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A B S T R A C T   

Separation processes are of utmost importance for most industrial processes in the chemical, food, and pharma 
sectors. Electrochemical separation technologies gain more and more attention especially for the desalination of 
water, as they potentially lead to a reduction in the environmental footprint of the process. For salt, many 
different electrochemical desalination architectures and electrode designs have been proposed. Also other target 
molecules have been investigated, such as carboxylates, amino acids, proteins and whole cells. We note that the 
efforts are still scattered; therefore in this review we bundle and summarize the technological state of the art, and 
the application possibilities for capacitive as well as faradaic separation technologies for various targets. From 
this it is clear that there are still a lot of options that have been underused so far, and that electrochemical 
separation processes are key for the separation processes needed for a sustainable future.   

1. Introduction 

Numerous separation methods such as precipitation/crystallization, 
extraction, adsorption, and membrane filtration have been developed 
for purification of valuable products from liquid streams, or removal of 
impurities [1]. Based on theoretical evaluations, adsorptive separation is 
most efficient for the removal or isolation of minor components [2] and 
is commonly applied to remove pollutants (e.g. heavy metals) from 
water [3] or to isolate products of high value (e.g. proteins and peptides) 
[4,5]. It is also applied on very large scales, as for example in the sep-
aration of glucose-fructose [6], olefins and paraffins [7] or isomeric 
mixtures [8]. 

During adsorption a target molecule in solution first diffuses across a 
hydrodynamic boundary layer surrounding the stationary solid support, 
possibly followed by diffusion into the support, and finally by ad- and 
desorption to and from this interface [9]. Key factors for the ad- and 
desorption are the polarity and charge of the surface and target molecule 
(Van der Waals, electrostatic, hydration forces), whereas also 
complexation, ion exchange and microprecipitation can play a role [10]. 
Thus, different molecules in the liquid (mobile) phase have different 
affinities for the stationary phase and can either be physi-, chemi- or 
electrosorbed. 

In most cases, adsorption is an exothermic process and desorption is 

endothermic. For ions, typical adsorption energies to an ion exchange 
resin range between 0.6 and 25 kJ/mol, and the heat of adsorption can 
be as low as − 24 kJ/mol [11,12] depending on the charge of the ion and 
the substrate. If the adsorbent is more complex as in the case of proteins, 
multiple contact points in combination with structural rearrangements 
of the molecule lead to heats of adsorption as low as − 1200 kJ/mol at 
initial adsorption [13]. Other sources report binding free energies be-
tween − 20 and − 50 kJ/mol for individual amino acids [14], and 
interaction energies of − 165 up to − 465 kJ/mol for different protein- 
polymer surface combinations [15]. 

Surface interactions can be influenced by the temperature, pH, and 
ionic strength of the solution and for the product release by desorption, 
these environmental conditions need to be changed. In chromatography, 
this requires the use of extreme pH or ionic strengths (e.g. acidic or basic 
solutions or solvents) that may have a negative effect on sustainability of 
the process, and on the quality of the product. Recent innovations in 
“green chromatography” propose the use of stimuli responsive resins, 
that change their physical properties upon the application of other 
external stimuli such as temperature, pH, magnetic- or electric fields to 
improve separation processes [16]. Although this influences the ad- 
desorption part of the process, it does not influence the diffusion part, 
and that can be rather time consuming. In order to accelerate this, an 
additional driving force would be needed such as an electric field. 
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In this review, we focus on the use of an electric field as stimulus in 
adsorptive separation processes, in which either capacitive or faradaic 
currents are used to store charged molecules in the double layer, or 
remove them, or to alter the stationary phase properties. Different 
technologies have been developed that make use of this concept: 
capacitive deionization, electrochemically modulated liquid chroma-
tography (potentiostatic chromatography, elution voltammetry) 
[17–21], electrochemical solid phase (micro)extraction [19,20,22,23], 
and electrokinetic trapping [19] but the available options that could be 
envisioned are far from exhausted with this list. All these processes 
employ a surface to adsorb or immobilize the target molecules, and still 
a lot of progress can be made in terms of modulating the interactions 
occurring close to the surface, either through surface modification, or by 
influencing the interactions that take place at close range. Also, the full 
potential of different applications of these technologies is not tapped 
into yet. With this review we want to demonstrate the diversity of ap-
plications ranging from ions [24–26] to proteins [27–29] and cells [30]. 

To be clear, we exclude permeation based electrochemical mem-
brane techniques such as electro-dialysis, electro-osmosis, electro- 
microfiltration and electrokinetic membrane extraction, and refer 
interested readers through to the following reviews [19,20,23,31–35]. 
Also electrophoretic techniques are not covered [36,37]. 

1.1. Surface interactions acting during electro-adsorptive processes 

Interactions at the solid–liquid interface are key for adsorptive sep-
aration processes and the nature and strength of the interactions depend 
on multiple factors. For ions the dominant factor is the electrostatic 
interaction, but for larger molecules, the DLVO theory suggests that Van 
der Waals and electrostatic interactions are essential, and further hy-
dration forces play a role [38,39]. Especially the latter two are strongly 
influenced by an electric potential applied to the interface, and are 
discussed in the next section. Van der Waals forces will not be covered 
since they are related to the dipole of the molecules in the surface and 
not influenced by the surface potential at low ionic strength [40], and 
thus cannot be used in a cyclic electrically driven adsorption/desorption 
process. 

1.2. The electric double layer and electrostatic interaction energies 

The charge as function of the distance to a charged solid wall is 
generally described with a double layer model. A widely shared view is 

that the double layer consists of a concentrated layer of specifically 
adsorbed ions near the wall called the Stern layer, which becomes more 
diffuse when moving from the wall, and ultimately resembles the bulk 
electrolyte concentration far from the wall (GCS-model; Fig. 1a). 

For solid interfaces that are electrically charged, the current involved 
in building the double layer is referred to as capacitive current: no 
electron is exchanged over the interface; charge is only accumulated 
[41]. The potential drop at an electrode interface can be modelled using 
the Debye screening length, κ1 (Equation (1)) and the Poisson- 
Boltzmann equation (Equation (2)). 
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With a larger surface charge, the potential drop increases (Fig. 2a), 
and expands further. The electrostatic interaction energies between two 
charged plates at a finite distance from each other can be calculated 
using Equation (3). 
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Like charges repel each other, while unlike charges attract each other 
upon approach, indicating the possibility for adsorption and desorption 
between the two plates. In Fig. 2c and d, the repulsion between two 
negatively charged flat plates is shown as a function of the distance D 
between the two plates, for constant potential and constant charge 
boundary conditions respectively. 

Experimental studies to measure the double layer potential with 
open circuit and with applied potential have been done with atomic 
force spectroscopy [43–45]. At the potential of zero force, the size of the 
double layer is minimal but extends if the applied potential is shifted to 
more negative or more positive values, indicating an increase in ion 
storage capacity. Please note that the double layer for semiconductors 
(e.g. ITO) [46,47] is smaller compared to that of conductive surfaces 
such as gold [48–57], stainless steel [58], or pyrolytic carbon [59], since 
most of the potential drop occurs in the semiconductor layer itself [47]. 

In nanoporous materials such as activated carbon (<2 nm), the 
double layer is not fully developed, since the diameter of the pores are 
smaller than the distance over which the potential drops, and therefore 

Fig. 1. Ion storage in a) non-overlapping (Gouy-Chapman-Stern model) and b) overlapping double layers (modified Donnan model). 
Reproduced from [25] 

P.A. Fritz et al.                                                                                                                                                                                                                                  



Separation and Purification Technology 274 (2021) 118754

3

the double layers strongly overlap. In this case the structure can be 
described using the modified Donnan model (Fig. 1b). Further de-
scriptions and summaries about the modified Donnan model can found 
in the following Refs. [25,60,61]. 

1.3. Hydration forces 

As mentioned, hydration forces are important in ad- as well as 
desorption events, especially for macromolecules such as proteins in an 
aqueous environment [62]. Hydration repulsion can be attributed to 
primary, secondary, and structural hydration forces (Fig. 2f), related to 
the water molecules that are directly bound to the interface and/or 
protein molecules, water molecules in ionic hydration shells, and steric 
effects due to the finite volume of the solvent molecules [39,63]. If the 
orientation and density of water molecules at the interface is different 
compared to the bulk distributions, the force to displace a water mole-
cule by an adsorbing target molecule is impacted [64]. At the surface of 
an electrode, the orientation and density of water molecules can be 
influenced by the applied potential [65], and thus ad- and desorption of 
e.g. proteins can be influenced [42]. 

In bulk water, the hydrogen-bonding-to-dispersion-forces have a 
ratio of 70:30, which relates to a contact angle of 63◦. A surface 
exhibiting a lower contact angle is denoted hydrophilic; a surface with a 
higher contact angle is hydrophobic [66]. This implies that hydration 
interactions can be measured using electrowetting [67], in which the 
contact angle is a function of the applied electric potential [66]. Usually, 
the contact angle and the Gibb’s free energy decrease when a potential is 
applied, which implies that the work of water adhesion increases, 
indicative of more hydration repulsion. 

1.4. Capacitive separation processes 

Capacitive separation of ions (Capacitive deionization) 
For ion separation, porous carbon materials are used in capacitive 

deionization (CDI) systems (Fig. 3). The most commonly used system 
contains two carbon electrodes opposite from each other, separated by a 
non-conductive spacer. The feed flows between the two electrodes 
through the spacer (Fig. 3a); while applying constant potential or cur-
rent, charged ions dissolved in the feed are stored in the double layer at 
the electrode interfaces and thus the feed flow is desalinated. For 
regeneration of the electrodes the current or potential is reversed or 

switched off, and the ions are released from the interface generating a 
brine [24–26]. Depending on the carbon material, electrosorption ca-
pacity values range from 0.25 for simple activated carbon to 24.2 mg/g 
in graphene aerogels [68,69] in which nanopores play a crucial role. 

As an extension, CDI in flow-through mode, (Fig. 3 e) [70] or with 
carbon flow electrodes (Fig. 3 h-j) have been developed, and besides 
carbon intercalation materials are currently investigated to boost the 
desalination capability (Fig. 3 f-g). In these materials, ions are captured 
through redox reactions at the interface. Although Biesheuvel et al. [41] 
argue that this can be considered capacitive ion storage (the electro 
composition stays the same, and no electrons are transferred), we follow 
other reviews and discuss intercalation materials in the context of 
faradaic separation processes [71]. 

By inserting ion selective membranes (Fig. 3b) between the elec-
trodes, [72] or coating the electrodes [73], the charge efficiency of flow 
between desalination processes can be improved, and the removal of 
specific ions such as nitrate can be promoted [74–76]. Furthermore, 
successful desalination of more complex feeds such as brackish water 
containing proteins [77] or micro-organisms [78], or even biomass hy-
drolysates containing sugars, organic acids or furans [79] have been 
reported. Besides, ZnCl2 was separated from insulin samples [80] while 
acetic and sulfuric acid was removed from hydrolysate [81]. Further-
more, it is good to mention that CDI technology on larger scale has been 
reported [82]. 

In contrast to conventional CDI in which adsorption takes place due 
to an applied potential or current, in inverted CDI, modified electrodes 
with additional surface charges (anode: net negative; cathode: net pos-
itive) are used to store ions (Fig. 3c). This means that adsorption occurs 
at 0 V [83,84] or the potential of zero charge [85], whereas desorption is 
activated by depolarizing the electrodes electrochemically. This saves 
energy during loading especially at higher solution conductivity, and 
allows for the selective adsorption of specific ions, depending on the 
groups present on the electrodes. For iCDI, in literature carbon materials 
modified with tetraethyl orthosilicate and/or nitric acid [83,84], or 
polystyrene sulfonate [86] have been used to increase the net negative 
charge, and the opposite charge was increased with ethylenediamine 
[84] or poly(diallyldimethyl-ammoniumchloride) [86]. Activated car-
bon electrodes were treated with cetrimonium bromide and sodium 
dodecyl benzene sulfonate for the selective removal of nitrate [87,88]. A 
theoretical overview of CDI desalination systems and the influence of 
chemical surface charges is available from Biesheuvel et al [89]. 

Fig. 2. a (a) Double layer potential (ψ) 
profile as described by the Pois-
son–Boltzmann equation with varying sur-
face potentials (ψ0 between − 0.1 and − 0.02 
V). Inset: Position at which the potential 
drops to 0 V (cutoff: − 5 × 10–4 V). (b) 
Schematic of the ion distribution at the 
electrode interface within the electric double 
layer and related potential profile. (c) Elec-
trostatic interaction energy determined for 
constant potential boundary conditions; the 
gold electrode was held at 0, − 0.2, − 0.4, 
− 0.6, − 0.8, or − 1.0 V, and the silica probe 
was set at − 0.06 V. (d) Constant charge 
boundary conditions were determined using 
Graham’s equation for values between 0 and 
0.041 V nm–1 for the gold electrode and 
− 0.0173 V nm–1 for the silica surface. (e) 
Hydration repulsion for a hydration repul-
sion amplitude between 1 and 30 mJ m–2 

with a decay length of 1.3 nm. (f) Van der 
Waals attraction for a Hamaker constant of 
5.7 × 10–20 J. Reproduced from [42].   
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The efficiency of an inverted CDI process can be further increased by 
inserting ion exchange membranes, possibly in combination with un-
modified and modified activated carbon electrodes (Fig. 3d). The sep-
aration performance of this inverted membrane CDI set up was 
competitive with conventional CDI using the same electrodes [86,90]. 

1.5. Capacitive separation of larger molecules 

Capacitive current can also be used for adsorption of colloids and 
macromolecules (Fig. 4) as investigated using reflectometry, ellipsom-
etry, or surface plasmon resonance equipped with an electro chemical 
cell (as summarized in Table 1). For example the adsorption of polyvinyl 
pyridine [91,92], poly(propylene imine) dendrimer [92], and of poly 
(vinyl imidazole) [56] (positive at low pH) increased with the cathodic 
potential. Thiols could be chemi- or physisorbed onto mercury 
depending on the applied potential [93], and AFM studies revealed 
attractive and repulsive forces at the positive and negative potentials, 
respectively, acting on negatively charged silica particles [57,94], and 
DNA [95]. 

For the adsorption of blood proteins [54,58,59,96–98], lysozyme 
[92,99] and horseradish peroxidase [100] a similar trend was found: the 
adsorption increased with increasing potential relative to the protein 
charge. Desorption was only detected for DNA [101–103] and 

β-lactoglobulin [42]. Difficulties for desorption in other cases were 
mostly related to multiple contact points, effectively rendering the 
adsorption irreversible. Although mostly not considered, for an elec-
trochemical protein separation process, the change in surface tension 
induced by the applied potential due to hydrostatic and electrostatic 
forces was important [42]. A first capacitive protein separation process 
was proposed by Fritz et al. (Fig. 5), ad- and desorption of whey protein 
isolate to and from various electrodes that may carry a polyelectrolyte 
layer could be controlled by an externally applied electric potential. 
Since protein ad- and desorption occurred at opposite potentials 
compared to salt ad- and desorption, this makes this process also useful 
for desalination of proteins (Table 2) [27]. 

1.6. Electrically responsive coatings (capacitive current) 

Capacitive current may be used to trigger conformational changes in 
the surface coating, and thus to indirectly promote the exchange of 
larger molecules [16,104,105]. This was achieved by coating mercapto- 
hexadecenoic acid at low surface coverage to a gold electrode (Fig. 6). At 
negative potential the hexadecenoic acid chain was oriented perpen-
dicular to the surface, whereas upon positive depolarization the 
carboxyl group was directed towards the electrode surface and the chain 
folded upon itself. Hence, the nature of the surface changed from 

Fig. 3. Capacitive deionization technologies ranging from flow-between (a-d, f, g) to flow-through (e) and flow electrode (h-j) set ups, using either capacitive or 
faradic ion storage principles. Modified from [25]. 
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negatively charged to hydrophobic, allowing the separation of strepta-
vidin and avidin with isoelectric points of 5.8 and 10.5, respectively 
[106–109]. The same system was also used to retain and release bacteria 
[110]; and in slightly modified form using a terminal amino group [106] 
as well as positively charged oligolysine peptides instead of the carboxyl 
groups [111]. Zwitterionic phosphorylcholine was theoretically inves-
tigated; the charge ratio between the phosphate and choline group 
shifted as function of applied potential. This may change the interaction 
with Cytochrome c, indicating that ad- and desorption could be possible 
using a potential switch without impacting the structure of the protein 
[112]. Also, multi-component, self-assembled monolayers have been 
tested for cell adhesion, but this adhesion is irreversible [30]. For 
electrically responsive coatings, charged polyelectrolytes [113–115] 
such as polystyrene sulfonate [116,117] and pyridine [118] have been 
suggested. 

1.7. Faradaic separation processes 

In contrast to the capacitive separation processes, the storage of 
charged species in faradaic separation processes is based on charge 
transfer. Some argue that this includes the detachment of the reaction 
product from the electrode after electron exchange, and thus intercala-
tion materials or redox-active electrode coatings would be capacitive 
[41]. However, here we maintain the classification used in previous 
reviews [25,120] and limit ourselves to processes that use electrodes at 
which redox reactions occur leading to the storage of target molecules. 

Faradaic separation of ions 
Partition chromatography of metal ions by electrodeposition was 

reported already in the sixties [17]. The distribution coefficient kD be-
tween solution and stationary phase of Ti and Pb could be influenced by 
an applied electric potential (Nernst equation). As stationary phases, 
mercury [17], amalgamated nickel, lead, noble metals, as well as other 
amalgamated metals, and graphite [18] have been reported. 

Through the development of intercalation materials for batteries and 
super-capacitors, the storage capacity could be greatly improved. This 
allowed ions to be stored within the electrode material and not only at 

its surface. Especially for cation separation (lithium, sodium, potassium) 
many materials have been considered such as manganese oxide 
[121–123], iron-based phosphate [124,125], and hexacyanoferrate 
[126–128]. For chloride ions, silver and bismuth electrodes have been 
proposed [121,129,130] or two-dimensionally layered materials such as 
MXene [131] and MoS2 [132,133]. Some intercalation electrodes can 
also be used for the selective removal of ions using specific conversion 
reactions or tunnel structure [123]. For reviews on intercalation mate-
rials we refer to the appropriate manuscripts [71,120,134,135]. 

Conductive and redoxactive polymers have also been considered for 
ion-exchange voltammetry, electrochemically modulated liquid chro-
matography [22,136–140], and as component in batteries [141], and 
pseudocapacitors [142]. As such, polypyrrole (Fig. 7 a and b) and pol-
yaniline are neutral, but when partially oxidized at positive potentials 
they became positively charged; a negative potential returned the 
polymer into its neutral reduced state. This allowed the exchange of 
counter anions and electro-inactive analytes [19]. The ion selectivity of 
a polypyrrole electrode could be adapted by doping. Cl- doping led to the 
following preference: Br- > SCN- > SO4

2- > I- > CrO4
2-, whereas 

perchlorate doping changed the sequence to SCN- > Br- > I- > SO4
2- >

CrO4
2- [143–145]. Cations could be adsorbed by entrapping large anions 

into the polypyrrole and polyaniline electrode (Fig. 7b), since at reduced 
state the overall charge of the electrode was negative [146,147]. For 
this, anionic intercalation materials [148,149] have been discussed, and 
also catechol and quinones [150]. Other suggested conductive and redox 
active polymers were polyampholyte [151], sulfonate-ferrocene copol-
ymer [151–153], poly(2,6-pyridinedicarboxylic acid) [154] or poly-
thiophenes [155–158]. Over-oxidizing polypyrrole increased the 
preferential collection of cations over anions in the polymer matrix 
[159,160]. 

Metallocenes, bipyridines, porphyrines and other organometallic 
redox-active polymers were found to be interesting candidates for 
electrochemical separation processes, since electron-transfer rates and 
electronic structure of the metal–ligand system can be manipulated with 
an applied electric potential [135]. When the electrode was oxidized the 
metal became positively charged and thus stored ions reversibly. Several 

Fig. 4. Adsorbed amounts (closed symbols) and adsorption rates (open symbols) of charged macromolecules to gold electrodes as function of applied potential. (A) 
PVP+, 12 k (b, O), concentration 1 mg/l, and 124 k (2, 4), concentration 5 mg/l, pH 6.4. (B) Adsorption of DAB-64 from a 5 mg/l solution at pH 6.9. (C and D) 
Adsorption of lysozyme from a 3 mg/l solution at pH 6.4 and pH 5, respectively. Background electrolyte 1 mM KNO3. The lines are to guide the eye. Reprinted with 
permission from [92]. 
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organo-metals based on for example Co [161], Os [162–164] or Fe 
[165–168] have been proposed for the separation of different anions, 
and in some cases cations (Fig. 7c). The combination of a poly(vinyl) 
ferrocene electrode and a poly-TEMPO-methacrylate also allowed the 
selective separation and oxidation of trivalent arsenic [169], and mer-
cury could be remediated using a nanostructured poly(3- 
hexylthiophene-2,5-diyl)-carbon nanotube composite electrode [170]. 

Ad- and desorption of ions can also be realized by electrochemically 
induced pH changes when using pH responsive coatings such as poly-4- 
vinylpyridine (Fig. 8a) [171]. In an aqueous environment, water split-
ting can be locally induced at potentials over 1.23 V, leading to a local 
change of the pH [172,173]. Redox couples such as quinon/hydroqui-
none [174–176] and anilin/hydroanilin [177,178] may serve as proton 
source or sink, and thus influence the pH and their storage properties 
(Fig. 8b). 

1.8. Faradic separation of larger molecules 

While most systems were developed for the separation of small ions, 

some of the systems presented earlier have been used for ad- and 
desorption of larger molecules (chemical pollutants, proteins and cells: 
summarized in Table 3). Polyvinyl(ferrocene) functionalized carbon 
nanotube electrodes were reversibly oxidized and reduced, enabling 
good separation (separation factor > 140) of carboxylate, sulfonate and 
phosphonate [179]. Using the same approach, protein (lysozyme, 
myoglobin, horseradish peroxidase, ribonuclease-A, a-chymotrypsin, 
bovine serum albumin) ad- and desorption was realized (Fig. 9) [28]. 

Further, electro responsive polymers have been used, such as com-
posites of poly(N-methyl pyrrolydinium) and poly(styrene sulfonate) 
onto which dopamin reversibly adsorbs at reductive potential [180]. 
The adsorption rate and adsorbed amount of glucose oxidase could be 
increased by applying a positive potential to a polyanion-doped poly-
pyrrole film [181]. Molecular imprinting of overoxidized sulfonated 
polypyrrole (OSPPy) was used for the separation of L-glutamic acid 
(Fig. 10) [182], naproxene [183], salicylate [184] and fluoroquinolones 
[185]. Polytiophene electrodes (poly(3-dodecylthiophene) and poly(3- 
octylthiophene)) reversibly adsorbed neutral arsenobetaine that 
passively binds to the long hydrophobic allyl chains at open circuit 

Table 1 
Overview of protein ad- and desorption in capacitive processes.  

Target molecule Medium Electrode Detection 
method 

Ads. at OCP 
[mg/m2] 

Ads. at applied 
potential (vs. 
Ag/AgCl) [mg/ 
m2] 

Des. efficiency Ref. 

Polyvinyl pyridine, 1–5 
mg/ml 

KNO3, 0.001 
M, pH 6 

Gold Reflectometry 0.5 − 200 mV: 0.8 
600 mV: 0.2 

– [91,92] 

poly(propylene imine) 
dendrimer, 5 mg/ml 

KNO3, 0.001 
M, pH 7 

Gold Reflectometry 0.5 − 190 mV: 0.9 
500 mV: 0.2 

– [92] 

Poly(vinyl imidazole) KNO3, 0.01 M, 
pH 3 

Gold Reflectometry 0.4 − 400 mV: 0.8 
600 mV: 0.4 

– [56] 

DNA, 0.2 μg/ml Phosphate 
buffer saline 
pH 7.4, 0.01 M 

Silicon coated with amine-rich ally- 
lamine plasma polymer 

Fluorescence 
microcopy 

0.4 1000 mV: 1 
− 750 mV: 0.18 

85% [101] 

Human serum albumin, 
100 µg/ ml 

Phosphate 
buffer saline 
pH 7, 0.2 M 

Gold Radio labeling 2 − 800 mV: 0.9 
700 mV: 4 

– [54] 

Human serum albumin, 
5.26 mg/ml 

NaCl, 0.15 M, 
pH 7.4 

Platinum Ellipsometry 2 639 mV: 5.5 – [96] 

Immunoglobulin G, 100 
µg/ ml 

Phosphate 
buffer saline 
pH 7, 0.2 M 

Gold Radiolabeling 3 − 800 mV: 2 
700 mV: 4.5 

– [54] 

Bovine γ–globulin, 11.4 
mg/ml 

NaCl, 0.15 M, 
pH 7.4 

Platinum Ellipsometry 6 839 mV: 12.5 – [96] 

Human fibrinogen, 3.2 
mg/ml 

NaCl, 0.15 M, 
pH 7.4 

Platinum Ellipsometry 6 539 mV: 14 – [96] 

Lysozyme, 3 mg/ml KNO3, 0.001 
M, pH 6 

Gold Reflectometry 0.8 − 200 mV: 1.8, 
400 mV: 0.5 
700 mV: 1.4 

– [92] 

β-lactoglobulin, NaCl, 0.005 M, 
pH 6 

Gold Surface plasmon 
resonance 

3 − 400 mV: 1 12% [42] 

Avidin 
0.1 mg/ml 

PBS 10 mM, pH 
7.4 

Gold coated with 
mercaptohexadecanoic acid 

Fluorescence 
labeling  

− 300 mV: 86 
300 mV: 8 

90.6% [106] 

Streptavidin 0.1 mg/ml PBS 10 mM, pH 
6.6 

Gold coated with 
aminohexadecanthiol 

Fluorescence 
labeling  

300 mV: 75 
300 mV: 4 

94.6% [106] 

NeutrAvidin 0.037 mg/ml PBS, pH7 Oligopeptide coated gold surface Surface plasmon 
resonance 

2300 
relative 
response 
units 

− 400 mV: 200 
rru 
+300 mV: 4000 
rru 

– [111] 

M. hydrocarbonoclasticus, 
OD600nm = 1 

Artificial 
Seawater, 
33.33 g/l 
pH8.2 

Gold electrode with 11-mercaptoun-
decanoic-acid coating 

Surface plasmon 
resonance 

2800 RU 289 mV: 800 RU 
− 211 mV: 3000 
RU 

3 min: 83%, 
5 min: 74%, 10 
min 54%, 
Longer: 
irreversible 

[110] 

Bovine aortic endothelial 
cells, 106 cells 

PBS, pH 7.4 Silicon electrode with 
multicomponent SEM: GRGDS 
peptides, hexa(ethylene glycol) with 
ammonium end group 

Fluorescence 
labeling + cell 
counting  

300 mV: 5 Cell/ 
mm2 

− 300 mV: 90 
Cell/mm2 

– [30] 

Bovine aortic endothelial 
cells, 106 cells 

PBS, pH 7.4 Silicon with multicomponent SEM: 
GRGDS peptides, hexa(ethylene 
glycol) with sulfonate end group 

Fluorescence 
labeling + cell 
counting  

300 mV: 110 
Cell/mm2 

− 300 mV: 60 
Cell/mm2 

– [30]  

P.A. Fritz et al.                                                                                                                                                                                                                                  



Separation and Purification Technology 274 (2021) 118754

7

potential, with desorption triggered by the reversible oxidation of the 
polymer [186,187]. More recently the separation of perfluorinated 
compounds were demonstrated using a combination of redox- 
copolymers (4-methacryloyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl 
and 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine) [188]. 

When targeting protein or cell separation, it is important to avoid 
irreversible fouling of the electrodes, and thus, antifouling coatings were 
developed. For example, penta(ethylene glycole) groups were used as an 
antifouling layer, which could be modified with ligands specific for a 
protein or a cell. This ligand could then be linked to a redox active 
quinone protionic ester (Fig. 11). In this way, the target cell or protein 
could be captured by the ligand, and released upon applying a negative 
potential to reduce the quinone linker [189–193]. In a similar fashion, 
polyethylene glycol was used in combination with redox-active haeme 
groups for the reversible binding of β-lactoglobulin [194]. Interesting 
reviews on these systems are [20,195]. 

2. Methods to analyze ad- and desorption or macro molecules 

To study the impact of electrode potential on ad- and desorption of 
macromolecules, such as proteins, different techniques were used. It was 
possible to indirectly measure the amount of adsorbed material through 
bulk fluid depletion; however one can also directly observe the amount 
of material adsorbed at a surface, using reflectometry or surface plasmon 
resonance. Further, with AFM the ad- and desorption forces may be 
quantitatively measured (Table 4). In the following section, we discuss 

these methods (see also Table 1 and 3 for the respective references). 

2.1. Indirect measurement through bulk depletion 

Adsorption and desorption of macromolecules can be measured 
indirectly by tracking their concentration in the bulk solution e.g. by 
measuring the conductivity, UV absorbance [27], fluorescence, or by 
using target specific assays (e.g. Bicinchoninic acid assay [28,181], o- 
Phthaldialdehyde assay [181]). The sensitivity depends on the detection 
method, and sampling is sometimes difficult. Nevertheless, the clear 
advantage that this technique holds is that it is independent of the 
electrode material, meaning that any type of electrode and/or coating 
can be tested, also on large scale. 

2.2. Direct surface adsorption measurement: Reflectometry 

In reflectometry a laser is projected through a prism onto a planar 
silicon substrate, and the intensity of the reflected polarized light is 
measured, which can be related to the amount of adsorbed material 
through the refractive index. To increase the sensitivity of the method, 
usually a transparent silicon oxide layer is grown on top of the silicon. 
For electrochemically driven processes this was impractical due to the 
insulating properties of silica; therefore a gold coating was applied, in 
spite of it having a complex refractive index that reduces the signal in-
tensity [91,196]. Gold surfaces can be easily modified via thiol bonds 
and have served as a basis for diverse polymer coatings. Other potential 
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Fig. 5. a) Schematic of capacitive protein separation as described by Fritz et al indicating sequential protein and salt adsorption and release depending on the 
potential applied. Under open circuit potential salt is released and proteins are stored, whereas proteins are released and salt is adsorbed when the electrodes are 
biased. b) and c) showing the change of the UV absorbance (protein), and the conductivity (salt), respectively, for both phases, and for four different sets of 
electrodes [27]. 

Table 2 
Overview of capacitive protein ad- and desorption processes.  

Target molecule Medium Electrode Process Detection 
method 

Protein ad- and 
desorption capacity 

Salt ad-desorption 
capacity 

Ref. 

Whey protein 
isolate, 1.5 mg/g 

NaCl, 0.005 
M, pH 6 

Activated carbon: 
polyelectrolyte composite 

Inverted capacitive 
protein separation 

Protein: UV sensor 
Salt: Conductivity 
sensor 

10 mg/g 1 mg/g [27] 

Whey protein 
isolate, 1.5 mg/g 

NaCl, 0.005 
M, pH 6 

Activated carbon with 
polyelectrolyte adlayer 

Inverted capacitive 
protein separation 

Protein: UV sensor 
Salt: Conductivity 
sensor 

10 mg/g 3 mg/g [27]  
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Fig. 6. Schematic representation of electro-responsive surface coating for protein separation using a flexible hydrophobic carbon back bone and a charged head 
group (either COO– or NH3

+). Upon applying a potential, either the chain is upright, exposing the head group or bent, exposing the backbone. MHA: mercapto-
hexadecanoic acid. 
Reproduced with permission from [106] 

Fig. 7. a) Redox reactions and ion exchange properties of polypyrrole films for a) anion (A, Cl- or ClO4-) and b) cation extraction (PPS stands for polystyrene 
sulfonate) [137]. c) Examples of organometallics. (from left to right: Ferrocene, cobaltocene and osmium-bipyridine) [135]. 
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coatings are indium tin oxide or reduced graphene oxide [197], since 
both are conductive and have a lower complex refractive index 
compared to gold. Since the laser light has to travel through the elec-
trolyte solution, this solution should be clear and thus may only contain 
components at low concentration. 

2.3. Direct surface adsorption measurement: Surface plasmon resonance 

In contrast to reflectometry, in surface plasmon resonance the laser is 
projected onto the back side of the electrode; the intensity of the re-
flected light depends on the generation of surface plasmons. At a certain 
angle of the incoming light, all energy is converted into fluctuation of 
electrons at the metal-electrolyte interface and the reflection is minimal. 
This so called SPR-angle depends on the refractive index at the interface 
and thus on the amount of e.g. proteins adsorbed. In SPR, mostly gold is 
used but also silver or graphene coated substrates have been applied. 
[198,199] 

3. Measuring adsorption forces: Atomic force spectroscopy 

Using atomic force spectroscopy the interaction strength between 

two interfaces can be determined directly, by following the deflection of 
a cantilever upon approaching a planar substrate. The cantilever can be 
equipped with a very sharp, conical, or colloidal probe, and the substrate 
can be an electrode (e.g. gold) in an electrochemical cell. As mentioned 
earlier this technique can be used to directly measure the double layer 
potential of an electrode [42,49,50] but also other surface forces [42]. 
Direct interactions between single molecules and interface can be 
measured by modifying the probes with macromolecules. The sample 
preparation and data interpretation are not trivial, however. 

4. Conclusion 

We summarized different approaches to use capacitive and faradic 
currents for the separation of ions as well as larger molecules such as 
proteins and even whole cells. Furthermore we discussed different 
electrode materials ranging from porous carbon to metallic surfaces and 
(electro responsive) coatings, such as conductive polymers or organo-
metallics, for this purpose. 

The overview and perspective that this review offers is important to 
position electrochemical separation processes that show a great poten-
tial as a next generation technology that answers today’s challenges, 

Fig. 8. a) Electro-triggering of pH-switchable ligands: (top) capture step at low or zero potential, (middle) expulsion step at electro-oxidizing potential and (bottom) 
spontaneous restoring at low or zero potential [171]. b) Schematic representation of electropolymerization of bis-aniline-cross-linked Au NP composite, and gen-
eration of electrochemically induced pH changes in aqueous solutions. 
Reproduced with permission from [178] 

Table 3 
Overview of Faradaic protein ad- and desorption.  

Target molecule Medium Electrode Detection method Ads. at 
OCP 
[mg/ 
m2] 

Ads. at applied 
potential (vs. Ag/AgCl) 
[mg/m2] 

Des. 
efficiency 

Ref. 

L-glutamic acid,10 
mM 

KCl-HCl buffer, 
pH 1.7 

Overoxidized polypoyrrole film 
on Pt coated quarz crystal 

Flourecense spectroscopy, 
(QCM) 

13.5 − 350 mV: 9 
600 mV: 1.5  

[182] 

α-chymotrypsin, 1 
mg/ml 

Phosphate buffer, 
50 mM, pH 7 

poly(vinyl)ferrocene in carbon 
nano tube matrix 

Bicinchoninic acid assay of 
supernatant 

187  >95% [28] 

Streptavidin, 60 nM Phosphate buffer, 
pH 7.4 

Alkenethiol coating with 
quinone propionic ester and 
biotin ligand 

Surface plasmon resonance 1.1 − 700 mV: 0.055 95% [191] 

Glucose oxidase, 5 
mg/ml 

Phosphate buffer, 
pH 7 

Polyanion polypyrrole film on 
aluminum sheet 

BCA protein assay, QCM, o- 
phthaldialdehyde assay) 

20 1000 mV: 60 
− 400 mV: 52  

[181]  

P.A. Fritz et al.                                                                                                                                                                                                                                  



Separation and Purification Technology 274 (2021) 118754

10

Fig. 9. a) Preparation of polyvinyl(ferrocene)/carbon-nano tube electrodes. b) Schematic of protein ad- and desorption depending on applied potential. c) Release of 
a-chymotrypsin. 
Reproduced with permission from [28] 

Fig. 10. a) Schematic of uptake/release of glutamic acid cation upon charging and discharging molecularly imprinted over-oxidized polypyrrole film at pH 1.7. b) 
Effect of applied potential on the uptake of 10 mM L- and D-glutamic acid. 
Reproduced with permission from [182] 

Fig. 11. a) Capture and release of fibroblast cells using a ligand that can be sacrificed when applying a potential of 550 mV to a hydroquinone-linker. b) Reaction 
scheme for the electro-responsive surface coating. 
Reproduced with permission from[189] 
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such as improved and milder separations at reduced environmental 
impact. Therefore, we pointed out achievements and challenges for 
various species and indicated where cross-overs between the applica-
tions exist. 
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Overview of advantages and challenges of different methods to study the impact 
of an applied potential on ad- and desorption of macromolecules (e.g. proteins).  

Techniques Advantages Challenges 

E-Reflectometry  - Direct observation of 
changes at the interface  

- Limited choice of 
substrates and therefore 
coatings  

- Influence of applied 
potential on 
measurement signal  

- Refractive indices need 
to be known  

- Difficult to distinguish 
nature of adsorbed 
species 

E-SPR  - Direct observation of 
changes at the interface  

- Simple to use  
- High sensitivity  

- Limited choice of 
substrates and therefore 
coatings  

- Influence of applied 
potential on 
measurement signal  

- Difficult to distinguish 
nature of adsorbed 
species 

Assay/ UV detection in 
outlet/ Fluorescence 
in outlet  

- Determine the change in 
concentration of specific 
species  

- Sensitivity  
- No information about 

location of protein  
- Sampling, impurities 

E-AFM  - Information about 
protein specific surface 
interactions  

- Quantification of 
interaction force  

- Single molecule 
interaction  

- Difficult to operate and 
interpret  

- Limited choice of 
electrodes  
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