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A B S T R A C T   

Accurate sub-annual detection of forest disturbance provides timely baseline information for understanding 
forest change and dynamics to support the development of sustainable forest management strategies. Tradi
tionally, Landsat imagery was widely used to monitor forest disturbance, but the low temporal density of Landsat 
observations limits the timely detection of forest disturbance. Recently a new harmonized dataset of Landsat and 
Sentinel-2 imagery (HLS) has been created to increase the density of observations and provide more frequent 
images, but the added-value of this dataset for sub-annual tropical forest disturbance monitoring has not been 
investigated yet. Here, we used all available HLS images acquired from 2016 to 2019 to detect forest disturbance 
at two tropical forest sites in Tanzania and Brazil. Based on HLS data, forest disturbance was detected by 
combining normalized difference moisture index (NDMI) and normalized difference vegetation index (NDVI) 
time series using BFAST monitor and random forest algorithms. To assess the added-value of the HLS time series, 
we also detected forest disturbance from (i) Landsat-8/OLI time series only and (ii) Sentinel-2 time series only 
data. The spatial accuracy assessment of forest disturbance detection at the Tanzania site shows that the com
bined Landsat-8/OLI and Sentinel-2 data achieved the highest overall accuracy (84.5%), more than 3.5% higher 
than the accuracy of using only Landsat-8/OLI or Sentinel-2. Similarly, for the Brazil site, the overall accuracy of 
using the combined Landsat-8/OLI and Sentinel-2 data was 95.5%, at least 2% higher than others. In terms of 
temporal accuracy, the mean time lag of 2.0 months, was achieved from the combined data and Sentinel-2 only 
at the Tanzania site. This mean time lag is at least one month shorter than that of using Landsat-8/OLI only (3.3 
months). At the Brazil site, the mean time lag of forest disturbance detection based on the combined data was 
0.22 months, shorter by 0.50 and 0.15 months when compared to using Landsat-8/OLI only (0.72 months) or 
Sentinel-2 only (0.37 months), respectively. Our results indicate that HLS data is promising for accurate and 
timely forest disturbance detection particularly in the moist forest where cloud cover is often high.   

1. Introduction 

Characterizing forest disturbance at a sub-annual scale is of great 
importance for a better understanding of forest dynamics and assist in 
developing strategies for sustainable forest management. Forests cover 
approximately 30% of the land surface area and provide a broad range of 
ecological, economic and social services to human beings (Bonan, 
2008). Forest disturbance disrupts the structure, composition and 
function of the forest ecosystem (Seidl et al., 2017) and it has been 
considered as an essential ecological process that is not well understood 
or quantified (Masek et al., 2008; Zhao et al., 2018). Detecting forest 

disturbance events at a sub-annual scale provides timely information for 
developing early intervention strategies to reduce illegal logging activ
ities (Hamunyela et al., 2016a; Tang et al., 2019). For example, the 
National Institute for Space Research (INPE) of Brazil has developed an 
early warning system based on 56 m spatial resolution satellite image 
acquired from AWiFS (Advanced Wide Field Sensor) and 64 m spatial 
resolution imagery acquired from Wide Field Imager (WFI) sensor of 
China-Brazil Earth Resources Satellite 4 (CBERS-4), which is essential 
for preventing deforestation in the Brazilian Legal Amazon (Diniz et al., 
2015). Similarly, a near-real-time forest disturbance detection also has 
been conducted in Congo Basin based on Sentinel-1 imagery (Reiche 
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et al., 2021). 
Satellite remote sensing data has been increasingly used in forest 

monitoring (Shimizu, Ota, and Mizoue, 2019). The capability of moni
toring forest disturbances using satellite imagery with various spatial 
resolutions has been demonstrated in previous studies. For example, 
coarse-resolution imagery acquired from Advanced Very High Resolu
tion Radiometer (AVHRR) or Moderate Resolution Imaging Spectror
adiometer (MODIS) was adopted to detect forest disturbances (Jin and 
Sader, 2005; Hammer et al., 2014). Similarly, images obtained from 
Landsat and Sentinel-2 have also been successfully used to monitor 
forest disturbances and regrowth (Potapov et al., 2015; Wang et al., 
White et al., 2018; Lima et al., 2019). Also, very high-resolution imagery 
(VHR), like IKONOS has been used to characterize forest disturbances 
(Frolking et al., 2009). In addition, VHR imagery (e.g. WorldView-2 and 
GeoEye-1) has been combined with LiDAR to detect canopy tree loss in 
the Jamari National Forest, Brazil (Dalagnol et al., 2019). 

Landsat images were frequently used in forest monitoring due to 
their free availability and long-term monitoring capability (Wulder 
et al., 2019). Many attempts have been made to monitor forest distur
bances at annual or sub-annual scales using Landsat time-series data 
(Kennedy et al., 2010; White et al., 2017; Zhao et al., 2018). For 
example, Kennedy et al. (2012) have studied the disturbances and re
covery in the United States based on Landsat time-series data. Similarly, 
forest disturbances and regrowth in Canada have been characterized 
annually from 1985 to 2010 using vegetation indices derived from the 
Landsat time series (White et al., 2017). In the Brazilian State of 
Rondônia, forest disturbances were recently detected using spectral 
unmixing and Landsat time-series data (Bullock et al., 2020). Although 
Landsat images are widely used for forest monitoring, the low temporal 
density of Landsat observations limits the sub-annual detection of 
tropical forest disturbance. Tropical forests are located in the cloud 
persistent regions, which makes the actual temporal revisit cycle of 
Landsat-8/OLI images sometimes longer than 16 days (Shao et al., 
2019). With the launching of Sentinel-2A and Sentinel-2B sensors in 
June 2015 and March 2017, satellite images with 10 m to 60 m spatial 
resolution and a revisit time of 5 days at the equator are freely accessible 
(Drusch et al., 2012). Integrating imagery from Sentinel-2 sensors with 
Landsat imagery would make denser time series data available (Claverie 
et al., 2018; Shao et al., 2019). 

Previous studies have suggested that combining Landsat and 
Sentinel-2 imagery has multiple advantages for land monitoring. 
Combining Landsat-8/OLI and Sentinel-2 imagery can provide more 
frequent data coverage. For example, when combining Landsat-8/OLI, 
Sentinel-2A and Sentinel-2B (three sensors), the maximum revisit in
terval is approximately 7.0 days (Li and Roy, 2017). Furthermore, 
combining Landsat and Sentinel-2 is promising for characterizing 
changes or dynamics with more details (Woodcock et al., 2020). Dense 
time series data has the capability of providing more detailed informa
tion compared with bi-temporal or annual satellite data and it is suitable 
for monitoring forest disturbance in the tropics as the vegetations 
recover rapidly after disturbance (Shimizu et al., 2019). Harmonized 
Landsat Sentinel-2 (HLS) data was developed by a National Aeronautics 
and Space Administration (NASA) project that aims to provide seamless 
product from surface reflectance data acquired by Landsat-8/OLI im
agery (acquired since 2013) and Sentinel-2 imagery (acquired since 
October 2015) (Claverie et al., 2018). HLS data consists of three prod
ucts, S10 (10 m, 20 m and 60 m spatial resolution) derived from 
Sentinel-2 imagery, S30 (30 m spatial resolution), derived from S10 
product and L30 (30 m spatial resolution) derived from Landsat-8/OLI. 
While the HLS has been successfully used to monitor land surface 
phenology and characterize grassland use intensity (Bolton et al., 2020; 
Griffiths et al., 2020), its potential for forest disturbance monitoring has 
not been examined yet. 

Numerous change detection algorithms are widely used in detecting 
forest disturbances. Landsat-based detection of Trends in Disturbance 
and Recovery (LandTrendr) is a temporal segmentation-based approach 

that extracts spectral trajectories of land surface from yearly Landsat 
time-series data (Kennedy et al., 2010). Vegetation Change Tracker 
(VCT) is an automated approach that takes advantage of the spectral- 
temporal properties of the Landsat time series stack to reconstruct the 
disturbance history of forests (Huang et al., 2010). Continuous Change 
Detection and Classification (CCDC) uses all available Landsat data to 
characterize the land cover change in near-real-time (Zhu and Wood
cock, 2014). The Breaks For Additive Seasonal and Trend (BFAST) 
proposed by Verbesselt et al. (2010), decomposes time series into trend, 
seasonal and remainder to detect structural changes in any time series 
data. BFAST Monitor, developed by Verbesselt et al. (2012) is used to 
detect disturbances in near real-time monitoring while the LandTrendr 
and VCT produce annual maps. Both CCDC and BFAST Monitor can be 
used for sub-annual forest disturbance. BFAST Monitor was selected in 
this study because it has been successfully used to detect small-scale 
forest disturbances in the tropical montane forest (DeVries et al., 2015). 

This study aims to investigate the added value of integrating 
Sentinel-2 and Landsat time-series data for sub-annual tropical forest 
disturbance monitoring. More specifically, we address the following 
questions: (1) What is the spatial and temporal accuracy of forest 
disturbance detected from Landsat-8/OLI, Sentinel-2 or the combined 
data? (2) Whether the use of the combined Landsat-8/OLI and Sentinel-2 
data improves the spatial and temporal accuracy of forest disturbance 
detection compared with using only single sensor data or not? In this 
paper, forest disturbance is defined as the complete removal of tree 
cover within a 30 m by 30 m pixel (~0.1 ha). We followed the same 
definition that was used in other satellite-derived products of forest 
change monitor (Hansen et al 2013; Vargas et al., 2019; Reiche et al. 
2021). We used BFAST Monitor for structural change detection and 
combined it with random forest to predict the forest disturbance in two 
study sites located in the tropical regions (Brazil and Tanzania). We 
tested the accuracies of forest disturbances detection using L30 (derived 
from Landsat-8/OLI), S30 (derived from Sentinel-2) and the combina
tion of both products. 

2. Materials and methods 

2.1. Study area 

The study area consists of two HLS tiles (same as the tile of Sentinel-2 
L1C data), 37MCP (covers an area of 11,938 km2) and 21LYH (covers 
12,018 km2), located in Tanzania and Brazil, respectively (Fig. 1). Tile 
37MCP is located at the intersection of Morogoro, Pwani and Tanga 
regions in Tanzania. Tile 21LYH is located within the State of Mato 
Grosso, Brazil. According to the Terrestrial Ecoregions of the World, the 
Brazil site (Tile 21LYH) is covered by seasonal forest and moist forest 
(Olson et al., 2001), whereas the Tanzania site (Tile 37MCP) is mainly 
covered by tropical try forest. Tropical dry forest is defined as vegetation 
dominated by deciduous trees that grow in places where the mean 
monthly temperature is ≥ 25◦C, annual precipitation ranges from 700 
mm to 2,000 mm and with three or more dry months (Sánchez-Azofeifa 
et al., 2005). The HLS tile 37MCP has been selected because the montane 
forest in the Mvomero district (one district of the Morogoro region) has 
been disturbed by 27% from 2001 to 2017 (Hamunyela et al., 2020). Tile 
21LYH in the State of Mato Grosso was selected because Mato Grosso is 
one of the deforestation frontiers in Amazon in recent decades (Gollnow 
et al., 2018). In the Mvomero district, the forest loss is driven by the 
expansion of commercial cropland, small-holder mixed crop-livestock 
farming and smallholder farming (Hamunyela et al., 2020). Disturbed 
forest in Mato Grosso is mainly converted into a large-scale pasture and 
agricultural land (Barona et al., 2010; Wang et al., 2019). 

2.2. HLS data 

NASA provides the HLS version 1.4 data, harmonized Landsat-8/OLI 
and Sentinel-2 data through a series of processing steps include 
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radiometric adjustments, geometric adjustments, atmospheric correc
tion, cloud, cloud-shadow masking and spatial co-registration, Bidirec
tional Reflectance Distribution Function (BRDF) normalization and 
bandpass adjustment (Claverie et al., 2018). The HLS data includes 
Landsat-8/OLI and Sentinel-2 imagery acquired since April 2013 and 
October 2015, respectively. HLS data consists of S10, S30 and L30 
products. S10 product is not used in this study because its spatial reso
lution is different from other products. All available HLS images of the 
two HLS tiles (37MCP, 21LYH) from 2016 to 2019 were used in this 
study. Overall, 528 scenes (89 from Landsat-8/OLI and 439 from 
Sentinel-2) of images were used in the Tanzania site, and. 449 scenes (90 
from Landsat-8/OLI and 359 from Sentinel-2) for the Brazil site. 

2.3. Ancillary data 

Ancillary data that were used in this study includes global forest 
change data (version 1.7) provided by Hansen et al. (2013) and Plan
etScope imagery (https://www.planet.com/). Global forest change data 
was used for delineating the benchmark forest mask. PlanetScope im
agery was used for collecting training and test data for random forest 
models to predict the forest disturbance. PlanetScope imagery acquired 
by PlanetScope satellite constellation consists of more than 120 sensors 
(Wang et al., 2020) and has daily revisit time at nadir. PlanetScope 
imagery consists of four bands, including Blue (455–515 nm), Green 
(500–590 nm), Red (590–670 nm) and NIR (780–860 nm) bands (Cooley 
et al. 2017). All bands were used for interpreting images when collecting 
training and test data for the random forest model. The spatial resolution 
of PlanetScope imagery can achieve 3.7 m. 

2.4. Methods 

The workflow of detecting forest disturbance using the HLS is shown 
in Fig. 2. First, we pre-processed the HLS satellite images (see Section 
2.4.1). The pre-process step mainly refers to the masking of cloud and 
cloud shadow. Secondly, a benchmark forest mask was generated to 
mask out the non-forest pixels. Next, two indices, Normalized Difference 
Moisture Index (NDMI) (Gao, 1996) and Normalized Difference Vege
tation Index (NDVI) (Rouse et al., 1974) were calculated and stacked. 
Then, BFAST Monitor and random forest were applied to detect the 
forest disturbance (see Sections 2.4.2 and 2.4.3). Finally, the accuracies 
of forest disturbance maps based on different data were assessed (see 
Section 2.4.4). 

2.4.1. Image pre-processing 

2.4.1.1. Screening cloud and cloud shadow. HLS contains a quality 
assurance (QA) layer that identified the cloud, cloud shadow, snow and 
water generated from the Fmask algorithm. QA layer in each image was 
used to mask the cloud, cloud shadow, water and snow for the L30 
product. However, the Sentinel-2 QA layer contains errors in cloud and 
cloud shadow detection (Bolton et al., 2020). For the S30 product, 
Fmask 4.0 developed by (Qiu et al., 2018) was applied to mask the cloud 
and cloud shadow. In addition, a threshold-based approach was used to 
further mask out the remaining cloud whereby a difference between 
NDVI and NDMI, larger than − 0.4 was considered as the cloud. The 
remaining shadows were masked using the shadow index (Zhu and 
Helmer 2018) whereby values were smaller than 0.34 were considered 
as cloud shadow. A trial-and-error approach was used to select thresh
olds for masking cloud and cloud shadows. Images with high cloud 
coverage were excluded for further analysis. 

2.4.1.2. Benchmark forest mask. An initial forest mask was produced 
from a random forest classification based on the composite imagery of 
2018. The composite imagery is based on the median value of all 
available Sentinel-2 imagery acquired from June to December 2018. 
Both study sites are located in cloud persistent tropical regions and 
almost half a year’s data were needed to cover the whole study area. 
Sentinel-2 images were used, instead of Landsat-8/OLI images, to 
generate the forest mask because they have red edge bands that can 
provide additional information on forest cover. A total of 420 training 
sampling pixels (210 for the forest, 210 for non-forest) were used to train 
a random forest model for mapping the forest. Furthermore, the Global 
Forest Change data was used to generate the second forest mask. Tree 
canopy cover for the year 2000 and the forest cover loss and gain data 
during the period 2000–2018 were also utilized. The tree cover that is 
less than 25%, forest loss during 2000–2018 was masked out, forest gain 
during 2000–2018 was added. Finally, to reduce the committed error of 
forest class in the map produced from the image classification, we 
further refined the forest mask by masking out the pixels that were 
identified as forest in the initial forest mask whereas labeled as non- 
forest in the second forest mask. 

2.4.2. Structural change detection based on BFAST Monitor 
BFAST Monitor was used to detect the structural changes in the time 

series of NDMI and NDVI for Landsat-8/OLI only, Sentinel-2 only and 
the combined data. BFAST Monitor was selected in this study because it 
has been successfully used to detect small-scale forest disturbances in 
the tropical montane forest (DeVries et al., 2015). To apply the BFAST 
Monitor, we used “bfastSpatial”, a wrapper for the BFAST monitor. The 
implementation of BFAST Monitor consists of several steps, season-trend 
model fitting, structural change detection, the calculation of Magnitude 
and R2. 

Each pixel time series was divided into history period and moni
toring period (Fig. 3). The history period in this study was between the 

Fig. 1. Location of the study area, (A) is the entire tile of HLS 37MCP, 
Tanzania, (B) is the entire tile of HLS 21LYH, Brazil. 
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year 2016 and 2018 and the monitoring period was the year 2019. We 
then applied a season-trend model (BFAST Monitor) described in Ver
besselt et al. (2012) in the history period. For the observation yt at time t, 
a season-trend model is fitted: 

yt = α1 + α2t +
∑k

j=1
γjsin

(
2πjt

f
+ δj

)

+ εt (1)  

where α1 is the intercept, α2 is the slope (trend), γjand δj are amplitudes 
and phases,k is the chosen harmonic order, f is the temporal frequency 
and εtis the random error (Verbesselt et al., 2012). We used the first- 
order model and omitted the trend component in the formula because 
including the trend may lead to false break detection and inflate 
magnitude (DeVries et al., 2015). The model can be written as a standard 
linear regression model and more details were explained in Verbesselt 
et al. (2012). Ordinary Least Squares (OLS) was used to estimate co
efficients in the linear model based on the observations (Zeileis et al., 
2002). 

Based on the described model, assuming that the model is stable for 
an observed time period, if the new observations make the model un
stable, a structure change is detected. For structure change detection, in 
the monitoring period, moving sums of residuals were calculated by: 

MOt =
1

σ̂
̅̅̅
n

√
∑t

s=t− h+1

(

ys − ŷs

)

(2)  

where σ̂ is the estimator of the variance, n represents the number of 

observations in history period, h denotes the bandwidth that determines 
the moving data window size, ys and ̂ys represent the actual observations 
and expected observations, respectively (DeVries et al., 2015; Verbesselt 
et al., 2012). A breakpoint was detected if the absolute value of MOt is 
significantly different from zero at a specified confidence level (DeVries 
et al., 2015; Verbesselt et al., 2012; Zeileis et al., 2002). 

Magnitude value is the median of the difference between the 
observed value and predicted value for all the observations in the 
monitoring period. For each pixel (with detected breaks or without 
detected breaks), the magnitude value was calculated. The median value 
instead of the sum value was calculated because the median is less 
sensitive to noise (DeVries et al., 2015). R2 is derived from the linear 
regression model used in the history period. 

2.4.3. Random forest for detecting forest disturbance 
BFAST Monitor can return the breakpoint, magnitude and R2. The 

magnitude is the median of the difference between the observed value 
and predicted value for all the observations in the monitoring period. 
Using the BFAST Monitor approach for forest disturbance detection, an 
additional filtering approach needs to be conducted to extract forest 
disturbance (Hislop et al., 2019). The breakpoint and magnitude are 
usually post-processed using either a threshold-based approach or 
random forest for identifying possible forest disturbances (DeVries et al., 
2015; Schultz et al., 2018). Previous research has tested these two ap
proaches and found out that the random forest algorithm outperformed 

Fig. 2. The workflow for forest disturbance detection.  
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the threshold-based approach (Schultz et al., 2018). Therefore, a 
random forest algorithm (Breiman, 2001) was used to predict the forest 
disturbance based on the break detection results from NDMI and NDVI 
time series. Random forest classification was used to differentiate the 
forest disturbance from the undisturbed forest. For the random forest 
model, the input features include six raster layers, the presence/absence 
of breakpoint (a binary variable converted from the breakpoint layer), 
magnitude value and R2 from the BFAST Monitor output based on NDMI 
and NDVI time series. A total of 1000 pixels (500 for each site) were 
selected and interpreted based on the original images and the Planet
Scope imagery. Among the 500 pixels for each site, 250 were forest 
disturbance pixels and the remaining were undisturbed pixels. For the 
random forest model, the number of decision trees was set to 500. The 
number of randomly selected variables when splitting at the tree node 
was set to 2 (the square root of the number of input features). Random 
forest models were implemented using the R package “randomForest” 
(Liaw and Wiener, 2002) for three data products of both study sites. 

2.4.4. Accuracy assessment 
The spatial and temporal accuracies of the forest disturbance 

detected in 2019 were assessed. For the spatial accuracy, the disturbance 
maps were validated based on stratified random sampled pixels (30 m by 
30 m) created based on the forest disturbance maps, generated from 
classification using Landsat-8/OLI, Sentinel-2 and the combined data. 
400 random pixels were selected for each disturbance map. Each forest 
disturbance map consists of two classes (forest and forest disturbance), 
for each class, 200 random pixels were generated and interpreted. The 
occurrence of forest disturbance in 2019 was interpreted based on 
PlanetScope imagery. 1200 sample pixels for each site and 2400 sample 
pixels for the total of two sites. Based on the confusion matrix, 
commonly used producer’s accuracy, user’s accuracy and overall accu
racy, described by Congalton (1991), were calculated. For assessing the 
temporal accuracy, the same validation pixels used to assess the spatial 
accuracy were used. The sampling points that were identified as forest 
disturbance in the map and in the validation data were selected for 
further analysis. The monthly mosaic of PlanetScope imagery was used 

to label which month the forest disturbance happened. When the BFAST 
monitor returned two dates of breakpoint detected based on NDMI or 
NDVI, the dates from NDMI and NDVI were compared and the earlier 
date was considered as the disturbance time. When the break was only 
detected from one index, NDMI or NDVI, the returned date was 
considered as the disturbance time. Then, the daily date was aggregated 
into monthly data in R. The disturbance time detected by the model and 
the validation data were compared. If the disturbance detected in the 
model was later than the validation data, the sampling pixel was 
considered as correctly identified. We also considered those distur
bances detected in the model that are one month earlier than the 
reference disturbance date as correct detection. The mean time lag is 
defined as the mean days between the reference date and the date pre
dicted by the model (Shimizu et al., 2019). In this study, we calculated 
the mean time lag between the model predicted time and reference data 
based on the month when the disturbance occurred or was detected by 
the model. 

3. Results 

3.1. Forest disturbance detection 

Forest disturbance detected from two study sites is shown in Fig. 4. In 
the Tanzania site, the detected forest disturbance area using Sentinel-2 
imagery was the largest (4,387 ha), followed by using the combined 
data (3,712 ha) and using only Landsat-8/OLI imagery (2,955 ha). Most 
of the forest disturbance was detected in the eastern part of the Tanzania 
site using Sentinel-2 and the combined data, while the detected forest 
disturbance was distributed in the eastern and southwest part using 
Landsat-8/OLI imagery. While for the Brazil site, the area of the detected 
disturbance using Landsat-8/OLI, Sentinel-2 and the combined data 
were 9,770 ha, 10,090 ha, and 8,706 ha, respectively. The spatial dis
tribution of the detected forest disturbance using Landsat-8/OLI, 
Sentinel-2 and the combined data were similar. A large amount of for
est disturbance was detected in the south part of the study area. Most of 
the detected forest disturbance sizes detected in the Brazil site were 

Fig. 3. Demonstration of structural change detection using BFAST Monitor. The start of the monitoring period was represented by a vertical black line in each plot. 
The blue curve represents the fit based on the BFAST Monitor model. The presence of breakpoint (dotted red line) and magnitude value (m) are shown on each plot. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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larger than those in the Tanzania site (Figs. 4 and 5). 

3.2. Accuracy of the forest disturbance maps 

The overall spatial accuracy of forest disturbances in the Tanzania 
site using the combined Landsat-8/OLI and Sentinel-2 is the highest 
(84.5%), followed by using only Landsat-8/OLI (81.0%) and Sentinel-2 
(79.8%). In terms of the producer’s accuracy of the disturbance class in 
the Tanzania site, the highest accuracy (87.1%) was achieved by using 
the combined data. Thus the omission error of the disturbance class is 
the smallest when using the combined data. For the forest disturbance 
class, using only Landsat-8/OLI data achieved the highest user’s accu
racy (84.0%), indicating the smallest commission error of disturbance 
class in the Tanzania site. The user’s and producer’s accuracies of the 
disturbance map created by using the combined data were more 
balanced compared to maps created based on Landsat-8/OLI or Sentinel- 
2 imagery in the Tanzania site. 

The overall spatial accuracy of forest disturbances in the Brazil site 
using the combined Landsat-8/OLI and Sentinel-2 was the highest 
(95.5%), followed by using only Landsat-8/OLI (93.3%) and Sentinel-2 
(92.0%) (Table 1). The forest disturbance map based on the combined 
data achieved the highest overall accuracy, followed by using Landsat- 
8/OLI and using Sentinel-2. In terms of the producer’s accuracy of the 
disturbance maps, the highest accuracy of change class (disturbance) 
was 98.8%, achieved by using only Sentinel-2. The highest user’s ac
curacy of the disturbance class was 92.5%, which was achieved by using 
the combined data. For the disturbance class, the commission errors 
were relatively higher than the omission errors. 

Among the sampled pixels for validating the temporal accuracy in 
the Tanzania site, the number of pixels that was correctly identified by 
using Landsat-8/OLI and Sentinel-2 were 151 (89.9%) and 117 (82.4%), 
respectively. While for the combined data, the number was 140 (86.4%). 
The mean time lags for forest disturbance mapping using Landsat-8/OLI 
and Sentinel-2 was approximately 2.0 months (Fig. 6). When detecting 
the forest disturbance using Landsat-8/OLI, the mean time lag was 3.3 
months. The mean time lag for forest disturbance detection using 
Landsat-8/OLI was the longest. 

Regarding the temporal accuracies in the Brazil site, the number of 
pixels that was correctly identified by using Landsat-8/OLI, Sentinel-2 
and the combined data were 164, 136, 151, respectively and they 
accounted for 93.2%, 80.0% and 81.6% of the total sampled pixels used 
in the temporal accuracy assessment. The mean time lags for forest 
disturbance mapping using Landsat-8/OLI, Sentinel-2 and the combined 
data were approximately 0.72 months, 0.37 months, and 0.22 months, 
respectively (Fig. 6). When using the combined data for forest distur
bance detection, the mean time lag was smaller compared with distur
bances detected by using Landsat-8/OLI or Sentinel-2 imagery. 

4. Discussion 

The added-value of using HLS data to detect disturbances in tropical 
forest systems at a sub-annual scale was assessed based on BFAST 
Monitor and random forest models for two study sites located in 
Tanzania and Brazil. Our results show that using the combined data 
achieves a shorter mean time lag when detecting forest disturbance 
compared with using only Landsat-8/OLI. Furthermore, combining the 

Fig. 4. Forest disturbance maps of Tanzania and Brazil site in 2019. (A), (B), (C) represent forest disturbance detected in the Tanzania site using Landsat-8/OLI, 
Sentinel-2 and the combined data. (D), (E), (F) represent forest disturbance detected in the Brazil site using Landsat-8/OLI, Sentinel-2 and the combined data. 
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Landsat-8/OLI and Sentinel-2 imagery also improves the overall spatial 
accuracy for detecting forest disturbance. 

4.1. Spatial accuracy 

Detecting forest disturbance using the combined Landsat-8/OLI and 
Sentinel-2 imagery produced the highest spatial accuracy. In both study 
sites, the spatial accuracy of forest disturbance detection using the 

Fig. 5. Example of detected forest disturbance for year 2019 in the Tanzania and Brazil site. (A) and (B) are true color composites RGB-321 of PlanetScope imagery in 
the Tanzania site acquired on Dec. 29, 2018 and Dec. 27, 2019, respectively. (D) and (E) are true color composites of PlanetScope imagery in the Brazil site acquired 
on Dec. 16, 2018 and Nov. 16, 2019, respectively. (C) and (F) represent detected forest disturbance using the combined Landsat-8/OLI and Sentinel-2 data in the 
Tanzania site (center coordinate:5.90◦ S, 38.15◦ E) and the Brazil site (center coordinate: 11.77◦ S, 54.39◦ W), respectively. 

Table 1 
Spatial accuracy (%) of forest disturbance maps in the Tanzania and Brazil study sites.  

Sites  Tanzania Brazil   

Disturbance No disturbance Disturbance No disturbance 

Producer’s accuracy Landsat-8/OLI 79.2 82.9 98.3 89.1  
Sentinel-2 75.3 86.1 98.8 86.8  
Combined 87.1 82.2 98.4 92.9 

User’s accuracy Landsat-8/OLI 84.0 78.0 88.0 98.5  
Sentinel-2 71.0 88.5 85.0 99.0  
Combined 81.0 88.0 92.5 98.5 

Overall accuracy Landsat-8/OLI 81.0 93.3  
Sentinel-2 79.8 92.0  
Combined 84.5 95.5  
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combined data was higher than using only Landsat-8/OLI or Sentinel-2 
data. The higher overall accuracy of forest disturbance detection using 
the combined data can be attributed to the increased number of valid 
observations in the pixel time series by integrating imagery from 

different sensors (Fig. 7A). A larger number of valid observations lead to 
a better fit of the BFAST Monitor model thus achieving higher accuracies 
(Schultz et al., 2016). Previous research compared the performance for 
using Sentinel-2 and Landsat-8/OLI imagery to monitor selective 

Fig. 6. The probability density function of the disturbance time for the sampling pixels based on the validation data and disturbance predicted from Landsat-8/OLI, 
Sentinel-2 and the combined data in the Tanzania and Brazil sites. (A), (B) and (C) depict the Tanzania site using Landsat-8/OLI only, Sentinel-2 only and the 
combined data. (D), (E) and (F) represent the Brazil site using Landsat-8/OLI only, Sentinel-2 only and the combined data. MTL represents the mean time lag. 

Fig. 7. (A) Number of valid observations for all forest pixels based on Landsat-8/OLI, Sentinel-2 and the combined images acquired from 2016 to 2019 in the 
Tanzania site and Brazil site. (B) The percentage of the number of forest disturbance events for different patch sizes, the horizontal axis represents the patch size. 
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logging in the Brazilian Amazon and found out that the overall accuracy 
of the disturbance and undisturbed forest map based on Sentinel-2 was 
marginally higher than the one based on Landsat-8/OLI (Lima et al., 
2019). On the contrary, our results show that forest disturbance detec
tion using Landsat-8/OLI achieves higher accuracy compared with using 
Sentinel-2 data. This can be attributed to two reasons. On the one hand, 
the original Sentinel-2 imagery was resampled to a 30 m spatial reso
lution imagery in the HLS product, so the advantage of Sentinel-2 in 
revealing better spatial details was lost. On the other hand, unmasked 
cloud-contaminated pixels in Sentinel-2 imagery can affect forest 
disturbance detection. Fmask 4.0 was adopted to mask out the cloud, but 
Fmask 4.0 produces better results in detecting cloud by using Landsat-8/ 
OLI compared with using Sentinel-2 because Sentinel-2 does not include 
the thermal bands (Qiu et al., 2019). 

4.2. Temporal accuracy 

Regarding the temporal accuracy of the forest disturbance detection, 
combining Landsat-8/OLI and Sentinel-2 data produced a shorter mean 
time lag than using Landsat-8/OLI imagery. The mean time lag 
decreased when using the combined data because of the increased 
temporal resolution compared with using only Landsat-8/OLI imagery. 
Similarly, a forest disturbance detection study using the combined 
Sentinel-1, ALOS-2 PALSAR-2 and Landsat data showed that the tem
poral accuracies based on multi-sensors were higher than single-sensor 
(Reiche et al., 2018). Our findings show that integrating Landsat-8/ 
OLI and Sentinel-2 enables earlier forest disturbance detection. The 
value of using dense time-series data (HLS) for forest disturbance 
monitoring in the tropics is apparent and it can contribute to building an 
early warning system. 

The mean time lags of forest disturbance in the Brazil site are rela
tively shorter compared with those in the Tanzania site, which might be 
explained by the difference in the number of valid observations, patch 
sizes of forest disturbances and forest types. For each sensor, the number 
of valid observations of Landsat-8/OLI, Sentinel-2 and the combined 
data in the Brazil site is larger than those in the Tanzania site (Fig. 7A). 
Observation availability is the driving factor for evaluating the perfor
mance of forest disturbance monitoring systems based on satellite im
ages (Reiche et al., 2018). Future studies can investigate the potential of 
adding the Landsat time-series data acquired from 2013 to 2015 to in
crease the number of valid observations in sub-annual forest disturbance 
monitoring. In addition, the patch sizes of forest disturbances might 
affect the time difference of forest disturbance detection in different 
sites. The number of large patches of forest disturbances in the Brazil site 
is higher than that of the Tanzania site (Fig. 7B). The seasonal variation 
of forests in the Tanzania site is larger than that in the Brazil site (Fig. 3). 
Future research can investigate the use of a spatial normalizer to reduce 
the seasonal variations (Hamunyela et al., 2016a, 2016b). 

The temporal accuracy assessed in this study was limited by the 
validation data. When assessing the temporal accuracy of detecting 
forest disturbance using monthly mosaic PlanetScope imagery as the 
reference data may introduce uncertainty because there is a discrepancy 
between the time when the disturbance happens and the time when a 
satellite image captures the disturbance. To reduce the uncertainty, 
acquiring satellite images at a higher temporal resolution is necessary 
for validating the sub-annual detection of forest disturbance. With the 
launching of more satellites, more frequent observations are available, 
which will increase the observation availability of the reference images 
(Shimizu et al., 2019). Besides, an adjusted reference approach can be 
applied to reduce the imprecision caused by the time lag between the 
change truly occurs and the change captured by the images (Reiche 
et al., 2018). 

Visual comparison with the PRODES product in the Brazil site shows 
that the forest disturbances based on the combined Landsat-8/OLI and 
Sentinel-2 data provides complementary information for the PRODES. 
PRODES, one of the main monitoring projects conducted by INPE, 

updates annual deforestation maps in the Legal Amazon since 1988 
using largely Landsat imagery (Hansen et al., 2008). There is an overall 
agreement in the distribution of detected disturbed forests (Fig. 8A and 
B). The major differences (blue rectangles in Fig. 8) are the disturbances 
detected only from PRODES and the difference could be related to the 
use of different benchmark forest masks. PRODES updates its annual 
map from August 1, while our forest disturbance detection started from 
January 1. Most of the detected disturbances within blue rectangles of 
PRODES (Fig. 8C and D) could have occurred before 2019. Furthermore, 
forest disturbances detection using HLS data and BFAST Monitor 
approach has the capability of providing monthly forest disturbance 
products, which reveals more detailed information on when the forest 
disturbance occurs compared with the annual disturbance product of the 
PRODES. Detecting forest disturbance using the combined Landsat-8/ 
OLI and Sentinel-2 data not only has the potential of providing com
plementary information on which month the forest disturbance occurred 
but also enables earlier detection of forest disturbance (Fig. 6). Detecting 
the forest disturbance as early as possible provides significant infor
mation for policymakers to rapidly respond to reduce and prevent the 
expansion of forest disturbance. 

4.3. Major sources of errors 

Clouds, cloud shadows and forest masks affect the performance of 
the forest disturbance detection approach used in this study. For 
unmasked cloud and cloud shadows, a single outlier can be handled by 
BFAST Monitor and it is unlikely to be identified as a breakpoint 
although it decreases the NDMI/NDVI value because the approach using 
the moving sums of residuals and the calculation of magnitude value is 
based on the median value within the monitoring period (DeVries et al., 
2015). However, unmasked cloud-contaminated or shadow- 
contaminated pixels that occur in multiple continuous images chal
lenge the breakpoint detection. Integrating imagery acquired from other 
optical or Synthetic Aperture Radar (SAR) sensors may reduce the 
number of persistent cloud or shadow contaminated pixels. An accurate 
benchmark forest mask plays an important role in forest disturbance 
monitoring (Hirschmugl et al., 2020). If the benchmark forest mask does 
not exclude any forest disturbances that occurred before the observation 
period (e.g., 2019), these pixels would be mislabeled as a disturbance at 
the beginning of the monitoring period, a similar issue has been found in 
previous research (DeVries et al., 2015). Analyzing the stability of the 
data in the history period and using the stable observations instead of all 
the observations to fit the season-trend (Verbesselt et al., 2012) might 
reduce the error caused by inaccurate forest mask. 

4.4. Implications for forest disturbance monitoring 

Using HLS data to detect forest disturbance at a sub-annual scale 
would make a significant contribution to the disturbance monitoring 
system, particularly in terms of identifying the time of forest distur
bance. For example, monitoring projects such as the PRODES project 
could benefit from the combined satellite data. The PRODES project 
updates its deforestation map annually. While our results produce sub- 
annual products for forest disturbance monitoring, which provide 
complementary information on which month the forest disturbance 
occurs. The average mean time lags of forest disturbance detection in the 
Brazil site are less than 1 month. This indicates that our results have the 
potential of providing information for rapid response on preventing 
further carbon or biodiversity loss. Furthermore, the minimum map unit 
of PRODES is 6.25 ha, a large proportion of the number of forest dis
turbances events that are less than 1 ha were detected in the Brazil site in 
2019 (Fig. 7B) using the combined Landsat and Sentinel-2 imagery, 
which also provides complementary information for PRODES. Other 
Landsat-based disturbance alert system, such as the humid tropical 
forest disturbance monitoring system implemented in Peru, the Republic 
of Congo and Kalimantan, Indonesia (Hansen et al., 2016) would benefit 
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from the combined data because integrating Sentinel-2 imagery and 
Landsat-8 OLI imagery for forest disturbance monitoring enables earlier 
forest disturbance detection. The earlier the disturbance is detected, the 
earlier the intervention action could be taken. 

For using HLS imagery to monitor forest disturbance in other re
gions, several key issues needed to be addressed. First and foremost, the 
added value of using the combined Landsat-8/OLI and Sentinel-2 data 
for forest disturbance detection is more pronounced in the temporal 
component compared with the spatial accuracy in the two test study 
sites. Secondly, although the combined Landsat-8 OLI and Sentinel-2 
data increase the temporal resolution, it also decreases the spatial res
olution of Sentinel-2 imagery, which makes it inappropriate for detect
ing small-scale size forest disturbance that is less than one pixel (30 m by 
30 m). For small-scale forest disturbance, 10 m resolution Sentinel-2 
imagery or other higher spatial resolution satellite data are recom
mended. Future research could investigate the trade-offs introduced by 
HLS between the gain in temporal resolution and loss of spatial resolu
tion (Sentinel-2 imagery) in forest disturbance monitoring, which is 
particularly important for small-scale forest disturbance detection in 
smallholder-dominated landscapes in Africa, such as Tanzania. Thirdly, 
for upscaling HLS imagery to monitor forest disturbance at a larger scale 
(e. g. national or global scale), a large amount of representative training 
and test samples are needed to be selected and interpreted. Different 
data availability and heterogeneity of landscape also pose challenges for 
a larger scale forest disturbance monitoring. Lastly, the use of HLS data 
for forest disturbance monitoring has its advantages and disadvantages 
compared with SAR-based or combined SAR and optical imagery based 
disturbance monitoring. The main disadvantage of using HLS imagery is 
the cloud contamination problem. Regarding the advantages, the HLS 
does not have speckle in the image and it usually has higher temporal 
resolution compared with most SAR imagery. Although integrating HLS 
with SAR improves the temporal resolution, the inconsistent data 
availability, distinct physical properties between SAR and optical im
ages might be challenging (Markert et al., 2018). 

5. Conclusions 

Understanding forest disturbance provides baseline information for 
quantifying the carbon balance of the forest ecosystem and is critical for 
developing sustainable forest management strategies. We investigated 

the potential of using dense time-series HLS data for sub-annual tropical 
forest disturbance detection in two different sites. Our results show that 
integrating Sentinel-2 imagery with Landsat-8/OLI imagery has the 
potential of improving forest disturbance monitoring. Combining the 
Landsat-8/OLI and Sentinel-2 imagery can detect the forest disturbance 
with marginally higher spatial accuracy compared with using only 
Landsat-8/OLI imagery or using only Sentinel-2 imagery. More impor
tantly, combining the Landsat-8/OLI and Sentinel-2 imagery shortens 
the mean time lag in forest disturbance monitoring. With more dense 
time-series data acquired from Landsat 10, Sentinel-1, PlanetScope or 
other sensors, the accuracy of sub-annual forest disturbance detection is 
expected to improve further and computing power needs to be increased 
to combine data from multiple sensors. HLS data is therefore promising 
for tropical forest disturbance monitoring and it opens up a new op
portunity for forest disturbance detection in other study sites when 
global coverage of HLS Version 1.5 data are available. 
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