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Abstract
Advances in sensor miniaturization are increasing the global popularity of unmanned 
aerial vehicle (UAV)-based remote sensing applications in many domains of agriculture. 
Fruit orchards (the source of the fruit industry chain) require site-specific or even indi-
vidual-tree-specific management throughout the growing season—from flowering, fruitlet 
development, ripening, and harvest—to tree dormancy. The recent increase in research on 
deploying UAV in orchard management has yielded new insights but challenges relating to 
determining the optimal approach (e.g., image-processing methods) are hampering wide-
spread adoption, largely because there is no standard workflow for the application of UAVs 
in orchard management. This paper provides a comprehensive literature review focused 
on UAV-based orchard management: the survey includes achievements to date and short-
comings to be addressed. Sensing system architecture focusing on UAVs and sensors is 
summarized. Then up-to-date applications supported by UAVs in orchard management are 
described, focusing on the diversity of data-processing techniques, including monitoring 
efficiency and accuracy. With the goal of identifying the gaps and examining the oppor-
tunities for UAV-based orchard management, this study also discusses the performance of 
emerging technologies and compare similar research providing technical and comprehen-
sive support for the further exploitation of UAVs and a revolution in orchard management.
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Introduction

Faced with the challenges of a growing global population, rural poverty, and natural 
resource management, public awareness about sustainable practices in food production has 
become prominent. Food productivity, e.g., in fruit crops, and the economics of cultivation 
and irrigated agriculture are important topics in precision agriculture that relate to these 
challenges. In the case of fruit orchard management, the challenges also concern processes. 
Within the context of precision agriculture, site-specific management is key to reducing 
environmental impact and enhancing agricultural economics. Such management includes 
the general stages of collecting data, mapping orchard variability, and making decisions 
(Zhang & Kovacs, 2012) and enables each aspect of crop cultivation (e.g., physical, bio-
logical, chemical factors) to be understood.

Throughout the growing cycle of fruit crops, a variety of management activities are 
employed (Fig. 1). Different activities focus on the management of fruit trees at specific 
growth stages, and some activities are not limited to one growth stage. For instance, thin-
ning generally occurs during the flowering and fruitlet stages. The management activi-
ties attracting most research attention have been fruit thinning, fruit-tree pruning, and the 
assessment of irrigation strategy. Apple-flower number strongly correlates with the final 
yield (Aggelopoulou et  al. 2009). Improving fruit size and quality will bring more eco-
nomic benefits because of the higher market prices (Bound, 2018). However, without pre-
cise management, an excessive number of flowers per tree might lead to poor fruit quality 
and size. Overload of fruits also threatens the trees (Dennis, 2000). For example, only 7% 
of apple flowers are necessary for final harvest, which means that flower thinning should be 
conducted regularly (Greene and Costa 2013). In some cases, manual thinning represents 
31% of all cultural costs (costs of activities carried out during an entire fruit-tree grow-
ing cycle) (Glozer & Hasey, 2006). Though mechanical thinning effectively reduces labor 
input, the bottleneck is the precise estimation related to flower intensity. Changes in fruit-
tree structural properties can be used to monitor tree crop growth status, and site-specific 

Fig. 1  Natural yearly cycle of 
fruit crops and associated man-
agement activities (outer ring) 
during the seasons of a year (yel-
low ring) (Color figure online)
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treatments with fungicides and water can be implemented with the aid of a spatial struc-
tural variation map (Mu et al. 2018). Fruit tree physical structure, such as canopy volume, 
affects fruit quality and yield by intercepting light (Rom, 1991). Trees in fruit orchards 
are therefore pruned at certain fruit-growing stages, following a pruning strategy. Geomet-
ric characteristics like canopy area are the main way of assessing the pruning effects. By 
measuring this parameter, optimal pruning type and intensity can be selected and applied, 
to help guarantee the final income of local growers (Castillo-Ruiz et  al. 2015; Miranda-
Fuentes et al. 2015). In addition, because of the global water shortage, agricultural irriga-
tion is a relevant topic. In the context of deficit irrigation, the water inputs for orchards 
should meet the realistic demands of individual fruit trees. Mild water stress is often 
employed to maintain or improve fruit quality and yield in orchards. Thus, to optimize 
water resources usage, appropriate monitoring is necessary. In summary, projecting into 
the future, precision orchard management not only saves labor resources and increases the 
income of growers, but also has great significance in improving resource utilization.

Broadly, remote sensing (RS) describes a group of techniques that from a distance col-
lect sensor data on the target of interest. This involves sensing, recording, processing, ana-
lyzing, and applying reflected or emitted energy by employing various sensing devices, 
such as imaging sensors, radar, and sonar and satellite sensor arrays (Usha & Singh, 2013). 
Recently, a considerable amount of research has demonstrated the applicability of RS in 
orchard management for processing the data derived from various platforms (Barbagallo 
et  al. 2009; Garcia-Ruiz et  al. 2013; Salgadoe et  al. 2018). The methods, which vary 
according to monitoring scale, are manual observation (MO), handheld detection (HD), 
sensor networks (SN), ground vehicle (GV), unmanned aerial vehicles (UAVs), aerial 
sensing (AS), and spectral satellite sensing (SSS). These methods can be adopted for data 
collection relating to specific orchard management activities (e.g. thinning assessment, 
spraying, disease detection and yield estimation and prediction) throughout the whole 
fruit-trees growing cycle. Each monitoring method has its own pros and cons, depend-
ing on the application scenarios (Table 1) (Shakoor et al. 2017; Tabb & Medeiros, 2018). 
Although tedious, visual assessment of a limited number of trees, is the basis of a relatively 
accurate management strategy that depends on manual efforts to achieve the assessments 
(Sarron et  al. 2018). Handheld detection has a similar detection range, it can provide a 

Table 1  Relevant monitoring methods for fruit orchard management and their attributes

The qualification scale +, ++ and +++ represent “small, medium, and large”, or “light, moderate and 
high”, respectively. Symbols “✓” and “✗” represent automated and non-automated, respectively. Methods: 
manual observation (MO), handheld detection (HD), sensor network (SN), ground vehicle (GV), unmanned 
aerial vehicles (UAVs), aerial sensing (AS), spectral satellite sensing (SSS)

Attributes MO HD SN GV UAVs AS SSS

       

Scale  + / +  +  +  + / +  +  + / +  +  +  + / +  +  +  +  + / +  +  +  +  + / +  +  + 
Sensor payload size  +  + / +  +  +  + / +  +  +  +  +  +  +  +  +  + 
Autonomous ✗ ✓ ✗ ✗ ✗ ✓
Data post-processing 

level
+ ++ ++ ++ ++ +++

Platform Acces-
sibility

+++ ++ ++ ++ +++ ++ +/++
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more accurate evaluation, and requires less expertise on fruit-tree growing on the part of 
the operator (Aggelopoulou et al. 2010). Compared with these two monitoring methods, 
ground vehicle platforms are more efficient, and extensive research on these has been con-
ducted in the domain of orchard management (Colaco et al. 2018; Escolà et al. 2016; Wang 
et al. 2018).

All three methods mentioned above are employed at ground level, and their major 
advantage is the quality of datasets collected—i.e., due to the close sensing distance, high-
resolution data are easily accessed. However, it has now been well established in a variety 
of studies that remote sensing technology is of great interest within orchard management, 
especially when it comes to the monitoring scale and data acquisition efficiency (Salamí 
et al. 2019; Sola-Guirado et al. 2017; Tu et al. 2018). Conventional remote sensing tech-
nology, aerial sensing, and spectral satellite sensing have been applied in orchard man-
agement, with promising performance. However, all are limited by weather conditions and 
monitoring costs (Calderon et  al. 2013; Panda et  al. 2010). In addition, spectral satellite 
sensing is also limited by the lack of imagery with optimum spatial and spectral resolu-
tions, and an unfavorable re-visit time (Berni et al. 2009b).

Thanks to recent advances in sensor miniaturization, UAVs have become increasingly 
available to meet the need for quick and real-time monitoring turnaround times for orchard 
management at usable spatial, spectral, and temporal resolutions (Berni et  al. 2009a; 
Caruso et  al. 2019; Torres-Sanchez, Lopez-Granados, et  al., 2018; Valente et  al. 2019). 
Thermal sensors, multispectral sensors, and light detection and ranging (LiDAR) systems 
are data acquisition resources for the direct monitoring of fruit trees. However, there are 
various factors to consider when choosing a UAV to carry these sensors and achieve the 
required time frequency and spatial resolution for orchard management. Ground-based 
platforms are difficult to transport from one location to another, and it may not be easy 
to generate field maps in real time. These limitations can be overcome by using a suitable 
UAV to obtain data with the required time frequency and spatial resolution (Campos et al. 
2019; Matese et al. 2019). Compared with satellite-based remote sensing, using UAVs for 
monitoring is less dependent on weather conditions. For the monitoring of regions cov-
ered by significant cloud, UAV yielded a data-acquisition probability of 45–70%, while the 
probability based on satellite was around 20% (van der Wal et al. 2013). UAVs have been 
found to have many other advantages: they can be deployed in high-risk situations, data 
acquisition is fast, and images are geo-referenced (Handique et al. 2017; Saldana Ochoa & 
Guo, 2019). The limitations of UAVs are the battery life and operational speed. Battery life 
enables UAVs to operate in relatively small or medium-sized orchards. Their operational 
speed is lower than that of manned airborne platforms (Garcia-Ruiz et al. 2013). In order to 
collect data of high quality, a good balance between flying speed and data quality should be 
maintained during data collection.

Given the increasing need for site-specific and precise management information in 
orchards, the current status of UAV-based monitoring activities and research, and the 
potential opportunities for new applications and technologies, this paper aims to: (1) pro-
vide a detailed overview of the state of art, including UAV types, sensor types, and the 
analysis methodologies that have been applied, (2) identify the research gaps for fruit 
orchard management applications by evaluating and comparing relevant research, and 
(3) examine the potential technologies of UAVs for achieving precision orchard manage-
ment. The hypothesis of this study is that the use of UAVs in orchard management is in 
its early stage and not widely investigated yet. Recent publications can provide insights in 
common methods and future points for development. The study is divided into three main 
sections. The section ‘Selection and analysis of the reviewed papers’ describes the review 
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and analysis approach which was adopted. Next, the results section provides a detailed 
description of the selected literature sources using the application of UAV based monitor-
ing approaches for orchard management as starting point, and comparing aspects related to 
UAV systems, camera types, analysis approaches and management indicators among lit-
erature sources. The last section, summarizes latest developments, discusses main research 
gaps and provides recommendations for further investigation on UAV-based acquisition 
approaches and orchard management oriented analysis methods.

Selection and analysis of the reviewed papers

For this review, 84 related papers from the Web of Science (WoS) database either published 
or available online before 1st January 2020 were found and evaluated using keyword com-
binations (Fig. 2). The reproducible review approach in this study is comparable to previous 
approaches (Leroux & Tisseyre, 2019; Pathak et al. 2019) but does not follow the strict criteria 
(e.g., meta-analysis) of other systematic review methods (Methley et al. 2014). Although for 
a selection of papers a quantitative comparison was made in this study, a complete meta-anal-
ysis could not be made because the adopted experimental designs in the studies differed too 
much to allow pooling of results. In order to make a sharp analysis and to avoid non reviewed 
references (or inaccurate information), the analysis of literature only considered scientific 
studies that received external review as are covered within the WoS database. This motivation 
is in light that the WoS core collection has been used officially by organizations as a quality 
standard for longer time and provides weekly updates (Falagas et al. 2008). The database of 
Web of Science Core Collection, which is composed of four citation indexes (Science Citation 
Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Arts & Humani-
ties Citation Index (A&HCI), and Emerging Sources Citation Index (ESCI)), was selected. 
The internal WoS search function was adopted to cover the following searching fields: the 
title, abstract, author keywords and Keywords Plus of each record. Timespan, language, and 

Fig. 2  Overview of the criteria and categories investigated for the papers (84 in total) selected from the 
Web of Science for the survey
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searching model were set for 1945–2019, English and basic search, respectively. The search 
string consists of two components, “monitoring platforms” and “monitored objects”, which 
were combined with AND:

(1) Monitoring platforms (UAV OR unmanned aerial vehicle OR UAS OR unmanned 
aerial system OR remotely piloted aircraft systems OR drone)

AND

(2) Monitored objects (orchard* OR fruit trees OR fruit crops OR pome fruits OR stone 
fruits OR apple OR citrus OR orange OR mandarin OR lemon OR olive OR pear OR 
almond OR peach OR banana OR mango OR apricot OR chestnut OR nectarine OR 
lychee OR coconut OR persimmon OR kiwi fruit OR avocado OR apricot)

  As noted in component (2), specific fruit species were explicitly included to 
ensure that the survey would not miss any related research. This search function totally gener-
ated 155 articles, which were further examined. The survey focused on the orchards planted 
with fruit trees such as apple, citrus, or olive. As orchards can be broadly defined as the cul-
tivation for commercial food production of fruit crops growing as shrubs of a size between 
herbaceous plants and trees, or as trees, the search also yielded a considerable amount of lit-
erature on UAV-based investigation in vineyard crops (de Castro et al. 2018; Di Gennaro et al. 
2019; Jimenez-Brenes et  al. 2019; Matese et  al. 2019; Pichon et  al. 2019). But grapes fall 
into the category of climbing shrubs, which differ significantly biologically and geometrically 
from the fruit trees which form the focus of this study, so they were discarded. Similarly, arti-
cles focus on watermelon, blueberry, tomatoes, macadamia and coffee were also discarded. 
After removing other irrelevant ones, 80 articles remained. Among the 80 articles, one article 
is a meeting abstract and was discard as well (Garza et al. 2018), because not all information 
can be extracted. Besides these 79 articles, 4 relevant articles cited by the ones among this 79 
articles were found and added to the survey (Berni et al. 2009b; Ishida et al. 2018; Torres-
Sanchez et  al. 2015; Zarco-Tejada et  al. 2013). One article was actually published in 2019 
but its publication year in WoS system was 2020 (Martinez-Guanter et al. 2019). It was also 
included.For every paper, specifications of the study (e.g., sensors applied, study regions) were 
derived and compared (Fig. 2). First, the selected papers were classified into five categories on 
the basis of their main focus: resource efficiency, geometric traits, productivity, disease, and 
other applications. In each category, relevant papers were analyzed in relation to the following 
aspects: research objectives, UAV type(s), sensors uploaded, analysis methods applied, and 
results in relation to orchard management. To identify factors that affect the research perfor-
mance, comparisons among fruit species were also made. As a result, this paper is concluded 
by summarizing the state of art, potential of new technology, research gaps, and opportunities 
for UAVs in orchard management.

Results

General status

The trend in UAV-based orchard management publications and citations of these articles 
is illustrated in Fig.  3. Publications on UAV-based orchard management show a steady 
increase over the period from 2009 to 2019, in spite of a small drop around 2015. As can 
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be seen from the citation statistics (3.b), UAV-based orchard management has attracted sig-
nificant interest, hence the need for comprehensive analysis and summary at this stage. The 
publications originate from and report fieldwork in a large variety of countries throughout 
the world (Fig. 4), and they deal with different fruit species, mainly depending on climatic 
and geographic conditions.

The articles reviewed were classified into five classes on the basis of the orchard man-
agement application of the UAV and the objective of the application (Fig. 5):

• Resource efficiency: To optimize the efficiency of the inputs: e.g., water, site-specific 
status, or even status of individual trees is monitored and subsequently used to devise 
an irrigation strategy.

• Fruit-crop geometric traits: To monitor the dynamics of fruit tree growth and potential 
yield, geometric traits such as tree height, canopy volume, and area are evaluated. The 
measured data can further be used for pruning effect assessment or pruning planning.

• Fruit-crop productivity: In order to maximize economic benefits, the spatial yield esti-
mation and prediction of final yield at final harvest are investigated.

• Fruit-crop disease: In regular monitoring of the health status of fruit crops, disease 
classification and assessment should be timely, in order to provide basic protection.

• Other applications: A few studies focused on UAV-based pesticide spraying, others 
reported research on agricultural resource management and food quality tracking.

Aspects for the entire fruit-crop growing cycle (Fig. 1) were covered, but there were sig-
nificant differences in the focus: the three main categories—resource efficiency, geometric 
traits and productivity—account for 67% of the research conducted in orchard manage-
ment. Below, all the five application fields will be used as a starting point for further com-
parison and synthesis of the selected papers.

UAV platforms

An aircraft flying in a set direction and at a set speed and controlled remotely is referred 
to as an unmanned aerial vehicle (UAV) or drone. In recent years, the availability of UAVs 
has rapidly increased, and there are now many types, from multi-rotor to fixed-wing. 
According to the literature reviewed in this paper, three types of UAVs are currently used 
for orchard management: fixed-wing, rotary-wing, and multi-rotors (Table 2).

Fig. 3  a Number of publications per year for the period 2009–2019 and b Annual cumulative citation fre-
quency. The search was conducted on January 01, 2020 ( Source: Web of Science)
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The specific UAV type chosen for orchard management depends on the requirements 
and limitations of the application. The most widely used UAV types in orchards are multi-
rotors. A multi-rotor is a helicopter that can fly at different altitudes; it can be driven by 
four to eight rotors. This platform has several advantages. It can hover over a given loca-
tion, use global positioning system (GPS)—based navigation, fly horizontally and verti-
cally, and only requires a small take-off and landing space. The ease of control and high 
maneuverability are also the benefit of it. In addition, a flight altitude of 70 m can ena-
ble the optical sensor to achieve a 3D resolution of centimeter level already (Caruso et al. 
2019). Yet, the main limitations of rotor craft compared to fixed-wing craft are the lower 
speed and shorter flight time.

Compared to multi-rotor UAVs, fixed-wing UAVs have longer flight times and faster 
travel speeds. A major advantage of fixed wing UAVs is the capability of high payload 
though the cost of this UAV is relatively higher than multi-rotor UAVs. However, they are 
not able to hover. The speed of this type of UAV can cause image blurring, which can be 
solved by using an imaging sensor with improved features, including fast shutter speeds. 

Fig. 4  Distribution of fruit species involved in the 84 research conducted in different countries. Citrus 
includes the fruit species of orange, mandarin and lemon

Fig. 5  Distribution of the five 
application categories in the 
selected 84 papers. RE resource 
efficiency, GT geometric traits, P 
productivity, D disease, OA other 
applications
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Moreover, recent developments in the field of UAV have led to an interest in the adop-
tion of UAVs with vertical take off and landing (VTOL) system in orchard management 
(Mesas-Carrascosa et  al. 2018; Torres-Sanchez, Lopez-Granados, et  al., 2018). VTOL 
UAVs are easy to maneuver and have the freedom from bad weather and even site condi-
tion restrictions. In addition to the UAVs mentioned above, customized UAVs have also 
emerged in order to meet particular requirements in some case studies (Stefas et al. 2019). 
These UAVs are regarded as imaging and remote sensing platforms in orchard manage-
ment. Still, UAVs also play an active role, such as the UAVs applied for spraying, which 
provide a new solution for the safety of conventionally manual pesticide spraying (Gao 
et al. 2019).

Sensors

UAVs have been equipped with various sensors and have been able to collect data on the 
color, spectral, temperature, and geometric traits of fruits or fruit trees. So far, the main 
sensors used for UAV-based orchard management (UAV-OM) are RGB and multispectral. 
Hyperspectral and thermal sensors are used in a relatively small range of applications in 
UAV-OM (Fig. 6). In the literature reviewed, research using LiDAR only was described in 
one paper, which focused on the geometric traits measurement of apple trees (Hadas et al. 
2019). The application of LiDAR is limited by cost and power consumption, especially in 
the case of lightweight UAVs (Stefas et al. 2019). Depending on the application scenario, 
the five main sensor types play different roles in different orchard management activities 
(Fig. 6).

UAVs equipped with RGB imaging sensors have the widest range of applications in 
visible characterization, such as fruit-tree geometric trait assessment using grayscale or 
color images (Ok & Ozdarici-Ok, 2018a; Xue et  al. 2019). RGB sensors, also referred 
to as “point-and-shoot cameras” and “consumer-grade cameras”, are the most commonly 
used sensors in orchard research. Their advantages are low cost and simple operation. The 
high-resolution RGB sensor in particular is capable of providing detailed information for 
a wide range of orchard management applications (Gao et al. 2019). For example, the sen-
sor provides sufficient detail for analyzing the physiological characteristics of peach trees 
when ground resolution of RGB images fell into the range of 0 ~ 1 cm/pixel. The correla-
tion between orthogonal crown widths derived from UAV imagery and measured in the 
field yielded an  R2 value of 0.91 (Mu et al. 2018). Normally, users can obtain high-quality 
images by adjusting the exposure parameters of the sensor according to weather condi-
tions. In the domain of UAV-OM, orthophotos or digital surface models (DSMs) / digital 
elevation models (DEMs) indirectly obtained from RGB are of most interest to researchers 
(Jimenez-Brenes et  al. 2017; Ok & Ozdarici-Ok, 2018b). First, in order to obtain high-
quality orthophotos, to minimize the influence of camera distortion RGB images need to 
undergo deformation processing based on the specific model of sensor used. Then, algo-
rithms are used for image matching and optimization processing. Finally, automatic pro-
cessing software such as Agisoft Photoscan software (Uribeetxebarria et al. 2019) is used 
to stitch the acquired images into a complete ortho-mosaic.

Depending on the spectral resolution, multispectral and hyperspectral sensors have 
been used in a variety of UAV-OM applications, from water status assessment to disease 
detection (Calderon et al. 2013; Ishida et al. 2018; Romero-Trigueros et al. 2017). The 
primary imaging principle of these sensors is based on differences in spectral absorption 
and reflection characteristics of different objects or different parts of the same object. 
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The image processing for the spectral sensor mainly includes radiometric and geomet-
ric pre-processing with subsequent statistical analysis. Compared with RGB sensors, 
datasets generated from hyperspectral and multispectral sensors have increased process-
ing effort, and standardized processing chains are still being developed. Processing the 
hyperspectral data is a complex task, and the hybrid spectral decomposition model has 
certain limitations in practical research (Guillen-Climent et  al. 2012). In terms of the 
cost, multispectral sensors are relatively affordable for the growers in orchard but, it 
acquires spectral information in lower bands than do hyperspectral sensors—and hyper-
spectral sensors have an advantage in terms of spectral detail: they can record continu-
ous spectra, covering a large part of the optical range. This feature enables hyperspectral 
sensors to perceive the spectral characteristics and spectral differences of fruit trees, 

Fig. 6  Sensors for UAV-based orchard management as mentioned in the 84 papers selected for this survey. 
The areas of the brightly colored circles in the figure represent the proportion used in similar applications; 
specific number of relevant articles are also marked; rounded rectangles represent zero. The abbreviations 
are the initials of the application category: “R” stands for Resource efficiency in orchards (dark blue), “G” 
for Geometric and biophysical traits (light blue), “P” for the applications in Productivity (yellow), “D” for 
Disease detection (orange), and “O” for Other applications (green). Because LiDAR was employed only 
once in the literature reviewed, it is not included in the figure (Color figure online)



 Precision Agriculture

1 3

making them ideal for applications where specific traits need to be derived (Abdulridha 
et al. 2019).

With their combination of an infrared detector and an optical lens, thermal sensors can 
receive infrared radiation energy in the emissive part of the spectrum. The temperature dif-
ferences that can be derived from these thermal radiance observations are especially useful 
for the assessment of water status (Gomez-Candon et al. 2016; Park et al. 2017). The pri-
mary sensor for assessments of water status is the thermal sensor, as there is a close rela-
tionship between transpiration rate and canopy temperature due to photosynthesis (Zarco-
Tejada et al. 2012). In the measurement of crop canopy temperature, the selection of the 
region of interest varies and influences the estimation accuracy (Stagakis et  al. 2012). 
UAVs equipped with thermal sensors are capable of recording fruit-tree canopy tempera-
tures which reveal the temperature differences in canopies under different conditions. How-
ever, during this process, solar radiation, air temperature, and wind speed around the can-
opy also have an impact on data collection, making the final assessment results uncertain. 
In addition, in order to simulate the overall energy balance of the working environment, it 
is also important to create models which are relevant, such as the tree canopy conductance 
model proposed in previous research, which incorporates simulations of net radiation and 
aerodynamic resistance (Berni et al. 2009a). Meanwhile, sensor correction and processing 
of mixed pixels are still a problem that cannot be ignored (Gomez-Candon et  al. 2016). 
Fortunately, data fusion, such as the fusion of thermal and RGB images, shows potential 
for providing a solution.

Advances in UAV‑based remote sensing in orchard management

To enable the comparison among studies with the same or similar objective, a UAV-based 
orchard management framework was proposed (Fig. 7). The selected literature fell into the 
proposed five categories according to their research objectives in terms of the management 
activities introduced in Fig. 1. Various data sources were acquired for different manage-
ment scenario showing notable difference. LiDAR sensor was applied for geometric traits 
estimation only. Next, decision indicators were extracted or calculated from the collected 
datasets utilizing advanced methodologies. Each “orchard management” sub-category 
contains important aspects of the management activities, such as thermal drift correction 

Fig. 7  Data-decision framework in orchard management using UAV technology, based on the selected 84 
papers
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which aims to improve the accuracy of assessment of water stress. In each application sce-
nario, different studies share the same main focus.

Fruit‑tree geometric traits

Geometric characteristics such as the shape and size of trees have emerged as important 
indices for a wide range of activities for managing the growth process of fruit trees. In 
breeding trials, information on olive tree crown dimensions provides a benchmark for 
developing suitable cultivars in a given training system, e.g., open vase configuration or 
hedgerow (Ben Sadok et al. 2012; De la Rosa et al. 2007). Here, a training system means 
the management model for growing the fruit trees to a desired size and form, which is 
accomplished by pruning. Furthermore, traits like canopy area and crown volume are deci-
sive when assessing pruning impact. By mapping these traits, optimal pruning type and 
intensity can be selected and applied (Castillo-Ruiz et  al. 2015; Miranda-Fuentes et  al. 
2015). In general, structural properties monitoring is capable of elucidating tree crop 
growth status. Further, these geometric traits are useful for developing site-specific treat-
ments involving water, and for ameliorating the management problems caused by soil het-
erogeneity. Acquiring conventional measurements manually requires intensive effort and is 
associated with much uncertainty due to the irregularity of tree crowns. First, the primary 
dimensions (e.g., the tree height) are measured and empirical models or equations that rep-
resent the trees as regular polygons are applied for the characterization of the trees (e.g., the 
canopy area or crown volume) (West, 2009). In-situ measurements of large orchard plots 
are more inefficient and costly. The estimation from terrestrial platforms show promising 
performance; they include active RS technology and LiDAR laser scanners, which have 
been found to be able to achieve an  R2 value of 0.97 for the tree height estimation (Moor-
thy et al. 2011). Though UAVs equipped with LiDAR have not been properly explored for 
geometric measurement in the domain of orchard management, UAVs installed with other 
sensors, e.g., RGB and multispectral, have been shown to be reliable alternatives for fruit-
tree geometric measurements (Anifantis et al. 2019; Hadas et al. 2019).

Recent studies have described UAV-based quantification of geometric features in fruit 
trees, focusing on automated 3D reconstruction technique. 3D reconstruction of trees is 
the one of challenges in the domain of remote sensing, whereas 2D delineation quality 
affects the estimation based on the 3D digital models (Ok & Ozdarici-Ok, 2018a). Without 
the use of height thresholds, a delineation method for citrus-tree canopies that employs 
orientation-based radial symmetry transform (OBRS) resulted in an overall F1-score of 
91.2% (Ok & Ozdarici-Ok, 2018a). OBRS transform locates the circular objects directly 
and improves the accuracy of the subsequent extraction of regions of interest. Circular 
Hough transform algorithms are also suitable for the extraction of fruit trees. Research 
has indicated that an approach combining this algorithm with sequential thresholding and 
canny edge detection resulted a delineation accuracy exceeding 80% (Koc-San et al. 2018). 
Neural network based methods are also capable of classifying fruit trees (Ampatzidis et al. 
2019). For instance, (Kestur et al. 2018) compared the K-means method with an extreme 
learning machine (ELM) approach that uses a single hidden layer feed forward neural net-
work (SLFN) for the classification of different fruit-tree crowns (banana, mango, and coco-
nut). In this case study, ELM performed better than the unsupervised K-means method: the 
classification accuracies were 96.0% and 85.5%, respectively.

In general, the combination of geographic object-based image analysis (GEOBIA) 
and DSMs derived from the structure from motion (SfM) method is a well-established 
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approach for fruit-tree classification and geometric index calculation in which the indi-
ces consist of tree height, and crown width and perimeter (Jimenez-Brenes et al. 2017; 
Johansen et al. 2018; Ok & Ozdarici-Ok, 2018b; Torres-Sanchez et al. 2015). In a case 
study of height estimation, a GEOBIA method treating points between 1 and 1.5  m 
as the crown center was first applied in photogrammetric point cloud analysis, yield-
ing an  R2 value of 0.94 (Torres-Sanchez, de Castro, et  al., 2018). This indicates that 
dense 3D point clouds are sufficiently representative to be used for geometric measure-
ments. With the use of similar method, the differences in the quality of tree crown 3D 
reconstruction derived from two training system, intensive and hedgerow system, was 
observed (de Castro et  al. 2019). Furthermore, when a random forest classifier was 
trained on the basis of GEOBIA, the estimation of crown height and plant projective 
cover (PPC) yielded a  R2 value of 0.65 and 0.62, respectively (Tu et al. 2019). In the 
case of peach trees, (Mu et al. 2018) reported that a combination of adaptive threshold 
and watershed segmentation methods was suitable for measurements of crown width 
and crown projection area (CPA,  m2) (Eq. 1). Based on this, the spatial and temporal 
data on growth rate based on CPA was observed. An adaptive threshold is also appro-
priate for filtering non-fruit trees, particularly the threshold related to tree height (Xue 
et al. 2019).

where the equation is based on local experience, and W1 , W2 represent the crown widths 
parallel and perpendicular to the tree rows.

Additionally, the UAV data collection design has a significant impact on the esti-
mation results for different application scenarios. (Torres-Sanchez, Lopez-Granados, 
et  al., 2018) indicated that the best configuration for olive-tree volume estimation is 
the combination of 95% forward overlap and 60% side overlap while the flight altitude, 
the ground sampling distance (GSD) and image footprint was 100  m, 0.038  m/pixel 
and 124*94 m, respectively, which could achieve an estimation accuracy of 95% and 
save 85% computing time compared to applying maximum overlap (97%). The effects 
of flight height on the tree height estimation was also validated. It showed that the R2 
value changed from 0.79 to 0.86 when the GSD decreased from 16 to 3 cm (Marques 
et  al. 2019). GSD value affects the point cloud density directly. Research indicated 
that the row detection accuracy could reach 100% when the GSD ranged from 2.13 to 
6.69 cm/px (Sun et  al. 2019). A approach in order to enable automatic estimation of 
geometric parameters has been to develop valuable processing tools in QGIS software. 
One new plugin was capable of achieving automatic detection of trees by integrating 
several external algorithms and had a classification accuracy of 92.84% (Duarte et al. 
2018). Different spatial resolutions produced DSMs of inconsistent quality. For one 
study, a stable relationship between spatial resolution and DSMs quality was found 
when resolution fell in the range of 5 to 30  cm/pixel (Zarco-Tejada et  al. 2014). To 
date, limited attention has been paid to the feasibility of upscaling methods, and sev-
eral methods have only been evaluated for a given training situation (Torres-Sanchez, 
de Castro, et  al., 2018). The methods should be tested in other circumstances, e.g., 
related fruit species, other data collection strategies. Focusing on the isolation of error 
sources in the full process of estimating the geometric traits of fruit trees can likely 
identify the critical steps in workflow. For instance, methods based solely on morpho-
logical traits such as shape are ineffective if the background contains objects of no 
interest that have the same morphological traits.

(1)CPA = 0.65 ×W1 ×W2
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Fruit‑tree productivity traits

Productivity estimation is frequently prescribed for orchard management practices as it 
provides key information for growers and other stakeholders in market supply and exports. 
Detailed spatial explicit information in particular is key for growers to facilitate efficient 
utilization of resources and to optimize and streamline their harvest process (Suo et  al. 
2019; Woodward & Clearwater, 2012). In addition, estimation of essential elements such 
as the nitrogen status and chlorophyll content and of the fraction of intercepted photosyn-
thetically active radiation (fIPAR) during the growing season also benefits the estimation 
of potential final yield and fruit-crop performance (Guillen-Climent et al. 2012; Perry et al. 
2018; Vanbrabant et  al. 2019). Traditional in-situ estimation of productivity variables is 
time-demanding and uncertain. It entails visual inspection of number, color, shape, size, 
and other information on fruits or fruit trees according to the grower’s own experience 
(Srivastava & Sadistap, 2017). This results in limited samples and repetitions, which are 
insufficient to account for the spatial and temporal variability within and between orchards 
(Aggelopoulou et al. 2009; Perry et al. 2009). Most studies, however, have been conducted 
under special conditions (e.g., using light-shielding cover to collect data), or at ground-
scale level, which also shows the limitations for operational management (Nguyen et  al. 
2016). A recent study has examined yield estimation based on satellite imagery, but the 
method was shown to have low feasibility for different orchards (Rahman et  al. 2018). 
Despite the timeliness and low monitoring cost of satellite-based methods, they do not sat-
isfy all the requirements of yield-related management in orchards.

It is now well established from a variety of studies that UAV-based imaging has poten-
tial to support data-driven yield estimation algorithms. In general, counting flowers/fruits 
on trees is the direct and precise solution using UAV imagery technology (Horton et  al. 
2017). Yet, the occlusion of flowers/fruits by branches, leaves and/or other fruits, variable 
outdoor lighting conditions, and color similarity seriously affect the direct estimation. Fruit 
trees need to be accurately thinned during flowering stage in order to gain better yield and 
fruits with good quality. Thus the basis is the precise estimation of the flowering status in 
orchards. In this context, an enhanced bloom index (EBI) (Eq. 2) was proposed for quanti-
fying floral phenology in an almond orchard. The EBI is capable to enhance flower signals 
and reduce the noise produced by soil and green vegetation. Robust information on flo-
ral phenology was provided by the EBI, showing an agreement with the bloom coverage 
(with a  R2 of 0.72) (Chen, Jin, et al., 2019). Flower numbers is difficult to accurately count 
with aerial images due to the high density and occlusion of flowers. To deal with this, 
flowering density calculated from 3D point clouds was proved to monitor the flowering 
dynamics at field scale using sfm and OBIA approaches (Lopez-Granados et al. 2019). To 
further improve the feasibility of UAV in yield mapping, a vision-based UAV system was 
suggested (Stefas et al. 2019). Its capability of avoiding obstacle in high density orchards 
enable increasing spatial resolution navigating autonomously among apple rows and trees.

where the � is an adjusting constant to make the denominator non-negative, and R, G, B are 
the reflectance of red, green and blue bands, respectively.

In addition to direct measurements, alternative parameters (such as geometric traits and 
vegetation indices) for indirect productivity estimation or prediction are of interest. Canopy 
projected area (CPA) and canopy perimeter have been proved to be correlated with the fruit 

(2)EBI =
Brightness

Greenness ⋅ Soil ⋅ Signature
=

R + G + B
G

B
⋅ (R − B + �)
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load of peach trees (Uribeetxebarria et al. 2019). CPA yielded a higher correlation, with 
an R value of 0.85. Olive yield can be forecast from individual crown area estimated from 
UAV images (Sola-Guirado et  al. 2017), and a high agreement between the crown vol-
ume and yield was also observed in some almond varieties (Lopez-Granados et al. 2019). 
In the case of banana productivity, normalized difference vegetation index (NDVI) was 
positively correlated with several metrics regarding the yield and fruit quality (e.g., bunch 
weight, length of the longest finger), and negatively correlated with fruit loss (Machovina 
et al. 2016). Further, an attempt to demonstrate the influence of soil heterogeneity on fruit 
productivity found no relationship between NDVI and physical soil quality. In addition, 
predictive models for mango yield based on geometric parameters have provided an  R2 
value greater than 0.77 using GEOBIA, without counting numbers (Sarron et  al. 2018). 
Meanwhile, research exploring whether the methods proposed have universal application 
is interesting. One source of weakness in estimation using structure indices is that vegeta-
tion dynamics related to short-term physiological processes cannot be captured. To deal 
with this, chlorophyll content related index—TCARI/OSAVI, light use efficiency related 
index—PRI570, and canopy chlorophyll fluorescence can be alternatives. Research sug-
gests that these three indices yielded values of  R2 in the range between 0.75–0.84 when 
estimating the gross primary production (GPP) (Zarco-Tejada et  al. 2013). Productivity 
estimation related to physiological is largely based on data derived from multispectral or 
hyperspectral sensors. In this context, there are still operational challenges in employing 
fixed-wing UAVs (two hours’ preparation time: set up, camera calibration, safety check, 
and launch) and in application scale (Machovina et al. 2016).

In order to optimize fruit productivity and harvest activities, it has been advised to focus 
on harvesting time optimization, fruit tree vitality and health status monitoring (Vanbra-
bant et al. 2019). Fruit ripeness is the key element to determine the harvest time; it affects 
fruit quality directly during transport to markets. Preliminary efforts on ethylene detection 
via ethylene-sensitive sensors attached to UAVs have shown the effects of flying height and 
sensing wind speed when assessing apple maturity (Valente et al. 2019). This demonstra-
tion provides a novel method for harvest time optimization, though the modeling and simu-
lation results indicated a short detection margin for the ethylene. In one study in the domain 
of radiation interception estimation, vegetation indices mostly related to tree crop struc-
ture were regarded as a proxy for fraction of absorbed photosynthetically active radiation 
(fAPAR) (Zarco-Tejada et al. 2013). On the other hand, fIPAR at crop canopy scale also 
proved mappable via airborne imagery, especially in peach and citrus orchards (Guillen-
Climent et al. 2012). Similar fIPAR estimation results were found when methods employ-
ing the combination of 3D radiative transfer model and scaling-up were compared with 
a model inversion method: RMSE values were 0.09 and 0.10, respectively. It was shown 
that row orientation affected the relationship between NDVI and fIPAR. Further, fIPAR 
quantification was also validated via Mahalanobis distance distance supervised classifica-
tion method, which resulted in a RMSE of 0.06 (Guillen-Climent et al. 2014). In order to 
achieve higher productivity, regular nutritional status monitoring is the main requirement 
for fruit species like citrus (Osco, Marques Ramos, et al., 2019). Evidence was found that 
nitrogen contents prediction accuracy for citrus depends on the sub-tree areas where the 
spectral data extracted from. Nitrogen prediction accuracy based on the spectral data from 
the whole canopy and the young leaves was found lower than that from the mature leaves, 
while the effects of sub-tree areas on the prediction accuracy of soluble sugar and starch in 
the leaves were not clear (Liu et al. 2016). Instead of using conventional indices for nitro-
gen status assessment, (Perry et al. 2018) applied a new index, the modified canopy chlo-
rophyll content index (M3CI) (Eq. 3), for the assessment at canopy level, resulting in an  R2 
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value of 0.67. Machine learning algorithms currently performed well in the monitoring of 
fruit tree conditions such as chlorophyll content (Vanbrabant et al. 2019), nitrogen content. 
Compared with SVM, ANN and decision tree (DT) machine learning algorithms, random 
forests (RF) was the optimal one for the prediction in canopy nitrogen content of orange 
trees. R2 value reached 0.9 while the mean squared error (MSE) was 0.307 g/kg (Osco, 
Ramos, et al., 2019).

where the  RNIR was measured in the band of 810-nm, the measured reflectance of RRed and 
RRE were in the 660-nm and 710-nm band, respectively.

The aforementioned papers still reveal limitations in the data-processing time (Sarron 
et al. 2018), the robustness of methods proposed, and experimental design in terms of sam-
ple size (Perry et al. 2018). Finally, nearly all of the research was conducted at a certain 
period of time and few comparative studies report results of estimations at different fruit-
growing stages throughout the entire growth cycle.

Resource efficiency in orchards

The water used for irrigation in agriculture accounts for 85% of the total water managed 
at a global scale. Because of the water shortage worldwide, precise water management in 
orchards is a crucial practice, particularly in semi-arid areas where water inputs require 
higher economic investment. Climate change is also becoming a problem for the fruit 
industry, as some geographic areas are experiencing long periods of drought (Gomez-Can-
don et al. 2016). An efficient irrigation strategy is key to minimizing this negative impact 
on orchard managers’ profit. Sufficient water input is closely related to fruit production and 
quality. Even some drought-tolerant species like olive (Olea europaea L.) can benefit from 
irrigation, i.e., the promotion of growth, yield and fruit quality (olive oil), especially when 
grown in high-density training systems (Caruso et al. 2019; Egea et al. 2017). Within the 
definition of deficit irrigation, water inputs should meet the realistic requirement of the 
trees. Site-specific water management is thus of great importance to track the variability 
of water needs in orchards. More specifically, it solves the variability problem caused by 
soil heterogeneity and canopy-cover differences (Couvreur et al. 2016). The use of remote 
sensing technology for fast assessment of the water status in orchards aims to improve pro-
ductivity and water use efficiency in irrigation. For instance, the normalized difference red-
edge (NDRE), derived from UAV imagery is capable for monitoring the irrigation inhomo-
geneities and may further identify the growth inhomogeneities (Jorge et al. 2019).

When water supply from the soil cannot meet the demand for transpiration of plants, 
water deficits occur. These short-term deficits may hamper the growth of fruit trees and 
will affect the productivity. As most fruit trees are sensitive to water deficits, information 
related to optimizing irrigation is critical. Water stress monitoring benefits the application 
of deficit irrigation, allowing water resources to be saved and fruit yield and quality to be 
maintained (Girona, 2002; Zarco-Tejada et al. 2012).

In the late 1970s, canopy temperature was identified as a proxy for water status moni-
toring, with the concept of crop water stress index (CWSI) (Idso et al. 1978; Jackson et al. 
1981). The CWSI normalizes the difference between air  (Ta) and canopy temperature  (Tc), 
and lower (LL) and upper limit (UL) (transpiration of a leaf at potential rate and no transpi-
ration, respectively), demonstrating the evaporative demand (Eq. 4).

(3)M3CI =
RNIR + RRed − RRE

RNIR − RRed + RRE
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UAV imagery has shown to be potentially more efficient for canopy temperature assess-
ment than traditional field measurement (Gonzalez-Dugo et al. 2014). When it comes to 
the exploration of canopy temperature, stomatal aperture is key to understanding the fluc-
tuations, i.e., stomatal closure can lead to a decrease of evaporative cooling and rise in 
leaf temperature. The impacts of environmental conditions on stomatal response vary for 
different fruit species, which should be borne in mind, especially when the temperature 
of the fruit-tree canopy is taken as an indicator (Ballester et al. 2013). CWSI applications 
are mainly restricted by two aspects: necessary spatial resolution and the site-dependent 
equation of non-water-stressed baseline (NWSB). Without the use of reference surfaces, 
a high-resolution CWSI map was achieved by combining energy balance equations based 
on physical models with thermal imagery (Berni et al. 2009a). This reveals the capability 
of CWSI for quantifying the spatial variability too. However, if the targeted orchard con-
tains different species or the same fruit species with different training systems, the thermal 
response is affected and a single set of reference values may lead to errors. In a study inves-
tigating this case (Park et  al. 2017), an adaptive CWSI yielded an agreement with stem 
water potential ( �s ) and stomatal conductance ( gs ) with determination coefficients  (R2) of 
0.72 and 0.82, respectively, employing temperature thresholds. This was in contrast to the 
conventional CWSI, which yielded  R2 values of 0.27 and 0.34, respectively. The orchard 
had been divided into four sub-areas according to the fruit species and training systems and 
the adaptive thresholds of the lower and upper reference were estimated for the adaptive 
CWSI calculation. The CWSI algorithm applied is shown in Eq. (5). Here, the canopy tem-
perature derived from aerial imagery was applied instead of the difference between canopy 
and air temperature (Jones, 2013).

where Tc is the aerial canopy temperature measured, Ta is the air temperature, LL repre-
sents the temperature of a leaf at full transpiration and UL is non-transpiring temperature.

It is widely accepted that �s is a reliable parameter which is closely related to plant 
response to water stress.�s not only reveals the water status in the plant–soil–atmosphere 
continuum but integrates the effects from soil moisture and evapotranspiration. However, 
obtaining �s values with a field measurement method is a labor-intensive and inefficient 
process (Zhao et  al. 2017); alternative indices derived from aerial imagery are therefore 
needed. Thus, in addition to CWSI, research on comparing vegetation indices derived from 
the UAVs with ground-collected data, such as �s and gs , is currently of interest (Gonzalez-
Dugo et al. 2013; Stagakis et al. 2012; Zarco-Tejada et al. 2012).

To explore suitable indicators for the assessment of water stress, a variety of reflectance 
indices derived from UAVs have been calculated, analyzed, and compared with water-
stress-related measurement methods conducted on the ground, e.g., gs (Table 3). Indices 
integrating data from different spectral ranges such as the NDVI have shown potential for 
inferring water status in several types of orchards (Caruso et  al. 2019). Indices such as 
chlorophyll and fluorescence indices (leaf-level), green ratio (GR), enhanced normalized 
difference vegetation index (ENDVI), normalized difference green near infrared index 
(NDGNI), and saturation (S) have also proved to be sensitive to water status (Bulanon 
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et al. 2016; Zarco-Tejada et al. 2012). Intensity (I) did not provide reliable results in the 
case of apple orchards. Additionally, two formulations of photochemical reflectance index 
(PRI),  PRI570 and  PRI515, were correlated with water stress and showed promise for fruit 
quality assessment in an orange orchard (Stagakis et al. 2012). NDVI calculated at canopy 
level in almond trees decreased within areas with high water stress when the blue band was 
employed (Eq. 6), which indicates that the canopy NDVI could be a water stress indicator 
for some fruit crops (Zhao et al. 2017).

On the other hand, as a canopy structure parameter, the leaf area index (LAI) is sensitive to 
water stress. Studies of LAI indirect measurement showed that the NDVI calculated from 
UAV images also correlated with the LAI measured on the ground  (R2 value ranged from 
0.78 to 0.88) (Berni et al. 2009b; Caruso et al. 2019).

However, not all the pixels within the canopy area yield the water status: these are non-
leaves or shaded areas. Besides the multispectral indices mentioned in Table 3, monthly 
canopy volume increment correlated well with daily water stress integral (WSI), with an 
 R2 of 0.99 (Caruso et al. 2019). WSI reduces the impact of the fluctuations in water status. 
The slope of  (Tc—Ta) over time was found to be another novel indicator (Gonzalez-Dugo 
et al. 2013). Generally, research focused more on the indices related to canopy structural 
changes than on diurnal physiology changes (Romero-Trigueros et al. 2017). In the case 
of orchards with several fruit species, using one single index could dramatically simplify 
management. Because different species vary in their canopy architectures and nutrient 
status, diverse water status indicators are needed (Ballester et al. 2018). Suitable indices 
should not be determined by numerous specific conditions, such as fruit species, irrigation 
methods, and geographic conditions (Bulanon et al. 2016; Caruso et al. 2019). For particu-
lar applications, varying experimental comparisons are required, and a general case study 
per application may provide insight into the bottlenecks. For example, in order to explore 
the universal vegetable index for water status assessment, the performance of methods pro-
posed for different fruit species should be tested.

Generally, two thermal sensor systems are available for temperature imaging: cooled 
systems, which are loaded on satellite and aerial platforms, and uncooled systems, which 
are used on UAV payloads with less power consumption. However, the temperature drift 
that occurs in uncooled systems affects the rate of error, causing offset non-uniformity of 
the acquired data (Gomez-Candon et al. 2016). Some drift correction strategies for thermal 
sensors need additional flying time, which means higher requirements for on-board bat-
teries, though the accuracy is greater than 1 ℃. Maintaining the same correction accuracy 
and using the methods based on redundant information, the cubic drift model enables more 
efficient drift correction (Mesas-Carrascosa et al. 2018). Even during data collection prior 
to this operation, the final estimation of water status can be adversely affected by factors 
such as: the effects of solar motion when aiming at calculating canopy NDVI; the data 
collection interval, which may reduce the influence of fluctuation; and the flight altitude, 
which affects subjective interference. Fruit orchard properties (e.g., cultivars and train-
ing systems) should be taken into account in order to achieve a comprehensive analysis 
of the images. Conducting edge extraction prior to modeling enhanced the mapping accu-
racy of stem water potential (Park et al. 2017). Yet approaches on increasing the efficiency 
of image extraction and radiometric correction should also be considered for use in the 
statistical analysis or image processing (Gomez-Candon et al. 2016). In addition, it is not 

(6)NDVIB =
ρNIR − ρB

ρNIR + ρB
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uncommon for pixels to be mixed together in image areas, e.g., areas contain canopy and 
non-interested pixels, the soil pixels, and methodologies need to be further developed to 
reduce the associated error. Though in most cases the fine-resolution imagery necessary for 
pure crown extraction or intra-canopy variability investigation is available, more quantifi-
cation studies are needed for precise water management in orchards.

Detection of diseased fruit trees

Different types of diseases may occur throughout the fruit-growing season—from flower-
ing to harvest, and even in the dormant tree period during winter. In terms of their cause, 
diseases in orchards fall into two categories: biotic and abiotic. Biotic diseases are caused 
by living pathogens, which could be bacteria, fungi, viruses, or insects. A well-known 
apple bacterial disease is fire blight, which leads to significant losses in fruit production 
by infecting the fruits and rootstock of fruit trees (Jarolmasjed et  al. 2019). Apple scab 
and pear black necrotic leaf spot belong to fungal and viral diseases, respectively (Belfanti 
et al. 2004; Shim et al. 2004). Abiotic diseases are caused by the interaction of fruit trees 
and other factors in the planting environment, such as water pollution, overwatering, and 
extremes of light and nutrients. Treating abiotic diseases as abiotic disorders may predis-
pose fruit trees to infectious diseases, and abiotic and biotic diseases can also occur in the 
same trees. Diseases significantly affect the fruit quality and final yield by infecting fruits, 
trees, and other areas, such as twigs and leaves. Many diseases show mild effects, resulting 
in limited to no harm at some point. But some diseases even cause tree mortality. Huan-
glongbing (HLB), or citrus greening, and phytophthora root rot disease can be lethal to 
fruit trees worldwide and attract growers’ attention because of their significant economic 
impacts (Salgadoe et al. 2018; Sankaran et al. 2011). The most effective management to 
deal with fruit trees diseases is to detect the infected trees as early as possible. In addi-
tion, specific treatment can be taken, i.e., removing diseased trees, applying dedicated pest 
protection measures, and planting resistant species. Some diseases are hard to diagnose 
from visual symptoms at the early infected stage, with the result that no effective action 
can be taken to deal with the disease when the serious symptoms are recognized at a late 
stage. Traditional methods for diagnosing fruit-tree diseases are visual observations in the 
field combined with laboratory analysis and have limitations relating to reliable evaluation 
and time–cost efficiency (Khan et al. 2018; Pan et al. 2014; Srivastava & Sadistap, 2017). 
UAV-based fruit-crop disease monitoring has been employed for a few types of disease, 
but it is still critical to investigate its applicability for monitoring severe diseases like Pan-
ama disease in banana (O’Neill et al. 2016). Additionally, disease detection based on aerial 
images from UAVs can provide orchard scouting over a larger area and is low-cost in terms 
of both time and equipment.

Disease identification is the first step for practical control. The complexity of disease 
diagnosis and diversity of fruit species hampers the transfer of research findings to other 
methods of fruit-tree disease detection. Different symptoms of diseases have been classi-
fied with different sensors, deriving valuable indicators from aerial images. The capabil-
ity of UAVs equipped with hyperspectral and multispectral sensors to classify citrus trees 
infected by two types of biotic diseases, bacterial canker and HLB, respectively, has been 
described (Abdulridha et al. 2019; Garcia-Ruiz et al. 2013). Machine learning has shown 
promise for exploring the complex sensitivity of an indicator for a specific disease diag-
nosis issue. Citrus bacterial canker (symptoms are yellow halos on fruit and twigs) is a 
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disease with serious implications (Duan et  al. 2018). (Abdulridha et  al. 2019) explored 
detection techniques for this disease under laboratory conditions and in an orchard, uti-
lizing hyperspectral imaging and machine learning. In total, 31 vegetation indices were 
evaluated for the disease detection; also studied was the classification of disease develop-
ment stages—asymptomatic (infected but with no symptoms), early (tiny lesions), and late 
symptoms (brown lesions). Two machine learning methods were compared for the indoor 
detection: neural network radial basis function (RBF), which is regarded as a powerful 
classifier for spectral reflectance data, and K-nearest neighbor (KNN). Overall, RBF per-
formed better than KNN in different stages of the disease. The water index (WI) (Eq. 7) 
and anthocyanin reflectance index (ARI) (Eq. 8) and TCARI (Table 3) were the optimal 
indices for laboratory conditions and UAV-based diagnosis of infected trees, respectively. 
Identification accuracy of healthy and non-healthy trees from UAV-based detection was 
good, and the classification accuracy achieved for the late stage detection under laboratory 
conditions was 92%. But the authors also noted that immature fruit could not be used for 
early detection.

Detection on the deadly disease HLB, for which the only treatment option is to cut down 
and remove the infected trees, has long been a research topic of great interest. A compari-
son between a UAV-based and an aircraft-based system for identifying HLB was conducted 
using multispectral imagery (Garcia-Ruiz et  al. 2013). Compared to earlier case studies, 
the opportunities for using platforms with different spatial resolutions for disease classi-
fication were demonstrated. Resolutions of 0.5 m and 5.45 cm per pixel were employed 
for the aircraft and UAV, respectively. More indices were analyzed: 6 spectral bands and 
7 vegetation indices. For the classification methods, support vector machine (SVM) with 
kernel performed better than linear SVM, linear discriminant analysis (LDA), and quad-
ratic discriminant analysis (QDA). Results showed that the identification accuracy from 
the UAV was 67–85%, while aircraft-based yielded 61–74%. The authors suggested that 
future studies should focus on algorithm development, image acquisition, and the tempo-
ral effect of aerial identification of HLB. Similarly, a HLB detection accuracy of 81.75% 
was achieved when 16 vegetation indices were extracted for the classification based on 
SVM method (DadrasJavan et al. 2019). The study also found that the registration errors 
between bands of multispectral sensors could lead to a lower classification accuracy when 
the errors were larger than one pixel, especially for the application of UAV technology. 
In general, radiometric calibration complicates the process of HLB detection. However, 
the study showed insignificant effects of radiometric calibration on the discrimination of 
HLB-infected and healthy trees when the data were collected consistently with similar illu-
mination and atmospheric condition (Pourazar et al. 2019). Disease scouting contributes to 
the control of disease. With the help of UAV-based platforms, the scouting efficiency was 
improved. However, UAV-based scouting is influenced by flying time, due to the limitation 
resulting from the payload.

(7)WI =
R900

R970

(8)ARI =

(

1

R550

)

−

(

1

R700

)
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In addition to disease identification, the main concerns investigated by researchers are 
early disease detection and severity evaluation, especially in the application of fruit breed-
ing programs. A type of fungal disease, verticillium wilt (VW) in olive, greatly impacts the 
final yield and even leads to tree mortality. By analyzing thermal, multispectral, and hyper-
spectral datasets derived from UAV, (Calderon et  al. 2013) aimed at the early detection 
of VW and discrimination among different VW severity levels. They analyzed different 
indices, e.g., physiological indices, and other indicators. Based on the finding that VW can 
cause water stress changes in olive trees, the investigation demonstrated that the reduction 
in gs was associated with an increase in  PRI570 and a decrease in fluorescence. Based on 
this, not only the early detection of VW was achieved, but also the discrimination of sever-
ity levels. Olive orchards with different agronomic characteristics were compared, which 
enhances the flexibility of the detection method proposed. The carotenoid reflectance index 
2 (CRI2) and NDVI were also validated for detecting the early and advanced VW-infected 
trees (Iatrou et al. 2016). Apart from this, changes in the NDVI rate was found sensitive for 
monitoring the effects of plant growth enhancer formulation (PGEF) on the recovery of the 
trees, which can further enhance the management of VM in olive orchard.

Apple scab significantly affects the yield and quality of apple fruit and has become a 
major problem in apple orchard. It is caused by the Ascomycete fungus, Venturia Inaequa-
lis. Research has shown the potential of making a risk evaluation model on the monitoring 
of apple scab in orchard using UAV technology (Stella et al. 2017). Apple scab can be indi-
rectly monitored by acquiring leaf wetness data. On the basis of this, data extracted from 
UAV provided precise inputs to the evaluation model for the risk prediction based on the 
output of the model, the leaf wetness data. Detection methods based on thermal or spectral 
sensors make up for the shortcomings of classical detection methods that rely on visual 
observation by orchard experts. RGB sensors might also be used to detect diseases with 
apparent visual traits. Fire blight of apple is caused by the pathogen Erwinia amylovora 
infecting apple flowers, fruits, and the rootstock. Typical visual symptoms are the black-
ened shoots. This disease particularly threatens the production of commercial orchards 
(Salm & Geider, 2004). A recent study employed multispectral, hyperspectral, and RGB 
sensors to evaluate fire blight severity and found that detection from features derived from 
RGB and multispectral images was inferior to detection derived from hyperspectral images 
(Jarolmasjed et al. 2019). The index of normalized difference spectral indices, computed 
from hyperspectral datasets, showed moderate to high classification accuracy, ranging from 
71 to 93%. Spectral bands between 710–2340 nm proved relevant for the classification.

Other applications

Pesticides can be used to support protection from pests, especially in the case of economic 
products, such as fruit trees. The usual management measure to deal with infestation 
with citrus leafminer (CLM) which threatens the production of citrus is chemical control 
(Qureshi et al. 2017). However, the uncontrolled and inappropriate use of pesticides affects 
biological systems, polluting preserved areas and damaging ecosystems. In addition, man-
ual spraying exposes workers to a high-risk setting full of harmful chemicals. In the pre-
cision agriculture literature focusing on pesticide spraying systems in orchards, solutions 
based on UAVs are proposed to be safer, more precise, and more affordable than manual 
spraying or manned agricultural aircraft (Martinez-Guanter et al. 2019; Zhang et al. 2017). 
Nonetheless, aerial spraying can be inefficient in practice without a reasonable spraying 
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strategy and detailed and precise information support, e.g., the identification of tree crown 
areas that are regarded as target spraying areas. Compared with other UAV-based manage-
ment activities, there are more restricted operational parameters for sprayer UAVs, such as 
spray nozzle control, flying height, and speed. A deviation from the flight route or a change 
in wind direction will significantly impact on the droplet deposition distribution uniform-
ity. Tree shape should also be taken into account even under the same spraying system 
(Zhang et al. 2016). For example, in the case of inverted triangle-shaped citrus trees, the 
lower layer was found to be the part with the most uniform distribution (CV = 32.44%), and 
they received higher droplet density than triangle-shaped trees (Tang et  al. 2018). Other 
plant shapes, i.e., hedgerow and open-center-shaped, show different performance and opti-
mal operation parameters. While the optimal control parameters of droplet density for the 
inverted triangle-shaped citrus tree was determined using Taguchi method, the spraying 
height was 1.4 m and the flight speed was 1.0 m/s (Hou et al. 2019). In terms of control 
effect against pests like CLM, a case study showed that a UAV-based system could achieve 
65–75% of the control effect of manual spraying. But high efficiency and low cost of UAV-
based spraying was observed at the same time (Zhang et al. 2017).

A limited number of earlier studies focus on intelligent and real-time application of 
sprayer UAVs which, with the help of machine learning and powerful computation support, 
have high potential for precision work. Using the mutual subspace method, an intelligent 
spraying UAV system could achieve an average recognition accuracy of 70% for spray or 
non-spray areas (Gao et  al. 2019). This result falls within the requirements of precision 
agriculture, efficiently utilizing chemical inputs while reducing the environmental dam-
age. However, the bottlenecks include limited battery capacity, the large volumes of liquid 
that must be carried, and the difficulty of reconciling high spraying speed and computa-
tion speed with promising recognition accuracy. For further study, deep learning methods 
should be tested against the machine learning-based recognition (Saldana Ochoa & Guo, 
2019), in order to deal with the noise in the datasets and the negative impacts from the 
changing lighting conditions. Additionally, a pesticide spraying system based on multi-
sensor data fusion algorithms may help bring about a high-efficiency revolution in the use 
of pesticides by accurately identifying and locating target trees and controlling pesticides.

Apart from research on sprayer UAV, several studies have used longitudinal UAV data 
for agro-environmental monitoring in orchards, such as the analysis of landslide evolu-
tion affecting the olive orchard (Fernandez et al. 2016) and the delineation of management 
zones for pest control (Mendez-Vazquez et al. 2019). Vegetation ground cover (VGC), the 
vegetation cover spontaneously grows on the surface of the ground, is an important compo-
nent in the ecological system. A vegetation index derived from UAV, inverse ratio vegeta-
tion index (IRVI), was suggested to be the most sensitive index for the quantification of the 
density of VGC, and IRVI and ratio vegetation index (RVI) (Table 4) could most accurately 
distinguish the VGC densities > 80 in a cover interval range of 10% (p < 0.001) and VGC 
densities < 30% in a cover interval range of 15% (p < 0.01), respectively (Lima-Cueto et al. 
2019). Monitoring tasks in orchards are different from other agricultural activities. Cost-
effective monitoring approaches are always the classic problem not only for the growers 
in the orchard but also the researchers. On the basis of this, a study focus on the develop-
ment of customized sensor capable to be mounted on the UAV show several advantages 
(Barrows & Bulanon, 2017). The customized low-cost multispectral sensor, for which the 
original internal infrared filter was replaced with a special dual-band filter, was proved to 
be comparable with the commercial grade sensor in the estimation of NDVI in orchards.

Fruit tree detection or classification is fundamental to the majority of UAV-based site-
specific management in orchards. In general, machine learning and OBIA methods are 
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currently the most popular methods for the detection and classification (Neupane et  al. 
2019). For instance, in a case study of agricultural resource management (Saldana Ochoa 
& Guo, 2019), a deep convolutional neural network (CNN) was employed. The processing 
chain proposed needs long-time and large datasets for training, which reveals the impor-
tant need to strengthen the input requirements of CNN, although a significant classification 
accuracy was observed, with an F1 score of 0.89. Semantic segmentation may be a vital 
dimension in extracting crop classification from complex information. SVM performed 
well in the classification of both RGB and hyperspectral datasets. To segment citrus trees 
from the background in RGB images, an SVM model established by the calculation of 14 
color features and 5 statistical texture features could result in a accuracy of 85.27 + _9.43% 
(Chen, Hou, et al., 2019). For the later case, misclassification of sunlit and shaded areas 
could be overcome with the help of SVM, achieving a classification accuracy of 94.5% 
of mango trees (Ishida et al. 2018). This classification capability can be further improved 
if the effects of wind on the data collection can be reduced, as wind deforms the flexible 
fruit-tree structure, thereby affecting image overlapping. Within the classification chain of 
a OBIA-based olive mapping study, dividing the original UAV image capturing a large 
plantation into subsets was suggested to speed up and facilitate the calibration (Karydas 
et  al. 2017). Apart from these two popular methods, vegetation indices like NDRE, and 
the DSM could also be applied in fruit-crop discrimination (Handique et al. 2017). Most 
studies focus on the classification between fruit trees and other plantation while a combi-
nation of univariate and multivariate statistical approaches was applied for olive cultivar 
recognition. Results suggested that the classification accuracy between scions was 90.9%, 
however, 68.2% of the discrimination cases between rootstocks failed (Avola et al. 2019).

In addition to the standard applications discussed above, UAV-based management in 
the domains of regular crop monitoring and food quality tracking also have considerable 
impact on the development of UAVs in orchard management. In some cases, studies on 
these aspects have focused on fruit trees at a smaller scale than the standard orchard, or on 
fragmented land holdings. (Handique et al. 2017) reported on the collection of crop statis-
tics in hilly terrain or terrace cultivation systems, such as in the northeast of India, where 
UAVs were used for crop discrimination for farming systems in hilly landscapes. The 
possibility of discriminating banana, orange, plum and bamboo with vegetation indices 
such as NDVI, NDRE and GNDVI was validated. Among countries located in the Pacific 
region, bananas, coconut and sweet potato are major food crops (Halavatau & Halavatau, 
2001). However, high-risk disasters such as cyclones and storm surge occur here frequently 
and threaten food security. In this context, UAVs enable robust food assessments and the 
localizing of security and classification of diverse crops, especially of targeted fruits like 
mango, papaya, and coconut (Saldana Ochoa & Guo, 2019).

Table 4  Vegetation indices 
applied in the quantification of 
VGC

a Wavelength band values RED (660  nm centre, 40  nm bandwidth), 
NIR(790 nm centre, 40 nm band width)

Index Formulaa

Inverse ratio vegetation index (IRVI) IRVI = RED∕NIR

Ratio vegetation index (RVI) RVI = NIR∕RED
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Discussion

In this survey, the research on UAV-assisted orchard management literature has been dis-
cussed in terms of five categories: fruit-crop resource efficiency, geometric traits, produc-
tivity, disease, and other applications. The first three categories account for 67% of the 
publications reviewed (Fig. 5), while the other two categories merit highlighting. Gaps and 
potential of evolving technologies in the domain of UAV-OM have been explored, rang-
ing from application scenarios and UAV platform development to aerial data processing 
methodologies. In summary, UAV-based monitoring has very broad application prospects 
in orchard management because of its advantages related to flexibility, high efficiency, and 
low monitoring costs. In the following subsections, research gaps and opportunities in the 
near future are discussed.

Geometric traits of fruit trees

Different geometric traits of fruit trees have been measured using UAV imagery technol-
ogy. To determine the state of art of the outputs, general geometric measurement perfor-
mance was analyzed per year of article publication for four validation parameters: coef-
ficient of determination  (R2), classification accuracy, root mean square error (RMSE), and 
F1-score (Fig.  8). The general performance of the selected geometric traits assessment 
from UAV imagery improved significantly in the last two years surveyed: 2018 and 2019. 
The reasons could be the advancements in sensor precision and data processing methodol-
ogies. Nevertheless, algorithm development needs further improvement in case studies on, 
e.g., the estimation of crown diameter, which shows a low  R2. Within the analysis of esti-
mation accuracy (Fig. 8), the latest accuracy achieved for fruit-tree detection and counting 
is 99.9%, thanks to the employment of machine learning and deep learning (Ampatzidis 
et al. 2019). The overall trend in development is positive, but the compatibility of models 
needs further testing against different fruit species.

Studies over the past five years demonstrated the positive role of UAVs in fruit tree 
geometric measurement. To further enhance the adoption of UAVs for this application, the 
following developments can be identified:

• 3D representation: A realistic 3D representation of fruit trees is fundamental to the 
monitoring of geometric traits (Fig.  8). To deal with the problem of improving 3D 
reconstruction accuracy, investigation on the effect of flying speed, data capture view, 
GSD value and image overlapping parameter should be conducted, as demonstrated in 
earlier studies (Torres-Sanchez, Lopez-Granados, et al., 2018; Xue et al. 2019).

• Model generalization: As found in the literature on geometric measurements the val-
idation of the algorithm was based on one fruit species only (Johansen et  al. 2018; 
Mu et al. 2018), more universal models should be developed and tested. Fruit varie-
ties, orchard areas, irregular or other planting patterns and various climatic conditions 
(Fig. 4) should be extended to validate the robustness of the algorithms proposed.

• Data processing efficiency: Time-consuming issue is intimately tied to ortho-mosaic 
image processing and DSM generation as shown in previous studies (Sun et al. 2019). 
Thus there is an urgent need to further develop SfM method and faster algorithm for 
DSM generation and ortho-mosaic processing.
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• Automation: Current measurements are semi-automated (Marques et  al. 2019), and 
manual interference even leads to subjective errors. Further experimentation into auto-
matic fruit tree identification and geo-referencing is strongly recommended. More sam-
pled trees and the employment of artificial intelligence, e.g., machine learning, would 
provide more definitive evidence in automated and simultaneous identification.

• LiDAR sensor: Most of the research used passive sensors, e.g., RGB and multispectral 
sensors (Fig. 6). Only one article used a laser scanner (Hadas et al. 2019), which signif-
icantly yielded an apple-trees identification accuracy of 99% (shown as the second case 
scatter point in 2019 in Fig. 8). The potential of LiDAR application in estimating fruit-
tree geometry deserves special attention due to its advantages in point cloud analysis. In 
addition, comparison between RGB and LiDAR-based aerial geometric measurement 
would also be a fruitful topic.

Resource efficiency

Stem water potential ( �s ), stomatal conductance ( gs ), and crop water stress index (CWSI) 
have been regarded as useful indicators for water status monitoring and irrigation strategy 
support in orchards (Ballester et al. 2018; Shackel et al. 1997). CWSI and alternative indi-
ces derived from UAV observations show promising results for water status assessment in 
orchards (Bulanon et al. 2016; Zhao et al. 2017). To date, a variety of indices have been 
compared against the commonly accepted indicators, �s and gs , and the reliable indicator 
CWSI (Table 3).

The correlation between remote sensing indices derived from UAV imagery and the 
three indicators mentioned above was analyzed (Fig. 9) based on the validation results for 
the coefficient of determination  (R2). In total, five fruit species, almond, citrus, apricot, 

Fig. 8  Comparison of performance for geometric trait estimation in the 22 articles on the application 
of fruit-tree geometric traits. CPA crown projection area, PPC plant projective cover. Note: If an article 
described the results with two validation dimensions, both were included in this figure
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peach and olive, were included. To clearly visualize the distribution of performance of 
each index, samples used for validation were divided into two categories, fruit species 
mixture and individual species. Because some research validated the performance of the 
method developed on an orchard with several fruit species instead of on a mono-species 
orchard (Park et al. 2017), mixed species was added to the analysis. On the other hand, the 
11 studies on which Fig. 9 is based indicated that in UAV-based orchard management the 
tendency is to develop monitoring models or algorithms applicable for diverse fruit spe-
cies. If an article compared indices against different species under different irrigation treat-
ments, the best performance of each index toward a specific fruit species was selected for 
inclusion in Fig. 9. In addition, as some indices belong to the same spectral family and are 
of less interest, or rarely selected by researchers, the one in the same family with relatively 
high correlation was included in Fig. 9. Several data in the figure were obtained from the 
same experiment.When it comes to the correlation with �s it was found that CWSI and the 
difference between Tc and Ta were generally relatively highly correlated with �s (Fig. 9). 

Fig. 9  Performance of diverse remote sensing indices for water status assessment in 11 articles: a Correla-
tion with stem water potential ( �

s
 ) b Correlation with stomatal conductance ( g

s
 ) The vegetation indices 

presented are described in Table 3
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Some indices show high correlation with �s for specific fruit species, e.g.,  PRI(570–515) 
and TCARI/OSAVI, while some indices level out at a low correlation, e.g., MTVI1 and 
Xanthophyll indices. An optimal estimation index for specific fruit species can be deter-
mined, e.g., the difference between Tc and Ta is the best for peach tree water status assess-
ment. Similar to the analysis of �s , the correlation between the indices derived from UAVs 
against gs showed that the most investigated indices were canopy NDVI, TCARI/OSAVI, 
and PRI, and that these indices performed differently for different species. TCARI/OSAVI 
and canopy NDVI showed relatively high correlation with gs for several fruit species, so 
have potential as a universal index to be employed in diverse orchards. The plant-based 
indicator CWSI is regarded as a reliable tool for irrigation strategy support (Gonzalez-
Dugo et al. 2014). The correlation between remote sensing indices and CWSI was explored 
among five fruit species in relation to water status assessment. Canopy NDVI showed high 
correlation with CWSI in three fruit species, almond, apricot, and peach, while PRI gen-
erally showed a relatively low correlation in most fruit species. In orange species, all the 
indices showed low correlation with CWSI. It is very important to compare variable indi-
ces with CWSI in order to determine alternatives for water stress assessment. More fruit 
species and indices should be tested in the near future, to enable optimal indicators to be 
determined for specific fruits.

The majority of research focus on the resource efficiency in orchard, especially on the 
estimation of water status, has yield promising results. Further research should focus on the 
following scope:

• Model generalization: Most research were conducted under specific conditions, which 
makes the methods proposed low-range applications (Caruso et  al. 2019; Park et  al. 
2017). To establish an accurate and reproducible model, methods (Fig.  9) should be 
established and validated in various conditions, e.g., different weather, crop phenologi-
cal stages, crop fields and management conditions.

• Data calibration: Assessment of fruit tree water status mainly relies on temperature 
information derived from thermal images (Fig. 6). Yet, the reduction of effects from 
solar motion, atmospheric thermal path radiation and transmittance on the indices 
calculation is a problem (Berni et  al. 2009b; Zhao et  al. 2017). Ensuring consistent 
relationship analysis performance and high assessment accuracy, the optimization of 
calibration strategy and the management of thermal drift effect to thermal sensors are 
necessary.

• Intra-canopy variability of water stress: Current research focused on the estimation of 
water stress at tree scale (Ballester et al. 2018). Investigation of the variability at intra-
canopy level is needed, especially for the analysis of fruit tree genotypic response to the 
water constraints.

• Periodic mapping: Previous studies developed their methods by doing UAV flight one 
time only (Jorge et al. 2019). By contrast, periodic mapping of water status in orchards 
can not only test and enhance the robustness of methods proposed but also facilitate the 
adoption of UAVs in irrigation management for growers.
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Productivity and disease monitoring

Although most of the research focused on resource efficiency monitoring and geometric 
traits estimation, other aspects of orchard management were also covered, such as nutri-
tional status and yield monitoring. For these aspects, crop physiological changes need 
to be understood and reliably modeled. Interdisciplinary investigation is a challenge for 
researchers in the domain of UAV-OM. UAVs are still generally underused and more 
comprehensive and in-depth exploration are needed. The research on the nutritional sta-
tus monitoring of fruit trees shows an increasing trend, which is important not only for 
improving the output of fruit industry, but also for guiding the use of chemical ferti-
lizers and pesticides. Yield estimation and prediction is then key for decision-making, 
especially for harvest strategy. As the costs of RGB sensors fall, the use of sensors to 
determine the optimal harvesting period for orchard production will increase. Yield esti-
mation entails estimating flowering, which benefits the thinning activities. The com-
plex structural traits of fruit crops may force UAVs to fly between tree rows in order to 
achieve an optimal inspection angle and a fine spatial resolution. Further investigation 
and experimentation are strongly recommended in the following aspects:

• Yield estimation at the tree or fruit level: A study applied ANN and yield an apple 
segmentation accuracy of 99.12% showed the great potential of UAV in fruit yield 
estimation, though the data was manually collected by emulating UAV capture con-
ditions (Sabzi et  al. 2018). Unfortunately, no research focused on yield estimation 
at fruit level was conducted (Fig.  7). Thus real-time direct estimation of fruits is 
encouraged.

• Method generalization: Current achievements in indirect yield estimation and health 
status monitoring are positive, as introduced in fruit-tree productivity traits section. 
However, there is abundant room for further progress in enhancing the robustness of 
the methods proposed (Fig. 7). Periodic mapping, as demonstrated by the study (Perry 
et  al. 2018), is encouraged. Yet performance for different crops and growing stages 
remain unanswered at present.

• Machine learning: Methods and models proposed in some research (Fig. 7) need to be 
adjusted when apply them into a new case (Horton et  al. 2017). Advanced machine 
learning algorithm can solve this problem, but also issues from the complexity of light-
ing intensity and conditions need to be taken into account.

In regular management, an outbreak of fruit-tree disease cannot be ignored. So far, the 
research on early warning monitoring of fruit-tree diseases has not shown an increasing 
trend, though a few studies have suggested the feasibility of UAVs in detecting biotic dis-
eases in orchards. One reason may be that most fruit-tree diseases are not lethal, while 
HLB disease has attracted more attention because of its globally lethal effect on citrus 
crops (Arredondo Valdés et  al. 2016). The complexity of pathological analysis for dis-
ease detection is also an important factor restricting related research. In other words, the 
development of UAV-OM for disease diagnosis is limited by laboratory detection or patho-
logical research in particular cases. Future efforts could focus on the changes caused by 
disease, ranging from apparent external traits, such as color and texture, to fruit-tree photo-
synthesis. In addition, the substantially reduced spatial resolution of UAV is another issue 
can not be addressed and affect the disease monitoring. For example, wheat yellow rust can 
be detected in inoculation stage by analyzing the spectral reflectance differences, but it is 
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difficult to monitor with the UAV though advanced sensor and low flight altitude, 16 m, 
were designed (Su et al. 2018). Further studies should focus as follows:

• Timely and localized diagnose models: Differing from other UAV applications in 
orchards (Fig.  7), disease monitoring is regional (Stella et  al. 2017). Thus statistical 
study is encouraged to build timely, robust and localized disease detection models.

• Machine learning: Current studies extracted too many features for the disease moni-
toring (DadrasJavan et  al. 2019), which makes the reduction of the features used the 
tendency. Though SVM, random forest classifier and ANN have been deployed (Fig. 7) 
and yielded promising results, advanced machine learning algorithms needed to be 
explored for improving disease detection efficiency and even monitoring the diseases 
undetectable currently.

Other applications

Inspection in orchards leads to the implementation of management operations such as 
pesticide or nutrient spraying using UAV sprayers (Tang et al. 2018). Currently, research 
is mainly exploring the selection of the spraying parameters, e.g., operation height, and 
the whole process is remotely controlled. Intelligent spraying requires the spraying sys-
tem to automatically identify objects to be sprayed and to have automatic variable-spraying 
ability. On the basis of precise information sensed by sensor-equipped UAVs (Gao et al. 
2019), operational systems could achieve precision spraying in orchards. The combina-
tion of remote sensing and automation deserves to be highlighted. Apart from this, fruit-
tree classification and identification has been the subject of current research. Promising 
results become the basis for further investigation of fruit-tree at individual level. The UAVs 
developed for orchard management could be applied to related agricultural domains, e.g., 
the food supply chain (Saldana Ochoa & Guo, 2019). And the monitoring technology in 
orchards could also be used to improve the performance of agricultural monitoring on a 
large scale. Further research topics identified are the following:

• Spraying automation: Optimization of UAV control parameters for ideal pesticide 
spraying has been the subject of many research (Hou et  al. 2019; Tang et  al. 2018). 
However there is a still unanswered question about the effects of deviated flight routes 
caused by manual control. Thus validation with automatic spraying process is recom-
mended, especially for facilitating real-time precision spraying.

• Statistical study: To develop robust fruit-tree classification methods, statistical studies 
will be needed for the isolation of error sources, thus determine the limitations of the 
proposed solutions (Ishida et al. 2018). On the other hand, optimal parameters for the 
implement of proposed methods can be highlighted, such as the optimal flying height 
during data acquisition.

• Deep learning: Machine learning and OBIA has been widely deployed in tree detec-
tion and classification (Karydas et al. 2017; Saldana Ochoa & Guo, 2019). Despite the 
promising results, further progress in improving the performance of proposed methods 
in various environmental and agronomic conditions with advanced deep learning algo-
rithm need to be undertaken. And the first issue is the availability of larger training 
datasets with multiple fruit tree species.

• Automation: Automatic classification and identification of trees is still challenging. 
The complexity of orchard environment, e.g., the changing solar illumination, seasonal 
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vegetation in high density modern orchard, makes semi-automated methods (Chen, 
Hou, et al., 2019) the optimal solution for current orchard management tasks. Studies 
with more focus on the automated and simultaneous classification are therefore recom-
mended.

• UAV versus ground vehicles: The differences of imagery capture angle and spatial 
resolution between UAV and ground vehicle significantly effects their performance in 
orchard management (Zhang et al. 2019). Combining UAV and ground vehicle, or even 
other platforms (Table 1), could be an advantage, in different applications.

• UAV customization: Current commercial UAVs can not meet all the requirements 
in orchard management. Customization of sensor deployed or UAV system provides 
new insights in the adoptability of UAVs, as demonstrated in one case study (Barrows 
& Bulanon, 2017). For example, a UAV system with the capability of upward image 
acquisition or acquiring datasets at specific fruit-tree organs scale will make unique 
spatial resolution or details of fruit-tree structure available for many research.

UAV platforms

Almost all the research in UAV-OM employed commercial UAVs due to the cost-effective-
ness compared to handcrafted or industrial UAVs. Multi-rotor UAVs is the most widely 
used. While the complicated operation of fixed-wing UAVs make it less popular, such as 
the requirement of minimum flight speed before they stall. UAVs with VTOL system have 
emerged as new powerful platform. Its freedom from site condition restrictions make it 
capable work even on steep orchards (Torres-Sanchez, Lopez-Granados, et al., 2018). RTK 
GNSS is becoming standard resulting in increased geometrical quality in SfM processing 
(Xue et al. 2019) and derived products like ortho-mosaic and 3D point clouds (Marques 
et al. 2019) of fruit trees in orchard. This would allow comparison of changes in geometri-
cal properties of trees within growing season and over years as indicator for productiv-
ity. The fundamental constraint to developing technology applications is the hardware sys-
tem. The current limitations to the adoption of UAV platforms to orchards are the payload 
and endurance (Garcia-Ruiz et al. 2013), especially for UAV-based pesticide sprayers and 
LiDAR UAVs. Increasing the battery capacities increases the payload, yet the payload of 
UAVs significantly affects the endurance performance. With the improvement of capac-
ity of batteries, all types of UAVs flight duration will be extended, and VTOL will be 
more suitable for the mapping task in large surface fruit orchards and plantations. Power-
ful UAVs capable of carrying multiple sensing systems are generally more costly and not 
affordable for applications, especially in developing countries. Data collection opportuni-
ties and timing in orchards are limited and restricted. To ensure resistant flight in various 
weather and environmental conditions, the design of UAVs with weather-proofing capa-
bility is needed. In addition, platform vibration affects the accuracy of aerial indices and 
image quality. This could be resolved by improving UAV design and the post data-pro-
cessing procedure. When deployed optimally in orchard management, UAVs are currently 
operated by persons with the skills of professional pilots. In the near future, the human-
UAV interaction and ease of operation are excepted to be further improved.

The articles reviewed revealed a shortage of customized UAV platforms. Various out-
door agricultural operations are very complex. For investigations on UAV-OM, require-
ments related to aspects such as image capture parameters and sensor automatic adjustment 
differ from each other. To set up datasets of optimal quality, researchers should clearly 
understand the theory underlying the data collection systems. The first basic step is to 
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assess the suitability of the platform employed and whether it can be customized to meet 
the unique demands for the specific problem to be addressed. Although platform custom-
ization has drawn attention in studies on water status assessment and spraying (Ortega-
Farías et al. 2016), it should also be considered in other scenario.

Despite UAVs have been proved effective in assisting growers for orchard management, 
current development of UAVs is still far from meeting the requirements of precision agri-
culture in orchards. Futuristic development of UAVs should cover the following heads:

• LiDAR UAVs: UAVs with RGB, thermal, multispectral, and hyperspectral sensors have 
been explored in orchard management (Fig. 6), yet UAVs with LiDAR are undervalued. 
The weight of LiDAR sensors and their high power consumption pose a challenge for 
LiDAR UAVs, though significant advantages of it in geometric traits measurement has 
been demonstrated (Hadas et al. 2019).

• Onboard processing: By reducing the requirements of network bandwidth, commercial 
UAVs with onboard processing capabilities may benefit its controllability. On the other 
hand, with the advent of the 5G era, it would also enable the efficient communication 
among UAVs and other platforms which are used to execute management operations. In 
this way, so-called swarm intelligence (SI) can be achieved in orchards where detection 
and actuation is divided among different platforms (Zhang et al. 2019).

• Active management platform: Current function of UAVs are mainly imaging and sens-
ing (Fig.  6). However, more active involvement in orchards is required. Besides the 
UAVs with recognition capability for automatic and precise spraying (Gao et al. 2019), 
development in active visual scouting in orchards, e.g., searching for the trees with low 
nutritional status and even pests, will also be of interest.

• Obstacle avoidance: The complexity of horticultural environment limits the applica-
tion of UAVs in orchard. Compared with conventional remote sensing, UAV automatic 
scouting between rows of fruit trees has potential of collecting data with higher resolu-
tion and yielding better performance (Das et al. 2015). To deal with this, UAVs with 
accurate obstacle avoidance system are needed to lessen the threat from trees and even 
birds to the flight safety.

• Night vision: Previously published studies have shown the feasibility of UAVs for mon-
itoring various fruit tree traits that are directly related to the aerial imagery or spectral 
information and achieved promising results. Yet, for the complex traits that are indi-
rectly related, e.g., the aerial indicator of Fusarium wilt of banana, few achievements 
were reported. UAVs with night working model may provide new insights to UAV-OM. 
Additionally, experiments from ground vehicles also indicated the potential of UAVs 
with night vision in improving the yield estimation accuracy (Chen et al. 2017; Wang 
et al. 2018).

Sensor payload

Promising performance for various applications has been shown for five types of sensors that 
can be used on UAVs, namely RGB, thermal, multispectral, and hyperspectral sensors, and 
LiDAR. Based on the analysis of the sensors deployed, further analysis of the development of 
various sensors in different management applications was conducted (Table 5). Besides fur-
ther explorations within orchard management, the blank area indicates potential for a “new” 
sensor more capable in a specific domain, such as utilizing LiDAR in yield estimation. All 
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five sensors need to be corrected or calibrated within the process of aerial data processing in 
order to improve the monitoring accuracy. However, current RGB sensors lack the function of 
camera calibration and radiometric calibration, which can affect the sensor performance, espe-
cially for geometric estimation. Meanwhile the impacts of filters, optical defects, and sensor 
lenses, and even the selection of radiometric correction approaches for calculating the accu-
racy of remote sensing indices should also be kept in mind (Tu et al. 2018). Hyperspectral 
sensors gained the attention of the scholars in UAV-OM. Besides the reason of its size and less 
affordable characteristic, the geometric calibration accuracy also seriously affect the popular-
ity. Though the sensor is capable to provide centimeter level spatial resolution, the geometric 
calibration accuracy is difficult to reach the same level. The application of LiDAR for fruit 
orchard management is relatively unexplored (Díaz-Varela et  al. 2015); upcoming research 
areas may demonstrate the potential of LiDAR in orchard management, especially for geomet-
ric traits measurement. Regarding the pros and cons of each sensor type, the tendency is for 
imagery or information fusion (Delalieux et al. 2014; Kestur et al. 2018). The basic principle 
of this multi-modal sensing approaches is combing different sensos on the same UAV plat-
form. Datasets collected from different sensors contain unique fruit-tree traits, and imagery 
fusion can achieve the goals of getting these traits to complement each other and improving 
the detection accuracy. The development of UAV platforms is the basis of information fusion 
technology.

As the basis of the adoptability of UAVs in orchard management, current limitations and 
perspectives of sensors deployed are as follows:

• Development in size and weight: The selection and cost of UAVs are limited by the size 
and the weight of sensors to be deployed e.g., the LiDAR sensor has more weight, which 
makes the UAV-derived LiDAR data largely unexplored (Hadas et  al. 2019). What is 
now needed is the further miniaturization of sensors, especially for hyperspectral sen-
sors. On the other hand, it is also intimately tied to the application of multi-modal sensing 
approaches.

Table 5  Potential of UAV-based monitoring sensors for diverse orchard management activities

Cell patterns indicates application potential: horizontal patterns: unknown potential; no patterns: suitable; 
and vertical patterns: optimal selection
Arrow direction indicates current use: up arrow: well exploited; Horizontal arrow: reasonably exploited; 
and, down arrow: unexploited
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• Development in imaging capability: The existing sensors limits the quantitative investiga-
tions due to the difficulty of extracting quantitative information from the data collected. 
Advanced sensors capable to obtain quantitative information in complex orchard environ-
ments are needed.

• Integration of sensor and UAV control systems: The vibration of UAVs during data acqui-
sition process affect the performance of sensors payload, e.g., the geometric distortion 
occurs in hyperspectral data (Vanbrabant et al. 2019). The integration of the two control 
systems enable the dynamical control of the imaging sensors and further improve the data 
quality.

Data collection strategy

There are potential research areas in the design of fieldwork strategy. In some areas, continu-
ous cloud cover greatly restricts the use of satellites for most of the year, making the potential 
of alternative sensing platforms like UAVs attractive. However, the aerial surveys should be 
postponed in windy conditions or light rain. Next, the trade-off between flying altitude and 
required image resolution deserves attention. A higher flying altitude produces lower spatial 
resolution. The differences of spatial resolution may affect the validation of the method devel-
oped. As a satellite maintains a constant altitude, effects of this are rarely observed. Many 
investigations produced a suitable solution for a specific problem by employing a strict set 
of operational parameters, e.g., flying height and angle of capture. Next, the effects of these 
parameters on the estimation accuracy should be studied, in order to expand the practi-
cal scope of approaches developed and to determine the optimal setting for the operational 
parameters.

Most research focused on specific fruit species at a certain growing stage under certain 
conditions. In other words, the achievements were attained under specific circumstances. 
The ideal situation is to develop approaches capable of monitoring various species or differ-
ent growing stages of the same fruit species. Comparison between different species or certain 
growing stages provides a better algorithms validation strategy. Subsequently, various training 
systems or planting patterns could also be tested.

Development of methodology

Compared with conventional direct measurements, UAV-OM requires empirical statistics, 
reverse modeling, and image- processing technologies for effective, automatic, and precise 
management in orchards (Ballester et  al. 2018; Saldana Ochoa & Guo, 2019). In the gen-
eral workflow for UAV data processing, key steps are geometric correction and radiometric 
calibration. To deal with effects like solar motion, further calibration study is needed. Many 
monitoring methods have been proposed as being usable for similar case studies (Chen et al. 
2017). However, the outdoor environment is far more complex than the indoor environment. 
Thus, problems in outdoor practice demand more sophisticated solutions. It is not surpris-
ing that existing algorithms are being applied to deal with certain problems, but researchers 
tend to overlook the need to refine the algorithms. This also explains why the developed algo-
rithms prove unsuitable when tested under irregular conditions and why the classification per-
formance is easily affected by background objects with characteristics similar to those of the 
target objects. Moreover, techniques like machine learning and deep learning have not been 
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properly employed in UAV-OM. Focusing on the theory underlying the tools applied can over-
come the limitations resulting from established techniques, especially in the case of applica-
tion in a real agricultural environment. Finally, using large UAV datasets, efforts should be 
made to improve the efficiency of image processing (Saldana Ochoa & Guo, 2019). And sta-
tistical studies aimed at verifying the robustness of methods developed deserve more attention.

Conclusion

This review has provided an overview of different applications employing UAVs with mul-
tiple sensors for fruit orchard management. The majority of the research was conducted in 
the past 4 years. UAVs generally yield a fine monitoring efficiency and accuracy, which 
indicates their potential as novel remote sensing platforms. Yet, UAVs currently are mainly 
used by experts and there is still a need to make this technology directly benefit the crop 
producers providing them with precise information on the operational application of UAV 
technology in day-to-day operations.

UAV-OM investigation is yet in its infancy. The applications for resource efficiency and 
geometric traits are relatively mature, while yield estimation, especially the estimation at 
fruit level, disease monitoring and UAV-based sprayer will becoming increasingly impor-
tant area. Results have demonstrated high correlations between various UAV-derived indi-
ces and target physiological traits measured manually. Yet new indices correlated to the 
complex traits which are difficult to directly assess remain undiscovered at present. Model 
generalization, data processing efficiency and automation are still challenging. Further 
studies, which take these three issues into account, will need to be undertaken. As a next 
step, the combination of artificial intelligence and remote sensing sciences will be able 
to close the gap between current research and precision orchard management. UAVs have 
promising application prospects in precision orchard management because of their fast and 
efficient monitoring. Real-time monitoring is the key trait of UAV-based remote sensing 
that makes up for the long periodic intervals of satellite monitoring. Timely fruit-crop-
growing information like this will enable healthy crop growth to be assured and economic 
loss to be avoided. Further, growers may obtain real-time growth information from web or 
mobile applications using cloud computing and wireless transmission technology (Salamí 
et al. 2019).

In recent years, multi-rotor UAV is the most widely used UAV in orchard management 
and the majority is the commercial UAV. In the trend of continuous miniaturization of sen-
sors, the limitation to UAV-OM is mainly the flying time due to current state-of-the-art in 
battery capacity. Different types of UAV sensors have their own place for specific monitor-
ing activities but share the pros and cons. Thus, multi-sensor data fusion could be promis-
ing although was not yet investigated. In the case of LiDAR, despite its notable advantages 
for measuring geometric parameters, it is not commonly exploited due to its significant 
operational costs and the limited UAV flight time (Friedli et al. 2016; Garcia-Ruiz et al. 
2013). Additionally, pre-flight flying parameter settings, such as UAV speed and field of 
view, affect the monitoring performance. Thus, statistical study to determine the optimal 
data acquisition parameters and understand the effects for specific research is encouraged.

Global orchard production is especially significant at regional scale. This diversity is 
attributed to the local climate and soil, geographic and topographic conditions, and high 
number of fruit species. The lack of publicly available datasets requires researchers to 
develop their own datasets although it could be more efficient to reuse images already 
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acquired. At some point, growers will be encouraged to share the data gathered with their 
own UAVs and in situ observations to boost thee advances in UAV-OM.
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