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A B S T R A C T

Deep learning (DL) is appearing as a powerful tool for spectral data modelling. In many cases, the DL models have
been shown to outperform the classical chemometric spectral data modelling approaches. However, a main
challenge with the DL models is the limited model interpretability as there are no scores and loadings generated in
DL models. Scores and loadings are key parts of chemometric modelling as they facilitate the interpretation of the
models. Furthermore, most of the time in the reported literature, the performance of DL models is compared with
basic chemometric approaches with less attention being paid to optimizing these chemometric models. This study
aims to test the hypothesis that proper chemometric modelling of spectral data can lead to performance equiv-
alent to that of DL models while having all the useful information such as scores, loadings, and regression co-
efficients to support model interpretation. To test this, a case study is presented for the prediction of nitrogen
content in rapeseed (Brassica napus L.) by Vis-NIR spectroscopy. On the classical chemometric side, two recently
developed pre-processing fusion approaches, i.e. sequential pre-processing through orthogonalization (SPORT)
and parallel pre-processing through orthogonalization (PORTO) were used. On the DL side, the previously pub-
lished with DL modelling results for the same data set were used as the benchmark. Such a comparison was valid
as the chemometric analysis was performed on the same calibration and test sets as used previously for the DL
modelling. Results showed that the sequential and parallel learning approaches attained the same accuracy as that
of the previously reported DL procedure on the same data set. The information related to scores, loading and
regression coefficients could be used for model interpretation.
1. Introduction

Deep learning (DL) is starting to appear as a powerful tool for spectral
data modelling [1–3]. Currently, two DL approaches exist for spectral
predictive modelling; the first is the supervised approach using con-
volutional neural networks (CNNs) with fully connected layers [2–5] to
model the property of interest, while the second approach uses unsu-
pervised feature extraction, such as autoencoders, which are then used to
calibrate machine learning models [6–8]. In many cases, DL models have
outperformed classical chemometric spectral data modelling approaches
such as partial least-square (PLS) regression [6–8]. However, a main
problemwith DL models is the limited model interpretability since scores
and loadings are not generated [2]. Scores and loadings are key parts of
chemometric modelling as they facilitate the interpretation of the models
a).
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[9,10]. Furthermore, most of the time in the reported literature, the
performance of DL models has been compared with basic chemometric
approaches with less attention being paid to optimizing the chemometric
models [6–8].

Visible and near-infrared (Vis-NIR) spectroscopy is widely used in
remote sensing of agricultural systems [11,12]. Applications can be
found ranging from close-range greenhouse and field spectroscopy [13]
to high-end satellite imaging [14,15]. The main reason for the use of
Vis-NIR spectroscopy is the possibility to extract information on the
physicochemical properties of plants in a non-destructive way [16]. The
interaction of electromagnetic radiation with plants, and particularly
with leaves, varies with the wavelength [17], resulting in two main
phenomena, i.e. light scattering, and absorption [11]. Due to the scat-
tering and absorption phenomena, the measured Vis-NIR signals of leaves
ay 2021
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Table 1
A summary of calibration and test sets used both here and in the original study
[8].

Data Spectral range
(nm)

Spectra (Samples �
wavelengths)

Nitrogen content (%)
(mean � std)

Calibration 380–1020 128 � 512 4.62 � 1.03
Test 380–1020 64 � 512 4.63 � 0.99
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often have a mixture of scattering as additive and multiplicative effects
combined with the broad absorption peaks related to overtones of
functional group vibrations [11,18]. To develop models to predict
chemical properties, it is often recommended to reduce or remove the
light scattering effects from the signals so that the models can be focussed
on the absorption information [13,18,19]. In the field of chemometrics,
several scatter correction techniques are available and often imple-
mented prior to regression modelling [20]. However, focussing the
modelling solely on the scatter-corrected data in the case of leaves may
not be an efficient approach since the overall spectral signal of leaves is
affected by the internal structure [11]. This means that there may exist
extra correlations in the scattering information which may be useful to
explain the property of interest. Hence, a synergistic modelling of the raw
reflectance spectra (with scattering) and the scatter-corrected reflectance
spectra can allow the full use of all the information present in the data,
i.e. both the scattering and the absorption features.

A DL model does not make a clear distinction between absorption and
scattering features, it will feed the data into a non-linear model to learn
the patterns automatically. On the other hand, for the chemometric
modelling, it is important to optimize the model with respect to the ab-
sorption and scatter information present in the spectra. This indicates
that the comparison previously performed between DL modelling and
raw reflectance-based PLS regression modelling for leaf properties pre-
diction [6,8] may have been sub-optimal and a proper chemometric
modelling approach could lead to the same performance as the DL
models.

This study aims to test the hypothesis that proper chemometric
modelling of spectral data can lead to performances equivalent to those
of DL models while retaining all the useful information such as scores,
loadings, and regression coefficients that facilitate model interpretation.
To test this, a case study is presented for the prediction of nitrogen
content in rapeseed (Brassica napus L.) by Vis-NIR spectroscopy. On the
classical chemometric side, two recently developed pre-processing fusion
approaches were used, i.e., sequential pre-processing through orthogo-
nalization (SPORT) [21] and parallel pre-processing through orthogo-
nalization (PORTO) [22]. On the DL side, the DL modelling results
previously published on the same calibration and test data sets were used
as a benchmark [8].

2. Materials and methods

2.1. Data set

The data set used in this study was first presented in Ref. [8] and
consisted of 192 mean Vis-NIR (380–1030 nm) hyperspectral signals of
rapeseeds (Brassica napus, Zheyou51). According to the original article,
the plants were grown in an experimental field located in Ningbo, Zhe-
jiang, China (30.32�N, 121.18�E) and were given four nitrogen level
treatments including no nitrogen, or 100, 200 and 300 kg/ha, using urea.
Eight experimental plots of 2.0 m � 1.5 m were used, with two plots for
each nitrogen level. Leaf sampling was carried out before the ripeness
stage on 12 February, 9 March, 22March, 8 April, and 26 April 2016. The
collected leaves were then used for hyperspectral data acquisition and
reference chemical analysis of nitrogen concentration within 4 h. The
hyperspectral data acquisition was performed with a Vis-NIR imaging
system consisting of a spectrograph (380–1030 nm) and a CCD camera.
Line scan data acquisition was performed at a constant speed of 4.5 mm
s�1 and an exposure time of 16 ms. After hyperspectral data acquisition,
the leaves were oven-dried at 105 �C for half an hour, and then ground
into a powder which was used to measure nitrogen concentration by the
Kjeldahl method.

In this study, the calculated mean spectra and the reference N values
were used for the data modelling. The mean spectra were supplied as the
supplementary material to the article [8]. Out of the 192 samples, 128
samples were used for model calibration and tuning, and 64 for the in-
dependent test set. The calibration and the testing sets were the same as
2

those used in the original article so that the results of the present study
will be directly comparable to those obtained previously with several
machine learning and deep learning techniques [8]. A further description
of the calibration and test set is provided in Table 1.
2.2. Pre-processing fusion modelling techniques

Ensemble approaches to spectral data modelling are gaining popu-
larity in chemometrics [23]. A particular use of ensemble methods is to
process the same data with different pre-treatments and learn comple-
mentary information [20]. Two approaches that are currently available
are SPORT [21] and PORTO [22]. The SPORT approach is based on
sequential orthogonalized PLS regression and PORTO is based on parallel
orthogonalized PLS regression. For an intuitive understanding, a sche-
matic explaining the concept behind SPORT and PORTO modelling is
shown in Fig. 1. In the case of leaves, the SPORT approach can be used to
sequentially learn unique complementary subspaces from the raw
reflectance and the scatter-corrected reflectance spectra. The PORTO
approach for leaf modelling can be implemented to extract the common
and unique subspaces of the reflectance and scatter-corrected reflectance
spectra that explain the properties of interest. For more information on
the SPORT and PORTO approaches, readers are referred to Refs. [21,22].
In the present work, three commonly used scatter correction techniques
were selected. One technique requires estimation of external parameters
i.e., weights for each wavelengths (variable sorting for normalization
[24]) and two are model-free (standard normal variate [25] and 2nd
derivative [26]). After processing the data with the three pre-processing
techniques, a total of four data blocks were available for SPORT and
PORTO analysis, one raw reflectance and three pre-processed data
blocks.

All the pre-processing methods and SPORT modelling were imple-
mented in MATLAB 2018b (The Mathworks, Natick, MA, USA) using the
MBA-GUI [27]. PORTO was implemented in MATLAB 2018b using the
multi-block data analysis codes from Nofima (https://nofima.no/en/) for
the implementation of the parallel orthogonalized partial least-squares.
All the models were evaluated based on the coefficient of determina-
tion (R2

P) and the root mean square error of prediction (RMSEP).

3. Results

3.1. Spectral characteristics

The spectral characteristics for rapeseed leaves are shown in Fig. 2.
The calibration and test spectra are shown in solid blue lines and dotted
red lines, respectively. The spectral range of 400–670 nm is the visible
part of the spectrum and is related to pigments such as chlorophyll, ca-
rotenoids, and anthocyanins. The sharp rise in the reflectance between
670 nm and 750 nm is the red-edge part, after which the cellular struc-
ture of the leaves reflects most of the light, which avoids overheating of
the plants. The region after 750 nm is related to the overtones of the
fundamental vibrations of chemical bonds such as OH, NH and CH. In
leaves, these bonds are present in molecules such as water, sugar, pro-
tein, and other minor biochemical components. Typically, chlorophyll
and several other chemical components containing nitrogen, such as
amino acids, are correlated with the nitrogen content in the leaves. Vis-
NIR spectroscopy does not supply a direct quantification of the physi-
cochemical components but requires a prior calibration modelling to be

https://nofima.no/en/


Fig. 1. Framework of sequential (A) and parallel (B) preprocessing fusion. The sequential approach aims to extract complementary information one by one from each
differently scatter-corrected data block. The parallel approach aims at finding the common and the distinct information within differently scatter-corrected
data blocks.

Fig. 2. Spectral characteristics of rapeseed for calibration (blue) and test set
(red). (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 3. Summary of the sequential pre-processing through orthogonalization (SPORT)
Number of latent vectors extracted from raw reflectance (1st data block), standa
normalization pre-processed data (3rd data block) and 2nd derivative pre-processe
reflectance and 3 from the 2nd derivative. (B) SPORT predictions, and (C) PORTO p
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able to predict the components in future samples. The spectra have dif-
ferences in global intensities, caused by the light scattering. In chemo-
metrics, such differences in global intensities are classed as additive and
multiplicative effects [20,28,29] and dedicated pre-processing methods
try to reduce/remove these global differences so as to focalise the data
modelling on absorption peaks.
3.2. Sequential and parallel information learning for nitrogen prediction

The results of the sequential and parallel learning approaches are
shown in Fig. 3. The sequential approach, i.e., SPORT, found comple-
mentary information in the raw reflectance and the 2nd derivative-
corrected reflectance. The SPORT modelled 4 latent variables from the
raw reflectance and 3 latent variables from the 2nd derivative-corrected
reflectance (Fig. 3A). Both SNV and VSN found zero latent variables,
hence did not contribute to the final model. This shows that the removal
of information from the spectra by normalization is detrimental to the
prediction of nitrogen content. In the case of PORTO, the optimal models
were obtained by modelling 3 common latent variables (common be-
tween raw reflectance and the different scatter correction techniques)
and 1 distinct component for raw reflectance. The choice of a distinct
component for raw reflectance data shows that the raw reflectance
carries unique information which is not present in the data after scatter
correction. This unique information can be none other than the scattering
and the parallel pre-processing through orthogonalization (PORTO) models. (A)
rd normal variate pre-processed data (2nd data block), variable sorting for
d data (4th data block). In total, SPORT modelled 4 latent variables from raw
redictions.
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profiles of the leaves which would appear to be correlated in some way to
the nitrogen content. With both the SPORT and PORTO approaches, the
prediction R2

P was 0.90 and the RMSEP was 0.31%. These results are
better than those obtained in the original study on the same calibration
and test sets by PLS regression (prediction R2

P and RMSEP were 0.85 and
0.38%) and by LS-SVM regression (prediction R2

P and RMSEP of 0.88 and
0.35%). As well, they are equivalent to those obtained in that article by
the Deep Learning approach (R2

P and RMSEP of 0.90 and 0.31%). This is
of particular interest since the SPORT and PORTO approaches are
simpler, using linear algebraic operations, thus saving time and resources
for training the deep learning models. The other main benefit of the
SPORT and PORTO approaches compared to the deep learning model
(based on stacked autoencoders and a fully connected neural network) is
that these techniques give all the usual multivariate data analysis out-
puts, such as loadings, scores and regression vectors which facilitate the
spectrochemical interpretation of the models as shown in the following
section.

3.3. An example of complementary learning from raw reflectance and
scatter corrected reflectance

The optimal model with the SPORT approach was obtained by
modelling 4 latent variables from the raw reflectance and 3 latent vari-
ables from the 2nd derivative corrected reflectance. The main point to be
noted is that SPORT being a sequential approach, it first modelled the
raw reflectance and afterwards explored the scatter-corrected data to
search for any extra information correlated to the nitrogen content in the
rapeseed leaves. Fig. 4A shows the regression coefficients of the raw
reflectance block, superimposed on the mean spectrum of the block. The
same peaks as in the PLS regression analysis performed in Ref. [8] have
positive correlations (530, 700, 750 nm) and negative correlations (670,
720, 790 and 840 nm). This is as was expected since the first step of
SPORT is just the PLS regression on the raw reflectance data. In addition
to the peaks reported in this publication, it should be noted that the peak
at 530 nm is characteristic of the green color, which in reflectance is
closely related to the nitrogen content [30]. Note also that there is a
trough at 661 nm, a peak at 695 nm and again a trough at 716 nm, which
reflect two phenomena: the intensity of chlorophyll absorption at 680 nm
and the shift of the red-edge, which is around 715 nm [31]. Fig. 4B shows
the regression coefficients for the second derivative block, superimposed
Fig. 4. The complementary B-coefficients vectors obtained by sequential pre-
processing through orthogonalization, superimposed on the mean spectrum,
from raw reflectance (top) and 2nd derivative pre-processed reflec-
tance (bottom).
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on the mean spectrum of the block. The raw spectra show waves (Fig. 2),
certainly due to an acquisition problem. Therefore, the derivative spectra
present small peaks that are not related to leaf chemistry. However, the
largest peaks remain interpretable. Thus one can notice in the b-co-
efficients a succession of a positive peak near 680 nm, a negative peak
near 705 nm and a positive peak near 720 nm. This profile shows that the
regression is sensitive to the intensity of the positive peak of the second
derivative at 700 nm. This peak is related to the curvature of the foot of
the red-edge. This curvature is caused by the presence of the chlorophyll
trough at 680 nm and the red-edge, whose position varies between 710
and 720 nm [31], which also varies with the chlorophyll content, and
therefore nitrogen, as seen previously. It should be noted that here the
SPORT method has allowed the extraction of complementary informa-
tion from the two blocks: the chlorophyll absorption and the position of
the red-edge in the raw reflectance block, and the intensity of the red
edge in the second derivative block. There is no peak centered at 680 nm
in the coefficients related to the 2nd derivative block, which would have
been the case if the information extracted from this block was related to
the chlorophyll absorption.

4. Discussion

In this study, linear methods such as SPORT and PORTO achieved
predictive performance like that of the non-linear DL modelling per-
formed in Ref. [8]. The underlying assumption behind spectral modelling
is Beer's law [32] which considers that the amount of light absorbed is
directly proportion to the concentration of the analyte [33]. Hence, ac-
cording to Beer's law [32] a pure absorbance signal measured on the
sample can be related to the concentration of the corresponding analyte.
However, in a practical scenario this is unachievable as the signal
measured by the spectrometer consists of a mixture of light scattering and
absorption bringing non-linearities into the signal [20]. In the case of
many classical chemometric procedures, the linearity can be recovered
by reducing/removing the scattering information by spectral
pre-processing and retaining only the absorption information which is
linearly related to the concentration of the analyte [20]. However, in
some cases both the scattering and absorption information are related to
the property of interest, as for example in the demonstrated case of leaf
nitrogen measurement, where both the scattering due to the internal
structure of leaves and the absorption due to N-containing chemical
components are related to the total N content in the leaves. It is of no
surprise that the DL modelling carried out in Ref. [8] was able to deal
with the non-linearity caused by mixed scattering and absorption infor-
mation while a simple PLS (without any pre-processing) applied to the
raw data performed poorly [8]. In more general terms, in the case pre-
sented here of leaf property modelling, the underlying mathematical
relationship (linear or non-linear) between input and output information
was unclear, hence, the DL was able to take advantage of its flexibility to
adjust a model according to the data, resulting in a better performance
than the PLS modelling on raw data alone. The case would have been
different if the relation between input and output had been linear, since
in that case, the DL modelling would have performed similarly to the PLS
model. However, as demonstrated in this study, the same linear PLS
when complemented by pretreatment procedures such as SPORT and
PORTO can achieve the same performance as the DL presented in
Ref. [8]. The main contribution of SPORT and the PORTO in this study
was to allow the PLS to learn the specific information present in the raw
as well as differently pre-processed data, which otherwise was not
possible with a simple PLS.

In the chemometric modelling performed in this study as well the PLS
modelling in the previously reported study [8], only 192 mean Vis-NIR
spectra and reference properties were used. However, the DL model-
ling performed in Ref. [8], utilised at first 800 spectra per leaf i.e., 192�
800 ¼ 153; 600 spectra, to train the primary autoencoder for feature
extraction. Subsequently, the autoencoder was used to extract the fea-
tures from the 192mean spectra and to train the neural networkmodel. It
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cannot be said how the PLS reported in Ref. [8] would have performed if
it had been trained on 153;600 spectra instead of 192 mean spectra;
however, the PLS reported in Ref. [8] had comparable performance to the
DL model while being trained on a data set 800 times smaller. Further-
more, in this study, the SPORT and PORTO model trained on only 192
mean spectra performed similarly to the DL model trained on 153;600
spectra. In DL modelling, the data size plays a key role in extracting
complex mathematical relationships and several recent studies have
shown that for spectral modelling can indeed outperform traditional
chemometric approaches such as PLS [34] and even advanced ap-
proaches such as SPORT [35]. This is because, in the presence of a large
amount of data, the DL model not only learns the relation between the
input and output but also learns the hidden trends and patterns in the
data which can make the model more robust and precise.

In this study, a key focus of the advantages of classical chemometric
modelling over the DL modelling presented in Ref. [8] was the inter-
pretability of the models. For example, with the SPORTmodelling, all the
scores, loading and regression vectors were available to facilitate the
interpretability of the PLS model, while in Ref. [8] model interpretability
was not discussed, and the main aim was to achieve a low RMSEP. To
some extent, DL models can also be interpreted but the interpretation
provided by the chemometric models such as PLS is incomparable with
that of DL models. For DL model interpretation and in particular the
visualisation of spectral CNN models, several authors have recently tried
to visualise the activation weights of the CNN layers [2,34,35] which can
give an insight into the important spectral regions as they have higher
weights than the unimportant regions after the passing through the CNN
layers [2,34,35]. Furthermore, with the recent advances in the DL ap-
proaches such as grad-CAM [36] and attention layers [37], it is expected
that the interpretability of the DL models will further improve with time.

One key point to note is that both the SPORT and PORTO modelling,
as used in this study, required optimisation of the total number of latent
variables. For SPORT, the number of LVs was optimised for each block of
data, while for PORTO, the total number of both common and shared LVs
was optimised. Hence, based on the 4 data blocks used, the SPORT
required optimisation of 4 parameters i.e., LVs corresponding to 4 data
blocks, while for the PORTO only 2 main parameters i.e., common, and
shared LVs were optimised. However, in the previous DL modelling [8],
the total number of parameters was far greater compared to both SPORT
and PORTO. Such a huge number of parameters in DL modelling carries
an elevated risk of overfitting and requires extensive hyperparameter
optimisation to achieve optimal models [34]. Hence, a key benefit of
these classical chemometric approaches, apart from achieving similar
predictive performance to DL models, is the low number of parameters to
be optimised, which can usually be done in a fraction of the time and
limits the risk of overfitting.

5. Conclusions

The calibration modelling of Vis-NIR spectra of leaves has for a long
time been limited to either the use of traditional machine learning ap-
proaches or to PLS regression approaches applied to either the raw or
scatter-corrected data. Recently deep learning approaches have been
proposed with improved performances compared to the standard che-
mometric approaches. However, those DL models were compared with a
basic chemometric approach such as PLS regression on raw data. In this
study, for the first time two new chemometric approaches, SPORT and
PORTO, for synergistic sequential and parallel learning from raw
reflectance and scattering-corrected reflectance are presented. The
application of these two approaches to rapeseed leaves for nitrogen
prediction showed that they both reached the same accuracy as that
obtained with the DL modelling on the same data set. Furthermore, the
SPORT and PORTO scores, loadings and regression vectors could be
interpreted to make a link with the plant biochemistry. As well, both the
5

PORTO and SPORT approaches are based on simple linear algebraic
operations, and hence are faster and require less computational re-
sources. A key point to note is that the data set used in this study has only
192 mean spectra to calibrate and test the model, while the earlier study
based on DL modelling utilised 153; 600 spectra. Hence, a conclusion to
be drawn from this is that both chemometric approaches i.e., SPORT and
PORTO, led to similar performance as that of the DL model, despite being
trained on a data set 800 times smaller.
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