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ARTICLE INFO ABSTRACT

Keywords: Meat analogue products are considered to help consumers reducing their meat consumption. Their key success
Meat and meat analogue structure factor is their high similarity in sensory properties compared to meat. Even though the structure and texture
Anisotropy

characteristics of meat are well documented, dedicated methods used to analyse meat analogues are limited still.
This review summarises texture and structure analysis methods of meat and meat analogues: mechanical testing;
for example Texture Profile Analysis, spectroscopy; for example NMR and imaging techniques; for example
hyperspectral imaging. Furthermore, the advantages and limitations of each texture and structure method are
described. Finally, characterizations aspects specific to meat analogues are discussed. Promising methods for
future research are described that have potential to get more insight into the fibers of meat analogues and the
structure development during thermomechanical processing of meat analogues.

Industrial relevance: To be commercially successful for large groups of consumers, alternatives for meat should be
highly similar to meat. That is why meat analogues should resemble existing meat in their texture. It is thus
important to understand the texture properties with the help of relevant techniques, such as mechanical, spec-
troscopy and imaging techniques. In this manuscript, we describe promising texture methods for characterization
of properties specific to meat analogues. The development of novel techniques to quantify meat analogue
properties will stimulate the development of meat analogues that satisfy the values and wishes of consumers.

Texture properties
Mechanical techniques
Spectroscopy

Imaging

1. Introduction protein and myoglobin positioned into a hierarchical fibrillar structure

that is not easily replicated in plant-based meat analogues. The unique

Plant protein-based meat analogues that mimic the sensory proper-
ties of meat could be a route to help consumers to reduce their meat
consumption (Elzerman, Hoek, van Boekel, & Luning, 2011; Hoek et al.,
2011; Michel, Hartmann, & Siegrist, 2021). A reduction of meat con-
sumption might lead to a lower environmental footprint of the diet
because meat production leads to intensive use of land, water and en-
ergy (Tilman & Clark, 2014; Weinrich, 2019). However, the different
nature of plant materials compared to those of meat, renders the
imitation of meat texture a challenge. For example, plant proteins do not
naturally occur in fibrillar orientation (Fuhrmeister & Meuser, 2003;
Sun & Arntfield, 2010; Taherian et al., 2011). Although meat products
are widely different in their properties, they do share many character-
istics that they do not share with plant proteins. For example, the very
small length scale of meat muscle structure consists of myofibrillar
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juiciness of meat is also a result of this hierarchical structure (Frank,
Oytam, & Hughes, 2017). Besides, many of the unique meat properties
are strongly dependent on the internal structure of the meat, which
ranges from 100 nm to 100 pm.

To be commercially successful in the short term, and for large groups
of consumers, alternatives should not deviate too much from their cur-
rent meal and thus resemble existing meat in their texture (Elzerman
et al.,, 2011; Hoek et al., 2011; Michel et al., 2021). As described by
Dekkers, Boom, and van der Goot (2018), two approaches exist to make
meat analogues: top-down and bottom-up. The latter approach aims at
mimicking the full hierarchical structure of meat, but these methods are
laborious and require more resources than the top-down approach. Ex-
amples of the top-down approach are the shear cell technology and
extrusion. Extrusion is widely used industrially to make currently
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available meat analogues. However, the fibrousness of meat analogues
from plant proteins created via a top-down approach is typically less
hierarchical. An important question though is whether similarities on a
larger length scale are sufficient for similarities in sensory properties
already. The first step towards insights is a characterization of the
structures at different length scales for both meat and meat analogues.

The texture of meat has been widely studied. Many analytical tech-
niques and methods are established for meat and fish, including sensory
evaluation and mechanical methods. Therefore, while the existing
methods are quite adequate for meat, it is not clear whether these would
also be sufficient to characterize the differences between meat and the
plant-based matrices. The objective of this paper is therefore to under-
stand the potential of those analytical methods developed for meat to be
used for meat analogues as well. To investigate this, we will review the
available methods on their suitability for analysing plant-based meat
analogues. We will then assess whether they cover the complete
parameter space and describe the need for new techniques specifically
for those properties of plant materials that are different from meat
products.

2. Instrumental techniques for texture of meat and meat
analogues

Although texture is ‘the combination of the rheological and structure
(geometrical and surface) attributes of a food product perceptible by
means of mechanical, tactile, and where appropriate, visual and audi-
tory receptors’ as defined in 2008 by the International Standards Or-
ganization (ISO, 2008), most techniques are focused on instrumental
testing. Instrumental techniques to measure the texture of meat and
meat analogues are often used instead of sensory experiments, as the
latter is expensive, time-consuming and difficult to make quantitative.
Instrumental techniques provide objective information on different
structural parameters. Meat texture is characterized by different
methods. Each method analyses meat products at a certain length scale.
Typical approaches to study the texture and structure of meat and meat
analogues include mechanical, spectroscopy and imaging characteriza-
tion methods. This paper summarizes the basic technologies and the
most recent advances of those technologies for processing different types
of meat (i.e. beef, pork, and poultry) and meat analogues (i.e. shear cell
structures and extruded products) (Fig. 1).

2.1. Mechanical techniques

Traditionally, texture is evaluated with mechanical methods. Such
methods are used to analyse the mechanical properties of a product
through compressing, shearing and/or pulling. Mechanical methods are
applied to all kinds of food products, such as cheese, candy, pasta, but
also meat and meat analogues. A limitation of the mechanical methods is
that they are destructive, hence tested products cannot be used for other
applications. A folding test is often performed as the first mechanical
test. The test assesses the structural failure of both meat and meat
analogue products based on a five-point grading system (Herrero et al.,
2008; Kamani, Meera, Bhaskar, & Modi, 2019). It is an easy and fast
method to obtain basic information about the texture of a product, but it
is not fully quantitative.

After performing the folding test, one or more of the following tests
are done. The Warner-Bratzler test measures the maximum shear force
as a function of knife cutting movement through a meat product
(Novakovi & Tomasevi, 2017). It is difficult to give a precise physical
meaning to the Warner-Bratzler shear force because it measures a
combination of shearing, compression and tensile stress, making it more
a measurement of overall quality attributes (Voisey, 1976). Neverthe-
less, the Warner-Bratzler test is used to analyse the texture of different
types of meat products, in particular whole muscle products and sau-
sages (Table 1). The probe of the Warner-Bratzler test consists of a single
blade with a V-shaped notch (Morey & Owens, 2017). This blade is used
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Figure 1. Destructive ( ) and non-destructive ([J) texture and structure
methods used for meat (M, m) and meat analogues (MA, m). Abbreviations: WB,
Warner-Bratzler; TPA, Texture Profile Analysis; NIR, Near-infrared; MIR, Mid-
infrared; SA(X)S, Small-angle (X-ray) scattering; (SE)SANS, (Spin-echo) Small-
angle neutron scattering; CLSM, Confocal laser scanning microscopy; SEM,
Scanning electron microscopy; TEM, Transmission electron microscopy; AFM,
Atomic force microscopy; MRI, Magnetic resonance imaging; XRT, X-
ray tomography.

to cut through the meat product, usually perpendicular to the longitu-
dinal positioning of the muscle fibers, but some studies additionally
measure the parallel direction (Cierach & Majewska, 1997). Further-
more, previous studies suggested that differences in the device, blade,
product diameter, or settings used, influence the results (Novakovi &
Tomasevi, 2017; Pool & Klose, 1969; Voisey & Larmond, 1974; Wheeler,
Shackelford, & Koohmaraie, 1996). Thus, standardization will be
important to obtain results with the Warner-Bratzler method that allows
comparison between studies.

A few studies use the Kramer Shear Cell test to measure meat texture
in addition to the Warner-Bratzler test (Table 1). This test simulates a
single bite into a piece of food. The principle is similar to the Warner-
Bratzler test, but it has multiple, blunt blades arranged in parallel that
correspond to specific slots in the base of the cell (Barbut, 2015; Morey
& Owens, 2017). Products, often multiple at once, are placed in the cell;
the products are compressed and sheared when the blades push the
products through the slots. The resulting parameters are averages of the
forces required to shear the full product (Morey & Owens, 2017). This
makes it possible to measure products with an uneven surface for
example. Similar to the Warner-Bratzler test, the Kramer Shear Cell test
does not evaluate a single mechanical property. Instead, it measures a



F.K.G. Schreuders et al.

Table 1
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Overview of mechanical techniques used in studies on meat and meat analogues from 2005 onwards. The colours in red and green indicate that the method is used for

meat and meat analogues, respectively.

Technique Properties Product (m/ma)

Reference

Warner-Bratzler shear force, slope at Steak (m)

yield, shear energy

Warner-Bratzler

B

Chicken breast (m)
Ham (m)

Meat patty (m)
Sausage (m)

High moisture
extruded product
(ma)

Low moisture
extruded product
(ma)

Patty (ma)
Sausage (ma)

Kramer Shear Cell Chicken breast (m)

B

Texture Profile
Analysis

=

Shear force, maximum slope, total
energy
Rabbit meat (m)
Meat patty (m)
Hardness, chewiness, springiness, Steak (m)
adhesiveness, gumminess, resilience, Chicken breast (m)
etc. Ham (m)
Meat patty (m)
Sausage (m)
Sausage (ma)

Patty (ma)

High moisture
extruded product
(ma)

Low moisture
extruded product
(ma)

Steak (m)
Sausage (m)

Single compression Stress, maximum compression load

=]

Puncture test

B

Chicken breast (m)
Meat patty (m)
Sausage (ma)

Puncture force, puncture shear force

Tensile test Tensile force, breaking strength Steak (m)
. |:| Chicken breast (m)
Ham (m)

Sausage (m)

Shear cell structures
(ma)

High moisture
extruded product
(ma)

(Destefanis, Brugiapaglia, Barge, & Dal Molin, 2008; Pena-Gonzalez, Alarcon-Rojo,
Garcia-Galicia, Carrillo-Lopez, & Huerta-Jimenez, 2019; Ruiz De Huidobro, Miguel,
Blazquez, & Onega, 2005)

(Cavitt, Xiong, & Owens, 2005; U-Chupaj et al., 2017; Xiong, Cavitt, Meullenet, &
Owens, 2006)

(Bermdudez, Franco, Carballo, & Lorenzo, 2014; Rizo, Pena, Alarcon-Rojo, Fiszman, &
Tarrega, 2019)

(Naveena, Sen, Muthukumar, Vaithiyanathan, & Babji, 2006)

(Barbut, Wood, & Marangoni, 2016; Caceres, Garcia, & Selgas, 2006; Del Nobile et al.,
2009; Purohit, Reed, & Mohan, 2016; Szerman et al., 2015)

(Caporgno et al., 2020; Osen, Toelstede, Wild, Eisner, & Schweiggert-Weisz, 2014;
Palanisamy, Topfl, Aganovic, & Berger, 2018)

(Samard & Ryu, 2019b)

(Forghani, Eskandari, Aminlari, & Shekarforoush, 2017)

(Kamani, Meera, Bhaskar, & Modi, 2019)

(Cavitt, Meullenet, Gandhapuneni, Youm, & Owens, 2005; Del Olmo, Morales, Avila,
Calzada, & Nunez, 2010; Xiong et al., 2006)

(Bianchi, Petracci, Pascual, & Cavani, 2007)

(Holliday, Sandlin, Schott, Malekian, & Finley, 2011)

(Pena-Gonzalez et al., 2019; Ruiz De Huidobro et al., 2005)

(Dolores Romero deAvila et al., 2014; U-Chupaj et al., 2017)

(Dolores Romero de Avila et al., 2014; Rizo et al., 2019)

(Das, Prabhakaran, Tanwar, & Biswas, 2015)

(Herrero et al., 2007, 2008; Laranjo et al., 2015; Purohit et al., 2016)

(Arora, Kamal, & Sharma, 2017; Kamani et al., 2019; Majzoobi, Talebanfar, Eskandari,
& Farahnaky, 2017; Stephan, Ahlborn, Zajul, & Zorn, 2018)

(Forghani et al., 2017; Kim et al., 2011; Lee & Hong, 2019)

(Chiang et al., 2019)

(De Angelis et al., 2020; Samard, Gu, & Ryu, 2019; Samard & Ryu, 2019a, 2019b)

(Christensen et al., 2011; Panea et al., 2018)
(Alirezalu, Hesari, Eskandari, Valizadeh, & Sirousazar, 2017)

(Cavitt, Meullenet, et al., 2005)

(Braeckman, Ronsse, Hidalgo, & Pieters, 2009; Naveena et al., 2006)

(Arora et al., 2017; Kamani et al., 2019)

(Zhang et al., 2019b)

(Dolores Romero de Avila et al., 2014)

(Dolores Romero de Avila et al., 2014)

(Daros, Masson, & Amico, 2005; Herrero et al., 2007, 2008)

(Dekkers, Nikiforidis, et al., 2016; Krintiras et al., 2015; Schreuders et al., 2019; Wang,
Tian, Boom, & Goot, 2019)

(Pietsch, Werner, Karbstein, & Emin, 2019)

combination of the effects of compression and shear, which could be
seen as a limitation of the method. Xiong, Cavitt, Meullenet, and Owens
(2006) compared the potential of the Kramer Shear Cell and the
Warner-Bratzler method for the prediction of sensory tenderness of
chicken breast, and found that the shear values correlated well with
descriptive sensory attributes as well as consumer sensory attributes.
Another study also indicated that both methods were successful in
evaluating rabbit meat tenderness and presented similar levels of cor-
relation with sensory scores (Bianchi, Petracci, Pascual, & Cavani,
2007). For both methods, the products need to have a specific thickness.
This means that these methods can only be used on meat and meat an-
alogues (extruded products, sheared, patties, sausages, etc.) that fulfil
these requirements. While the methods are therefore suitable within a
pre-defined range of similar products with a limited variation of
parameter values, it is not clear yet whether these methods would also
allow the comparison with plant-based meat analogues, which can have
quite different properties. The Kramer Shear Cell is not yet used to

measure textural properties of meat analogues as far as the authors are
aware.

Another mechanical test is the tensile test, which measures the
resistance of a product against tearing. A product is mounted between
two grips and extended in the tensile direction at a fixed speed until
failure. Tensile parameters such as maximum rupture force, breaking
strength and energy to fracture can be calculated from obtained stress
and strain values. In general, tensile products have a dumbbell or dog-
bone shape to conduct the stress towards the middle of the product and
induce failure at the intended location. Tensile tests are used with a wide
product range such as sausages, frankfurters, ham, whole muscle prod-
ucts (Table 1) and in the past also meat patties (Beilken, Eadie, Griffths,
Jones, & Harris, 1991; Spadaro & Keeton, 1996). Tensile tests have also
been applied to meat analogues (Dekkers, Nikiforidis, & van der Goot,
2016; Schreuders et al., 2019). The ratio between the tensile strengths
parallel and perpendicular to the (muscle-) fiber orientation provides
insight into the anisotropy of the product (Barbut, 2015; Dekkers,
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Nikiforidis, & van der Goot, 2016). For both meat and meat analogues a
few studies calculate the anisotropic index (Dekkers, Hamoen, Boom, &
van der Goot, 2018; Krintiras, Gobel, Van Der Goot, & Stefanidis, 2015;
Schreuders et al.,, 2019). Christensen, Purslow, and Larsen (2000)
studied the tensile properties of whole beef meat as well as single muscle
fibers and perimysial connective tissue. The use of a mechanical testing
method for single muscle fibers is unique and is not realistic with other
mechanical testing methods. Therefore, the tensile test might be able to
study the texture of products at a smaller length scale than other
mentioned mechanical testing methods. This would allow for measuring
the tensile strength of single meat analogue fibers from for example
calcium-caseinate materials (Wang, Tian, Boom, & Goot, 2019).
Another mechanical method to quantify food texture is a single
compression test. The single compression test is often performed as an
axial compression test between two flat plates (Barbut, 2015). The
products have to be smaller than the contact area of the probe in use.
Products can be compressed until failure, or to a certain level of defor-
mation. Single compression tests are not used often (Table 1) as a double
compression test, often called Texture Profile Analysis (TPA), can pro-
vide more information within a single experiment. Similar consider-
ations regarding reliability for single compression tests have to be taken
as for TPA tests (Lepetit & Culioli, 1994). TPA is a compression tech-
nique that combines multiple textural parameters such as hardness,
chewiness, adhesiveness, cohesiveness and springiness in a single mea-
surement. The TPA parameters can be divided into primary parameters
(hardness, springiness, adhesiveness and cohesiveness) and secondary
parameters (gumminess, chewiness, resilience) (Novakovi & Tomasevi,
2017). Primary parameters can be directly determined from the ob-
tained force/time graph, while secondary parameters are derived from
the primary parameters. The test is based on simulating the biting action
of the mouth by a two-cycle compression series (Barbut, 2015). TPA
tests are widely applied on meat analogues and meat products ranging
from whole muscle products to emulsified sausage products (Table 1). A
puncture test is similar to a compression test, but the probe contact area
is now much smaller than the size of the product, for example through
use of a needle-shaped probe. During a puncture test, the material is
compressed to a certain strain by a probe to quantify properties such as
maximum force, breaking strength, and the penetration depth. Accord-
ing to Barbut (2015), it is commonly used for restructured products and
emulsified meat products. However, literature only showed the use of a
puncture test on chicken breast, meat patties and meat analogue sau-
sages (Table 1). Penetration force, as measured with the puncture test,
was found to be lower in sausages based on plant proteins than those
based on poultry (Kamani et al., 2019). This indicated that the breaking
force required to penetrate the outer skin of plant protein sausages is
lower than in chicken sausages. In addition, penetration depth of plant
based sausages was used as a measure for the strength of binding agents
(Arora, Kamal, & Sharma, 2017). As meat and meat analogues are often
heterogenous in structure, it can be hard to obtain compression type
measurements that is representative for the whole product. A recent
technique of multi-point indentation characterizes the local mechanical
texture of meat and meat analogues by mapping the elastic modules as
measured with a spherical probe of radius 1 mm (Boots et al., 2021).
Dolores Romero deAvila, Isabel Cambero, Ordéfiez, de la Hoz, and
Herrero (2014) studied the mechanical properties of commercial cooked
meat products by both TPA and tensile tests. They showed that the pa-
rameters from the TPA could be used to construct models to predict
tensile test parameters such as breaking strength and energy to fracture,
removing the need for tensile tests. Furthermore, Ruiz De Huidobro,
Miguel, Blazquez, and Onega (2005) recommended the TPA method
over the Warner-Bratzler method to predict meat texture on basis of a
better correlation with sensory data and a higher accuracy. Similar
conclusions were drawn by Caine, Aalhus, Best, Dugan, and Jeremiah
(2003) who showed that TPA parameters correlated better with varia-
tions in sensory results of beef tenderness than the Warner-Bratzler test.
Similar to the Warner-Bratzler test, the TPA test requires standardized
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testing methods for trustworthy comparison between studies, and they
can probably only make reliable correlations in limited parameter space.

For both meat and meat analogues textural elements can be studied
with the Warner-Bratzler test, the tensile test, the TPA test and other
compression techniques. The Kramer Shear Cell has only been used to
quantify the texture of meat products but offers several benefits, such as
the possibility to measure uneven products. Therefore, it might be a
future direction for texture analysis of meat analogues. Furthermore, the
recently developed multi-point indentation technique shows high po-
tential to characterize heterogeneous meat and meat analogue struc-
tures. All described mechanical techniques analyse texture at a
macroscale, except for the tensile test which can be used to analyse
single muscle fibers at a smaller length scale. Therefore, we believe that
the tensile test may also be used to analyse single fibers from meat an-
alogues in the future. Furthermore, there is great importance for stan-
dardized testing methods of all mechanical tests described in this review
to be able to compare different products (meat and meat analogues) and
translate the quantitative analysis in sensory properties.

2.2. Spectroscopy

Spectroscopy (infrared, Raman, fluorescence polarization, NMR and
light scattering) provides insight into the local composition (mostly
surface of the product), intermolecular interaction as well as anisotropy
of meat and meat analogues (Table 2). Proteins, lipids, water and other
substances may be localised and quantified simultaneously. Spectros-
copy is direct and non-invasive and requires only small products usually.

Infrared (IR) spectroscopy provides information on the chemical
composition by measuring infrared absorption spectra. The spectrum
can be used to characterize specific chemical bonds in products and can
yield information about the composition, but also about the state of
individual substances. In meat products, Fourier Transform IR spec-
troscopy (FTIR) was used to monitor conformational changes of
myofibrillar proteins and connective tissue (Kohler et al., 2007; Perisic,
Afseth, Ofstad, & Kohler, 2011). In meat analogues, FTIR was used to
identify structural changes after processing in zein, pea and spir-
ulina/lupin protein (like a-helix and p-sheet) (Beck, Knoerzer, & Arcot,
2017; Mattice & Marangoni, 2020; Palanisamy, Topfl, Berger, & Hertel,
2019).

A near-infrared (NIR) spectrum is often divided into two sections,
namely, short wave near-infrared spectral region (SW-NIR) of
780-1100 nm and long wave near-infrared spectral region (LW-NIR) of
1100-2526 nm (Cheng et al., 2013). The spectrum shows broad over-
lapping peaks and large baseline variations, which requires mathemat-
ical processing to extract compositional information (Subramanian &
Rodriguez-Saona, 2009). In meat products, NIR-spectra were used to
subsequently predict the chemical composition (such as crude protein,
intramuscular fat, moisture/dry matter, ash, gross energy, myoglobin
and collagen), technological parameters (water holding capacity, War-
ner-Bratzler and slice shear force) and sensory attributes (juiciness,
tenderness or firmness) (Prieto, Roehe, Lavin, Batten, & Andrés, 2009).
This would fully eliminate the use of destructive analysis methods like
mechanical measurements. However, its prediction is limited to a small
range of products and was further hindered by the heterogeneity of
intact meat products, and inconsistent product preparation.

The mid-infrared (MIR) spectrum is divided into four sections,
namely, the X-H stretching region (4000-2500 cm %), the triple bond
region (2500-2000 cm’l), the double bond region (2000-1500 cm’l),
and the fingerprint region (1500-400 em ™) (Cheng et al., 2013). MIR
spectroscopy was used to obtain information on the conformation of
proteins (such as o-helix or p-sheet) (Carbonaro & Nucara, 2010).
Another study showed the analysis of food raw materials (such as
skimmed milk powder, chicken meat powder, soy protein isolate, pea
protein isolate and wheat flour) on the presence of several potential food
adulterants (nitrogen-rich compounds, foreign protein and bulking
agent) (da Costa Filho, Cobuccio, Mainali, Rault, & Cavin, 2020).
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Overview of spectroscopy techniques used in studies on meat and meat analogues from 2005 onwards. The colours in red and green indicate that the method is used for

meat and meat analogues, respectively.

Technique Properties Product (m/ma) Reference
FTIR Composition and secondary Beef muscle (m) (Kohler et al., 2007; Perisic et al., 2011)
protein conformation High moisture extruded (Beck, Knoerzer, & Arcot, 2017; Mattice & Marangoni, 2020; Palanisamy, Topfl,
- I:l product (ma) Berger, & Hertel, 2019)
NIR Composition Pork (m) (Balage, Silva, Bonin, Mazon, & Figueira, 2013; Fulladosa, Santos-Garcés, Picouet, &
Gou, 2010; Gou et al., 2013; Mabood et al., 2020; Rady & Adedeji, 2018)
. I:‘ Chicken (m) (Jia, Wang, Yoon, Zhuang, & Li, 2018; Krepper et al., 2018; Nolasco Perez et al.,
2018; Wold, Mage, Lgvland, Sanden, & Ofstad, 2019)
Beef (m) (Bonin et al., 2020; Cafferky et al., 2020; Cozzolino & Murray, 2004; Rady & Adedeji,
2018; Ripoll, Alberti, Panea, Olleta, & Sanudo, 2008; Weng et al., 2020)
MIR Composition and secondary Beef (m) (Carbonaro & Nucara, 2010).
protein conformation
Raman Secondary protein conformation & Pork (m) (Chen & Han, 2011; Olsen, Rukke, Fldtten, & Isaksson, 2007; Pérez-Santaescolastica
amino acid composition et al., 2019; Scheier, Scheeder, & Schmidt, 2015; Wang, Lonergan, & Yu, 2012)
. |:| Beef (m) (Chen et al., 2020)
Chicken (m) (Phongpa-Ngan, Aggrey, Mulligan, & Wicker, 2014)
Sheep (m) (Schmidt, Scheier, & Hopkins, 2013)
Fluorescence Muscle fiber direction Beef (m) (Luc et al., 2008)
polarization High moisture extruded (Ranasinghesagara, Hsieh, & Yao, 2005)
spectroscopy product (ma)
NMR Intermolecular interaction Pork (m) (Garcia-Garcia, Cambero, Castejon, Escudero, & Fernandez-Valle, 2019)
Beef (m) (Graham et al., 2010; Jung et al., 2010)
- |:| Chicken (m) (Shaarani, Nott, & Hall, 2006)
Shear cell structures (ma) (Dekkers, de Kort, et al., 2016;. Schreuders et al., 2020)
Low and high moisture (Chen, Wei, & Zhang, 2010)
extruded product (ma)
SA(X)S Insight into repetitive structure Sheep (m) (Goh et al., 2005; Hoban et al., 2016)
Goat (m) (Hoban et al., 2016)
. |:| Beef (m) (Hughes, Clarke, Li, Purslow, & Warner, 2019)
(SE)SANS Fiber orientation Shear cell structures (ma) (Krintiras et al., 2014; Tian et al., 2020, 2018)

[

Light reflectance

B

Internal structure and fiber
orientation

Beef (m)

product (ma)

High moisture extruded

(Ranasinghesagara & Yao, 2007)
(Ranasinghesagara, Hsieh, Huff, & Yao, 2009; Ranasinghesagara, Hsieh, & Yao,
2006)

Raman spectroscopy provides information on secondary protein
conformation (i.e. a-helix and p-sheets) as well as on the amino acid
composition (Overman & Thomas, 1999). In meat products, Raman
spectroscopy has been successfully correlated with quality parameters
such as protein solubility, apparent viscosity, water holding capacity,
instrumental texture methods, and fatty acid composition (Herrero,
2008). Furthermore, Raman spectra could be correlated with sensory
attributes (i.e. juiciness and chewiness) of pork loins (Wang, Lonergan,
& Yu, 2012) and identify structural changes of muscle food components
(proteins, lipids and water) due to handling, processing and storage
(Pérez-Santaescolastica et al., 2019).

Fluorescence polarization spectroscopy analyses the natural fluo-
rescence from a product. In meat, tryptophan is the major intrinsic
fluorophore. It is a constituent of the proteins that have two preferential
directions of alignment both parallel and perpendicular to the muscle
fiber direction. Fluorescence polarization was used to characterize the
structural organization and modifications related to sarcomere length in
meat caused by processing (Luc, Clerjon, Peyrin, Lepetit, & Culioli,
2008) and in-line detecting of cold shortening in the bovine muscle (Luc
et al., 2008). In meat analogues, fluorescence polarization can be used to
characterize the anisotropy in high moisture extruded soy protein (Yao,
Liu, & Hsieh, 2004). This method is based on the theory that polarization
states of fluorescence light are affected by the structure of a product. It
was found that products with a higher degree of fiber formation showed
a higher polarization degree (Ranasinghesagara, Hsieh, & Yao, 2005).

Nuclear magnetic resonance spectroscopy (NMR) provides insights
into the interaction between molecules (for example water-protein in-
teractions) and thus provides insight into the structural features of meat
and meat analogues. Several studies reviewed the application of Qe
and 31P) NMR in meat (Bertram & Ersten, 2004; Renou, Bielicki, Bonny,
Donnat, & Foucat, 2003). NMR is also used to study water-protein
interaction and correlate this with macroscopic properties such as
water holding capacity, cooking loss, water and fat content and distri-
bution, and changes associated during processing and storage (such as
slaughtering, salting, frozen storage) (Marcone et al., 2013; Micklander,
Peshlov, Purslow, & Engelsen, 2002). In plant-based materials, Time
Domain (TD)-NMR gives an indication of the water-binding capacity of
different proteins (gluten, soy protein isolate, pea protein isolate and
lupin protein concentrate) (Peters, Vergeldt, Boom, & van der Goot,
2017). In addition, the water distribution was studied in a soy
protein-gluten blend (Dekkers, de Kort et al., 2016) and pea
protein-gluten blend (Schreuders, Bodnar, Erni, Boom, & der Goot,
2020).

Small-angle scattering (SAS) methods provide structural information
over a size range from nanometer-to-micron length scale, being 0.2-100
mm using light, 1-100 nm using X-rays and 1-20 nm using neutrons
(Larson, 1999, p. 150). In small-angle X-ray scattering (SAXS), an X-ray
beam passes through a product and encounters structural obstructions
(like collagen or myofibrils). SAXS provides insight into the repetitive
structure in a product, such as the structure of the fibrils of actin, myosin
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and collagen, and potentially provides estimates of the intramuscular fat
(Goh et al., 2005; Hoban et al., 2016; Hughes, Clarke, Li, Purslow, &
Warner, 2019). Small-angle neutron scattering (SANS) is used to
investigate the structure on smaller scales and was used to study the
internal structure of a fibrous calcium caseinate material (Tian et al.,
2020). Spin-echo small-angle neutron scattering (SESANS) based on
neutron diffraction can distinguish structures over three orders of
magnitude — from 10 nm up to 10 pm. SESANS quantified the thickness
(£138 pm) and the number of fiber layers (+36) and the orientation of
fibers in soy protein-gluten blends that were subjected to heat and shear
deformation in a Couette Cell (Krintiras, Gobel, Bouwman, van der Goot,
& Stefanidis, 2014). SESANS was also used to study the size and shape of
the air bubbles in meat analogues of calcium caseinate (Tian, Wang, van
der Goot, & Bouwman, 2018).

The continuous-time random walk (CTRW) theory of light transport
has been used to study the spatial distribution of light reflectance on the
surface of a (fibrous) product (Weiss, Porra, & Masoliver, 1998). Ac-
cording to this theory, optical scattering depends on the transitional
properties of scattering. The pattern of the scatter recorded by trans-
mission or backscatter contains information on the internal structure of
a material, such as meat (Ranasinghesagara & Yao, 2007) and meat
analogues (Ranasinghesagara, Hsieh, Huff, & Yao, 2009; Ranasing-
hesagara, Hsieh, & Yao, 2006). In meat analogues, this method visual-
izes the degree of fiber formation and fiber orientation which shows
potential as a fast, non-destructive method to monitor fiber formation in
meat analogues (Ranasinghesagara et al., 2009; Ranasinghesagara et al.,
2006). An extension of light scattering is diffusing wave spectroscopy
(DWS), in which products with strong multiple scattering can be
measured. In this novel DWS technique, the transport of photons
through turbid products is treated as a diffusion process (Niu et al.,
2019). In meat, DWS has been used to study the gelation process of
myofibrillar protein extracted from squid (Niu et al., 2019).

In summary, spectroscopy can yield important information about the
overall resolved composition of both meat and meat analogue, as well as
intermolecular interactions and even about conformational changes of
substances like proteins. It can be expected that the spectra of meat and
meat analogues will be quite different because the spectra contain in-
formation about molecular properties. This limits its use for the actual
comparison of the two types of materials. However, prediction models
could be built from the correlation between the spectra and mechanical
properties to make indirect comparisons between the materials. Spec-
troscopy can also give some information on the anisotropy. Light
reflectance and SAS are promising methods to explore further for meat
analogues to quantify fiber formation as it is relatively simple and easily
incorporated into processing equipment, which will help to investigate
the formation of the mesoscopic structure. SAXS and (SE)SANS methods
typically yield information on smaller scales, but can also help in un-
derstanding the way the anisotropy is created from smaller-scale asso-
ciations. These techniques require however very large infrastructure,
and will thus be limited to research purposes.

2.3. Imaging

Imaging techniques can be used to reveal the structure of meat and
meat analogues (Table 3). Visual inspection through splitting a meat or
meat analogue is commonly used by product developers (Ranasing-
hesagara, 2008). Visual inspection is fast but destructive, not quantita-
tive and prone to subjectivity. Microscopic (SEM, TEM, CLSM, AFM)
characterization is used to construct images on different length scales
ranging from macro to nano structure. The main drawback of those
techniques is that they are destructive. Imaging using spectroscopic
methods, such as MRI, ultrasound, hyperspectral and X-ray imaging
does not require sample destruction. Image processing can be used to
quantify the colour, shape, size, porosity and surface texture features of
meat (Chmiel, Stowinski, & Dasiewicz, 2011; Du & Sun, 2006a, 2006b;
Jackman, Sun, & Allen, 2011; Li, Kutsanedzie, Zhao, & Chen, 2016; Li,
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Tan, & Shatadal, 2001; Ruedt, Gibis, & Weiss, 2020; Taheri-Garavand,
Fatahi, Omid, & Makino, 2019). In meat analogues, edge detection,
Hough transformation and region of interest analysis are used to
quantify the fiber index value, which is shown to be strongly correlated
with the polarization index (Ranasinghesagara et al., 2005).

Confocal laser scanning microscopy (CLSM) is a fluorescence tech-
nique to acquire 2D and limited 3D images of meat and meat analogue
products. In meat, CLSM was used to visualize the connective tissue,
myofibers and myofilaments and to monitor differences in structure
between fresh and cooked meat of pork muscle, comminuted meat gels
and beef (Du & Sun, 2009; Liu & Lanier, 2015; Straadt, Rasmussen,
Andersen, & Bertram, 2007). A combination of CLSM and NMR yielded
information about microstructural changes and water distribution in
meat (Straadt et al., 2007). In meat analogues, CLSM has been used to
visualize the effect of deformation on proteinaceous domains by
comparing a sheared and a non-sheared pea protein-gluten blend
(Schreuders et al., 2019). The domains were aligned along the shear
direction in these blends (Schreuders et al., 2019), in soy protein
concentrate (Grabowska et al., 2016) and soy protein-gluten (Dekkers,
Emin, Boom, & van der Goot, 2018) after staining with Rhodamine B.
Both the soy, pea and gluten showed fluorescence; the difference in
intensity was used to indicate differences in protein concentration in
different parts of the products.

Scanning electron microscopy (SEM) produces a surface image with
resolution down to ~0.5 nm. In meat products, SEM has been used to
reveal process-related changes in meat structure (Cheng & Parrish,
1976; Hearne, Penfield, & Goertz, 1978; Wu, Dutson, & Smith, 1985).
However, extensive sample preparation is needed for materials con-
taining water or fat. These preparations can significantly change the
original structure and may cause artefacts. Several techniques have been
developed to overcome the disadvantages of high-vacuum SEM, in most
cases at the cost of resolution. In cryo-SEM, water is frozen and may
remain in that state in the product. Cryofixation is used to observe
changes in the microstructure of beef steaks versus several cooking
methods like temperature, time and treatments (Garcia-Segovia,
Andrés-Bello, & Martinez-Monzo, 2007) and of pork versus freezing rate
and frozen storage time (Ngapo, Babare, Reynolds, & Mawson, 1999).
Variable pressure scanning electron microscopy (VP-SEM) is used to
examine the microstructure of meat products like the distribution of
protein and fat phases in meat products (Liu & Lanier, 2015). Environ-
mental scanning electron microscopy (ESEM) observes wet products at
normal vapour pressures. This technique has been successfully used to
investigate the microstructural changes of muscle meat in various meat
types by heat treatment (Yarmand & Baumgartner, 2000; Yarmand &
Homayouni, 2010). The shrinkage of pressure-treated and cooked pork
meat structure was observed by ESEM. These ESEM observations were
used to provide evidence for a higher shear force as measured with the
Warner-Bratzler test (Duranton, Simonin, Chéret, Guillou, & de Lam-
ballerie, 2012). SEM analysis combined with Energy-Dispersive X-ray
spectroscopy (EDX) may identify the spatially resolved elemental
composition of a surface and therefore identify the distribution of
different components over the material surface (Ozuna, Puig, Gar-
cia-Pérez, Mulet, & Carcel, 2013).

SEM has been used to study the microstructure of meat analogues.
High moisture extruded soy protein isolate-wheat starch revealed a fine
and tightly connected network structure (Lin, Huff, & Hsieh, 2002). In
soy protein isolate - pectin blends, alignment along the shear direction
was observed (Dekkers, Nikiforidis, & van der Goot, 2016). Soy protein
with increasing levels of iota carrageenan showed a more compact
network correlated with changes in cooking yield and expressible
moisture (Palanisamy, Topfl, Aganovic, & Berger, 2018). SEM of high
moisture extruded lupin protein concentrate and isolate showed that a
denser microstructure and higher number of fibrous layers were created
by increasing temperature and screw speed along with decreasing water
feed (Palanisamy, Franke, Berger, Heinz, & Topfl, 2019).

Like SEM, transmission electron microscopy (TEM) requires
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Table 3
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Overview of imaging techniques used in studies on meat and meat analogues from 2005 onwards. The colours in red and green indicate that the method is used for meat
and meat analogues, respectively.

Technique Properties Product (m/ma) Reference
CLSM 2D and 3D visualization Beef (m) (Du & Sun, 2009)
Chicken (m) (Liu & Lanier, 2015)
- |:| Pork (m) (Liu & Lanier, 2015; Straadt et al., 2007)
Shear cell structures (Dekkers, Emin, Boom, & van der Goot, 2018; Grabowska et al., 2016; Schreuders et al., 2019)
(ma)
SEM Surface image Beef (m) (Garcia-Segovia et al., 2007; Mulot, Fatou-Toutie, Benkhelifa, Pathier, & Flick, 2019)
Pork (m) (Duranton et al., 2012; Garcia-Garcia et al., 2019; Larrea et al., 2007; Ozuna et al., 2013)
- |:| Chicken (m) (Liu & Lanier, 2015)
Goat (m) (Yarmand & Homayouni, 2010).
Shear cell structures (Dekkers, Nikiforidis, et al., 2016)
(ma)

TEM

Inner structure

High moisture
extruded product (ma)
Beef (m)

Pork (m)
AFM Local 3D structure of a surface on Goat (m)
nanometric scale Beef (m)

B

Chicken (m)
High moisture
extruded product (ma)

MRI Spatial map of the concentration Chicken (m)
and relaxation times Pork (m)
. D Beef (m)
Ultrasound Composition, viscoelastic Pork (m)
imaging properties Dry cured meat
products (m)
Hyperspectral Spatially compositional analysis, Beef (m)
imaging fiber orientation
Pork (m)
. |:| Lamb (m)
Chicken (m)
X-ray Structure with a resolution from Beef (m)
Tomography mm to pm
Pork (m)

B

Chicken (m)

High moisture
extruded product (ma)
Shear cell structures
(ma)

(Palanisamy, Franke, et al., 2019; Palanisamy et al., 2018)

(Listrat et al., 2015; Zhu et al., 2018)
(Larrea et al., 2007)

(Gao et al., 2016)

(Wan, Wang, Wang, Zan, & Zhu, 2018)
(Chen, Xu, & Zhou, 2016)

(Zhang et al., 2019a)

(Shaarani et al., 2006)

(Antequera, Caro, Rodriguez, & Pérez, 2007; Fantazzini, Gombia, Schembri, Simoncini, &
Virgili, 2009; Herrero, Cambero, et al., 2007)

(Bouhrara et al., 2011)

(Ayuso et al., 2013)

(Corona et al., 2013)

(Cluff et al., 2008; EIMasry, Sun, & Allen, 2011; Rady & Adedeji, 2018, 2020; Van Beers,
Aernouts, Reis, & Saeys, 2017)

(Barbin, Elmasry, Sun, & Allen, 2020; Cheng, Sun, Pu, & Wei, 2018; Huang, Liu, & Ngadi,
2017; Kucha, Liu, & Ngadi, 2018; Rady & Adedeji, 2018, 2020; Yang, Sun, & Cheng, 2017)
(Kamruzzaman, Elmasry, Sun, & Allen, 2012)

(Jia et al., 2018; Rady & Adedeji, 2018, 2020)

(Einarsdottir et al., 2014; Frisullo et al., 2010; Kroger et al., 2006; Mathanker et al., 2013;
Miklos et al., 2015; Schoeman et al., 2016)

(Brienne et al., 2001; Einarsdottir et al., 2014; Frisullo et al., 2010; Kroger et al., 2006;
Mathanker et al., 2013; Miklos et al., 2015; Schoeman et al., 2016)

(Adedeji & Ngadi, 2011)

(Philipp et al., 2017)

(Dekkers, Hamoen, et al., 2018; Schreuders et al., 2019; Tian, Wang, van der Goot, &
Bouwman, 2018; Wang, Tian, Boom, & van der Goot, 2019)

extensive sample preparation. As samples are created by microtoming,
TEM provides information about the inner structure of meat, such as
changes in the myofibrillar structure of beef upon cooking (Zhu, Kaur,
Staincliffe, & Boland, 2018), the degradation of myofibrillar structure of
lean meat by proteolytic action (Gerelt, Ikeuchi, & Suzuki, 2000) and
calcium chloride addition (Gerelt, Ikeuchi, Nishiumi, & Suzuki, 2002).

Atomic force microscopy (AFM) explores the local 3D structure of a
surface on a nanometer scale. AFM has been widely used to analyse the
morphology and mechanical properties of meat proteins for under-
standing the structure and tenderness/toughness (Soltanizadeh &
Kadivar, 2014) and investigates the effects of processing and preserva-
tion conditions (ultrasound, CaCly and sodium tripolyphosphate) on
meat proteins (goat muscle fiber) (Gao et al., 2016). AFM-based infrared
spectroscopy (AFM-IR) combines the spatial resolution of atomic force
microscopy (AFM) with chemical analysis using infrared (IR) spectros-
copy (Dazzi & Prater, 2017). For meat analogues, AFM-IR was used to
determine the phase distribution of protein and lipids during high
moisture extrusion of peanut protein at a nanoscale resolution (10 nm)
(Zhang et al., 2019a).

Magnetic resonance imaging (MRI) is a non-invasive and non-
destructive imaging technique that produces a spatial map of the con-
centration and relaxation times to give insight into the structural

features of meat and meat analogues (Duce, Ablett, Guiheneuf, Hors-
field, & Hall, 1994; Mitchell, Scholz, Wang, & Song, 2001). Several
studies on meat employed MRI to study the chemical composition,
muscle structure as well as carcass compositions, adipose tissue distri-
bution, connective tissue, and muscle fiber type (Marcone et al., 2013).
MRI can also visualize the water distribution in meat products and the
effect of processing such as freeze-thawing (Guiheneuf, Parker, Tessier,
& Hall, 1997) or drying (Fantazzini, Gombia, Schembri, Simoncini, &
Virgili, 2009; Ruiz-Cabrera, Gou, Foucat, Renou, & Daudin, 2004),
moisture loss during processing (Antequera, Caro, Rodriguez, & Pérez,
2007), to quantify changes in the moisture and structure of cooked
chicken meat (Shaarani, Nott, & Hall, 2006) and allows imaging of the
connective network during the cooking of meat (Bouhrara et al., 2011).
Magnetic resonance elastography (MRE) is a phase-contrast-based MRI
imaging technique that can directly visualize and quantitatively mea-
sure localised viscoelastic properties like elasticity and stiffness (Gruwel,
Latta, Matwiy, & Tomanek, 2010; Manduca et al., 2001). MRE provides
estimates of the mechanical properties such as shear modulus or Young’s
modulus of tissues (Gruwel et al., 2010; Sapin-De Brosses, Gennisson,
Pernot, Fink, & Tanter, 2010). The analysis of strongly anisotropic beef
muscle shows that MRE can distinguish between isotropic (viscous
properties) and anisotropic (elastic properties) materials (Sinkus et al.,
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2005).

Ultrasound imaging can be divided into low power ultrasound (LPU)
and high power ultrasound (HPU) (Awad, Moharram, Shaltout, Asker, &
Youssef, 2012). The latter uses frequencies that are disruptive for the
physical, mechanical, or chemical properties of food products and are
therefore promising in food preservation. LPU has been used as a
non-invasive analysis method for monitoring food materials during
processing or storage. In LPU, sound waves propagate through food
materials, which leads to absorption and/or scattering of the waves.
Different components will have specific local, acoustic impedance,
which is the basis for image production. In the meat industry, LPU is
used most often for compositional analysis as quality control of carcasses
or live animals (Awad et al., 2012; Silva & Cadavez, 2012). Ultrasound
imaging has also been successfully used for measuring the composition
of chicken meat (Chanamai & McClements, 1999), carcass composition
of pigs (Ayuso, Gonzdlez, Hernandez, Corral, & Izquierdo, 2013) and
dry-cured meat products (Corona et al., 2013). Ultrasound imaging of
meat and meat products has even been mentioned to provide estimates
of localised viscoelastic properties of meat tissues (Biswas & Mandal,
2020, pp. 3-17). Ultrasound imaging has been used to follow the
ripening kinetics of tofu (Ting, Kuo, Lien, & Sheng, 2009).

Hyperspectral imaging (HSI) is the combination of multiple wave-
lengths together with other localised information. Infrared spectroscopy
can be combined with microscopy providing spatially resolved compo-
sitional analysis (Dazzi & Prater, 2017; Zhang, Liu, et al., 2019). NIR
combined with HSI provides both spectral (NIR spectrum) and localised
(for each pixel) details together in the scanned region. This was
reviewed for meat and fish to predict quantitively and qualitative
chemical, textural and structural characteristics of meat such as
tenderness, water, water holding capacity, fat and protein content (Reis
et al., 2018; Wu & Sun, 2013a,b)). By combining direct identification of
different components and their spatial distribution in the tested product,
hyperspectral imaging has the potential for objective quality evaluation
of both meat and meat analogues. NIR HSI is already used for the
detection and quantification of plant (texturized vegetable protein and
gluten) and animal (chicken) based adulterants in minced beef and pork
(Rady & Adedeji, 2018, 2020).

Scattering techniques such as X-ray tomography, SAS, or light
reflectance provide 3D structural insight. X-ray tomography (XRT) is
based on variations in the attenuation of penetrating X-rays. The dif-
ference in the degree of X-ray attenuation is determined by the local
density and compositional differences, which provides the locally
resolved density with a spatial resolution down to 1 pm and at a time
scale of minutes. Micro-computed tomography (pCT) is used to study the
structure of small products with a resolution from mm to pm. In meat
products, XRT is used for microstructural characterization, prediction of
salt, water, (intramuscular) fat content and distribution, and the rela-
tionship with hardness (Schoeman, Williams, du Plessis, & Manley,
2016). Micro-computed tomography (Mathanker, Weckler, & Wang,
2013) was used to characterize microstructure, as well as the quantifi-
cation and prediction of the composition in meat and fish hardness
(Schoeman et al., 2016), intramuscular fat level and distribution in beef
muscles (Frisullo, Marino, Laverse, Albenzio, & Del Nobile, 2010). In
meat analogue products, XRT reveals the porosity in the structure. Air
pockets that could be elongated and entrapped were studied in soy
protein-pectin blends (Dekkers et al., 2018), soy protein-gluten blends
and pea protein-gluten blends (Schreuders et al., 2019). In extrusion
products, expansion (due to water evaporation) of the materials was
visualized in extruded rice starch-pea protein in two directions (Philipp,
Oey, Silcock, Beck, & Buckow, 2017). Air bubbles in a composite meat
analogue made of calcium caseinate may contribute to fibrous proper-
ties (Tian et al., 2018; Wang et al., 2019). In general, XRT depends on
differences in density and therefore is not well suited for finding infor-
mation on the distribution of components that have similar densities.
Advanced contrast modalities such as phase-contrast X-ray tomography
describes both the meat structure and the different meat components (i.
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e. water, fat, connective tissue and myofibrils) qualitatively and quan-
titatively (Miklos, Nielsen, Einarsdottir, Feidenhans’l, & Lametsch,
2015). Dual X-ray absorptiometry shows a moderate good correlation
with meat tenderness and fat content in pork and beef meat (Brienne,
Denoyelle, Baussart, & Daudin, 2001; Kroger, Bartle, West, Purchas, &
Devine, 2006). The grating-based multimodal X-ray tomography
method (including absorption, phase contrast and dark-field tomo-
grams) was used to quantify the composition (i.e. meat matrix, fat, salt,
oil droplets) and visualizes the microstructural changes of meat emul-
sion induced by heat treatment (Einarsdottir et al., 2014).

As can be concluded from the information described above, imaging
reveals important information about the intermolecular interaction,
anisotropy and nano to macro structure of meat and meat analogues.
While SEM and CLSM are used to reveal the structure of both meat and
meat analogues, TEM and AFM have only been used to analyse meat, but
not yet meat analogues. The fibrousness of meat analogues from plant
proteins created via a top-down approach is typically less hierarchical
than meat (Dekkers, Boom, & van der Goot, 2018). This implies that the
meat analogues are structured on larger scales than is explored with
TEM and AFM. Nevertheless, fibrous proteinaceous materials, such as
those based on calcium caseinate may have a finer structure, which
could justify further analysis. Given the ubiquity of water in meat ana-
logues, we expect that ESEM and CLSM will be major methods for
further structural analysis. CLSM can lead to 3D information through
combining a stack of 2D pictures and also yields information on differ-
ences in composition, which could provide better insight into the
orientation and the length of the structural elements in meat analogues.
An important limitation of the microscopy methods is that they require
extensive sample preparation, making them less suitable for further
analysis. Non-destructive imaging methods like MRI and HSI used for
meat provide information on the intermolecular interaction and
spatially resolved compositional analysis for meat analogues simulta-
neously. For both meat and meat analogue products, structural changes
have been analysed with XRT. For meat analogue products, XRT was
used to quantify and visualize air, while for meat more structural aspects
were studied with different types of XRT (like phase-contrast X-ray to-
mography or grating-based multimodal X-ray tomography).

3. Characterization aspects specific to meat analogues

This review focused on the texture and structure of meat and meat
analogues as finished products (Fig. 2). But contradictory to meat, the
fibrous structure of meat analogues has to be created in a production
process. Therefore we are not just interested in the final structure of
meat analogues, but also in the mechanism behind the creation of the
fibrous structure. As the fibrous structure of meat analogues is often
created during thermomechanical processing, it is important to under-
stand the behaviour of different components during processing. The
high temperature and pressure, often used during the production of
meat analogues, limit the methods of analysis. However, a combination
of different methods could be a route to gain information about the
structure formation process. Mechanical methods cannot be used during
processing, but spectroscopy and imaging techniques show potential.
ESEM and XRT could be promising to study the changes in the structural
elements during thermomechanical processing of meat analogues. The
application of in-line light reflectance, SAS, NIR, or Raman spectroscopy
during the processing of meat analogues could provide insight into
structural elements. In-line ultrasound imaging is expected to be a
promising method for studying air bubbles and mechanical properties of
meat analogues during processing, as this was previously used for the
analysis of dough (Koksel, Scanlon, & Page, 2016).

Another challenge to characterize meat analogues is the fibrous
structure itself. To understand how to create a fibrous structure,
knowledge of the fibers in meat analogues is required. So far, it is not
completely clear what the geometry, size, binding pattern and adhesion
or cohesion of the fibers in meat analogues will look like. The
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Figure 2. Available texture and structure methods ( ) on their suitability for meat (M, m) and meat analogues (MA, m) and future potential research areas for

meat analogues.

simultaneous use of different mechanical and imaging methods can
provide a more holistic view on the fiber properties in meat analogues
products. It can also be interesting to refer to meat and also non-food
products containing fibers. Meat from different origin such a poultry
or beef, consists of fibers with very different shapes and physical char-
acteristics as was revealed with multi-point indentation, which is was
used to spatially measure the local elastic modulus (Boots et al., 2021).
In non-food products, such as thermoplastic, adhesion and cohesion of
fibers in a matrix is studied. A combination of fiber-matrix wetting
analysis and interfacial adhesion analysis was found to give a good
understanding of the fiber-matrix interface (Tran et al., 2015). Such
methods could also be promising in understanding the fibrous structure
of meat analogues.

4. Conclusion

An important step towards the development of next-generation meat
analogues is a better insight into the texture properties of those prod-
ucts. To quantify those, analytical techniques are necessary. This review
summarizes and discusses methods typically used to characterize the
properties and quality of meat products and discusses the feasibility to
apply those for meat analogues. At this moment the range of methods
used for meat analogues is smaller compared to the methods available
for meat. However, we conclude that a broad range of methods could be
readily employed to analyse meat analogues or slightly modified to
make those methods suitable to analyse meat analogues.

Several techniques elucidate structural features. Mechanical
methods allow a direct comparison of the texture attributes between
meat and meat analogues, tensile analysis, Warner-Bratzler test and
compression techniques provide information about the strength of the
product and can be applied to both meat and meat analogue products.
Spectroscopy methods are non-destructive and fast but more expensive.
Most imaging techniques are interesting to compare the structure of
both meat and meat analogues. CLSM and XRT reveal 3D information.
NIR, MIR, NMR and MIR provide both quantitative information about

the structural elements and information of the composition. Tensile
analysis, image analysis, fluorescence spectroscopy, SAS and light
reflectance, showed to be promising methods to quantify properties of
the individual fibers and their formation process. TEM and AFM are
interesting for nanoscale structure analysis, but have been applied to
meat only so far.

Specifically for meat analogues there is a need to study the texture
and structure at processing conditions as well. In-line NIR or ultrasound
imaging could be promising to study the changes in the structural ele-
ments during thermomechanical processing of meat analogues.
Furthermore, future research should focus on characterizing the fibers
present in meat analogues with regards to geometry, size and adhesion
and cohesion. This approach could optimize the conditions used during
the processing of meat analogues process with the final purpose of
resembling meat products in terms of texture and structure.
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