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Abstract Astigmatid mites can be used as prey for

mass rearing of phytoseiid predators, but also as a

supplemental food source to support predator popula-

tions in crops. Here we evaluated the potential of six

species of astigmatid mites (living or frozen) as

alternative food for the predatory mite Amblyseius

swirskii Athias-Henriot in greenhouse crops. All prey

mites tested were suitable for predator oviposition. In

general, oviposition was greater when prey mites were

reared on dog food with yeast than when they were

reared on wheat bran with yeast. Amongst prey items

provided as frozen diet, larvae of Thyreophagus

entomophagus (Laboulbene), Acarus siro L. and

Lepidoglyphus destructor (Schrank) that had been

reared on dog food with yeast, resulted in the highest

oviposition rates of A. swirskii. T. entomophagus

larvae as frozen diet resulted in the shortest preimag-

inal developmental time of A. swirskii. On chrysan-

themum plants, we found that the greatest increase in

predator density occurred when living mites of T.

entomophagous were used as a food source. This

increase was greater than when predators were fed

cattail pollen, a commonly used supplemental food.

Effects on predators of providing living A. siro and L.

destructor, or frozen larvae of T. entomophagous as

food, were comparable with provision of pollen. Use

of supplemental food in crops can be a risk if it is also

consumed by omnivorous pests such as western flower

thrips, Frankliniella occidentalis Pergande. However,

we showed that both frozen and living mites of T.

entomophagouswere unsuitable for thrips oviposition.

Hence, we believe that provision of prey mite species

increases A. swirskii density, supporting biological

control of thrips and other pests in greenhouse crops.
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Thyreophagus entomophagus � Pollen � Frankliniella
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Introduction

Predatory mites in the family Phytoseiidae are one of

the most important natural enemies used in augmen-

tative biological pest control (Gerson and Weintraub
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2007; McMurtry et al. 2013; van Lenteren et al. 2018).

A major breakthrough in biological control was the

discovery that astigmatid mites could be used as prey/

food for rearing of phytoseiid predatory mites,

enabling mass production of predators at low cost

(Schliesske 1981; Ramakers and van Lieburg 1982).

Many species of predatory mites are now mass

produced on astigmatid mites, although the production

systems reported in the literature remain limited

(Bolckmans and van Houten 2006; Simoni et al.

2006; Midthassel et al. 2013). Generalist phytoseiid

predatory mites, classified as Type III, feed on

multiple prey species and also pollen (McMurtry

et al. 2013), and are the predatory mites best suited to

mass rearing on astigmatids (Barbosa and de Moraes

2015). Amongst them, Amblyseius swirskii (Athias-

Henriot) is widely used because of its efficacy against

a wide range of important pests, including thrips,

whiteflies and plant-feeding mites (Nomikou et al.

2002; Messelink et al. 2006, 2008, 2010; Arthurs et al.

2009; van Maanen et al. 2010). Currently, A. swirskii

is used in more than 50 countries for biological pest

control in vegetable and ornamental crops, making it

one of the most successful biological control agents

worldwide (Buitenhuis et al. 2015; Calvo et al. 2015;

Janssen and Sabelis 2015). However, releases of

predatory mites do not always result in good estab-

lishment, mainly due to a lack of suitable food sources

in the crops. This is particularly the case in ornamental

crops where pest tolerance is low.

One solution to overcoming food scarcity is the

provision of alternative food sources (Messelink et al.

2014; Janssen and Sabelis 2015). Pollen has been

widely used as an alternative food source and can

successfully support predatory mite populations and

increase pest control (Nomikou et al. 2010). However,

pollen is also an excellent food source for pests such as

western flower thrips, Frankliniella occidentalis Per-

gande leading to temporarily high thrips densities

under some circumstances (van Rijn et al. 2002;

Leman andMesselink 2015; Vangansbeke et al. 2016).

Besides pollen, there are many other factitious (non-

natural) hosts that offer opportunities as alternative

food sources for predatory mite populations in crops.

These include Artemia sp. cysts, Ephestia kuehniella

Zeller eggs and different species of astigmatid mites

(Hoogerbrugge et al. 2008; Messelink et al. 2009).

Astigmatid mites as an alternative food for preda-

tory mites has particular potential because of the low

cost of mass production and the recent finding that, for

at least one species, they do not support reproduction

of thrips (Pirayeshfar et al. 2020). The use of

astigmatid mites in greenhouse crops is increasingly

being explored in practice (Messelink et al. 2014).

Many species of astigmatid mites have been evaluated

for use in the mass production of predatory mites, such

as Acarus farris (Oudemans) (Ramakers and van

Lieburg 1982), Carpoglyphus lactis (L.) (Bolckmans

and van Houten 2006; Nguyen et al. 2013), Suidasia

medanenesis (Oudemans) (Midthassel et al. 2013),

Lepidoglyphus destructor (Schrank) (Simoni et al.

2006) and Tyrophagus putrescentiae (Schrank) (Riahi

et al. 2017). However, little is known about the

performance of different astigmatid mite species in

crops and their potential contribution as alternative

food for predatory mite populations.

Prey mites that are suitable for mass rearing are not

necessarily suitable for application in the crop,

because of the totally different environmental condi-

tions in crops compared with mass rearing systems.

Considerations for evaluation include whether astig-

matid mites cause any potential feeding damage to

young and soft plant tissues (Hiroshi 1991), and

whether high numbers of astigmatid mites pose a risk

to human health because of their association with

allergies (Johansson et al. 1994; Hubert et al. 2018).

One method to minimize the risk of allergies is to

freeze-kill the mites before application. This was

recently evaluated for the astigmatid mite T. putres-

centiae by Pirayeshfar et al. (2020) who found that

frozen stages could support development and ovipo-

sition of A. swirskii in the laboratory, but not on plants

in a greenhouse. Based on this study, we hypothesise

that it might be worthwhile testing the same method

with other astigmatid mite species. Interestingly, the

study of Pirayeshfar et al. (2020) showed that both the

prey life stage and the food on which it had been reared

affected predatory mite performance. Highest ovipo-

sition rates in predatory mites were achieved when

they were fed on diets based on frozen prey larvae.

In the current study, the potential of living and

frozen stages (eggs and larvae) of six species of

astigmatid mites to support oviposition and population

increase of A. swirskii were compared with two

sources of pollen. In addition, we evaluated the

suitability of astigmatid mite stages as a food source

for F. occidentalis. The purpose of this study was to

select the most suitable astigmatid mite species based
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on nutritional value and how they were presented

(living or frozen) as an alternative food source for

supporting populations of the predatory mite A.

swirskii in greenhouse crops.

Materials and methods

Mite and thrips cultures

The stock colony of A. swirskii was initially obtained

from Koppert Biological Systems (Berkel en Roden-

rijs, The Netherlands) and subsequently reared on

pollen provided to leaves of sweet pepper, Capsicum

annuum L. cv. Spider (Enza Zaden, Enkhuizen, The

Netherlands). The leaves were placed upside down on

water-saturated cotton wool in plastic containers

(18 9 12 9 5 cm). Wet tissue papers were attached

to the edge of the leaves to provide moisture and

prevent predatory mites from escaping (van Rijn and

Tanigoshi 1999). The predators were fed every two

days with cattail pollen (Typha angustifolia L.) as a

standard diet for A. swirskii rearing (Nguyen et al.

2013). All laboratory oviposition experiments were

done with 4–5 day-old A. swirskii females collected

from the laboratory culture, but for the greenhouse

trial, the predatory mites came directly from the

commercial product obtained from Koppert (which

had been reared on C. lactis with bran).

Six species of astigmatid mites from four families

were evaluated: (1) Acaridae: Thyreophagus ento-

mophagus (Laboulbene), Aleuroglyphus ovatus (Tro-

peau) and Acarus siro L.; (2) Suidasiidae: Suidasia

nesbitti Hughes and (3) Glycyphagidae: L. destructor

and (4) Carpoglyphidae: C. lactis. The astigmatid

mites came from various sources and had been

maintained for several years by BU Greenhouse

Horticulture of Wageningen University and Research

in the Netherlands. For each species, two colonies

were established and each maintained on a different

food source in order to produce prey mites with

different nutritional values.

All astigmatid mite species were reared on either

wheat bran (Havens, Maashees, The Netherlands) or

crushed dry dog food (Royal Canin, Veghel, The

Netherlands). Wheat bran represents a low fat, low

protein and high carbohydrate diet while crushed dog

food represents a high fat, high protein and low

carbohydrate diet (Erban et al. 2015). Both diets were

supplemented with the same quantity of instant dry

bakers’ yeast (Mauripan, Hampton, United Kingdom)

(50/50 byweight), which is known to be a suitable food

source for astigmatid mites (Huang et al. 2013). While

yeast also contains proteins, the difference in protein

level between the two diets remained constant after

addition of the yeast. Although yeast was present in

two diets, based on their main constituent, both of diets

are referred to as ‘dog food’ and ‘bran’ from here.

Each astigmatid mite species was reared for several

generations in a plastic box (10 cm in diameter, 6 cm in

high) which was embedded in a larger glass container

(14 cm diameter, 8 cm high) covered with a lid and

filled with a 1 cm layer of a saturated KNO3 solution to

prevent mite escape and provide a high and constant

humidity level of 93% (Winston and Bates 1960).

Colonies of A. swirskii were maintained in a different

climate chamber to the astigmatid prey mites but both

were under long day illumination (L:D 16:8) at 25 �C
and 70% RH.

Western flower thrips, F. occidentalis were main-

tained for many generations on flowering chrysanthe-

mum plants (Dendranthema grandiflora Tzvelev cv.

Tapas Time), in a separate greenhouse compartment,

and provided with artificial light and heating during

winter. The plants were kept in cages to avoid

contamination by other herbivores and replaced

frequently.

Factitious prey diets

For each astigmatid mite species, six different facti-

tious diets were prepared (36 treatments in total) as

follows: (1) by life stage (mixed living, frozen eggs or

frozen larvae) and (2) by prey mite diet (dog food or

bran) (Table 1). The eggs of all astigmatid mite species

were individually separated from other life stages by

sieving colonies through a 100 lm mesh screen and

stored at - 20 �C for at least 4 h before use in the

experiments. A proportion of the sieved eggs (instead

of being stored at- 20 �C) were incubated for 48–72 h
under the conditions described previously, until more

than 80% developed into larvae, which was confirmed

under a dissecting microscope. Newly hatched larvae

were also stored at- 20 �C for at least 24 h before use

in experiments (Pirayeshfar et al. 2020). Before

experimental use, frozen diets were thawed at room

temperature (20 ± 2 �C) for ca. 30 min. Cattail pollen

(Nutrimite TM) was supplied by Biobest N.V.,
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(Westerlo, Belgium) and used as a reference for all

laboratory and greenhouse trials. Olive (Olea euro-

paea L.) pollen was used as a second reference,

because it is easily collected in large quantities and is

known to support reproduction of A. swirskii (Kumar

et al. 2014; Nemati et al. 2019). The olive pollen in our

study was provided by the Olive Research Station of

Tarom, Zanjan, Iran. For long-term storage, both

pollens were stored at - 20 �C.

Oviposition of A. swirskii

Oviposition rates of the predatory mite, A. swirskii

feeding on the 36 factitious diets and two pollen

sources (cattail or olive) were measured over three

consecutive days. Peak oviposition rates of phytoseiid

mites (which occur during the first days after the pre-

oviposition period) are known to be strongly corre-

lated with population growth rates (Janssen and

Sabelis 1992) and so we limited the time period for

measurement of oviposition to only three days. Data

from the first day were omitted to limit effects of the

pre-experimental diet (Sabelis 1990). Gravid female

A. swirskii (4–5 days since adult emergence) were

placed individually on 2.5 cm sweet pepper (C.

annuum) leaf discs in 5 cm diameter Petri dishes.

Each leaf disc was floating on water with the abaxial

side uppermost and fixed with a modified paper clip

stand that had been glued to the base of the Petri dish

before filling with water (Pirayeshfar et al. 2020).

Dishes were closed with a fine mesh lid to allow

ventilation. Each disc had a leaf axil as a domatium for

A. swirskii oviposition (Faraji et al. 2002). There were

20 replicate experimental units for each food treat-

ment. According to food treatment, the diet was

introduced into each unit in the following quantities:

0.01 g of pollen, 0.01 g frozen diet, or 40–50 mixed

living life stages (predominantly eggs and larvae).

Predatory mite eggs were counted and removed daily

to prevent cannibalism. Based on this oviposition

experiment, we selected the astigmatid mite species

with greatest potential for subsequent trials. The

experiment was done in a climate chamber under long

day illumination (L:D 16:8) at 25 �C and 70% RH.

Survival and juvenile development

Based on the observed oviposition rates of A. swirskii

fed on different food diets (pollens and frozen diets),

we selected five food treatments to evaluate immature

developmental time and survival of A. swirskii. To

obtain synchronized A. swirskii eggs, ca. 100 mated

females were transferred from the cultures to a new

rearing arena (larger than the oviposition experimental

unit) with cattail pollen. After 24 h, their eggs were

transferred individually to the experimental units, as

described for the oviposition experiment. Diets were

added to each unit (0.01 g) after larval emergence. Old

diet was removed every 48 h and replaced with fresh

diet. The duration of each life stage was determined

based on the presence of exuvia as evidence of

moulting. Survival and development of individuals

were recorded daily until mites reached adulthood.

There were 20 replicates for each diet. The experiment

was done in a climate chamber under long day

illumination (L:D 16:8) at 25 �C and 70% RH.

Greenhouse trial

Based on the two laboratory experiments, eight food

treatments, including the two reference pollens (cattail

and olive) and six factitious prey diets (frozen and

living stages of three species of the prey mites) were

selected to assess their influence on establishment and

population growth of A. swirskii on chrysanthemum

plants in a greenhouse trial. The selected prey mites

were A. siro, L. destructor and T. entomophagus,

which were all reared on dog food. The trial was done

in two adjacent greenhouse compartments at

Wageningen University & Research, BU Greenhouse

Horticulture in Bleiswijk, The Netherlands. Each

compartment had an area of 24 m2 and three tables,

each of 7 m2. The trial was set up using a randomized

complete block design with five replicates using each

table as a block with eight treatments (two tables in

Table 1 Different diets based on six species of astigmatid prey

mites, Thyreophagus entomophagus, Aleuroglyphus ovatus,
Acarus siro, Suidasia nesbitti, Lepidoglyphus destructor and

Carpoglyphus lactis

Mite composition Food substrate

Mixed life stages Wheat bran ? dry yeast

Mixed life stages Dog food ? dry yeast

Frozen eggs Wheat bran ? dry yeast

Frozen larvae Wheat bran ? dry yeast

Frozen eggs Dog food ? dry yeast

Frozen larvae Dog food ? dry yeast
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one compartment and three in the other). Young

chrysanthemum plants (Dendranthema 9 grandiflo-

rum cv. Baltica) were supplied by Deliflor (Maasdijk,

The Netherlands) and were planted in 12 cm diameter

pots filled with peat. Each experimental unit (serving

as a replicate) contained nine pots, each with one plant

bearing 6–8 leaves at the start of the trial. All plants

were placed on water-saturated irrigation mats to

prevent predatory mite migration and minimise con-

tamination amongst treatments. Plants were irrigated

with a standard nutrient solution using an ebb-and-

flow irrigation system for 10 min per day. Predatory

mites were introduced by adding three sweet pepper

leaf discs (4 cm diameter) each containing 15 gravid

female A. swirskii on top of the nine plants in each

treatment (45 in total, thus approximately five per

plant). The predatory mites were collected using a fine

brush directly from the commercial product and

placed on the pepper leaves for transfer. Food

treatments (0.06 g plant-1) were added shortly after

the predator releases by dusting with a fine brush to

achieve an even distribution. For treatments contain-

ing living stages of the prey mites, approximately 500

different mobile stages were released per plant

(counted based on weight). Population density of A.

swirskii was monitored weekly for five consecutive

weeks, before the flowering stage of chrysanthemum

began, starting one week after releasing the predatory

mites. All stages of A. swirskii on 18 randomly picked

leaves per replicate (two leaves per plant) were

counted. Temperature and RH during the experiment

were recorded every 5 min with a climate recorder

(Hoogendoorn GrowthManagement, Vlaardingen, the

Netherlands). The climatic conditions in the two

adjacent compartments were similar: the average

temperature was 19.3 �C (range 12.2–29.6 �C) and

19.3 �C (range 12.8–28.4 �C) and the average RH 72%

(range 46–88%) and 72% (range 47–87%).

Oviposition of F. occidentalis on astigmatid mite

diets

Based on the results from the laboratory experiments

and greenhouse trial, we selected the most promising

astigmatid food treatments and evaluated their suit-

ability as food sources for western flower thrips. The

mite diets were compared with the two reference

pollen diets. Food suitability was assessed by measur-

ing the oviposition rates of F. occidentalis females

when fed on these diets for four consecutive days,

using a double parafilm method modified from that of

Teulon and Penman (1991). Each experimental unit

was made of a perspex cylinder (30 mm height and 25

mm diameter) that was closed with a mesh (size 80

lm) at one end to allow ventilation and by two layers

of stretched parafilm at the other end. Four food diets

were evaluated: (1) cattail pollen (0.03 g unit-1), (2)

olive pollen (0.03 g unit-1), (3) mixed living stages of

T. entomophagus (about 100 mites, predominantly

eggs and larvae per unit) and (4) frozen larvae of T.

entomophagus (0.03 g unit-1). After adding the diets,

three F. occidentalis females of unknown age were

introduced into each unit and then immediately

covered with a first layer of parafilm to retain the

thrips inside the cylinder. After placing small droplets

of water on the surface of the first layer of parafilm, the

second layer was also covered. The number of eggs

laid in the double parafilm membrane was counted

daily. Each food treatment had 17 replicates (units).

Statistical analysis

To analyse the effects of diet on oviposition rates of A.

swirskii (mean of days 2 and 3) and oviposition rates of

thrips (mean of days 2, 3 and 4), we fitted generalised

linear models (GLM) with a Poisson error distribution

and log link function. Dispersion parameters were

estimated to correct for overdispersion. Diet effects on

juvenile developmental time of A. swirskii were also

analysed with GLM, but with a normal distribution

and identity link function for protonymphs and

deutonymphs and a gamma distribution with a recip-

rocal link function for the total juvenile developmental

time. Pairwise t-test were performed assuming that

parameter estimates are approximately normally dis-

tributed (McCullagh and Nelder, 1983). We used

Fisher’s exact test to analyse differences in juvenile

mortality among treatments. Population dynamics of

predatory mites over time (total numbers of all stages)

in the greenhouse trial were analysed using a gener-

alized linear mixed model (GLMM) with a Poisson

error distribution and log link function and an

estimated dispersion parameter. We evaluated the

statistical significance using an approximate F-test

(Kenward and Roger 1997). Predatory mite density

was the response variate, and food treatment was the

fixed factor. Both block and time were included as

random factors (time nested in block). Differences
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amongst treatments were compared using pairwise

t tests. All statistical analyses were done using the

statistical package GenStat (Release 19.1).

Results

Oviposition of A. swirskii

There was a significant effect of diet treatment on

oviposition rates of A. swirskii (F37,759 = 9.68,

p\ 0.001). In general, oviposition rates of A. swirskii

increased when prey mites had been fed with dog food

compared with bran, but this increase was only

significant for A. siro, A. ovatus and L. destructor

(Fig. 1). Oviposition rates of A. swirskii on prey mites

were highest in the A. siro treatment (when fed with

dog food), reaching similar rates as that achieved by A.

swirskii in the pollen treatment. Oviposition rates of A.

swirskii in all other diets of living prey mite species

(when fed dog food) were similar to each other

(Fig. 1). In general, highest A. swirskii oviposition

rates were achieved in frozen prey mite treatments

(when fed with dog food) (Fig. 1). Highest A. swirskii

oviposition rates were achieved on the prey mite A.

siro, followed by L. destructor, T. entomophagus, S.

nesbitti and C. lactis. A lower oviposition rate was

observed in the A. ovatus prey mite treatment (Fig. 1).

The mean two-day oviposition rate of A. swirskii on

olive pollen (not shown in Fig. 1) was not significantly

different from cattail pollen (3.45 ± 0.34 versus

4.25 ± 0.32, respectively).

Survival and juvenile development

The predatory mite A. swirskii survived and success-

fully developed on all diets evaluated. Significant

differences amongst treatments were observed for the

duration of the protonymph stage (F4,99 = 19.02,

p\ 0.001), deutonymph stage (F4,99 = 5.60,

p\ 0.001) and the total juvenile development time

from larva to adult (F4,99 = 18.98, p\ 0.001)

(Table 2). Developmental time was shortest in the

olive pollen treatment, but mortality was also higher

on olive pollen than the other diets (p = 0.045;

Fisher’s exact test, Table 2). When fed the frozen

prey diets, developmental time of A. swirskii, from

larva to adult, was significantly longer for L. destruc-

tor than for T. entomophagous and A. siro.

Consumption of all frozen diets resulted in a longer

developmental time for A. swirskii than consumption

of the pollen treatments (Table 2).

Greenhouse trial

There was a significant effect of treatment on the

population densities of predatory mites on chrysan-

themum plants (F7, 168 = 46.17, p\ 0.001, Fig. 2).

Supplementation with mixed living stages of T.

entomophagus (Te) resulted in the highest overall

densities of A. swirskii (Fig. 2). Frozen diets based on

A. siro (frozen As) and L. destructor (frozen Ld) did

not support the A. swirskii population, but the diet

based on larvae of T. entomophagous (frozen Te) was

as effective in supporting A. swirskii as the diet based

on living mites of A. siro (As) and slightly less

effective than the diet based on cattail, pollen (Fig. 2).

Moreover, when supplied with olive pollen, predator

density was significantly lower than when supplied

with cattail pollen (Fig. 2).

Oviposition of F. occidentalis on astigmatid mite

diets

The oviposition rates of western flower thrips, F.

occidentalis, were significantly affected by food

treatment (F4,84 = 98.06, p\ 0.001, Fig. 3). Oviposi-

tion rates were higher in the cattail and olive pollen

treatments than in the treatments providing living and

frozen stages of T. entomophagus, which were not

significantly different from the treatment without food

(Fig. 3).

Discussion

This study shows that providing prey mites in crops

has substantial potential for increasing predatory mite

densities. All six tested prey mite species were

suitable food sources for reproduction of A. swirskii

in small arenas. Three selected species, T. ento-

mophagous, A. siro and L. destructor, were also

successful in increasing densities of predatory mites in

the greenhouse. The most successful prey mite in the

greenhouse was T. entomophagous. When feeding on

T. entomophagous diets, predatory mites reached even

higher densities than when fed on cattail pollen, which

is a supplemental food source that is commonly used
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in greenhouse crops (Pijnakker et al. 2016). Lepido-

glyphus destructor was the next best supplementary

diet, increasing predatory mite densities to similar

levels as the treatment with cattail pollen. Predatory

mites performed less well on a diet of A. siro in the

greenhouse trial compared with the other two prey

mite species. Based on the laboratory oviposition

experiment, we would have expected a different

outcome. In this experiment we found the highest A.

swirskii oviposition rates in the A. siro treatments.

Maybe the longer developmental time of juvenile

predatory mites on L. destructor and A. siro compared

with T. entomophagous (tested on frozen stages) could

explain this difference between laboratory oviposition

and greenhouse results. However, other aspects of the

greenhouse trial might have contributed, such as the
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Fig. 1 Daily oviposition

rates of the predatory mite

Amblyseius swirskii on
different factitious foods

based on six species of

astigmatid mites

[Thyreophagus
entomophagus (a), Acarus
siro (b), Lepidoglyphus
destructor (c),
Aleuroglyphus ovatus (d),
Suidasia nesbitti (e) and
Carpoglyphus lactis (f)], in
comparison with cattail

pollen (Typha angustifolia).
All prey mite species were

reared on dog food (high

protein) or bran (high

carbohydrate) as food

substrates. Data presented

are mean numbers of eggs

(± SE) per female per day

based on oviposition on day

2 and 3, since the predators

were allowed to feed on the

food treatments. Different

letters above bars represent

significant differences

amongst treatments

(pairwise t tests after a
Poisson regression with

overdispersion: p\ 0.05)
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behaviour and survival of the living prey mites on

plants. For example, L. destructor is known to run

much faster than the other prey mite species evaluated,

which might have affected the encounter rates with

predatory mites on plants (based on personal obser-

vations). Based on the oviposition rates observed in

the laboratory, we would also have expected a stronger

population growth of A. swirskii on plants provided

with cattail pollen than on plants with prey mites. This

difference between the laboratory and greenhouse trial

might be explained by the different background of the

predatory mites we used. The predatory mites used in

the laboratory experiment came from cultures reared

on pollen, but the predatory mites used in the

greenhouse trial came from a commercial product

reared on bran and prey mites. A recent study by

Nemati and Riahi (2020) showed that the performance

of A. swirskii increased after multiple generations on

pollen. Thus, the predatory mites used in the labora-

tory experiment might have been better adapted to

pollen feeding than the predatory mites used in the

greenhouse trial. Another possible reason might be

that pollen quality decreased faster in the greenhouse

than in the laboratory.

Table 2 Survival and mean developmental time (days ± SE) of immature stages of the predatory mite Amblyseius swirskii fed on

different food treatments

Food treatments Larva Protonymph Deutonymph Total Survival (%)

Cattail pollen 1.0 ± 0.0a 1.9 ± 0.1c 1.4 ± 0.1b 4.3 ± 0.2c 100.0 ± 0.0a

Olive pollen 1.0 ± 0.0a 1.1 ± 0.1d 1.6 ± 0.2b 3.8 ± 0.2d 75.0 ± 0.2b

Frozen larvae of Acarus siro 1.0 ± 0.0a 2.6 ± 0.2ab 1.7 ± 0.1b 5.4 ± 0.2b 100.0 ± 0.0a

Frozen larvae of Lepidoglyphus destructor 1.0 ± 0.0a 2.7 ± 0.2a 2.3 ± 0.1a 6.0 ± 0.2a 100.0 ± 0.0a

Frozen larvae of Thyreophagus entomophagus 1.0 ± 0.0a 2.2 ± 0.2bc 1.7 ± 0.2b 5.0 ± 0.2b 100 ± 0.0a

All species of the astigmatid prey mites were reared on dog food. Different letters within the same column show significant

differences amongst treatments (LSD test: p\ 0.05)
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(Olea europaea); mixed living stages of Acarus siro (As),

Lepidoglyphus destructor (Ld) and Thyreophagus entomopha-
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Different letters represent significant differences amongst
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Fig. 3 Mean (± SE) number of eggs per female western flower

thrips, Frankliniella occidentalis per day, when feeding on one
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Although prey mites have been used for decades in

mass rearing systems (Ramakers and van Lieburg

1982), little was known about their potential when

applied on crops as supplemental food for predators.

They have been introduced in crops, but always

incidentally alongside predatory mite release, either in

the carrier material applied directly to the crop or in

slow-release rearing sachets (Calvo et al. 2015).

Moreover, these combined releases of predatory and

prey mites were mainly done with prey mite species

that were optimal for mass rearing, although less

suitable prey mite species have been included in slow-

release sachets to extend the release time (Bolckmans

et al. 2013). Our results indicate that a wider range of

prey mite species are suitable as a supplementary food

source in crops than are suitable for mass rearing

(predominantly the prey mite C. lactis; Calvo et al.

2015). Also the prey mite T. putrescentiae is suit-

able for supporting populations of A. swirskii, as

shown in our previous study (Pirayeshfar et al. 2020),

but can also cause feeding damage in young plants

(Hiroshi 1991). So this limitation makes it less

suitable for releasing on crops. The differences

between the suitability of prey mites for mass rearing

systems compared with crop application may relate to

the strong effects of accumulating defensive oils that

occur at high prey mite densities (Midthassel et al.

2016) in closed mass rearing systems, but are not

apparent in small arenas in the laboratory or on plants

where these volatiles are more diffused.

Reproduction of predatory mites was slightly better

on the mites fed with dog food (protein-rich and fat-

rich diet) than on mites fed with bran (carbohydrate-

rich diet) confirming our previous finding with T.

putrescentiae (Pirayeshfar et al. 2020). This indicates

that a highly nutritious prey mite diet increases the

nutritional value for predatory mites. Since recent

studies proved that generalist predatory mites actively

balance their diet by feeding on different prey sources

(Marques et al. 2015), providing high quality supple-

mental prey will be particularly important when other

pests/prey are scarce but less important when other

pests or prey are more abundant.

Frozen prey mite diets were evaluated as a possible

alternative to the application of living prey mites into

greenhouse crops. Frequent releases of high densities

of living prey mites into crops may cause some risks

for human health, since some studies indicate that

astigmatid mites are able to survive in human body

parts and cause acariasis (Li et al. 2003). This risk

would be absent when applying dead mites into crops.

Our previous study with T. putrescentiae showed that

frozen larvae were a very suitable food source for A.

swirskii in the laboratory, but it did not increase

predator populations when added to plants (Pirayesh-

far et al. 2020). In the present study we found similar

effects for the prey mite species A. siro and L.

destructor. Frozen diets based on larvae of these

species showed good results in the laboratory but not

on plants in the greenhouse. However, the results with

frozen larvae of T. entomophagous were much better

in the greenhouse achieving similar effects to cattail

pollen and performing better than olive pollen. The

laboratory experiment also showed faster juvenile

development of A. swirskii on the frozen T. ento-

mophagous diet compared with the frozen diets of L.

destructor and A. siro. For this reason, it might be

interesting to develop a supplemental food product

based on frozen larvae of T. entomophagous, although

provided living T. entomophagous clearly resulted in

higher predatory mite densities.

A huge benefit of using prey mites as a food source

for predatory mites compared with pollen or other

supplemental food sources is the unsuitability of prey

mites as a food source for thrips. Our laboratory

experiment showed that neither living nor dead

(frozen) T. entomophagous mites increased thrips

reproduction compared with the absence of food

entirely. As a result of the strong numerical response

of predatory mites, pollen is not a risk for thrips, in

most cases. However, when thrips densities are high

and predator densities are low, supplemental pollen

can lead to an increase in thrips numbers (van Rijn

et al. 2002; Leman and Messelink 2015; Vangansbeke

et al. 2016). While olive pollen was less suitable for

thrips reproduction than cattail pollen, it was also less

suitable for predatory mite development in the green-

house trial, reducing its potential as a supplemental

food.

A second benefit of using prey mites as supple-

mentary food sources is the low cost of mass

production. More biocontrol companies are selling

prey mite products to support predatory mite popula-

tions in greenhouse crops, as a part of a ‘standing

army’ strategy (Messelink et al. 2014). Applying prey

mites may also have other unexpected positive effects

for biological control by supporting a number of other

natural enemy species. Many other predators are able
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to prey and reproduce on astigmatid mites including:

soil-dwelling predatory mites (Grosman et al. 2011;

Munoz-Cardenas et al. 2017), anthocorid predatory

bugs (Bonte et al. 2017; Bernardo et al. 2017), spiders

and rove beetles (our personal observations). Overall,

we believe that providing prey mites in crops is a very

interesting approach for increasing predator numbers

and enhancing biological control. Specifically, for A.

swirskii we showed that the prey mite T. ento-

mophagous is the most promising candidate when

applied either as living mites or as frozen larvae.
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