperature in stage i of typej  
ΔTij  Temperature difference between inside and outside the cargo handling 

equipment/reefer in stagei  
tm  The average ocean transport time 
to  The actual throughput time from the exporter DC to vessel departure from the 

port of origin 
trij  Cooling time of stage i of typej  
Tref  Reference temperature 
tsi  Storage time in stage i of typej  
trp  The ripening time of bananas 
uij  Heat transfer coefficient of the cargo handling equipment/reefer used in 

stagei  
α  The convert factor that converts emissions caused by the usage of thermal 

energy to that caused by both the usage of thermal energy and refrigerant 
leakage 

γij  Coefficient of performance of cargo handling equipment/reefer used in stagei  
ηij  The conversion efficiency from the chemical energy of the fuel used in stage i 

for type j to electrical energy  
θij  Energy content of one unit of fuel used by the cargo handling equipment/ 

reefer used in stagei   
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(3) Chain information system, which is related to increase information 
transparency. A design could be realizing information exchange 
platforms, e.g., remote container monitoring systems that collect 
and share data on both perishable products and the shipment in 
real-time (Jedermann, Praeger, & Lang, 2017).  

(4) Chain organizational and governance structures, which refers to task 
assignment to actors in the chain. A design could be such as 
jointly defining objectives and performance indicators by the 
involved parties (Van Der Vorst et al., 2009). 

The design could be strategic, tactical, and operational (Van Der 
Vorst et al., 2009). An extensive literature review of design variables in 
cold chains can be found in Fan et al. (2020). Design variables can be 
modelled by changing model structure, parameters, or attributes of 
agents. We use this approach to model scenarios for a cold chain. A 
potential scenario is defined by a combination of different settings for 
the design variables. A supply chain design variable is defined as a de-
cision variable that determines the setting of one aspect of the supply 
chain management and control (Van Der Vorst, 2000), which can be 
defined by the modeller (or agents). Concrete cold chain scenarios 
relevant to this study will be discussed in Section 4. 

2.3. Model input and output 

We use the following inputs – i.e., the non-manageable experimental 
factors that are considered as given. The most important input is the 
demand pattern. In this study, the demand pattern is considered to be 
stochastic that order quantity follows a probability distribution func-
tion. Furthermore, parameters – including initial product quality, 
quality decay rate, transportation temperature, cost, and emission fac-
tors – should also be specified before simulation. 

The outputs of the model are responses of the model indicated by a 
set of performance indicators which can be in economic, environmental, 
and social dimensions (Zhu et al., 2018). In this research, the product 
quality, operational cost, and CO2 emissions are considered as perfor-
mance indicators that are most used in the literature. Model notation is 
presented in Table 1. 

2.3.1. Quality calculation 
In this section, the calculation of product quality for operation stage i 

is described. The kinetic model is frequently used to model the rela-
tionship between quality decay, time, and temperature as depicted in 
equation (3) for the zero-order reaction and equation (4) for the first- 
order reaction (Rong, Akkerman, & Grunow, 2011; Van Boekel, 2008). 
A first-order reaction is often used for modelling quality degradation 
caused by microbial growth in foods such as meat and fish, while a zero- 
order reaction is used to model quality changes of fresh fruits and veg-
etables (Van Boekel, 2008). 

qi =

⎧
⎪⎨

⎪⎩

qi− 1 −
∑

j∈J

kijtij(3)

qi− 1∙exp

(

−
∑

j∈J

kijtij

)

(4)

The rate of quality degradation is often based on the Arrhenius 
equation as equation (5) (Rong et al., 2011). kij can also be calculated 
based on a reference temperature and the corresponding degradation 
ratekref with equation (6), which is derived from equation (5) assuming 
A and Ea do not depend on temperature (Van Boekel, 2008). 

kij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A∙exp
(

−
Ea

RTij

)

(5)

kref ∙exp
[

−
Ea

R

(
1
Tij

−
1

Tref

)]

(6)

Although equations (3) to (6) present some generic formulas for 
quality modelling, there are other model formulations, for instance, the 
fractional convention model used for modelling the quality loss of 
texture, and the Bigelow model for both quality losses, enzyme dena-
turation, and microbiological death during the thermal process (Mar-
tins, 2006). Furthermore, Taguchi’s quality loss function can also be 
applied to model the relationship between quality loss and time, such as 
assuming the longer a product has been stored/transported, the greater 
the loss that the customer will be suffering (Zheng & Wang, 2012). 

2.3.2. Operational cost and CO2 emission calculation 
To calculate the total operational cost, equation (7) is used. The 

operational cost includes the costs of transportation, handling, storage, 
and cooling. Transport cost is calculated based on the unit shipment cost 
and shipment distance. Storage cost depends on the unit storage cost and 
storage time. 

TotalCost =
∑

m∈M

∑

l∈L

∑

i∈I

∑

j∈J

njlm

(

ctijmdij + chijm + csijmtsij + crijtrij
uijsijΔTij

ηijγijθij

)

(7) 

Cooling cost is calculated based on the unit energy cost, cooling time, 
and energy usage for cooling. The energy for cooling increases with the 
cooling time which can be influenced by potential delays during the 
transportation and port operation. It is calculated based on a compre-
hensive model described in Stellingwerf et al. (2018) and De Kleuver 
(2018). The energy consumption depends on the heat that enters 
through the insulated wall (u∙s∙ΔT), considering there is a temperature 
difference between the inside and outside of cold chain equipment. ΔT is 
different depending on the type of products, the quality control process 
(i.e., quality preservation or pre-cooling), and the location of the reefer 
(which influences the ambient temperature outside the equipment). 
Furthermore, the efficiency of energy and the cooling system (in the 
denominator) also affect the energy consumption, which may differ 
depending on the energy and the cooling engine used at each stage for 

Fig. 4. Cold chain network of banana importing (based on Jedermann et al. (2014) and Haass et al. (2015)).  
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each type of handling. 
Similarly, equation (8) calculates the total CO2 emission. In the 

calculation, the impact of refrigerant leakage is considered. 

Totalemission =
∑

m∈M

∑

l∈L

∑

i∈I

∑

j∈J

njlm

(

etijftijdij + ehijfhij + erijtrijα
uijsijΔTij

ηijγijθij

)

(8)  

3. Numerical cold chain case 

The simulation model is developed in Python with the Mesa package 
and is applied to a case study of banana transportation from Costa Rica 
to Europe. 

3.1. Case description 

Bananas are one of the most eaten products in the world and the 
European Union is the biggest importer by far (FAO, 2016). Fig. 4 shows 
the banana supply chain under study in this paper, which is modified 
from the picture in Jedermann, Praeger, Geyer, and Lang (2014 page 3). 

An importer is considered in the model who places 10 orders every 
week and sells bananas in the EU market. The bananas are handled and 
packed into reefers at an exporter DC. The reefers are transported and 
loaded onto vessels at the port of Puerto Moin. Following an existing line 
of Maersk, ocean transport takes 15 days (14 days sailing and 1 day 
stopover in Manzanillo Mexico) to the port of Rotterdam (Maersk Line, 
2020). After arriving at the port of Rotterdam, a separated quality 
control process is performed at a ripening centre before distributing the 
bananas to the DCs (Jedermann et al., 2014). The detailed parameters 
used in the case study is in Appendix A. 

The quality of bananas is commonly indicated by a seven-point 
colour index (CI) ranging from 1 to 7 indicating peel colour from all 
green to full yellow flecked with brown, which shows the stage of 
ripeness. To indicate the change of peel colour, value a* is used such that 
an increase in a* means the degree of greenness is decreased. Soltani, 
Alimardani, and Omid (2010) find a positive correlation between a* and 
the CI. Thus, in this case, a zero-order kinetic model describing the 
change of a* is used to measure the quality of bananas using equation (3) 
(Chen & Ramaswamy, 2002). The change rate of a* at the reference 
temperature of 17 ◦C is provided by Nannyonga, Bakalis, Andrews, 
Mugampoza, and Gkatzionis (2016). Accordingly, the degradation rates 
at different temperatures are calculated with equation (6). It is assumed 
that the initial a* value is uniformly distributed between a range of [-17,- 
21] representing the heterogeneous initial quality of the bananas. 

3.2. Scenarios 

In this study, we elaborate on the capability of the simulation model 
for supporting decision-making on both strategic and operational levels. 
Below we first describe scenarios for strategic level decision support, 
and after that for operational level decision support. 

3.2.1. Scenarios for strategic level decision support 
At the strategic level, two cold chain configuration scenarios are 

compared, viz.: 
Scenario 1: post-transport quality management system that the quality 

control and ripening process are conducted at the ripening centre after 
ocean transportation; 

Scenario 2: in-transit quality management system that the quality con-
trol and ripening process are integrated with logistics processes facili-
tated by intelligent containers. 

In Scenario 2, an intelligent container uses wireless sensor nodes to 
continuously measure the environmental parameter inside a reefer and 
monitors the quality changes of the product (Dittmer, Veigt, Scholz- 
Reiter, Heidmann, & Paul, 2012). A reefer can be considered as a 
ripening chamber that bananas are ripened in transit. Then the bananas 
can be distributed directly from the port to the DCs skipping the ripening 
centre. Compared with Scenario 1, the processes are shown in Fig. 5. 
These two scenarios are defined based on our discussions with experts in 
a Dutch trading organization of fresh fruit and vegetables. The 
assumption is that an in-transit quality management system has ad-
vantages over the post-transit process and can lead to benefits. First, if 
the length of the cold chain is shorter, the lead time will be reduced 
(Dittmer et al., 2012). Secondly, quality control facilities at the ports and 
hinterland are not needed in case of an in-transit quality management 
system, which reduces the investment. Thirdly, the operation at the 
ripening centre is eliminated, which also leads to a saving in labour 
costs. Last, the removal of quality control processes makes the distri-
bution more flexible. Following the work of De Kleuver (2018), the 
quality is evaluated in addition to operational cost and CO2 emission for 
a more complicated banana chain. 

For Scenario 1 and 2, the following assumptions are made:  

• For the ripening stage, the same quality model is used since no 
mathematical model has been developed in the literature due to its 
complexity.  

• To preserve the quality of bananas, the setpoint temperature is 13 ◦C. 
During the ripening, the temperature is set to 16 ◦C to ripen banana 
to CI 3 (Dole, 2013). Accordingly, the daily quality degradation rate 
during transport/storage k = − 0.32, and during ripening is 
kr = − 1.091 (Chen & Ramaswamy, 2002). 

Fig. 5. (a) post-transport quality management system and (b) in-transit quality management system (De Kleuver, 2018; Jedermann et al., 2014).  
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• Bananas arrived at the importer’s DCs with a* value higher than 
− 4.62 (i.e., value for CI 3 (Soltani et al., 2010)) is considered as 
waste.  

• For Scenario 2, the ripening is carried out during ocean transport. 
Before and after the ripening, the temperature is set to the setpoint 
temperature by intelligent containers to preserve the quality (De 
Kleuver, 2018).  

• No capacity constraint is considered at the ripening centre (De 
Kleuver, 2018). 

To calculate the ripening time for Scenario 1, the left side of equation 
(9) shows the quality of bananas at DCs, which is calculated by the initial 
quality subtracting the quality decay at each stage. The right side of 
equation (9) is the required a* value at the DCs. Accordingly, the 
ripening time is calculated as equation (10). 

q0 − k(t + tf ) − kr∙trp = − 4.62 (9)  

trp =
q0 − k(t + tf ) + 4.62

kr
(10) 

Similarly, the left side of equation (11) calculates the quality of ba-
nana at the DCs for Scenario 2. Since the ripening is during ocean 
transport, the average throughput time of ocean transport, port opera-
tion, and hinterland transport at the destination is used in the calcula-
tion. Accordingly, the ripening time of Scenario 2 is calculated as 
equation (12). 

q0 − k∙to − kr∙trp − k(tm − trp) − k∙td = − 4.62 (11)  

trp =
q0 − k(to + tm + td) + 4.62

kr − k
(12)  

3.2.2. Operational level decision support 
At the operational level, the impact of slow steaming strategy on 

operational cost, CO2 emission, and quality is evaluated. The slow 
steaming strategy is a common way to reduce energy consumption for 
maritime carriers. Although this may save the direct fuel usage in 
transportation, more fuel is consumed for refrigeration since the ship-
ment time is longer (Cheaitou & Cariou, 2012), which might also 
adversely influence the quality of products inside the reefers. 7 sailing 
speeds scenarios (14–26 knots) are analysed. The cost and emission 
factors related to the speeds are shown in Table 2. For quality analysis, it 
is assumed that a* value should be lower than CI 2 when arriving at the 
ripening centre, which is − 9.07 (Nannyonga et al., 2016; Soltani et al., 
2010); otherwise, it is considered as waste in this scenario. 

3.3. Simulation setup 

In the simulation, one importer, exporter, maritime carrier, freight 

Table 2 
Direct cost and emission factor by containership speed (calculated based on 
Notteboom and Vernimmen (2009), SenterNovem, (2005), and Ship and Bunker 
(2020) considering the vessel size of 5000 TEU. Costs are converted to 2019.  

speed 
(knot) 

Shipment time 
(days) 

Unit direct ocean cost 
(€/km/container) 

Unit direct CO2 emission 
(kg/km/container) 

14 22.0 0.0108 0.0713 
16 19.3 0.0130 0.0891 
18 17.1 0.0158 0.1069 
20 15.4 0.0196 0.1248 
22 14.0 0.0245 0.1458 
24 12.9 0.0305 0.1723 
26 11.9 0.0393 0.2084  

Table 3 
Comparison of cost results between Scenario 1 and Scenario 2 (€/container).   

Scenario 1: post-transport 
quality management 

Scenario 2: in-transit 
quality management 

Packing 336 336 
Hinterland origin 358 358 
Port operation 

origin 
190 190 

Ocean transport 1840 1789 
Port operation 

destination 
142 140 

Hinterland 
destination 

556 499 

Ripening 694 48 
Unpacking 336 336 
Mean of average 

total cost 
4452 3695 

95% confidence interval for difference Conclusion 
Lower interval Upper interval 
753 760 Scenario 1 > Scenario 2  

Table 4 
Comparison of CO2 emission between Scenario 1 and Scenario 2 (kg CO2/ 
container).   

Scenario 1: post-transport 
quality management 

Scenario 2: in-transit 
quality management 

Packing 4 4 
Hinterland origin 167 167 
Port operation origin 87 87 
Ocean transport 2804 2394 
Port operation 

destination 
10 10 

Hinterland destination 341 300 
Ripening 74 340 
Unpacking 4 4 
Total emission 3490.20 3305 
95% confidence 

interval for 
difference 

Conclusion  

Lower interval Upper interval  
181 190 Scenario 1 > Scenario 2  

Table 5 
Comparison of quality between Scenario 1 and Scenario 2.    

Scenario 1: post- 
transport quality 
management 

Scenario 2: in-transit 
quality management 

Mean waste  0% 19.20% 
Standard 

deviation of 
waste  

0 0.11 

95% Confidence 
interval 

Lower 
interval 

NA 15.76%  

Upper 
interval 

NA 22.64% 

Average a* value   − 4.59 − 4.64 

SD of a* value   0.012 0.133 

95% Confidence 
interval 

Lower 
interval 

− 4.60 − 4.68  

Upper 
interval 

− 4.59 − 4.60  
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forwarder, terminal operator, customs authority, truck operator, barge 
operator are modelled as agents. The following resources are used: one 
berth, quay crane, reefer rack, landside equipment, barge equipment, 
and four DCs, which all are also modelled as agents. Three reefer me-
chanics are modelled as agents to perform plugging and unplugging for 
truck operation and unplugging for barge operation. Weekly vessel and 
barge services with capacity limits are considered in the study. An un-
limited capacity of trucks is considered that the orders cannot be ship-
ped by barges are transported by trucks. 

To determine the warm-up period, we looked into the mean 
throughput time in the system using Welch’s graphical procedure as 
described in Robinson (2004). The use of 30 replications and a window 
of 10 days results in a warm-up period of around 11 days for different 
scenarios. As a rule of thumb, Robinson (2004, page 152) recommends 
that the run-length is at least 10 times the length of the warm-up period. 
For this reason, a run-length of 16 weeks is used in this case. 30 repli-
cations are considered in this study with a 95% confidence level and the 
deviation of the half-width of the confidence interval<0.5%. The 
simulation model is developed in Python with the Mesa package. The 
model is run with a 2.8 GHz Intel Core i7 computer with 8 GM RAM. For 
each replication, the running time is around 5 min. Accordingly, the 
total time to run each scenario is about 2.5 h. 

3.4. Simulation results 

3.4.1. Comparing post-transport and in-transit quality management system 
Tables 3 and 4 show the overview of the operational cost and CO2 

emission in each logistics stage for both Scenario 1 and 2. In general, an 
in-transit quality management system is more efficient than a post- 
transport quality management system in terms of both operational 
cost and CO2 emission, with a saving of 12% and 5.2% respectively 
when comparing Scenario 2 to Scenario 1. Compared with Scenario 1, the 
reduction of the cost and emission in Scenario 2 comes from three parts: 
(1) cargo handling cost during the ripening phase is reduced since ba-
nanas are ripened in reefers during transportation that no extra handling 
is required. (2) road transportation from the port to the DCs is reduced 
since there is no detour needed to the ripening centre. (3) ocean trans-
portation is reduced since a few days during ocean transportation are 
used for ripening with a higher setpoint temperature compared with the 
setpoint temperature to preserve the quality of bananas (and conse-
quently, a smaller temperature difference between the inside and 
outside of reefers). Thus, less energy is used to preserve the quality of 
bananas. 

For CO2 emissions, the results are quite similar. The most important 

Table 6 
Ocean transport cost of different sailing speed (€/container).  

Speed 
(knot) 

Mean of average direct 
cost 

Mean of average cooling 
cost 

Fixed 
cost 

Mean of average ocean 
cost 

Standard deviation of average 
ocean cost 

95% confidence interval 

Lower 
interval 

Upper 
interval 

14 147 151 1391 1689 1.24 1688 1689 
16 177 134 1391 1702 1.02 1702 1703 
18 217 120 1391 1728 0.98 1728 1729 
20 269 109 1391 1769 1.35 1768 1769 
22 336 101 1391 1827 1.30 1827 1828 
24 418 93 1391 1902 1.01 1902 1902 
26 539 87 1391 2017 1.18 2016 2017  

Table 7 
CO2 emission of ocean transport of different sailing speed (kg CO2/container).  

Speed 
(knot) 

Mean of 
average 
direct 
emission 

Mean of 
average 
cooling 
emission 

Mean of 
average 
ocean 
emission 

Standard 
deviation 
of average 
ocean 
emission 

95% confidence 
interval 

Lower 
interval 

Upper 
interval 

14 978 1193 2171 9.79 2168 2174 
16 1223 1061 2284 8.05 2281 2286 
18 1467 955 2422 7.73 2420 2425 
20 1712 865 2577 10.68 2573 2580 
22 2001 796 2797 10.29 2794 2800 
24 2364 738 3102 7.99 3099 3104 
26 2860 689 3549 9.33 3546 3552  

Table 8 
Quality results of different sailing speed.  

speed 
(knot) 

Mean of average 
waste 

Standard deviation of 
average waste 

95% confidence interval Mean of average a* 

value  
Standard deviation of 
average a* value  

95% confidence interval 

Lower 
interval 

Lower 
interval 

Lower 
interval 

Upper 
interval 

14 64.34% 0.0464 62.58% 66.10% − 8.50 0.19627 − 8.56 − 8.43 
16 43.84% 0.0579 41.68% 46.01% − 9.32 0.17137 − 9.37 − 9.26 
18 29.32% 0.0427 27.73% 30.91% − 9.97 0.11880 − 10.01 − 9.94 
20 19.11% 0.0636 16.74% 21.49% − 10.45 0.20419 − 10.52 − 10.39 
22 9.30% 0.0366 7.94% 10.67% − 11.01 0.18310 − 11.07 − 10.96 
24 3.91% 0.0283 2.85% 4.96% − 11.42 0.17256 − 11.48 − 11.37 
26 1.82% 0.0196 1.09% 2.56% − 11.69 0.19709 − 11.76 − 11.63  

Fig. 6. The trade-off between ocean cost/emission and waste.  
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reduction is from ocean transport. Furthermore, the emission of the 
ripening of Scenario 2 is much higher than that of the ripening of Sce-
nario 1 since different energy is used for ripening (that electricity is used 
in the ripening centre, while on the ship heavy oil fuel is used for 
ripening). Furthermore, there is a reduction of emission during the 
hinterland transport at the destination. 

The quality results are shown in Table 5. On average, the banana 

quality of Scenario 1 is more close to the required quality level. The 
quality of scenario 2 is more fluctuated with a higher standard deviation 
of a* value. In total 19.20% of bananas are wasted for Scenario 2, which 
is mainly due to the stochastic process time and the queueing at the port 
of destination. Different reefer batches have different actual throughput 
time, which leads to the inaccuracy of the ripening time calculated based 
on the average throughput time. For batches that have longer 

Fig. 7. Sensitivity analysis results of costs: strategic level scenarios (a) and operational level scenarios (b).  

Fig. 8. Sensitivity analysis results of emissions: strategic level scenarios (a) and operational level scenarios (b).  

Fig. 9. Sensitivity analysis results of operational level decision support: quality (a) and waste (b).  
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throughput time than average, bananas have been ripened for too long. 
Therefore, in this case, Scenario 2 shows more waste. 

Maritime carriers may invest in intelligent containers to realize the 
in-transit quality management system. By being able to control the 
quality and ripening of bananas during transportation, maritime carriers 
may offer premium shipping options to the shippers. Shippers could also 
benefit from an improved distribution efficiency of bananas, less in-
vestment in ripening facilities in the hinterland, and reduced ripening 
costs/emissions. Furthermore, shippers may work together with mari-
time carriers, terminal operators, hinterland carriers, and customs au-
thorities to obtain improved insight into the total transit time and better 
control over the in-transit ripening process. In summary, collaboration 
between shippers, maritime carriers, and other actors can lead to 
improved control of the cold chain. 

3.4.2. Comparing the effect of different sailing speed 
Tables 6, 7, and 8 show the results of different sailing speed. The 

paired-t confidence intervals (in appendix B) indicate that with the in-
crease of vessel speed, total ocean cost and CO2 emission increase; 
however, total waste decreases. The change in cooling cost is smaller 
than that of the direct cost of the main engine. The results of the CO2 
emission are similar, although cooling emission is an important part of 
the total ocean emission. When decreasing shipment speed from 26 
knots to 14 knots, total emission decreases by around 63%. However, the 
increase in shipment time has a large impact on product quality. With a 
decrease in speed, the average quality decreases, and the total waste 
increases from 1.82% to 64.34% on average. Therefore, there is a trade- 
off between the operational cost and CO2 emission of the maritime 
carrier and the product quality of the shipper as depicted in Fig. 6. 

In practice, maritime carriers may collaborate with terminal opera-
tors and customs authorities to reduce time during port operation. 
Maritime carriers may also integrate hinterland transportation and 
freight forwarding services into the scope of their services to provide 
door-to-door services. In this way, better control of banana delivery may 
reduce waiting time at the ports and inland terminals that may 
compensate for the extra transit time during ocean transportation. 

3.4.3. Sensitivity analysis 
In order to test the effect of parameters and evaluate the robustness 

of findings, we perform a sensitivity analysis. Considering the number of 
parameters used in the study and the running time per replication, it is 
not realistic to test all the parameters. Therefore, key parameters are 
selected for a sensitivity analysis, which are ocean transport distance, 
ambient temperature during ocean transport, bunker price, electricity 
price, and emission factor of heavy oil fuel and electricity. These pa-
rameters have direct relevance for fuel consumption of the main engine 
of vessels, for the energy used for cooling and ripening, as well as for 
product quality. Changes in the parameters are standardized as a per-
centage of ± 10%, except for ambient temperature, which is ± 15℃ 
(50%). Setting larger changes in ambient temperature is to represent the 
temperature at different seasons and at different zones. The one-factor- 
at-a-time approach is applied, which changes one parameter and keeps 
other parameters at the baseline. 

The changes in parameters have marginal impacts on the total cost of 
both strategic and operational level scenarios (Fig. 7). Changing the 
shipment distance, bunker price, and electric price by 10% influence the 
total cost by<2%. Changing the ambient temperature by 50% influence 
total cost by<3%. Thus, the total cost is insensitive to the changes in 
these parameters. This is because these parameters only influence the 
direct ocean cost of the main engine, cooling cost, and in-transit ripening 
cost, which are only small components of total transport cost. For stra-
tegic level scenarios, the results are robust to the changes of these 

parameters that the total cost of scenario 1 is always higher than that of 
scenario 2. For operational level scenarios, the results are robust to the 
changes in the shipment distance and bunker price; however, the results 
are not robust to the changes in ambient temperature. It has more impact 
when the speed is lower. Considering the trade-offs between fuel con-
sumption of the main engine and cooling, the results show that sailing 
speed of 16 knots instead of 14 knots realizes the lowest ocean transport 
cost when the ambient temperature is 45℃. Thus, when the temperature 
difference between the inside and outside of the container is larger, 
there is a trade-off. In addition to ambient temperature, the setpoint 
temperature also plays a role in determining the temperature difference. 
This implies for cold, chill, and frozen products, – which have much 
lower setpoint temperature than bananas – this trade-off should be 
considered when deciding the sailing speed. Previous research also 
shows this trade-off by modelling the transportation of chilled and 
frozen products from South America to Europe (Cheaitou & Cariou, 
2012). Furthermore, shipment distance has more impact on the total 
cost when the speed is higher which is due to the stopover at Manzanillo 
Mexico in the supply chain we consider. Therefore, in practice, tran-
shipment time at the ports along the way should be considered when 
deciding the sailing speed. 

The impact of changes in the parameters on the total emission is 
bigger than that on the total cost, except for the emission factor of 
electricity (Fig. 8). This is because electricity is used for cooling in the 
terminal and ripening at the ripening centre, which accounts for a very 
small part of the total emission. For all scenarios, changing the shipment 
distance and emission factor of heavy oil fuel by 10% influence the total 
emission by around 8%. Changing ambient temperature by 50% has an 
impact on the total emission of strategic scenarios by around 20%, and 
on that of operational scenarios by around 20%-40%. This is because 
ocean transport emission accounts for around 70%-80% of the total 
emission in this case. Furthermore, unlike ocean transport cost – for 
which the main component is the fixed cost including port fee, rental, 
etc. –, there is no fixed part in ocean transport emission. Direct emission 
of the main engine and cooling emission are both important components 
in ocean transport emission. Therefore, changing the parameters have a 
relatively large impact on total emission. Although the total emissions 
are more sensitive to the changes in these parameters, the results are 
robust comparing between scenario 1 and scenario 2. For operational 
level scenarios, the results are quite similar to the cost results. When the 
speed is 16 knots and the ambient temperature is 45℃, the total emis-
sion is the lowest. 

Fig. 9 shows the sensitivity analysis results of quality. Only the 
changes in the shipment distance have impacts on the a* value and 
waste. The changes have more impact when the sailing speed is lower. 
This is because ocean time changes more when the speed is lower 
considering the same change in the shipment distance. Since the a* value 
has a linear relationship with the transit time, there is more impact on 
the a* value when the speed is lower, and consequently, the impact on 
waste is larger. Nevertheless, the results are robust that there is more 
waste when the speed is lower. 

To conclude, changing the parameters does not influence the results. 
The in-transit ripening system still has advantages over the post- 
transport ripening system in terms of cost and emission. In practice, 
shipping lines, like Maersk, have already invested in intelligent con-
tainers and remote container management systems. It is important to use 
the information collected and shared by intelligent containers to realize 
quality control along the cold chain. In addition to the potential 
reduction in the cost of cold chain operations, shippers and trading 
companies can also have better control and visibility over the cargo 
flows. For the slow steaming strategy, the trade-off between the direct 
cost/emission and the cooling cost/emission highly depends on the type 
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of products. The set-point temperature of bananas is relatively high (13 
℃). Thus, the difference between the inside and outside temperatures of 
a reefer is relatively small, and accordingly, the cooling is a relatively 
small part of the total cost and emission. For other types of products, e. 
g., cold chill (0 ℃ to + 1 ℃) and frozen products, the cooling cost/ 
emission would be much higher. Then, there is a potential trade-off 
between the direct cost/emission and cooling cost/emission. Further-
more, the rate of quality decay for different products is different. For 
instance, frozen products are less sensitive than chilled foods (Aung & 
Chang, 2014). Therefore, the case study results of the banana supply 
chain is not immediately generalizable to other cases. Yet, the presented 
ABS model is designed in a modular way. Decision-makers can 
customize the model to other cases and evaluate for other types of 
products whether it is beneficial to apply the slow steaming strategy. 

Conclusions 
In this paper, an agent-oriented simulation framework is developed 

for cold chain design to trade off objectives of a cold chain, viz., oper-
ational cost, CO2 emission, and product quality. The framework specifies 
the model content, design variables, inputs, and outputs. To illustrate 
the simulation framework, a case study of a global banana supply chain 
is discussed. In the numerical study, we especially looked into the in- 
transit quality management system and the slow streaming strategy. 
For the in-transit quality management system, it can be concluded that 
the system could optimize the operational costs and CO2 emission by (1) 
eliminating operations at the ripening centre and (2) requiring less en-
ergy during transportation; however, the banana quality might be 
harder to control due to the stochastic process time. Furthermore, our 
study shows in such a configuration of a banana supply chain, only when 
the ambient temperature is very high, there is a trade-off between the 
fuel consumption of the main engine and refrigeration. In most cases, the 
lower speed is favourable in terms of cost and emission. However, the 
results reveal a trade-off between total cost/emission and product 
quality. The quality of bananas declines with the decrease of sailing 
speed. 

The theoretical implications of this study include the following 
aspects. Firstly, the ABS developed in this research is capable to eval-
uate the influence of different scenarios (on both strategic and opera-
tional level) on total logistics cost and emission as well as the quality of 
perishable products, and reveal the trade-offs. Previous research fo-
cuses mainly on the performance of cost and emission (Banasik et al., 
2018; Holmgren et al., 2012); however, quality loss and waste are 
highly relevant aspects to the performance of a cold chain in addition 
to logistics cost and emission. Secondly, the study models the main 
actors and the detailed logistics processes in global cold chains, which 
can be considered as a response to the previous literature by addressing 
the needs to model the upstream processes including reefer logistics, 
especially the port and port-hinterland operation (Fikar, 2018; 
Namany et al., 2020). By modelling different actors and detailed pro-
cesses, problems in cold chains can be revealed. For instance, model-
ling the detailed port operation at the destination shows the queueing 
problem, which reveals the potential quality management issue of the 
in-transit ripening system and the importance of determining the in- 
transit ripening time. When the details are modelled, the simulation 
running time needs to be considered. In this research, the simulation is 
run with a 2.8 GHz Intel Core i7 computer with 8 GB RAM. For each 
replication, the running time is around 5 min. Running multiple rep-
lications for different scenarios is time-consuming. Therefore, the level 
of detail should be considered before the modelling (maybe with expert 
consultation). Thirdly, an important advantage of ABS is the modular 
structure, which enables an adjustment of the model (Holmgren et al., 
2012). To develop a more generic framework for cold chains, a library 
of different models for (dynamic) behaviours of agents and for per-
formance indicators of different products would facilitate the 

simulation of different cold chains. Fourthly, in this research, decision- 
makers are assumed to use decision rules. It is possible to model 
decision-making in other ways, e.g., making optimal decisions 
(Holmgren et al., 2012). In this way, optimization models can be in-
tegrated with the ABS framework. The use of ABS enables a simu-
lation–optimization loop for the optimization of behaviours of 
decision-makers (Humann & Madni, 2014). It would also be possible 
to consider that agents learn from experience and improve their 
behaviour over a longer period of time. 

The practical implications include the following aspects. Firstly, the 
trade-off between the fuel consumption of the main engine and cooling 
is highly dependent on the type of products and ambient temperature 
during transportation and storage. As our numerical study only holds for 
a banana supply chain with specific characteristics, drawing a general 
conclusion requires caution. The simulation model is generic, which is 
able to model other cases by changing the cold chain configuration and 
parameters. Of course, it might be necessary to customize the computer 
model for new specific cases. Secondly, with the development of 
monitoring technologies and quality models, shippers are able to predict 
the quality changes under different environmental conditions, which 
allow quality control (e.g., ripening) along the chain (Jedermann et al., 
2017; Van Der Vorst et al., 2007). A reshaping of the cold chain 
configuration might also be needed accordingly. 

This research is limited by the assumptions made during the 
modelling. For simplification, only the reefer flows are modelled; how-
ever, other flows may be handled by the same actors/resources, such as 
for berth allocation, (un)loading, and the customs control process. For 
future research, other container flows with dry cargo should be included 
to make the model more realistic. Another limitation of this research is 
that factors such as the probability of spontaneous ripening and the 
possibility of hot spots to emerge among palletized bananas in reefers 
are neglected. These are crucial factors for product quality estimation, 
especially for the in-transit quality management system (Jedermann 
et al., 2014). For future research, using spatial temperature models, such 
as the model developed by Jedermann, Geyer, Praeger, and Lang (2013) 
would result in more accurate quality prediction. In addition, in this 
research, the in-transit ripening time is determined based on the average 
throughput time. The stochasticity of process time, especially the 
queueing during terminal operation, is not considered for in-transit 
ripening time calculation. For future research, for the in-transit quality 
management system, it is important to develop a model to estimate the 
stochastic process time and queueing time more accurately to better 
define the ripening time during ocean transportation, which would help 
deliver bananas with better quality at the importer’s DCs. Furthermore, 
other types of products could be further investigated to find the trade- 
offs between fuel consumption of the main engine and refrigeration, 
as well as the quality. 
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Appendix A. Parameter setting 

(See Tables A1 and A2) 

Appendix B. Paired-t confidence intervals 

(Tables B1-B6) 

Table A2 
Parameters.  

Parameters Value Unit Source/reference 

Number of pallet in reefer 20 pallet (Fan et al., 2019) 
(Un)packing cost 16.8 €/pallet (Fan et al., 2019) 
Truck cost (main engine) at origin 2.36 €/km (Osborne, Pachon, & Araya, 2014) 
Truck cost (main engine) at destination 1.74 €/km (Fan et al., 2019) 
Barge cost (main engine) 0.70 €/km (Fan et al., 2019) 
Vessel cost (main engine) 0.24 €/km (Notteboom & Vernimmen, 2009) 
Fixed ocean transport cost (crew, container rent, port fee) 1390.78 €/container (Notteboom & Vernimmen, 2009) 
Hinterland distance (origin) 150 km (Jedermann et al., 2014) 
Hinterland distance to DC 1 (destination) 283 km This study 
Hinterland distance to DC 2 (destination) 292 km This study 
Hinterland distance to DC 3 (destination) 316 km This study 
Ocean transport distance 13,720 km (sea-distance, 2020) 
Vessel arrival time deviation Mean: 21Standard deviation: 18 hour (Hasheminia & Jiang, 2017) 
Diesel price (fuel for truck/barge) 1.408 €/litre (Global petrol price, n.d.) 
Bunker price (fuel for vessel) 450 $/ton (Notteboom & Vernimmen, 2009) 
Container terminal handling cost 50.0 € (Fan et al., 2019) 
Terminal storage cost 0.94 €/hour (Fan et al., 2019) 
Electric price 0.22 €/kWh (Fan et al., 2019) 
Fuel consumption of (un)packing 1.4 litre (Fan et al., 2019) 
Fuel consumption of truck (main engine) 0.4 litre/km (Fan et al., 2019) 
Fuel consumption of barge (main engine) 0.09 litre/km (Wiegmans & Konings, 2015) 
Fuel consumption of vessel (main engine) 0.051 litre/km (Notteboom & Vernimmen, 2009) 
Electric usage of container terminal handling 0.74 kW (Geerlings & Van Duin, 2011) 
Emission factor of CO2 per kWh electric 0.52 kg/kWh (Geerlings & Van Duin, 2011) 
Emission factor of CO2 per litre diesel 2.65 kg/litre (Fan et al., 2019) 
Emission factor of CO2 per litre heavy oil fuel 2.85 kg/litre (Notteboom & Vernimmen, 2009) 
Surface of the container 135 m2 This study 
Surface of the ripening centre 270 m2 This study 
Heat transfer coefficient 0.0007 kW/m2/℃ (Stellingwerf et al., 2018) 
Coefficient of performance 1 – (Tassou, De-Lille, & Ge, 2009) 
Electric energy one unit fuel 8.8 kWh/l (Stellingwerf et al., 2018) 
conversion efficiency from chemical energy of the fuel to electrical energy 0.3 – (Stellingwerf et al., 2018) 
Information exchange time 1 h (Bakshi, Flynn, & Gans, 2011) 
(Un)packing time at DCs 10–20 min/container (Burdzik, Ciesla, & Sladkowski, 2014) 
(Un)loading and stacking time 5–10 min/container (Evers & De Feijter, 2004) 
(Un)plugging time 50–70 min/container (Hartmann, 2013) 
Customs scanning time 20 min/container (Bakshi et al., 2011) 
Ocean transport time 15 day (Maersk Line, 2020) 
Barge speed 8–16 km/h (Navigate, n.d.) 
Truck speed (destination) 60–84 km/h (Stellingwerf et al., 2018) 
Truck speed (origin) 35–40 km/h Google map 
Ambient temperature (origin and ocean) 30 ℃ This study 
Ambient temperature (destination) 20 ℃ This study 
Average inflation rate 1.7 % (Trading Economics, 2020)  

Table A1 
Weekly demand pattern (Haass et al., 2015).  

Average volume (container) Standard deviation Max Min 

23.125 3.72 30 20 
9 4.17 15 3 
28.125 5.00 35 20 
1.125 0.35 2 1 
8.5 3.51 15 5 
4.75 1.98 8 2 
15.5 2.67 19 11 
1.125 0.35 2 1 
1 0.00 1 1 
4.5 2.00 9 3  

Table B1 
Six confidence intervals comparing ocean cost of different shipment speed 
(overall confidence = 95%).  

Speed 
(knot) 

16 18 20 22 24 26 

14 − 13.97, 
− 13.00 

− 40.10, 
− 39.09 

− 80.79, 
− 79.56 

− 139.03, 
− 138.08 

− 213.72, 
− 212.82 

− 328.49, 
− 327.48 

16  − 26.44, 
− 25.77 

− 67.11, 
− 66.26 

− 125.60, 
− 124.53 

− 200.21, 
− 199.34 

− 314.13, 
− 314.02 

18   − 41.09, 
− 40.07 

− 99.43, 
− 98.50 

− 174.13, 
− 173.21 

− 288.72, 
− 288.06 

20    − 59.02, 
− 57.74 

− 133.65, 
− 132.53 

− 248.35, 
− 247.26 

22     − 75.26, 
− 74.15 

− 189.93, 
− 188.92 

24      − 115.21, 
− 114.22  
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