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1 Introduction 

1.1 Project background ‘Quality Controlled Logistics in IoT-enabled Perishable 
Supply Chains’ 

Food supply is one of the main challenges our global society faces, and supply 
chain innovation is expected to contribute to a secure, efficient and sustainable food 
supply. The Netherlands plays a significant role in the global food supply system.  
In supply chains of fresh and perishable food products even minor disruptions in 
storage/transport conditions can have a considerable effect on product quality and 
possibly lead to food waste.  
  
Food waste and quality decay is among others caused by suboptimal management 
of the climate conditions during transport. A lack of insight in (changes of) product 
quality during storage and transport leads to challenges in managing the 
quality/shelf life of fresh produce, uncertainties in claims processes, food waste 
throughout the supply chain, and difficulties to deliver according to agreed product 
quality standards. The concept of quality-controlled logistics (Vorst et al, 2007), 
addresses these challenges. Follow up research (Vorst et al., 2012) identifies the 
possibilities for making chain information directly and real-time available and usable 
to support decision making of all partners in the horticultural network but concludes 
that an integrated approach of quality-controlled logistics is still lacking. 
  
By applying innovative IoT applications in combination with knowledge of product 
quality-loss and logistic decision making we believe that an integrated approach of 
quality-controlled logistics is possible. Major barriers are the difficulty of precise 
prediction of remaining product quality/shelf life. By capturing sensor data and using 
it as input for quality-loss models, we aim to intervene in dynamic supply chains 
accordingly. As such, we apply quality controlled logistics in an integrated way. 
Traditional technologies are not able to provide accurate predictions or are 
extremely expensive. Therefore, investigating the potential use of the next-
generation technologies such as IoT become relevant.  
This is also recognised both by Dutch Research Council (NWO who granted this 
project ‘Quality Controlled Logistics in IoT-enabled Perishable Supply Chains’ 
(IoT4Agri) as part of the research programme ‘Accelerator - Kennis en innovatie 
voor een concurrerende logistieke sector’ and by the consortium partners.  
 
Besides giving the first impetus to an integrated approach of quality-controlled 
logistics, we contribute to sustainable logistics. Moreover, the project addresses 
dynamic supply chain planning solutions, enabled by Internet of Things (IoT), and 
corresponding alternative logistics service offerings (e.g., dynamic en-route 
changes) based on the remaining perishable product shelf life. This will result in 
CO2 savings, transport avoidance (avoiding overripe products that cannot be 
consumed anymore), and modal shift potential with the aim of a higher product 
value for the end consumer. 
 
In this IoT4Agri project, the consortium members recognise that IoT technologies 
are needed to extend the possibilities of monitoring and controlling the quality of 
perishable products, and to enable implementation of the concept of data-driven 
quality-controlled logistics.  
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The project is structured around six work packages, being: 
 

 WP1 IoT enabled Quality Controlled Logistics (QCL), including the QCL 
conceptual framework1, the state-of-the-art of supporting technologies, and 
the SWOT analysis of this QCL-concept2. 

 WP2 Business analysis, including the use cases for demonstration, the 
business case analysis, and the business model analysis3. 

 WP3 Design and Solution Development, including the development work 
needed to demonstrate a proof of concept in a real-life setting (= this report) 

 WP4 Demonstrations, covering demonstration of the use cases in a 
maritime and a continental road trade lane. 

 WP5 Evaluation and valorisation, ensuring that the project knowledge is 
being disseminated among the target audience and to support a broader 
valorisation of the project insights.  

 WP6 Project Management, assuring an overall efficient execution of the 
project and organize and facilitate the cooperation between the consortium 
parties. 

 
Each Work Package has a corresponding deliverable, that reports on the results. 
This report reflects the results of Work Package 3 (WP3) and is called D3.1 Design 
and Solution Development report. The next section elaborates the contents and 
structure of this report.  

1.2 Objective and research questions Work Package 3 

The key objective of the overall project is to integrate IoT into logistics decision 
making leading to the research objective ‘to explore the potentials and applicability 
of IoT technologies in enabling dynamic and integrated quality-controlled logistics in 
the postharvest perishable produce chain’. 
 
To realize the overall objective, two complementary clusters of research questions 
from technological and supply chain points of view are formulated4. Related to the 
different Tasks of Work Package 3 the sub-research questions are: 
  
 Technology: 

o Chapter 2: “What are specific connectivity platforms / control tower 
requirements following sensor data capture and real-time decision 
support?” (Task 3.1) 

o Chapter 3: “How to convert the collected different type of sensor data into 
measurable quality indicators?” In other words, “How to incorporate more 
parameters into the current quality-prediction model to improve the 
prediction accuracy?” (Task 3.2) 

 
1 See: Guo, X., Snels, J.C.M.A., Tromp, S., 2021. Quality-Controlled Logistics with Internet of 
  Things: A conceptual framework (WFBR Report 2131. DOI https:doi.org/10.18174/541694)  
2 See: Finner, S., Zomer, G., 2020. D1.1 State of the Art of IoT technology for quality-controlled 
  logistics in the supply chain of perishable cargo (TNO 2020 P11141) 
3 See: Zomer, G., Bhoraskar, A., 2021. D2.1 Business models, business and use cases of  
   IoT-enabled QCL of perishables. TNO report (TNO 2021 P12076) 
4 As part of WP3 also sub-research questions related to the level of units that should be applied on 
  container, pallet, crate or individual product level was formulated? However, this sub-research 
  question will be answered in WP 4, more particular in the Use Case ‘Optimal sensor positioning 
  in perishable shipment’ and will therefore not be part of WP3. 
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 Supply Chain: 
o Chapter 4: “How to optimally organize the logistic activities, based on the 

predicted quality, form a system optimization point of view?” In other words, 
“What are the underlying supply chain decisions that push the concept of 
quality-controlled logistics?” (Task 3.3) 

o Chapter 4: “Which supply chain decisions are being supported?” (Task 3.3) 

1.3  Contents and structure of the report 

To demonstrate the proof-of-concept of comprehensive concept of Quality 
Controlled Logistics (QCL) it is split in two separate but related work packages.  
In Work Package 2, the so-called use cases are described. These use cases 
provide the basis for a proof of concept in a real-life demonstration setting in the 
project5. And in Work Package 3 the solutions for these so-called use cases are 
being designed and developed. 
  
In this report the ‘design and development’ of the concept of Quality Controlled 
Logistics in IoT-enabled Perishable Supply Chains will be described on two levels. 
The first, or more general level focuses on describing the design and solution of 
‘what should be in place / is needed to make the concept of Quality Controlled 
Logistics in IoT-enabled Perishable Supply Chains work in the longer term’. 
  
The second, more specific level will describe the design and development focusing 
on Use Cases 3 and 4 in showing ‘what is developed to operationalize the concept 
of Quality Controlled Logistics in IoT-enabled Perishable Supply Chains  
(= proof-of-concept)’.  
 
These Use Cases (UC) are: 
 

 UC3: Sensor-enabled quality-loss predictions of a shipment: 
Provide quality-loss predictions based on sensor values of relevant sensors 
attached to the international shipment(s) of perishables. Relevant sensors 
include sensors that measure quality-loss indicators such as ethylene, 
temperature and (relative) humidity. 

 UC4: Decision support for logistics interventions driven by quality-loss 
predictions: 
Configure possible logistics interventions and provide decision support on 
executing these interventions based on the quality-loss predictions and 
remaining transport lead time of corresponding shipments. 

 
The design and development of UC3 include low-cost ethylene sensor 
development, proof of a functioning connectivity platform, and quality-loss prediction 
models based on input sensor data. Looking at UC4 sensor data driven logistics 
decision making will be designed and developed. This will include real-time 
adjustments to the conditioning parameters (e.g. temperature and (relative) 
humidity), dynamic acceleration options for the maritime transport (e.g. unload in 
first port of call and use high speed transport towards destination), acceleration/ 
deceleration options in port terminal handling (including preparation of the release 
documents), acceleration/deceleration options in hinterland transport  

 
5 See Zomer, G. 2021 ‘D2.1 Business models, business and use cases of IoT-enabled QCL of 
  perishables’ 
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(e.g. cross-docking, modal shift), avoiding logistics hubs with ripening facilities for 
particular shipments, and adding additional quality control procedures based on the 
sensor data. 

1.4 Report setup 

In chapter 2 we focus on the description of sensor technology and -connectivity in 
which it addresses the functional design and data flow architecture, data 
understanding and data standardisation, the design of a central data repository  
and dashboard, and the connectivity between sensor data, quality-loss model and 
decision support system. And thus, answering the research questions “What are 
specific connectivity platforms / control tower requirements following sensor data 
capture and real-time decision support?” In this chapter also, focused on the 
demonstrations and use cases, the development of a low-cost sensor, the so-called 
Sensorbox including ethylene sensors, is described.  
 
In chapter 3 we describe how to connect sensor data to quality-loss models to 
predict product quality and shelf life. And by this gives answer to the research 
question “How to convert the collected different type of sensor data into measurable 
quality indicators?” In other words, “How to incorporate more parameters into the 
current quality-prediction model to improve the prediction accuracy?”  
 
Then chapter 4 will show the analyses of different decision strategies from a 
product quality and cost-benefit perspective. Furthermore, in this chapter we 
formulate decision making models based on product quality by using simulation 
models to support the decision-making process. The analysis and simulation will 
include dynamic service differentiation options for logistics operators along the 
supply chain to accelerate/decelerate the supply chain. The research questions 
“How to optimally organize the logistics activities, based on the predicted quality, 
from a system optimization point of view? In other words, “What does it imply for 
contracts, service level agreement, and operation procedures?”, “What are the 
underlying supply chain decisions that push the concept of quality-controlled 
logistics?” and “Which supply chain decisions are being supported?” will be 
answered. 
 
Finally, in Chapter 5 we discuss scalability and what is needed to get the concept of 
Quality Controlled Logistics in IoT-enabled Perishable Supply Chains really 
working, including further development activities. 
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2 Sensor technology and -connectivity description 

2.1 Functional design and data flow architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: High level architecture (source: WFBR, based on HIH) 

 
Figure 1 is a presentation of the high-level, theoretical project architecture.  
The main idea is that data is collected in real-time during transport via sensors. This 
can be at product, box, pallet, crate and vehicle level. This concerns environmental 
conditions, place, time, et cetera. This data is stored in a Central data store where it 
is enriched with data from external data suppliers. This concerns, for example, 
product information, quality reports, harvesting conditions, et cetera. To predict 
product quality, the central data store retrieves relevant data that is necessary for 
the quality-loss models. Subsequently, the logistics intervention model is fed with 
the output of the quality-loss model. The logistics intervention model also retrieves 
other relevant data, necessary for advising on possible decisions, from the central 
data store. In order to make the decision, ultimately taken by people, possible, the 
results are presented via various portals. 

2.1.1 Application for the demonstrations 
For demonstration purposes the ‘ideal’ architectural structure has to be adapted to 
the companies involved and the available technology. This is shown in Figure 2.  
In total there are three “data providers”; Sensitech, Van Oers United (VOU) and the 
Sensorbox (see paragraph 2.5). Only the Sensorbox sends data to the central data 
store in almost real time. Sensitech provides the data by extracting this data from 
their platform. VOU is providing the data in a report. Before loading the data into the 
central data store, the data will be linked together. The link between the various 
data sources is the date and timestamp.  
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Figure 2: Architecture for demonstration purposes (source: WFBR, based on HIH). 

 
The Sensorbox sends the data via the mobile network of Telenor to the central data 
store. The Sensorbox is only capable of sending data when the box is directly 
connected to a “cell tower” of a telecom provider. When the Sensorbox doesn’t 
connect to a cell tower, it stores the data locally. When the Sensorbox is in reach of 
a cell tower, it will off-load its data. 
 
To be able to use the data in the quality-loss model a three-step process – Extract, 
Transform and Load (ETL procedure) will be executed by which data is extracted 
from the data sources that are not optimized for analytics, and moved to a central 
host to provide the quality-loss model with the necessary data. Details of the quality 
decay model and the connection to the intervention model are described in  
Chapter 3. 
 
There is a second way to feed data into the decay model. Other companies having 
data for determining the quality of fruits and vegetables, can feed their data directly 
into the decay model. There are several ways to feed data into the model. The 
easiest way to feed data into the model is by using an ETL approach. 

2.2 Data understanding and data standardisation 

In the current project there are three data providers; van Oers provides quality data, 
Sensitech provides temperature and humidity data and Het Internet Huis provides 
ethylene and GPS data. All these data sources don’t meet certain standards. In the 
project the various data sources are manually matched. This matching process is 
done before loading data into the central data store. In the central data store a view 
will be generated to display the data in a portal. This view generates Date, Time, 
Temperature, (relative) Humidity, Ethylene, and GPS coordinates. 

2.3 Design of a Central data repository and Dashboard 

Data in the central data store will be presented using Thingsboard. Thingsboard is 
an open-source IoT platform for data collection, processing, visualization, and 
device management.   
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It enables device connectivity via industry standard IoT protocols – MQTT6, CoAP7 
and HTTP8 and supports both cloud and on-premises deployments. Thingsboard is 
thus suitable for this project because it is a system that enables to display data with 
a variety of dashboards. An example of such a dashboard is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Dashboard example (source: HIH) 

 
Besides the possibility of representing various data in all kinds of graphs. 
Thingsboard also has features to show data on a topographical map by using the 
GPS coordinates. 

2.4 Connectivity between sensor data, quality-loss model and decision support 
system 

In the current phase of this project, it isn’t possible to feed a real-time decision 
support model. There are two reasons why this isn’t possible: 

1. The various data sources are not standardized and there is no data 
governance agreement in place. 

2. The determination of the quality of the goods, when the goods are loaded 
into the truck in the country of origin, is recorded on (written) forms. Also, 
when the goods arrive in the Netherlands, the quality is written down on 
forms (see also paragraph 3.1). 

 

 
6 Message Queuing Telemetry Transport (MQTT) is a lightweight, publish-subscribe network 
  protocol that transports messages between devices 
7 Constrained Application Protocol (CoAP) is a specialized Internet Application Protocol for 
  constrained devices which enables those constrained devices called "nodes" to communicate 
  with the wider Internet using similar protocols 
8 Hypertext Transfer Protocol (HTTP) is an application layer protocol for distributed, collaborative, 
  hypermedia information systems and is the foundation of data communication for the World Wide 
  Web. 
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So, for being able to use this data and information a manual conversion step is 
required, so that real-time feeding of the decision support model is not possible in 
current practice.  

2.5 Low-cost sensor development: Sensorbox, including ethylene sensors 

For demonstration purposes a Sensorbox is developed (see Figure 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Sensorbox (Source: HIH). 

 
This Sensorbox is a stand-alone sensor. For the communication with the 4G 
network we’re using a module of Quectel. Currently there are two module providers, 
Quectel and uBlox. Due to the knowledge and experience within Het Internet Huis, 
we choose for a module of Quectel. This module makes it possible to communicate 
over different communication bands of 4G and 5G. The most obvious is to use NB-
IoT9. Besides communication, this Quectel also has the ability to communicate with 
GPS satellites. In this way it is possible to register the location of the Sensorbox. 
 
Besides the communication this Sensorbox is equipped with an ethylene sensor 
(C2H4). This is an inexpensive sensor manufactured by a Chinese company called 
Winsen. We choose for this approach because of a working relationship with 
Winsen. The detection range of this sensor is 0 ~ 100 ppm. 
 
 
 
 
 
 
 

Figure 5: Winsen Electrochemical Ethylene Gas Sensor ME3-C2H4 (source: https://www.winsen-
sensor.com/sensors/c2h4-sensor/me3-c2h4.html) 

 

 
9 Narrowband Internet of Things (NB-IoT) is a Low Power Wide Area Network radio technology 
  standard to enable a wide range of cellular devices and services 
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Another discussion related to the Sensorbox is how to measure climate condition 
inside a container. More specific, where to place the sensors and how much 
sensors are needed. These questions that need further investigation are 
reformulated as Use Case 2 ‘Optimal sensor positioning in perishable shipment’ 
(this is part of Work Package 4 of this project). In this Use Case research will focus 
on applying sensors on different locations within a truck or container. Then it will the 
differences in sensor values will be analysed in order to advise on the number and 
location of different sensors, and to provide input for the feasibility of the business 
case of embedded sensors in pallets or crates. 

2.6 Scalability and further development 

To realize a real time intervention model, based on the quality-loss model which 
again is based on various data sources from various data providing companies, a 
lot of work needs to be done.  
 
The work that needs attention is: 
 

- On a business level: roles, responsibilities and fee structures must be clear 
- On a legal level: relevant rules and regulations, a governance model and 

contract must be in place 
- On an operational level: service levels, operational governance, incident 

and change management must be clear 
- On a functional level: the interaction model and privacy must be in place 
- On a technical level: standards for data and security must be developed 

and implemented 
 
One direction to develop a data architecture is a federated model. A combined 
database system is a type of meta Database Management System (DBMS), which 
transparently combines multiple autonomous database systems into a single 
combined database. The constituent databases are connected via a computer 
network and may be geographically decentralised. Since the constituent database 
systems remain autonomous, a federated database system is a contrasting 
alternative to the (sometimes daunting) task of merging several disparate 
databases. A federated database, or virtual database, is a composite of all 
constituent databases in a federated database system. As a result of Data 
Federator, there is no actual data integration across the constituent disparate 
databases. 
 
An example of a federated model is provided in this Figure 6. 
. 
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Figure 6: Federated architecture (source: Gommans, L., Prototype Digital Data Marketplace - 
Enabling Data Sharing for AI Development, Presentation for SURF on DDM prototype in 
AMdEX context,  23rd June 2020, Utrecht, The Netherlands, 
https://www.dl4ld.net/presentations/).  
 

2.6.1 Integration for demonstration purposes 
In order to facilitate the shipment demonstration data exchange, the post harvest 
product quality is to be provided by Van Oers United via a form, being developed for 
the purpose of the demonstration. This form has not yet been standardised but will 
serve the proof of concept. Moreover, the sensor data captured during the shipment 
transport is being made available via a central data warehouse dashboard and is 
approachable by WFBR, who will ‘run’ the quality-loss model feeded with this 
sensor data. 
 
The project will not develop an automatic interface (API) between the central data 
warehouse and WFBR. Similarly, the exchange of the output of the quality-loss 
model between WFBR and TNO is also not being automated, but pushed by 
WFBR. Similarly, the intervention model output exchange is being sent to the 
central data warehouse. Again, not in an automatic manner, but pushed by TNO. 
Obviously, when the concept is being implemented on a wider scale, these data 
exchange facilities can easily being automated using API10 protocols. 
 
 
  

 
10 Application Programming Interface (API) is an interface that defines interactions between 
   multiple software applications or mixed hardware-software intermediaries 
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3 Connecting sensor data to predict product quality 

3.1 Quality-loss indicators  

Quality-loss indicators are normally associated with a physical property of the 
product like misshapen, dehydration, change in colour or pathogens like fungal or 
bacterial growth. In a supply chain the choice of which quality-loss indicators are 
relevant depends on the product, the supply company, and the requirements of the 
client.  
 
Several researchers have analysed the dependence between quality-loss indicators 
and environmental conditions such as temperature and relative humidity (see 
section 3.2). These researchers are mainly interested in the quantitative 
relationships between the environmental conditions (such as temperature, humidity, 
air compositions) and the quality-loss indicators along a certain time horizon.  
The main quality-loss indicators used by researchers are listed in the graph below 
(Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Shows the percentage of different quality-loss indicators used by literature. 
(Source: WFBR). 

 
We observe that colour and firmness are the quality-loss indicators that have been 
mostly researched. This is not surprising partly because both firmness and colour 
are the two most common factors that a consumer pays attention to when 
purchasing a fresh product. More importantly, firmness and colour give indications 
of the storability and ripeness of the fresh product, which has significant business 
relevance. 
 

Percentage of quality-loss indicators 
assessed in literature 
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From the point of view of a supply company, we can extract the quality-loss 
indicators from quality reports that are used to control product quality along the 
supply chain. For example, Van Oers United (VOU) performs two quality checks for 
each shipment from the sourcing countries to the Netherlands. The first report, 
produced at products’ origin, is composed of two sections, the first section 
completed during harvesting and the second section previous to shipment (if the 
time between harvest and shipment is less than 24 hours only one section is 
provided). The second report is produced at destination. An example of both reports 
can be found in Figure 8 and Figure 9 respectively.  
 

 
 
 

Figure 8: Van Oers’ report at origin. Quality check during harvesting and before shipment can be 
observed in different rows. (Source: VOU) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: Van Oers’ report at destination. The figure does not represent the full Van Oers’ report, 
just a part of it. (Source: VOU) 

 
The relevance of the quality-loss indicator scan be evaluated by extracting the 
metrics that appear in both reports. In this case, the main quality indicators are: 
colour, deformation, dehydration, and wind damage. For modelling (see section 3.2) 
it is of crucial importance to have the same type of quality indicators both at origin 
and at destination. Quality at origin can be used as an initial condition and quality at 
destination as the variable the model needs to predict. To evaluate the impacts of 
different environmental conditions during transport on the changes of the quality 
metrics, the two quality reports need to be linked to the environmental conditions 
(i.e., matching the original quality of each batch with the environmental conditions 
during transport as well as the arrival quality of the same batch). This is currently 
not the case; VOU is currently working on this. 
 
To the best of our knowledge, there is no implementation yet where quality-loss 
indicators are measured during transport. 
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3.2 State of the art models and research in the area of fresh food quality-loss 

In this project we aim at developing quality-loss models that are non-destructive 
since in this way the testing methods do not damage the product, the whole product 
can be tested which can minimise the inaccuracy of test results and any 
undermined irregularities. In practice we see that several methodologies that are 
developed to measure quality-loss indicators often cause a quality-loss themselves, 
because for measuring they need to damage or destruct the product (Llobet, Hines 
et al., 1999). To avoid the destruction or damage to the product it is important to 
develop methodologies that can predict the quality-loss without interfering with the 
normal deterioration process. To this end, it is important to understand the 
relationships between quality-loss and environmental conditions that influence 
quality, for example temperature, humidity, etc. As a result, quality-loss models are 
developed to capture those relationships and predict quality changes under 
different transportation (or storage) conditions.   
 
We categorize the quality-loss models from the literature into three categories:  
 

 The classical mathematical models: models developed from mathematical 
approximations of the quality-loss phenomenon. These mathematical 
models try to describe the kinetics of quality-loss of fresh products. 

 Linear data models: models that fit data assuming a linear relationship 
between quality-loss indicators and variables (sensors). The complexity of 
the variables’ functional relationship is linear for these models. Some of 
these models are: linear regression, logistic regression, etc. 

 Non-Linear data models: These types of models are the most complex 
ones. They can model non-linear dependencies between variables at the 
expense of having a large volume of data. The more complex the 
relationship of the variables, the more data is required for modelling. Some 
of these models are: random Forest, deep artificial neural networks, etc. 

 
Notice that strictly speaking both linear data models and non-linear data models can 
be considered as part of a more general modelling technique known as machine 
learning.  
 
Machine learning models are mathematical algorithms that find a mathematical 
formula, which, when applied to a collection of inputs (sensors, variables, etc) 
produces a desired output (quality-loss, shelf-life prediction, etc). In other words, 
machine learning algorithms, by processing data, are able to find functional 
relationships between input and outputs, without the need of human intervention.    
 
Besides different types of modelling technologies, another very important distinction 
is made between models for climacteric and non-climacteric products. A climacteric 
product presents a ripening associated (related) with the increase in the release of 
ethylene and rise of cellular respiration. Modelling a climacteric product requires the 
measurement of ethylene as one of the main indicators of quality-loss. On the 
contrary, non-climacteric products like strawberries or green beans do not release 
large amounts of ethylene since they have already done most of their ripening 
before harvesting.  
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In the following subsections, we will present a review of the quality-loss models by 
the types of different modelling techniques. 

3.2.1 The classical mathematical models 
Tijskens and Polderdijk (1996) developed a model that predicts the quality based on 
temperature, initial quality and the quality acceptance limits. They found that the 
model correctly predicted quality for 60 different species of fruit and vegetables, 
amongst which French beans. 
 
Schouten et al. (2018) propose a kinetic model that incorporates the effects of 
temperature and ethylene on the firmness behavior of “Keitt” and “Kent” mangoes. 
 
Penchaiya et al. (2020) looked at biological indicators for quality of mangoes and 

found that variation in firmness, total soluble solids and titratable acidity are 

correlated to variation in maturity. Models could predict the quality better if they take 

these parameters into account. They also found that mangoes stored at a higher 

temperature had a higher rate constant for firmness and coloring, which indicates 

faster fruit ripening. Thus, storage at higher temperatures seems to have a negative 

effect on the quality of mangoes. 

3.2.2 The general linear and non-linear models 
Besides the classical mathematical models, the linear models including both linear 

and logistic regressions are another group of models that have been widely used to 

predict the quality-loss for fruits and vegetables.  

 

For the climacteric products, in the literature, there are quite some studies available 

on the quality-loss for mango. Most of them applied the analysis of variance 

(ANOVA) to make the analysis and quality prediction. Ntsoane, Luca, Zude-Sasse, 

Sivakumar, and Mahajan (2019) investigated the low oxygen (O2) tolerance limit of 

the “Shelly’ mango. They measured the quality of the mangoes by looking at 

pigments and accumulation of O2 restricted volatile organic compounds (VOC).  

Low O2 levels did not have an impact on pigmentation, However, they found that 

the accumulation of anaerobic VOCs increased with lower O2 levels. They also 

found that odour and taste decreased with low O2 levels. Specifically, 5% is the low 

O2 limit for the fruit to accumulate enough anaerobic VOCs to be described as  

off-flavor. However, 10% O2 can already result in reduced mass-loss and 

respiration and maintenance of firmness, soluble solids, and individual sugars.  

Lalel and Singh (2004) found the same result that higher O2 levels are more 

favorable for storage of the green mango. In addition to that, they also found that 

storage at either 2% O2 & 3% carbon dioxide (CO2) or 3% O2 & 6% CO2 levels at  

13 ˚C is the most effective to prolong shelf life. They measured this by keeping 

mangoes at different conditions of temperature, and O2 and CO2 concentration and 

measuring biosynthesis and aroma volatile compounds. In similar research Lalel 

and Singh (2006) found that storage at 3% O2 and 6% CO2 levels appears to be the 

most promising for ‘Delta R2E2’ mangoes. Especially the amount of ethanol and 

acetaldehyde levels were significantly reduced in fruit stored at those O2 and CO2 

levels. These results indicate as well that higher CO2 levels lead to a decrease in 

quality.   
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This indication is also supported by Bender, Brecht, Baldwin, and Malundo (2000), 

who researched the effect of CO2 levels on aroma volatiles in ‘Tommy Altkins’ 

mangoes. They found that mangoes stored at 10% CO2 had little effect on the 

volatile aroma levels compared with storage in air. However, mangoes stored at 

25% CO2 showed an increase in aroma volatile levels. In addition, they also found 

that tree ripe fruit contained more volatile levels after storage than mature green 

fruit. However, Sivakumar, Van Deventer, Terry, Polenta, and Korsten (2012) found 

that lower O2 levels and higher CO2 levels reduced weight and firmness-loss, 

delayed skin and fresh colour development and prevented the increase of soluble 

solids/titratable acids ratio. This is in contrast with the previous found result, where 

it should be noted that the effect of O2 and CO2 concentration was measured in 

combination with the effect of 1-methylcyclopropene (1-MCP). Montalvo, García, 

Tovar, and Mata (2007) researched the effect of ripening of ‘Ataulfo mangoes’ when 

exposed to three different amounts of ethylene. They found that when exposed  

100 ul ethylene, the ethylene production in the fruits accelerated and the ripening 

process increased with 4 days. Quality was measured by measuring volatiles. 

Different from the aforementioned study which used the ANOVA to make the 

analysis, Rungpichayapichet, Mahayothee, Nagle, Khuwijitjaru, and Müller (2016) 

investigated how well near-infrared spectroscopy (NIRS) prediction models could 

predict the post-harvest quality of mangoes using partial least squares (PLS) 

regression analysis. The models were used to predict firmness, total soluble solids, 

titratable acidity, and ripening index. They found that NIRS models correctly 

predicted the quality in 80% of the cases. 

 

In addition to mangos, there are also studies focusing on other climacteric products. 

Verlinden, de Jager, Lammertyn, Schotsmans, and Nicolai (2002) built a logistic 

regression model to describe the effect of storage factors on the quality of pears. 

Quality of the pears was measured by determining the core breakdown. They found 

that mature fruit stored at lower O2 and higher CO2 levels is more susceptible to 

breakdown. 

 

Lammertyn, Aerts, Verlinden, Schotsmans, and Nicolaı (2000) used a multivariate 

logistic regression model to predict the quality of Conference pears. They 

determined the quality of pears by looking at their coloring and number of cavities. 

They predicted the quality by measuring CO2 and O2 concentration and by the size 

and weight of the pear. The models correctly determined the quality of the pears in 

86% of the cases. Melesse, Sobratee, and Workneh (2016) researched the effect of 

temperature on the postharvest quality of tomatoes. They use a multivariate logistic 

regression model to study the effect of temperature on the marketability of 

tomatoes. They used the presence and amount of Fungi, bacteria, coliforms, total 

soluble solids, glucose, fructose and ascorbic acid as indicators for quality. Their 

results are supported by Tolesa, Workneh, and Melesse (2018), who also used 

multivariate logistic regression to determine the effect of temperature on quality in 

tomatoes. They used firmness, hue angle and total soluble solids as indicators for 

quality.  
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Touati, Barba, Louaileche, Frigola, and Esteve (2016) measured the kinetics of 

physicochemical parameters, bioactive compounds and total antioxidant capacity 

modifications were measured as an indicator for stability of different fruit nectars. 

This stability was measured for fruit nectars of pears, orange and grape after 

storage at 3 different temperatures (4, 25 and 37 °C). They found that stability in 

fruit nectars stored at 4 °C was better than when stored at 25 and 37 °C. This 

indicates that lower temperature has a positive effect on the quality of fruits. Véras, 

de Araújo, Junior, and Finger (2019) investigated the effect of three different 

temperatures on ‘Galia’ melons. They measured pulp firmness, mass-loss, internal 

and external appearance, chilling injury, soluble sugars and enzymes to determine 

the quality. They found that quality significantly decreased when stored at the 

highest temperature (11 °C). However, they also found chilling injury when the 

melons were stored at a temperature of 3 °C. This indicates that an optimum 

temperature for storage of ‘Galia’ melons is 7 °C. 

 

In the case of non-Climacteric products, temperature and time are the most used 

indicator to predict quality-loss. Vanstreels et al. (2002) investigated red 

discoloration of chicory using a multiple regression analysis, where red discoloration 

a negative indicator is for quality. They found that elevated carbon dioxide levels 

and decreased oxygen levels resulted in lower are favourable for avoiding red 

discoloration. The optimal condition to prevent red discoloration is where an 

atmospheric composition of 10% O2 and 10% CO2 with a storage temperature of 

5°C is maintained. 

 

For the more complex non-linear models, the studies include the following. Llobet, 

Hines, Gardner, and Franco (1999) trained an electronic nose system on detecting 

quality by measuring tin oxide, which is an indicator for ethylene (Nabena, Yuliarto, 

& Iqbal, 2018) and other volatile levels of bananas. Three supervised classifiers 

were used to predict seven stages of ripeness of bananas. These stages of 

ripeness were determined by their colour. They found that two classifiers 

(FuzzyArtmap and LVQ) predicted the states of ripeness correctly with accuracies 

of resp. 90.2 and 92%. Because FuzzyArtmap does take previously learnt data into 

account, this makes it the most favourable tool to use when predicting the ripeness 

of climacteric fruit.  

 

Deshmukh, Kasbe, Mujawar, Mule, and Shaligram (2016) developed a wireless 

electronic nose system (WEN), which through gas sensors should measure the 

ripeness of mangos. Three stages of ripeness of the mangoes were determined to 

see whether the WEN correctly could determine the ripeness. The advantage of 

WEN is that it is portable, low cost, interactive and can be applied on most species 

of fruit and vegetables. 

 

Geethapriya and Praveena (2017) developed an electronic nose, which measures 

the fruit ripeness based on ethylene levels. They determined three stages of 

ripeness in mangoes and found a positive correlation between the ripeness of the 

fruit and ethylene levels measured by the electronic nose.  
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Torres-Sánchez, Martínez-Zafra, Castillejo, Guillamón-Frutos, and Artés-Hernández 

(2020) used a multiple non-linear regression (MNLR) model to monitor shelf-life 

reduction based on temperature in lettuce. They used a number of quality 

parameters to determine the quality of the lettuce, namely the respiration weight, 

weight, and human sensory analysis. In the human sensory analysis 5 groups of 

quality were determined based on their compactness, visual appearance, flavour, 

and colour. They found that all quality parameters were negatively influenced when 

the temperature increases. A MNLR with interactions was suggested as a model to 

predict quality-loss during storage. 

3.2.2.1 Usage for demonstration purposes 
For the purpose of this project, especially the demonstration, we want to model the 

relationship between quality-loss indicators (output variable) and external variables 

like temperature, humidity, etc. Therefore, we assume that there is a relationship 

between environmental conditions and quality-loss indicators, in other words, by 

obtaining sensor data we are able to infer the quality-loss of a product. 

 

For the sake of the demonstration, existing mathematical quality-loss models are 

adapted to the problem at hand. The lack of data during the initial stages of the 

project does not allow the fitting of any data model (linear or non-linear). 

Mathematical models that were developed in a very controlled environment 

(atmospheric conditions like temperature, humidity and volatile gases were kept 

constant or strictly regulated) are adapted to the project's needs.  

3.2.3 Future developments: the machine learning model 
Once more data is collected, it will be able to develop data models that would be 

able to adjust better to fluctuations in the measured variables. For this future 

scenario it is proposed to use of artificial neural networks to model the relationship 

between sensors and quality-loss indicators. 

 

Artificial neural networks, or just neural networks (NN) are popular machine learning 

techniques that simulate the mechanism of learning in biological organisms. The 

animal nervous system contains cells, called neurons. The neurons are connected 

on one another with the use of axons and dendrites (see Figure 10 A) and the 

connecting regions between axons and dendrites are called synapse (see Figure 10 

B). The strengths of synaptic connections often change in response to external 

stimuli. This change is how learning takes place in living organisms. 
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Figure 10: Comparison diagram between biological and artificial neural networks. Figure (A) 
  represents a biological neuron and its constituent parts. Figure (B) shows the 
  corresponding analogy of an artificial neuron. Figure (C) represent the transmission of 
  information between neurons by the synapse process. Figure (D) shows the connection 
  between different neurons constituting an artificial neural network. Diagram extracted 
  from Meng, Hu, and Ancey (2020) 

 

Artificial neural networks try to simulate this biological learning mechanism. A neural 

network also contains computational units referred as neurons (see Figure 10 C). 

As with the axons and dendrites, these computational units are connected to one 

another through mathematical weights (see Figure 10 D). Learning occurs by 

adjusting the weights connecting the artificial neurons. Just as external stimuli are 

needed for learning in biological organisms, the external stimuli in an artificial neural 

network are provided by data containing examples of input (in our case, sensor 

measurements) and output (in our case quality-loss indicators) pairs of the function 

to be learned. 

Neural networks can model non-linear relationship between the input and output 

variables, allowing for the modelling of more complex behaviours. Neural networks 

are very flexible and can be applied to different problems from image recognition to 

time series analyses.  

 

Regarding its complexity Neural Networks can basically be divided into three main 

types: 

 

1. Shallow Neural Networks: This type of NN learns the weights of the network 

directly from the input variables. These are very simple neural networks that 

can reproduce the linear relationship obtained using linear models, they do 

not require so much data for modelling. Linear regression and logistic 

regressions can be modelled as shallow neural networks. 

2. Neural Networks: Networks with an increase in complexity (non-linearity) for 

modelling. More data is required to create an accurate model. 
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3. Deep Neural Network: the state-of-the-art networks used for image and text 

recognition. In deep neural networks learning contrary to shallow, most of 

the weights are learned not directly from the features of the input data, but 

from outputs of preceding layers. They can model any type of relationships 

at the expense of requiring a large volume of data. 

 

Neural networks can be applied to many different complexity types of modelling. For 

example, if it is known that the relationship between inputs and output is linear then 

a simple shallow neural network (a linear regression) would be enough to capture 

this functional dependence. On contrary if the relationship between inputs and 

outputs is more complex (non-linearities present) deeper neural networks would be 

able to learn the dependence. Therefore, due to its flexibility regarding the amount 

of available data WFBR believes this type of algorithm can be very beneficial and 

evolve together with the volume of data collected. 

3.2.4 Quality-loss models for demonstration purposes 
As already mentioned, for the sake of the demonstration, WFBR will adapt existing 

mathematical quality-loss models to the problem at hand. WFBR will adapt 

mathematical models that were developed in a very controlled environment 

(atmospheric conditions like temperature, humidity and volatile gases were kept 

constant or strictly regulated), to the project's needs. 

Table 1: Products used for demonstrations. 

Product Cultivar Sourcing 

country 

Transport modality 

Green beans Sonny Morocco Road 

 Sonny Senegal Road 

Mangos Kent Senegal Road / Sea 
 

WFBR will adapt the mathematical models for these two products to the project's 

needs because the existing models were developed in a very controlled 

environment (atmospheric conditions like temperature, humidity and volatile gases 

were kept constant or strictly regulated).  

3.2.4.1 Green beans 
For green beans two quality-loss models exist: a combined senescence and 

chilling-injury model dependent on time and temperature, and a specific weight-loss 

model dependent on time, temperature and relative humidity. The impact of 

ethylene is covered by an additional constraint. 

 

1. Senescence and chilling-injury model 
 

Output: shelf life based on a ‘holistic’ quality perception (most probably covering the 

quality attributes shriveling (due to weight loss) and color), due to both senescence 

and chilling injury. 

 

Input: storage time and temperature. 
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The model and parameters are explained in Table 2. 
 
Model explanation: The French-bean model from (Tijskens & Polderdijk, 1996) has 
been adapted by adjusting the optimal shelf life to the supply chain of VOU (20 days 
for Senegal, 14 days for Morocco). 
 
Disclaimer: this model is based on scientific literature, expert opinion and 
information from VOU. In order to model the supply chain of VOU more accurately, 
dedicated data collection would be needed. 

Table 2: Model and parameters of senescence and chilling-injury model of green beans. 
 

Parameter Meaning Unit Value Source 

SL(T) Shelf life at 

temperature T 

d 𝑆𝐿(𝑇)

=
𝑆𝐿௥௘௙

𝑘ଵ,௥௘௙ ∗ 𝑒
ா௔(ଵ)∗ଵ଴଴଴

ோ
∗൬

ଵ
்ೝ೐೑

ି
ଵ
்

൰
+ 𝑘ଶ,௥௘௙ ∗ 𝑒

ா௔(ଶ)∗ଵ଴଴଴
ோ

∗൬
ଵ

்ೝ೐೑
ି

ଵ
்

൰
 

Tijskens & Polderdijk 

(1996) 

SLref Shelf life at Tref d 𝑆𝐿௥௘௙ =
𝑆𝐿௢௣௧

6.746
∗ 5.985 Tijskens & Polderdijk 

(1996) 
SLopt Shelf life at Topt d 20 (Senegal), 14 (Morocco) 

These values can be adjusted if initial quality is deviating. 

VOU 

Topt Optimal 

temperature 

d 280.15 Tijskens & Polderdijk 

(1996) 
k1,ref Reaction rate 

chilling injury at 

Tref 

1/d 1 Tijskens & Polderdijk 

(1996) 

Ea(1) Activation 

energy chilling 

injury 

J/mol 79 Tijskens & Polderdijk 

(1996) 

R Universal gas 

constant 

J/(K mol) 8.314  

Tref Reference 

temperature 

K 283.15 Tijskens & Polderdijk 

(1996) 
T Storage 

temperature 

K Input  

K2,ref Reaction rate 

senescence at 

Tref 

1/d 0.0549 Tijskens & Polderdijk 

(1996) 

Ea(2) Activation 

energy 

senescence 

J/mol -271.82 Tijskens & Polderdijk 

(1996) 

Loss(t,T) Loss of SLopt 

when stored at 

temperature T 

for time t 

d 𝐿𝑜𝑠𝑠(𝑡, 𝑇) = 𝑡 ∗
𝑆𝐿௢௣௧

𝑆𝐿(𝑇)
 By calculation 

t Storage time d Input  
SLfin,opt Remaining 

shelf life at Topt 

d 𝑆𝐿௙௜௡,௢௣௧ = 𝑆𝐿௢௣௧ − 𝐿𝑜𝑠𝑠(𝑡ଵ, 𝑇ଵ) − ⋯ − 𝐿𝑜𝑠𝑠(𝑡௡, 𝑇௡) 

where T1,...,Tn are the subsequent, stepwise constant 
temperatures with durations t1,...,tn 

By calculation 
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2. Weight-loss model 

 
Output: shelf life based on weight loss. 
Input: storage time, temperature and relative humidity. 
 
The model and parameters are explained in Table 3. 
 
Model explanation: The weight loss percentage per day equals a product-specific 
factor β times the vapour pressure deficit. This factor β depends of the product’s 
transpiration coefficient. Values of β have been adapted by adjusting the optimal 
shelf life to the supply chain of VOU (<5% weight loss at 6-7˚C and 95% RH after 
20 days for Senegal, 14 days for Morocco). 
 
Disclaimer: this model is based on scientific literature, expert opinion and 
information from VOU. In order to model the supply chain of VOU more accurately, 
dedicated data collection would be needed. 

Table 3: Model and parameters of weight-loss model green beans. 

Parameter Meaning Unit Value Source 

WL(t, T, RH) Weight loss if stored at 

temperature T and relative 

humidity RH for time t 

% 𝑊𝐿(𝑡, 𝑇, 𝑅𝐻) =
𝛽

1000
∗ 𝑡 ∗ 𝑉𝑃𝐷 

 

Becker 

(1996), 

Holcroft 

(2015) 

VPD11 Vapour pressure deficit Pa 𝑉𝑃𝐷 = ൬
100 − 𝑅𝐻

100
൰ ∗ 𝑆𝑉𝑃 Murray (1966) 

SVP Saturated vapour pressure Pa 𝑆𝑉𝑃 = 610.7 ∗ 10
ቀ

଻.ହ்
ଶଷ଻.ଷା்

ቁ 
  

Murray (1966) 

t Storage time d Input  

RH Relative humidity during 

storage 
% Input  

T Storage temperature ˚C Input  

Loss’(t, T, 

RH) 
Loss of shelf life at T’ and RH’, 

if stored at T and RH for time t 
d 𝐿𝑜𝑠𝑠ᇱ(𝑡, 𝑇, 𝑅𝐻) = 𝑡 ∗

𝑉𝑃𝐷

𝑉𝑃𝐷ᇱ
 

 

By calculation 

SLfin (T’, RH’) Remaining shelf life at T’ and 

RH’ 
d 𝑆𝐿௙௜௡൫𝑇′, 𝑅𝐻′൯ =  

5

𝛽
1000

∗ 𝑉𝑃𝐷′

− 𝐿𝑜𝑠𝑠′(𝑡ଵ, 𝑇ଵ, 𝑅𝐻ଵ)

− ⋯

− 𝐿𝑜𝑠𝑠′(𝑡௡, 𝑇௡ , 𝑅𝐻௡) 

where T1,...,Tn and RH1,...,RHn are the 

subsequent, stepwise constant 

temperatures and relative humidities with 

durations t1,...,tn 

By expert 

knowledge 

(shelf life ends 

if weight loss 

equals 5%) 

and 

calculation 

 
11 Water loss is a common postharvest problem with green beans. About 5% weight loss is needed 
   before shrivel and limpness are observed. After 10-12% weight loss, the beans are no longer 
   marketable. The weight loss of mature green beans can be estimated from the equation: % 
   weight loss per day = 0.754 x vapor pressure deficit. The VPD can be obtained from a 
   psychrometric chart when temperature and relative humidity are measured. The rate of water 
   loss of immature beans is higher than for mature beans (Source: 
http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Vegetables_Englis
h/?uid=3&ds=799) 
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β Weight loss per day per kPa 

VPD 
%/d 6.048 (Morocco) 

4.32 (Senegal) 
  

Based on 

VOU (shelf life 

equals 20 

days for 

Senegal, 14 

days for 

Morocco) 

 
3. Additional constraint  

 
Based on expert knowledge: if the ethylene concentration exceeds 1 ppm, then the 
shelf life (according to both models) is reduced by 30-50%. 
 
Assumptions on relative humidity (if non sensored), dependent on packaging 
  

 Loose in crates: RH = 95%   
 Loose in boxes: RH = 95% 
 Consumer packs of 400g-500g in foil with perforations: RH = 99%  

3.2.4.2 Mango 
 
1. Firmness model 

Output: firmness; non-destructive stiffness measure using a commercial acoustic 
firmness tester. This tester combines a resonant frequency and mass into a firmness 
index. 
 
Input: storage time and temperature 
 
The model and parameters are explained in Table 4. 
 
Model explanation: The model about mango from Brazil (Keitt) from (Schouten et 
al., 2018) has been applied because this model represents the expected situation of 
VOU (a moderate decrease of firmness during transport at 9 ˚C, but a rather serious 
decrease at 12 ˚C), although the real cultivar in the supply chain of Van Oers United 
is a Kent cultivar.  
 
Disclaimer: this model is based on scientific literature, expert opinion and 
information from VOU. In order to model the supply chain of VOU more accurately, 
dedicated data collection would be needed. 
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Table 4: Model and parameters of firmness model mango. 

Parameter Meaning Unit Value Source 

F(t) Firmness at 

time t 
  𝐹(𝑡)

= 𝐹௙௜௫ + ൫𝐹௢ − 𝐹௙௜௫൯

∗ 𝑒
௞೑೐೙೥∗ா௧௛ቆ

ି௘షೖ೏೟

௞೏
మ ି

௞೏௧ିଵ

௞೏
మ ቇ

 

Schouten et al. 

(2018) 

F0 Firmness at 

time 0 
  60 Expert knowledge 

Facc Acceptability 

level 

 25 Expert knowledge 

Ffix     12.7 Schouten et al. 

(2018) 

Eth     1.52 Schouten et al. 

(2018) 

kfenz Reaction rate  1/d 
𝑘௙௘௡௭ = 𝑘௙௘௡௭,௥௘௙ ∗ 𝑒

ா೑೐೙೥

ோ
൬

ଵ
்ೝ೐೑

ି
ଵ
்

൰
 

 

Schouten et al. 

(2018) 

kd Reaction rate 1/d 𝑘ௗ = 𝑘ௗ,௥௘௙ ∗ 𝑒
ா೏
ோ

൬
ଵ

்ೝ೐೑
ି

ଵ
்

൰
 

 

Schouten et al. 

(2018) 

kfenz,ref Reaction rate 

at Tref 
1/d 0.099 Schouten et al. 

(2018) 

kd,ref Reaction rate 

at Tref 
1/d 0.219 Schouten et al. 

(2018) 

Efenz Activation 

energy 
J/mol 169900 Schouten et al. 

(2018) 

Ed Activation 

energy 
J/mol 10 Schouten et al. 

(2018) 

R Universal gas 

constant 
J/(K mol) 8.314  

Tref Reference 

temperature 
K 295.15 Schouten et al. 

(2018) 

T Storage 

temperature 
K Input  

t Storage time d Input  

  
 
Model use: it is assumed that the initial firmness (before transport) equals 60, and 
that the product is rejected at unloading if it has become too soft (firmness below 
25). As an indication, Table 5 shows the remaining shelf life, based on the firmness 
model from Table 3, at two different temperatures (9 ˚C and 12 ˚C) for different 
levels of the current (predicted) firmness. 
 

Table 5: Remaining shelf life at two different temperatures. 

Current firmness Shelf life at 9˚C (d) Shelf life at 12˚C (d) 

26 6 3 

27 9 5 

28 13 7 
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3.2.4.3 Operating range and scope of the models 
The quality-loss models as described in the former section cover product 
physiology, so senescence of the product due to time and climate conditions: 
 

- For green beans the senescence and chilling-injury model covers the shelf 
life based on a ‘holistic’ quality perception due to storage time and 
temperature (including chilling injury). The weight-loss model covers 
weight-loss due to storage time, temperature, and relative humidity 

- For mango a firmness model is developed based on storage time and 
temperature.  

 
This means that some other, probably important quality-loss indicators which may 
occur in practice are not covered by the existing models. Think for example of 
browning of green beans, and anthracnose and rot of mango. 

3.3 Sensors (types, output, types of data) 

To predict the loss of quality of a fresh product, quality-loss indicators need to be 
estimated. Quality-loss indicators (see section 3.1) quantify the quality lost by a 
product. There are some challenges inherent to a quality-loss indicator: 
 

1. Some quality-loss indicators require expert knowledge for their assessment. 
Normally product experts asses the quality of a sample of products 
manually at the beginning and end of the supply chain. Commonly it is hard 
to measure the quality during transport; 

2. Some of the quality-loss indicators are invasive (destructive): In order to be 
measured, the product needs to be damaged. 

 
For these two reasons, it is important to understand the relationship between the 
quality-loss indicators and sensors that can be active during transport. Commonly 
these sensors are not destructive, however they are normally external to the 
product and thus these sensors measure environmental conditions (temperature, 
humidity) of the area in which the products are stored or transported that can 
contribute to the quality-loss of the product. 
 
To predict the relationship between quality-loss and sensors, quality-loss models 
are developed. Models are mathematical representation of a natural phenomenon; 
in our case this phenomenon is the quality-loss of a fresh perishable product. When 
a model is developed there is an implicit assumption: There exists a relationship 
between inputs (sensor data) and outputs (quality-loss indicators). The model 
needs to reflect this relationship.  
 
Based on expert knowledge and scientific literature review we can make a list of the 
most studied sensors (Figure 11): 
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Figure 11: Shows the percentage of the most used type of sensors used by literature. We only 
  focus on time series sensor type. Currently, we are not interested in the research done 
  by analysing quality-loss using images. (Source: WFBR) 

 
From Figure 11, we can observe that temperature sensors and ethylene sensors 
are the main sensors studied in relation with quality-loss. Especially with respect to 
climacteric products ethylene can be a relevant sensor, the reason is that 
climacteric products have a higher respiration rate than non-climacteric ones, 
speeding up the ripening process. On the contrary, temperature resulted as the 
main indicator evaluated by literature. And related to the quality-loss model for 
green beans presented in paragraph 3.2.4.1 also relative humidity is relevant to 
sense. Following this general research, combined with domain knowledge, three 
different sensors will be used for demonstration purposes as inputs for a 
mathematical quality-loss model.  
 
These sensors are: 

- Temperature; 
- relative humidity; 
- ethylene sensor. 

 
Next to the data required to monitor the fresh produce, also the supply chain itself 
needs to be monitored in order to create a decision-making system. For this (see 
paragraph 4.3) the geographical position of the shipment is necessary information 
as well. Depending on the shipment location and quality predictions, a decision-
making system can decide which type of intervention is necessary. For this reason, 
Geo Position System (GPS) data are also part of the data that will be collected.  
 
It is important to highlight a significant difference between mathematical and data 
modelling. A mathematical model requires expert knowledge and experimentation 
to infer the relationship between a fix set of inputs (sensors) and output (quality). 
Data models, on the other hand, are not restricted to a fix set of inputs and do not 
require to have knowledge expert (however it is always recommended to do 
modelling together with a product expert) beforehand. Data models, flexible to the 
number of inputs, try to learn the relationship between inputs and outputs 
automatically from the data collected.  
  

Percentage of sensor assessed in literature 
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In the long term, once more data are collected, data models are able to learn more 
complex relationships than relatively simple mathematical models. Some of the 
drawbacks of the data modelling approach are the dependency on data collection 
(more data is required to model more complex relationships) and data quality. Since 
data models are fully depending on data, the modelling capabilities of a data model 
is as good as the data provided for their training. As incidents occur incidentally by 
definition, it may take a long time (a lot of data) before the data model is able to 
predict these incidents accurately.  
 
Due to the current lack of data, data models are not going to be implemented for 
demonstration purposes. For this reason, mathematical models will be used during 
demonstration, please see section paragraph 3.2.4. for a review of the quality-loss 
models to be used. 

3.4 Scalability and further development 

The project aims to have a full connected platform where sensor data is collected 
online during transport. Once more data is collected a so-called machine learning 
model development cycle will be very promising.  
 
This cycle needs to contain 4 stages, see Figure 12. 
 

1. Data collection: Inserting data into a data central repository for its analysis. 
2. Analysis of data: New data needs to be analysed for consistency.  
3. Training of the data models: New data will be used to keep training machine 

learning models, to make them more accurate and general. 
4. Service: The use of the machine learning algorithm, as an input for a 

decision-making model or dashboard. 
 

 

Figure 12: Machine learning model development cycle. (Source: WFBR). 
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With time more data will be collected. This data could be of different types like 
images, text, pre-harvesting data, etc. So, in contrast with the traditional 
mathematical quality-loss models, machine learning models are not limited to 
specific data from 'traditional’ sensors to measure the quality-loss of vegetables and 
fruits, such as time-temperature indicators, relative humidity sensors and gas 
sensors. 
 
One promising type of machine learning models are neural networks. Due to the 
flexibility of neural networks, these differences in type can be analysed without the 
need to turn to other type of data model algorithms. 
 
One of the current limitations is that quality-loss indicators are only recorded before 
and after transport. This means that there is no possibility to know the exact quality 
metric during transport, unfortunately this could limit the performance of any type of 
modelling. 
 
One limitation of a neural network is the long time that it can take to train them. 
Training a machine learning algorithm is the process in which the algorithm learns 
from the input-output data, in the case of neural networks this means the way the 
algorithm adjusts the different weights in the network (see paragraph 3.3). A data 
scientist needs to periodically assess the quality of the fitting metrics in case the 
predictive power of the algorithm decreases, a normal situation at the moment of 
deploying any type of data model. The data scientist will be responsible to retrain 
the neural network using a new set of data recorded in the data repository. An 
added benefit of a neural network is that this type of algorithm belongs to the set of 
incremental learning algorithms. Incremental learning is a method of machine 
learning in which new input data is continuously used to extend the existing model's 
capabilities, without forgetting previous acquired information and without the need 
to retrain the model from zero using a combination of historical and new data. 
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4 Recommend logistics interventions based on 
product quality predictions 

4.1 Introduction 

The logistics intervention model is derived from the business case as explained in 
WP2 (see Zomer, G. 2021). It recommends possible logistics interventions based 
on product quality-loss predictions, the expected impact of the considered 
interventions and the associated costs of executing those intervention options.  
 
The intervention model is developed in a generic way to: 
 

 Plan an appropriate intervention (given the quality of the produce with the 
quality-loss model). 

 Apply it to different trade lanes and different modalities. 
 
The intervention model heavily relies on the data received from the quality-loss 
model. Whereas the business case was a more static model which did not take into 
account the possible changing of quality of the product along the way, the 
intervention model is dynamic. It considers the changing conditions of the produce 
in the shipment and with the help of the quality-loss model, helps to understand 
what the quality of the product would be on arrival. This also allows for planning the 
interventions in a more dynamic way. The model adapts to the changing conditions 
of the shipment and takes a decision based on real-time measurement values from 
the sensors in the shipment and the corresponding quality predicted by the quality-
loss model.  
  
The intervention model also takes into account the possible benefits of the location 
of the shipment to optimize subsequent supply chain processes (such as preparing 
the unloading personnel at the warehouse dock and avoid waiting times or 
preparing an extra driver to join the first one to reduce potential lead time to the 
destination). 

4.2 Recap from the business case for assumptions 

Before the intervention can be explained, it is also important to have a recap of the 
inputs/assumptions considered in the business case in WP2 (see Zomer, G. 2021) 
since they are still valid in the intervention model. The main take-ways have been 
summarized into the tables that can be found in the annex. For more information 
about them, refer to the report on the business case report from WP2 (see Zomer, 
G. 2021).  

4.3 The logistic interventions considered 

The logistics intervention model considers three possible kinds of interventions 
based on the inputs from the quality-loss model. Along with the intervention, it also 
advises on when, in the transport process, the intervention should be applied.  
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The three kinds of interventions are as follows: 
 

1. Dynamic climate control: The dynamic climate control includes adjusting the 
temperature and/or humidity inside the container as suggested by the 
quality-loss model. This could help in reducing the rate of the decay 
process thereby protecting the produce until the shipment reaches its 
destination. The idea behind real-time monitoring of these conditions and 
the corresponding quality-loss prediction is that the sensor data may give 
ground to dynamically adjust certain settings accordingly. Think of using 
ventilation, lowering the temperature, reduce the humidity levels, add 
ozone, or add fresh air / oxygen. It would require monitoring the quality-loss 
patterns of numerous shipments in order to optimise the settings 
accordingly. Here, we assume that this is possible when implementing this 
sensor solution, though this dynamic setting optimisation is out of scope for 
this project. It would require calibrating the quality-loss model based on 
large volumes of real monitoring data and feedback loops. We simply 
assume that it is possible to dynamically adjust the settings, resulting in a 
slower quality-loss. Obviously, this comes with a cost. An average cost 
estimate has been included in the model for this intervention which can be 
found in the report for WP2. For the sake of the demonstrations, the 
intervention  model considers the dynamic climate control to be an optimum 
climate assurance intervention. The quality decay model considers the 
shipment to be transported in optimum conditions with respect to 
temperature and humidity. These conditions can change due to some 
unforeseen circumstances like the driver leaving the door open/shutting the 
engine off etc. This particular intervention ensures that those conditions are 
always met so that the shipment does not deteriorate with respect to 
quality. 

2. Reducing lead time: This includes hiring a 2nd driver for road shipment and 
opting for a priority treatment at the port for a sea shipment. The idea is that 
if the sensor values give an indication that products product quality-loss 
goes faster than anticipated, that the transportation lead time might be 
reduced by changing the priority of the shipment.  
 
The reduction of lead time could be explained for both the sea and the road 
routes separately: 
 

a. Sea transport: For sea transport, the sea leg is not expected to be 
shortened by speed adaptations of the vessel because of for 
example some fast-ripening shipments on board. Moreover, it 
seems unrealistic to adapt the stowage plan during sea voyage. 
However, container dwell time in the unloading terminal may be 
shortened. The idea of this dynamic priority treatment in terminals 
was discussed with a Rotterdam container terminal and was not 
infeasible, but mainly depends on the willingness to pay for this 
service. Nevertheless, it is not common practise today. Priority 
treatment in unloading sequence may be considered. In a port call 
with huge call sizes, it matters if a priority container would be 
unloaded in the first couple of hours or in the last batch. This can 
make a difference of up to 2 days, though most reefer containers 
often will be unloaded in the first phases of an unloading plan.  
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Moreover, the stacking procedures also determine the dwell time of 
containers on a terminal. The assumption is that a priority treatment 
could result in a ‘cross dock-like’ operation, where the container is 
being unloaded from the sea vessel and directly moved to the place 
where a truck is ready to load the container. Finally, preparatory 
activities to ensure a fast release, combined with a fast hinterland 
slot planning further offer opportunity to shorten the container dwell 
time. Of course, this kind of priority treatment would come with a 
price, a fee for a dynamic priority treatment terminal service is 
included in the cost assumptions for this type of intervention costs. 
Apart from that, this project does not have the operationalisation of 
this dynamic priority treatment in scope.  

b. Road transport: For road transport the lead time can be reduced by 
adding a truckdriver and drive and rest simultaneously. Moreover, 
the trailer could be swapped to another truck-trailer combination 
halfway, whereas another truckdriver just had his resting hours and 
is able to continue the journey. This of course requires a tough 
planning and additional costs. An estimate for these additional 
costs has been taken into account in the intervention cost 
assumptions. Since the demonstration of the intervention model 
would take place on the road shipment, it is important to dive 
deeper into the implications and applicability of the 2nd driver. The 
intervention model has 5 pre-decided locations (hubs) where there 
is a possibility for a 2nd driver to get on board with the 1st driver. 
These are the border between Senegal and Morocco, the Strait of 
Gibraltar, the border between Spain and France, Lyon (in France) 
and the border between France and Luxembourg (via Metz) or 
Franc and Belgium (via Paris) This helps to arrange the driver at 
one of these locations in case the quality-loss model predicts a 
drop in quality and the intervention model predicts the need for a 
2nd driver. The intervention model also gives the location where the 
2nd driver could be picked up as the location of the truck is known to 
the model.  

3. Re-routing option to sell the produce on the local markets: This option is 
kept as a last resort for fast ripening shipments. In case all the above-
mentioned intervention methods do not work as expected, the last resort in 
the intervention model is to re-direct the shipment to the local markets of 
Spain/France to save the shipment from rotting entirely before they reach 
the destination. The choice of the local market depends on the logistic 
possibility of selling the shipment in any of the local markets along the way.  

4.4 The logistics intervention simulation model  

The quality intervention simulation model works according to the rules discussed in 
the previous sections. This section describes further what the simulation model 
entails, the inputs needed for the model and the advice given by the model along 
with the cost benefit of the intervention choice. 
 

 
 



 

 

TNO report | TNO 2021 P10836 | 30 April 2021  34 / 51

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Intervention model schematic (Sources: TNO). 

4.4.1 Relation between Quality Loss Model and the Logistics Intervention Model 

The logistics intervention model relies on the quality loss model to come up with 
logical intervention advice. The quality loss model predicts the shelf life of the 
shipment using the optimum conditions of temperate, humidity and so on. The aim 
is to safeguard these optimal conditions during transportation. The logistics 
intervention model thus advices to intervene in case the temperature or humidity is 
not at the optimum set-point. This makes sure that the prediction of the shelf life of 
the shipment is true at all points in the transportation process. The market price of 
the shipment is then determined from the remaining shelf life prediction.  
A translation is made from the remaining shelf life to the market price of the 
shipment. For an example, the translation of the shipment into its market value 
(based on shipment within specifications, out of specification and waste) can be 
represented as follows for a shipment which has 14 days of shelf-life after harvest.  
 
Table 6: Intervention model schematic (Sources: TNO). 

 

Shelf life remaining Within specs Alternative specs Waste 

14 100.0% 0.0% 0.0% 

13 95.0% 5.0% 0.0% 

11 90.0% 5.0% 5.0% 

10 75.0% 12.5% 12.5% 

8 60.0% 20.0% 20.0% 

7 45.0% 27.5% 27.5% 

6 30.0% 35.0% 35.0% 

4 15.0% 42.5% 42.5% 

3 0.0% 50.0% 50.0% 

1 0.0% 25.0% 75.0% 

0 0.0% 0.0% 100% 
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The intervention also uses the quality prediction from the quality loss model to 
intervene in case the 2nd driver needs to be on-board or if the shipment is 
deterioration very fast and needs to be sold in the local market along the way.  

4.4.2 Inputs to the Logistics Intervention Model 

The quality intervention model works on the inputs from the quality-loss model as 
well as from the Van Oers United data source.  
 
The following is the input needed for the logistics intervention model: 
 
1. Inputs from the quality-loss model: 

a. Quality of the product: This is the quality of the product in terms of what 
fraction of the product can be sold ‘within specifications’, what fraction of the 
shipment can be sold but is ‘out of specifications’ and what part of the 
shipment has become valueless. This helps to determine the turnover from 
selling the goods in the shipment upon arrival. It is also imperative for the 
quality-loss model to estimate/predict the quality of the product at destination 
in the three above-mentioned categories if an intervention is applied. This 
helps to determine the net economic value of applying an intervention.   
 

2. Inputs from other sources:  
a. Quality of harvest: The quality of the harvest is determined by some expert 

opinion at the source of harvest. This helps to know what part of the shipment 
is robust, and what part of it is vulnerable. Van Oers United already works on 
this to try and ship the robust produce via sea and the vulnerable shipment 
via road. This fraction of robust and vulnerable produce helps the intervention 
model take an initial decision on the kind of intervention needed at harvest as 
discussed in the previous section. 

b. GPS location: GPS location of the shipment is imperative for the intervention 
model since it helps align the need of a 2nd driver along the way. It also 
guides the intervention model to know the location of the shipment to advice 
the shipment to pick up the 2nd driver from the nearest pick-up location (or 
hub, ones which are pre-decided in the model) as discussed in the previous 
section. 

4.4.3  Outputs from the Logistics Intervention Model 

The logistics intervention model processes the inputs received from the sources 
and the following outputs can be obtained: 
 
a. Remaining lead time: The quality intervention model aims to provide the lead-

time remaining estimate to the destination. The GPS-coordinates and 
corresponding time stamps allow for mapping what part of the planned route has 
been expected and what is still remaining. This can be transferred into an 
estimate of the remaining lead time. 

b. Advice for intervention: The quality intervention simulation model takes all the 
inputs into consideration and based on the logic discussed in the previous 
section, comes up with an advice weather an intervention is needed or that the 
shipment is good without any intervention. Some of the interventions are 
planned already at harvest at the source while some are planned along the way. 
The latter are also based on a cost analysis.  
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The intervention model takes into account the cost of the intervention, if any, and 
compares it with the expected gain in shipment turnover. The intervention is 
proposed only if the product value gain from the shipment can cover for the cost 
of the intervention. This helps in not only making the shipment more profitable 
but also leading to less waste than in the case where the shipment would have 
continued without any interventions. 

c. Location to pick up a 2nd driver (if needed): The model also helps in determining 
the pick-up location of the 2nd driver if the model suggests this particular 
intervention. This is done with the help of the GPS location of the shipment.  
It guides the driver to the nearest hub location where he could be joined by the 
2nd driver. 

d. Cost benefit analysis of the intervention: The output of the model aims to provide 
a cost comparison between the different interventions possible along with the 
advice to opt for an intervention, if needed. The following sections define the 
ways in which the interventions take place and how the decision to make an 
intervention is made in the intervention model. 

4.5  The mode specific schematics of the interventions  

The intervention model follows the following schematic to narrow down on decisions 

and the reasons for the decision made. The schematic is different for road and sea 

transported shipments and each of them is explained. In the case of Van Oers 

United, the modal choice is based on transport costs, available transport capacity 

and robustness of the shipment.  

4.5.1 The schematics for road shipments  

The schematic of the road shipment intervention model is as follows: 
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Figure 14: Quality Intervention Model schematic for road shipment (Source: TNO)
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The model is dependent on the quality of the produce at harvest. Based on that, the 
model chooses to intervene right after harvest or en-route. This can be explained in 
the following way for each of the 5 quality categories of the shipment. As described 
before, post-harvest product quality can be robust or vulnerable. Depending on the 
percentual distribution of robust and vulnerable products in a shipment, the model 
follows a certain intervention logic.  
 

1. When quality of the shipment produce is >95% robust: 
This is when the far majority of the shipment contains robust products (>95%). In 
this case, the shipment is not equipped with sensor technology. This is done as the 
product is expected to reach the destination with a good quality, with very low 
possibility that the shipment is going bad during the course of the transport. 
Applying sensor technology in this case would lead to more costs for monitoring 
and would in the far majority of the cases not trigger any intervention to be 
executed..  
 

2. When the quality of the shipment produce is between 90% and 95% robust: 
This case also sees quite high robustness in the harvest and hence the choice is 
made to not deploy any interventions to this case at harvest either. But this case 
would have the sensor technology in the shipment. This is done so that the 
shipment can be tracked and acted upon if the quality of the produce deteriorates 
faster than expected at any time in the transport. As can be seen in Figure 14 this 
case can have two outcomes along the route: 
 

i. When the expected quality upon arrival is in accordance with the 
customer’s agreed quality specifications, the advice from the intervention 
model is to not intervene and continue as is without interference. It could 
still be possible that the quality of the shipment deteriorates. In this case, 
the model would advise to intervene with the dynamic climate control. This 
interventions assures that the conditions inside the shipment are 
maintained as close to optimal as possible.  

ii. When the quality of the produce deteriorates faster than expected and thus 
does not follow the trajectory of the quality expected at arrival, the advice 
would be to  assure optimal climate conditions. The quality decay model 
assumes optimal conditions in the shipment for the transport. In spite of 
this, due to unforeseen circumstances, the conditions in the shipment could 
vary from optimum. This intervention is to ensure that the optimum 
conditions still prevail in the shipment. In case the quality of the shipment 
deteriorates further, the intervention model advices to have a second driver 
on board to reduce the lead time to destination. The model also gives the 
location of the closest hub to the truck from where the second driver could 
be picked up. 

 
3. When the quality of the produce is between 75% and 90% robust: 

This case becomes increasingly interesting for the intervention model since this 
case is where the interventions could make a large difference. When the robustness 
of the harvest is between 75% and 90%, the intervention already suggests that the 
shipment should not only be equipped with sensors but also with the dynamic 
climate control turned on. This would help preserve the quality of the harvest so that 
they can reach the destination at a better quality than previously expected. 
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 As seen from Figure 14, this case too, can have two outcomes: 
 

i. When the expected quality upon arrival is in accordance with the 
customer’s agreed quality specifications, the intervention model advices to 
not intervene anymore and continue with the dynamic climate control which 
was applied at harvest. In case the quality of the shipment deteriorates 
further, the intervention model advices to have a second driver on board to 
reduce the lead time to destination. The model also gives the location of the 
closest hub to the truck from where the second driver could be picked up. 

ii. When the quality of the produce deteriorates faster than expected and the 
expected quality upon arrival drops below the agreed specifications, the 
intervention model suggests having the 2nd driver deployed at the nearest 
station. This is where the model takes into account the coordinates of the 
shipment and directs the driver to stop at the nearest location (one of the 
pre-decided locations) to pick up a 2nd driver. In case the shipment is seen 
to be still deteriorating faster than anticipated and the shipment is predicted 
to go to waste if it is allowed to continue all the way to the destination even 
with the 2nd driver on board, the intervention model advices the shipment to 
be sold in the local market along the way.  

 
4. When the quality of the produce is between 60% and 75% robust: 

This case is similar to the previous case since it also becomes more interesting for 
the intervention model as this case is where the interventions could make an even 
larger difference. When the robustness of the harvest is between 60% and 75%, the 
intervention already suggests that the shipment should not only be equipped with 
sensors but also with the dynamic climate control turned on. This would help 
preserve the quality of the product so that they can reach the destination at a better 
quality than previously expected.  
 
As seen from Figure 14, this case too, can have two outcomes: 
 

i. When the expected quality upon arrival is in accordance with the 
customer’s agreed quality specifications, the intervention model advices to 
not intervene anymore and continue with the dynamic climate assurance 
which was applied at harvest. In case the quality of the shipment 
deteriorates further, the intervention model advices to have a second driver 
on board to reduce the lead time to destination. The model also gives the 
location of the closest hub to the truck from where the second driver could 
be picked up. 

ii. When the quality of the produce drops faster than expected, and the 
expected quality upon arrival drops below the agreed specifications, the 
intervention model suggests having the 2nd driver deployed at the nearest 
station. This is where the model takes into account the coordinates of the 
shipment and directs the driver to stop at the nearest location (one of the 
pre-decided locations) to pick up a 2nd driver. In case the shipment is seen 
to be still deteriorating faster than anticipated and the shipment is predicted 
to go to waste if it is allowed to continue all the way to the destination even 
with the 2nd driver on board, the intervention model advices the shipment to 
be sold in the local market along the way. 
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5. When the quality of the produce is less than 60% robust: 
This case is when the quality of the harvest is particularly vulnerable. In this case as 
well, the interventions could lead to a better outcome of the vulnerable produce and 
lead to less waste. Since the harvest is so vulnerable, the intervention model 
advices to deploy both the dynamic climate control as well as put the 2nd driver on 
board at the origin in order to keep the remaining shelf life upon arrival as high as 
possible.  
 
Again, en-route, there are two possible outcomes from his shipment: 
 

i. When the expected quality upon arrival remains in accordance with the 
customer’s agreed quality specifications, the intervention model advices to 
not intervene anymore and continue with the dynamic climate control along 
with the 2nd driver on-board which was decided and applied at the start of 
the shipment. In this case, if the shipment is still seen to be deteriorating 
faster than anticipated and the shipment is predicted to go to waste if it is 
allowed to continue all the way to the destination even with the 2nd driver on 
board, the intervention model advices the shipment to be sold in the local 
market along the way. 
 

ii. When the quality of the produce further drops below the threshold for being 
able to sell the products at all, the intervention model suggests selling the 
shipment on the local market along the way. This could be anywhere along 
the way to the destination wherever it is logistically possible. Other 
interventions seem to not work anymore and there is nothing that can be 
done to save the produce from rotting if it is allowed to continue to the 
destination. Thus, it is recommended to just sell the produce in a local 
market to prevent the loss of the shipment entirely.   

4.5.2 The schematics for sea shipments  
The schematic of the sea shipment intervention model is as follows: 
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Figure 15: Quality Intervention Model schematic for sea shipment (Source: TNO) 
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The model is dependent on the quality of the produce at harvest. Based on that, the 
model chooses to intervene right after harvest or en-route. This can be explained in 
the following way for each of the 5 quality of the produce at harvest: 
 

1. When quality of harvest is >95% robust: 
This is when the produce is relatively very high in robustness (>95%). In this case, 
the shipment is not equipped with sensor technology. This is done as the product is 
expected to reach the destination with a good quality and the chances of it going 
bad during the course of the transport looks bleak. Applying sensor technology in 
this would only lead to more costs for monitoring and would not lead to very high 
monetary gains as the need for an intervention along the way would also not be 
necessary. 
 

2. When the quality of the produce is between 90% and 95% robust: 
This case also sees quite high robustness in the harvest and hence the choice is 
made to not deploy any interventions upon departure. However, the shipment will 
be equipped with sensors. allowing for monitoring quality decay patterns and 
intervene accordingly. As can be seen in Figure 15, this case can have two 
outcomes along the route: 
 

i. When the expected quality upon arrival is in accordance with the 
customer’s agreed quality specifications, the advice from the intervention 
model is to not intervene and continue as is without interference. It could 
still be possible that the quality of the shipment deteriorates. In this case, 
the model would advise to intervene with the dynamic climate control.  
This interventions assures that the conditions inside the shipment are 
maintained as close to optimal as possible.  

ii. When the quality of the produce deteriorates faster than expected, and the 
expected quality upon arrival drops below the agreed specifications, the 
advice would be to assure optimal climate conditions. The quality decay 
model assumes optimal conditions in the shipment for the transport. In spite 
of this, due to unforeseen circumstances, the conditions in the shipment 
could vary from optimum. This intervention is to ensure that the optimum 
conditions still prevail in the shipment. In case the quality of the shipment 
deteriorates further, the intervention model advices to have a second driver 
on board to reduce the lead time to destination. The model also gives the 
location of the closest hub to the truck from where the second driver could 
be picked up.. 

 
3. When the quality of the produce is between 75% and 90% robust: 

This case becomes increasingly interesting for the intervention model since this 
case is where the interventions could make a difference. When the robustness of 
the harvest is between 75% and 90%, the intervention already suggests that the 
shipment should not only equipped with sensors but also with the dynamic climate 
control turned on. This would help preserve the quality of the harvest so that they 
can reach the destination at a better quality than previously expected. 
As seen from Figure 15, this case too, can have two outcomes: 
 

i. When the expected quality upon arrival is in accordance with the 
customer’s agreed quality specifications, the intervention model advices to 
not intervene anymore and continue with the dynamic climate control which 
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was applied from the start of the shipment journey. In case the quality of the 
shipment deteriorates further, the intervention model advices to have a 
second driver on board to reduce the lead time to destination. The model 
also gives the location of the closest hub to the truck from where the 
second driver could be picked up. 

ii. When the quality of the produce deteriorates faster than expected, and the 
expected quality upon arrival drops below the agreed specifications, the 
intervention model suggests having the paperwork for the priority treatment 
at the destination port ready for the shipment to be released from the port 
as soon as possible. This means the interventions advices to reduce the 
lead time at the port by having a priority treatment there. In case the 
shipment is seen to be still deteriorating faster than anticipated and the 
shipment is predicted to go to waste if it is allowed to continue all the way to 
the destination even after the priority treatment at port, the intervention 
model advices the shipment to be sold in the local market along the way. 

 
4. When the quality of the produce is between 60% and 75% robust: 

This case is similar to the previous case since it also becomes more interesting for 
the intervention model as this case is where the interventions could make a larger 
difference. When the robustness of the harvest is between 60% and 75%, the 
intervention already suggests that the shipment should not only be equipped with 
sensors but also with the dynamic climate control turned on. This would help 
preserve the quality of the harvest so that they can reach the destination at a better 
quality than previously expected. As seen from Figure 15, this case too, can have 
two outcomes: 
 

i. When the expected quality upon arrival is in accordance with the 
customer’s agreed quality specifications, the intervention model advices to 
not intervene anymore and continue with the dynamic climate control which 
was applied from the start of the shipment journey. In case the quality of the 
shipment deteriorates further, the intervention model advices to have a 
second driver on board to reduce the lead time to destination. The model 
also gives the location of the closest hub to the truck from where the 
second driver could be picked up. 

ii. When the quality of the produce drops faster than expected, and the 
expected quality upon arrival drops below the agreed specifications, the 
intervention model suggests having the paperwork for the priority treatment 
at the destination port ready for the shipment to be released from the port 
as soon as possible. This means the intervention advices to reduce the 
lead time at the port by having a priority treatment there. In case the 
shipment is seen to be still deteriorating faster than anticipated and the 
shipment is predicted to go to waste if it is allowed to continue all the way to 
the destination even after the priority treatment at port, the intervention 
model advices the shipment to be sold in the local market along the way. 

 
5. When the quality of the produce is less than 60% robust: 

This case is when the quality of the harvest is particularly vulnerable. In this case as 
well, the interventions could lead to a better outcome of the vulnerable produce and 
lead to less waste. Since the harvest is so vulnerable, the intervention model 
advices to deploy both the dynamic climate control as well as prepare for the 
express treatment at the destination post to reduce the lead time.  
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This way, the most vulnerable crop sees the most time saved to get it to the 
destination in the best quality possible in the least time. Again, en-route, there are 
two possible outcomes from his shipment: 
 

i. When the expected quality upon arrival is in accordance with the 
customer’s agreed quality specifications, the intervention model advices to 
not intervene anymore and continue with the dynamic climate control along 
with the express treatment at the destination port to reduce the lead time 
which was applied at harvest. In this case, if the shipment is still seen to be 
deteriorating faster than anticipated and the shipment is predicted to go to 
waste if it is allowed to continue all the way to the destination even after the 
priority treatment at port, the intervention model advices the shipment to be 
sold in the local market along the way. 

ii. When the quality of the produce drops faster than expected, and the 
expected quality upon arrival drops below the threshold for being able to 
sell the products at all, the intervention model suggests selling the shipment 
in the local market along the way. This could be anywhere along the way to 
the destination wherever it is logistically possible. The interventions seem to 
not work anymore and there is nothing that can be done to save the 
produce from rotting if it is allowed to continue to the destination. In this 
case, it is smart to just sell the produce in a local market to prevent the loss 
of the shipment entirely. 

4.6 Scalability and further development 

This section addresses the important question of scalability and future development 
of the model. The model described in this chapter was configured to the trade lanes 
discussed in this study. It requires trade lane specific and product-specific 
reconfiguration to adjust the model in order to apply it in other situations. Feasibility 
of interventions are also trade lane specific. Think of kiwi transported from New-
Zealand to the Netherlands, this probably involves a maritime transport link to for 
instance Singapore, and a maritime transport link from Singapore to Rotterdam. 
Possible interventions could be to speed up the transhipment in Singapore and 
safeguard that it won’t miss the planned scheduled sailing to Rotterdam. But the 
intervention might also apply to multi-modal transport solutions. A switch to air 
transport could be considered in Singapore during transhipment but may also be 
reconsidered in an intermediary port of call, say in Dubai. This example highlights 
the limitations in terms of scalability of the model. 

4.6.1 Interoperability for demonstration purposes 
In order to demonstrate a proof of concept of the integrated sensor capturing, 
quality prediction and intervention advise, some model interoperability issues have 
to be solved. The quality-loss model does not allow for in-shipment variation of the 
quality, the complete shipment gets a quality score, based on the actual conditions 
and remaining lead time. The logistic intervention model was set up to cope with in-
shipment variations of the product quality, allowing for specific sorting upon arrival.  
 
Moreover, the intervention model needs to compare the quality upon arrival of not 
intervening and execute a number of predefined intervention options.  
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The quality-loss model should provide the expected quality upon arrival in case of 
executing the possible intervention options. How this is being included in the 
workflow processes during the demonstration of the proof of concept needs to be 
elaborated.  
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5 Conclusion and discussion 

The key objective of the overall project is to integrate IoT into logistics decision 
making leading to the research objective ‘to explore the potentials and applicability 
of IoT technologies in enabling dynamic and integrated quality-controlled logistics in 
the postharvest perishable produce chain’. To realize the overall objective, in Work 
Package 3 four sub-research questions, related to ‘technology’ and ‘Supply Chain’ 
were addressed in the different chapters: 
 

 Technology: 
o Chapter 2: “What are specific connectivity platforms / control tower 

requirements following sensor data capture and real-time decision 
support?” 

o Chapter 3: “How to convert the collected different type of sensor 
data into measurable quality indicators?” In other words, “How to 
incorporate more parameters into the current quality-prediction 
model to improve the prediction accuracy?” 

 
 Supply Chain: 

o Chapter 4: “How to optimally organize the logistic activities, based 
on the predicted quality, form a system optimization point of view?” 
In other words, “What are the underlying supply chain decisions 
that push the concept of quality-controlled logistics?” 

o Chapter 4: “Which supply chain decisions are being supported?” 
 
The architecture in Chapter 2 shows what the specific connectivity platform 
requirements are needed to capture sensor data and ‘feed’ real-time decision 
support. The data that is available from the different data providers differs 
enormously form real-time to written reports. This data will have to be linked 
together via a date and timestamp before it can be uploaded into the central data 
store. To be able to use the data in the quality-loss model a three-step process – 
Extract, Transform and Load (ETL procedure) will be executed by which data is 
extracted from the data sources that are not optimized for analytics, and moved to  
a central host to provide the quality-loss model with the necessary data. Data in the 
central data store will be presented using Thingsboard. In the current phase of this 
project, it isn’t possible to feed a real-time decision support model. This is because 
the various data sources are not standardized and there is no data governance 
agreement in place and the determination of the quality of the goods when the 
goods are loaded into the truck and arrive in the Netherlands is partly recorded on 
(written) forms. 
 
In Chapter 3 we showed that that colour and firmness are the quality-loss metrics 
that are the two most common factors that a chain actors pay attention to when 
purchasing a fresh product because firmness and colour give indications of the 
storability and ripeness of the fresh product, which has significant business 
relevance. To be able to capture this via sensor data for green beans we developed 
a so-called ‘senescence and chilling-injury model’ (time and temperature), a 
‘weight-loss model’ (time, temperature and relative humidity) and added an 
additional threshold-constraint regarding ethylene. For mangos we needed a 
‘firmness model’ taking time and temperature into account.  
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These models are mathematical representation of a natural phenomenon; in our 
case this phenomenon is the quality-loss of a fresh perishable product. There is an 
implicit assumption: there exists a relationship between inputs (sensor data) and 
outputs (quality-loss indicators). The models reflect this relationship.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Visualisation of the role of the quality-loss model. (Source: WFBR). 

 
How to optimally organize the logistic activities, based on the predicted quality, from 
a system optimization point of view? In other words, “What are the underlying 
supply chain decisions that push the concept of quality-controlled logistics?” And 
“Which supply chain decisions are being supported?”. This is shown in Chapter 4. 
The logistics intervention model considers three possible kinds of interventions 
based on the inputs from the quality-loss model. Along with the intervention, it also 
advises on when, in the transport process, should the intervention to be applied.  
 
The three kinds of interventions are as follows: 
 

 Dynamic climate control 
 Reducing lead time 
 Re-routing option to sell the produce on the local markets 

 
The model is dependent on the quality of the produce at harvest. Based on that,  
the model chooses to intervene right after harvest or en-route. A decision right after 
harvest could be not to intervene at all because the initial (loaded) product quality is 
very robust, or to set the ‘dynamic climate control’ in place in anticipating the need 
to adjust the conditions or to bring a second driver already in advance when the 
input quality is for a large part ‘vulnerable’. Interventions en-route, based on the 
input from the quality-loss models, could be adapting the climate/conditions, 
arranging a second driver or re-outing option to sell the produce on the local 
markets. 
 
The intervention model takes all the inputs into consideration and based on the 
logic discussed in the previous section, comes up with an advice if an intervention is 
needed or that the shipment is good without any intervention.  
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Some of the interventions are planned already at harvest at the source while  
some are planned along the way. The latter are also based on a cost analysis.  
The intervention model takes into account the cost of the intervention, if any, and 
compares it with the shipment value gain.  

5.1 From theory to practice: the demonstrations 

In this report it is researched what the theoretical ideal design, layout and 
configuration should look like. But also how we can arrive at feasible pilots, within 
the context of this project, that are designed in such a way that they can show 
whether the concept works. For this, all components, i.e. the architecture, the data 
links, the platform design, the sensors and connectivity, the quality-loss models and 
the intervention model are made ‘fit for use’. In short, not a fully automated design is 
developed, but a practical and functional design that is sufficiently suitable for 
examining the possibilities and challenges of this concept in the demonstrations. 
And it is precisely this experimental environment that must show what is feasible, 
what works and what does not, and what is needed for upscaling. 

5.2 Scalability and future development 

To realize a real time intervention model, based on the quality-loss model which 
again is based on various data sources from various data providing companies, a 
lot of work needs to be done.  
 
The work that needs attention is:  
 

 On a business level: roles and responsibilities and fee structures must be 
clear  

 On a legal level: relevant rules and regulations, a governance model and 
contract must be in place  

 On an operational level: service levels, operational governance, incident 
and change management must be clear  

 On a functional level: the interaction model and privacy must be in place  
 On a technical level: standards for data and security must be developed 

and implemented 
 
One direction to develop a data architecture is a federated model, or virtual 
database, is a composite of all constituent databases in a federated database 
system. As a result of Data Federator, there is no actual data integration across the 
constituent disparate databases. And once more data, of all kind of different types 
like images, text, pre-harvesting data, etc., is collected machine learning could be 
the technique to build product quality-loss models. For this, a so-called machine 
learning model development cycle will be very promising. This cycle needs to 
contain 4 stages:  
 

1. Data collection: Inserting data into a data central repository for its analysis.  
2. Analysis of data: New data needs to be analysed for consistency. 
3. Training of the data models: New data will be used to keep training 

machine learning models, to make them more accurate and general. 
4. Service: The use of the machine learning algorithm, as an input for a 

decision-making model or dashboard. 
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One promising type of machine learning models are neural networks. Due to the 
flexibility of neural networks, these differences in type can be analysed without the 
need to turn to other type of data model algorithms. One of the current limitations is 
that quality-loss models are only recorded before and after transport. This means 
that there is no possibility to know the exact quality metric during transport, 
unfortunately this could limit the performance of any type of modelling. One 
limitation of Neural Network is the long time that it can take to train them. 
 
When using sensors, sensor-data, and quality-loss models to feed the logistical 
intervention and/or decision support models, future development of the intervention 
model presented is necessary. The intervention model described in this report is 
limited to the trade lanes discussed and therefore it requires tradelane specific and 
product-specific reconfiguration to adjust the model in order to apply it in other 
situations. And thus this also makes the feasibility of the discussed interventions 
trade-lane specific. 
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A Cost assumptions and other assumptions about the 
intervention model 

The cost assumptions and other assumptions about the intervention model are 
summarized below: 
 
Table 7: Trade lanes for IoT4AGRI. 

 

Product Trade lanes Lead times 

Green Beans 

Senegal 

Sea: Dakar – R’dam/Antwerp – Dinteloord 

Road: Senegal – Gibraltar Strait - Dinteloord  

Sea: 10 days 

Road: 8 days 

Green Beans 

Morocco 

Sea: Agadier – R’dam/Antwerp – Dinteloord 

Road: Agadier – Gibraltar Strait – Dinteloord 

(note: from Tangiers is 1 day shorter) 

Sea: 7 days 

Road: 4,5 

days 

Mango Senegal Sea: Dakar – R’dam/Antwerp – Dinteloord 

Road: Senegal – Gibraltar Strait – Dinteloord 

Sea: 10 days 

Road: 8 days 

Galia Melons 

Senegal 

Sea: Dakar – R’dam/Antwerp – Dinteloord 

Road: Senegal – Gibraltar Strait – Dinteloord 

Sea: 10 days 

Road: 8 days 

  
Table 8: Characteristics of the IoT4AGRI perishable products (price per ton). 

 

Prices in € per ton Delivery 

within specs 

Alternative 

sales channel 

Waste Spot market 

price 

Green beans Senegal € 2.000 € 1.000 € 0 € 2.400 

Green Beans Morocco € 2.000 € 1.000 € 0 € 2.400 

Mango Senegal € 2.500 € 1.250 € 0 € 3.000 

Galia Melons Senegal € 1.600 € 960 € 0 € 1.920 

   
Table 9: Cost ranges for the sensors. 
 

Equipment Ideal specs Cost 

(low) 

Cost 

(mid.) 

Cost 

(high) 

Ethylene sensor 0-10ppm €100 €800 €1500 

Temperature sensor -10° to 50°C, accuracy 0.3°C   14,97 €27 

Temperature sensor   €2,95   €210 

Oxygen sensor 1-22%, accuracy 0.5% €5,17 €90 €175 

CO2 sensor 0-10%, accuracy 0.3% €23,12 €41,50 €59,95 

Humidity sensor 30-100%, accuracy 1.0% €4,45 €45,00 €86,07 
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 Table 10: Sensor handling cost estimates per shipment. 

 

Category Description Cost estimate 

Sensor shipment Air freight parcel (up to 5 kg) € 25 

Placement and activation Per shipment (15 minutes a €40/hr) € 10 

Removal and collection Per shipment (10 minutes a €60/hr) € 10 

Administrative system Per shipment  € 10 

Total handling cost  Per shipment € 55 

   
Table 11: Lead-time reduction costs for sea transport (priority at port) per shipment. 

 

Sea transport 48-hour 

reduction 

36-hour 

estimation 

24 hours 

estimation 

12-hour 

estimation 

Morocco €1.000 €800 €200 €100 

Senegal €1.000 €800 €200 €100 

   
Table 12: Lead-time reduction costs for road transport (hiring a 2nd driver) per shipment. 

 

Road transport 48-hour 

reduction 

36-hour 

estimation 

24 hours 

estimation 

12-hour 

estimation 

Morocco €1.255,50 €558 €418,50 €279 

Senegal €1.395 €1.046 €697,50 €418,50 

  

 Table 13: Other costs for logistic interventions (per shipment). 

 

Category Description Cost  

Dynamic Climate control Costs incurred for controlling the shipment 

remotely/on-board by the driver 

€75 

Re-routing Arranging the possibility of selling the 

shipment in a local market 

€75 

Use of logistics 

intervention model 

Service fees for the logistics intervention 

model 

€3,85 

Use of quality loss model Service fees for the quality loss model €5,50 

 
 
 


