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ABSTRACT
This study aims at estimating errors to be accounted for in atmospheric inversions of methane (CH4)
emissions at the European scale. Four types of errors are estimated in the concentration space over the
model domain and at selected measurement sites. Furthermore, errors in emission inventories are estimated
at country and source sector scales. A technically ready method is used, which is implemented by running a
set of simulations of hourly CH4 mixing ratios for 2015 using two area-limited transport models at three
horizontal resolutions with multiple data sets of emissions and boundary and initial conditions as inputs. The
obtained error estimates provide insights into how these errors could be treated in an inverse modelling
system for inverting CH4 emissions over Europe. The main results show that sources of transport errors may
better be controlled alongside the emissions, which differs from usual inversion practices. The average total
concentration error is estimated at 29 ppb. The assessed error of total CH4 emissions is 22% and emission
errors are heterogeneous at sector (23–49%) and country scales (16–124%), with largest errors occurring in
the waste sector due to uncertainties in activity data and emission factors and in Finland due to uncertainties
in natural wetland emissions.

Keywords: methane, Europe, error estimation, atmospheric inversion

1. Introduction

Methane (CH4) contributed up to 11% to the total green-
house gas (GHG) emissions of the European Union (EU)
in 2017 (EEA, 2019), after carbon dioxide (79%). In
Europe, CH4 is released to the atmosphere by a variety
of anthropogenic (more than 80%) and natural (�20%)
sources (Saunois et al., 2016a, 2016b). Anthropogenic
CH4 mainly originates from the activity of anaerobic bac-
teria in waste water treatment, landfills and agriculture,

mainly through manure management and enteric fermen-
tation of ruminants. Anthropogenic CH4 is also released
during fossil fuel extraction, production and distribution,
non-industrial combustion (e.g. heating), the use of bio-
fuel, as well as through rice cultivation, biomass burning
from agricultural activities and the treatment of agricul-
tural waste. The largest anthropogenic emission sources
in the EU are enteric fermentation, manure management
and anaerobic waste treatment, accounting for �54% of
the total anthropogenic sources in 2017 (EEA, 2019).
Natural sources include methanogenesis in natural�Corresponding author. e-mail: barbara.szenasi@lsce.ipsl.fr
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wetlands mostly, and to a lesser extent CH4 release in
natural gas seeps and by wildfires, through incomplete
combustion of the biomass.

Due to CH4’s relatively short atmospheric lifetime of
8–10 years (IPCC, 2013), it is a good target for short-
term climate change mitigation. In order to design effi-
cient mitigation strategies, it is necessary to have an
advanced understanding on the magnitudes, trends, as
well as spatial, temporal and sector distributions of CH4

emissions at the relevant space and time scales. Emissions
are defined by activity data and emission factors. The
first term refers to anthropogenic socio-economic activ-
ities causing emissions, while the second term quantifies
sources or sinks per unit of activity (IPCC, 2006).
Emissions are primarily estimated and characterised by
the so-called bottom-up approaches; (i) aggregating
socio-economic statistical information in the case of
anthropogenic emission inventories (e.g. Kuenen et al.,
2014), (ii) using process-based numerical models cali-
brated with local-scale measurements and lab experiments
(e.g. Ringeval et al., 2010) or (iii) upscaling local models
and measurements (e.g. Peltola et al., 2019). However,
the large variety of anthropogenic sources associated with
high heterogeneity, both in space and time, of their activ-
ity data and emission factors leads to imperfect know-
ledge. All emission data sets have significant but ill-
quantified uncertainties, of which the statistical character-
isation is particularly difficult (Jonas et al., 2011).

An alternative to bottom-up approaches is proposed
by top-down atmospheric inversions. The aim of such an
approach is to reduce uncertainties on existing emission
data sets. They are built to optimally merge atmospheric
measurements, numerical modelling of atmospheric trans-
port and chemistry and prior knowledge on emissions.
Atmospheric inversions commonly apply Bayesian inver-
sion methods (Tarantola, 2005) using bottom-up emission
data sets as prior knowledge and assimilating atmospheric
mixing ratio data in a chemistry–transport model (CTM)
to update this prior knowledge into an optimised poster-
ior emission estimate. In principle, the Bayesian frame-
work makes it possible to obtain the information about
the emissions contained in the misfits between the model
simulations and the measurements from the other sources
of errors, assuming that the statistics of the different
types of errors are correctly characterised. Misfits
between model simulations and measurements originate
from (i) errors in measurements (instrument precision and
accuracy), (ii) uncertainties in the chosen prior emission
inventory, (iii) projection of emissions to the CTM’s grid,
(iv) representativity of simulated mixing ratios in a model
grid cell compared to measurements, which can generally
be viewed as representative of a point (for in situ meas-
urements) or a line (for remote-sensing data), compared

to the typical spatial and temporal resolution of CTMs,
(v) boundary conditions used in the CTM for the case of
regional CTMs with limited-area domains of simulation,
(vi) uncertainties in the modelling of the transport in the
CTM itself (discretisation and numerical solving of con-
tinuous equations, physical parameterisations and simpli-
fications, uncertainties in the meteorological forcing), as
well as (vii) aggregation errors, which are due to the spa-
tial and temporal resolutions of the inversion, which are
different from (usually coarser than) the spatial and tem-
poral resolutions of the CTM.

To date, atmospheric studies for the inversion of CH4

emissions use configurations which have been specifically
adapted to each inversion system and inverse problem to
be solved (e.g. Bergamaschi et al., 2005, 2018; Thompson
et al., 2015; Henne et al., 2016; Tsuruta et al., 2019;
Wang et al., 2019.) In particular, uncertainties in inverse
systems are based on approximations, past experience
and expert knowledge, which can be biased towards
including some specific error-generating processes and
ignoring others, for example, taking into account errors
due to the vertical mixing in the model and not the errors
due to the representation of sub-grid-scale processes.
Recent studies have proposed automatic methods repre-
senting uncertainties in inversion systems in a more com-
prehensive way (e.g. Ganesan et al., 2014; Berchet et al.,
2015; Lunt et al., 2016; Pison et al., 2018; McNorton
et al., 2020). These studies are based on Monte Carlo
approach, systematic exploration of possible uncertainties
and/or objective analysis of available data to estimate
uncertainties. They primarily optimise the uncertainties in
all sources of model-data misfits along with the posterior
emissions and uncertainties. Still, underlying assumptions
are strong (such as structure of errors and their correl-
ation) and methods are computationally very expensive,
making their application hard to replicate, especially for
high dimensional problems with emissions at high spatial
and temporal resolutions and with large amounts of
observations to assimilate.

The replicability and operationality of the uncertainty
assessment is especially critical in the field of regional
atmospheric inversions of CH4 emissions, with high pres-
sure to deliver reliable results to policy makers in the
framework of the Paris Agreement. As the volume of
observations will further increase (Bousquet et al., 2018;
Hu et al., 2018; Varon et al., 2019), our capability of
manually attributing uncertainties will be more and more
compromised. Indeed, in the EU, the increasing availabil-
ity of continuous in situ observations (mainly in the
ICOS network, https://www.icos-cp.eu/), of ground-based
remote-sensing data (for example, total columns in
Wunch et al., 2019) and of high-resolution satellite
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products, makes it necessary to build generic and efficient
tools to consistently quantify uncertainties.

In this study, our aim is to obtain uncertainty esti-
mates, which can be used in the framework of inversions
of CH4 emissions in Europe by assimilating in situ meas-
urements from surface stations. To obtain these uncer-
tainty estimates, we use a methodology that is
computationally inexpensive, easy to reproduce and to
update. Easy updating makes it possible to compute
improved estimates by including new data products (e.g.
new prior emission inventories, meteorology products at
high resolutions), covering extended measurement peri-
ods, taking into account new measurement sites or large-
size data sets (e.g. satellite data). The uncertainty esti-
mates obtained here should help setting-up inversions by
providing insights on (i) how to account for sources of
errors that are not emission related (e.g. transport with
the CTM parameterizations and discretization) and (ii)
how to specify error statistics (magnitude, temporal and
spatial patterns of errors). The uncertainty estimates are
computed at the CTM’s grid resolution and at hourly
scales, which are the finest targeted resolution for the
foreseen inversions. The spatial and temporal scales tar-
geted by the inversion can also be coarser than the
CTM’s: in Europe, a primary target for CH4 could be
estimates of emissions at country scale per sector per year
or per month.

Following Wang et al. (2017), we base our error ana-
lysis and practical implementation on comparisons
between simulation outputs and in situ measurements of
CH4 mixing ratios, as generated from an ensemble of
model simulations. The ensemble of simulations covers
the year 2015 and is based on available tools: three inven-
tories of European anthropogenic CH4 emissions, three
data sets of natural wetland CH4 emissions, two CTMs
with three different horizontal resolutions and two sets of
lateral boundary conditions (LBCs). The data sets and
the models are described in Section 2. The methodology
to compute error estimates is explained in Section 3,
where we analyse the magnitude of errors and investigate
to what extend they are correlated in time and space. The
results are presented and discussed in Section 4, with
emphasis on the relations between the different errors.
Finally, Section 5 concludes about possible error charac-
terisations and ranges and ways to use these results in
atmospheric inversions of European CH4 emissions.

2. Data and model description

2.1. Measurements

In this study, focussed on the year 2015, we use hourly
atmospheric measurements of CH4 mixing ratios for at

least six months in the year. We originally choose 2015
for the analysis as a large number of measurements are
available for this year, used to compare simulation out-
puts to measurements for choosing the appropriate model
layer (see Section 3.2). The selected 31 measurement sites
in Europe are listed in Table S1 and their locations are
shown in Fig. 1.

In order to identify links between error statistics and
locations and surrounding topography of the measure-
ment sites, we group the measurement sites in three cate-
gories: mountain sites, coastal sites and other sites (in
most cases, tall towers at rural sites in a relatively flat
environment). When a measurement site provides several
sampling heights, we use the highest level to limit the
effects of local emissions. That, combined with poorly
resolved vertical transport near the surface, may lead to
biased inversions (Broquet et al., 2011).

2.2. Emissions

Three annual anthropogenic gridded emission inventories
are used: the TNO-MACC_III (Kuenen et al., 2014), the
EDGAR v4.3.2 (Janssens-Maenhout et al., 2019) and the
ECLIPSE V5a (Stohl et al., 2015). At the start of this
study, the inventories did not include the year 2015 so
that we use the emissions from the most recent year avail-
able in each inventory (Table S2).

For this study, CH4 emissions are grouped into
Selected Nomenclature for Air Pollution (SNAP) level-1
sectors to have a common ground for the three invento-
ries, as they use different classifications. In our European

Fig. 1. Locations of the 31 selected measurement sites (with at
least six months of data available for 2015, see details in Table
S1). Blue triangles indicate mountain sites, green diamonds
coastal sites and orange circles indicate ‘other’ sites that are not
included in the first two categories.
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domain, agriculture (SNAP 10) is the main emitting sec-
tor, followed by the waste sector (SNAP 9). Other rele-
vant emission sources for CH4 are non-industrial
combustion plants (SNAP 2) and the production, extrac-
tion and distribution of fossil fuels (SNAP 5). The latter
two were added into one category that is named ‘fossil
fuel related emissions’ hereafter (Table 1). The total
anthropogenic emissions in EDGAR v4.3.2 are up to
20% larger than in TNO-MACC_III and ECLIPSE V5a
but the relative contributions of the three main sectors
are very similar across the inventories (Table 1). The agri-
culture sector dominates (about 39–46% of the total CH4

emissions). In this sector, emissions in EDGAR v4.3.2
and TNO-MACC_III are large over Brittany in France,
the BENELUX and some Eastern European countries
(e.g. Romania, Belarus), while emissions in ECLIPSE
V5a are larger than those of EDGAR v4.3.2 and TNO-
MACC_III over the Po Valley and generally in Italy. For
the waste sector, ECLIPSE V5a generally attributes larger
emissions in most countries, while EDGAR v4.3.2 and
TNO-MACC_III are large in some individual grid cells.
For the fossil fuel related emissions, the largest differen-
ces between the three inventories exist over the North Sea
and the Ukraine, where the emissions in ECLIPSE V5a
are larger than those of the other two inventories.

Furthermore, we use three data sets of natural CH4

emissions to characterise errors from wetland emissions:
ORCHIDEE-WET (Ringeval et al., 2011), CLASS-
CTEM (Arora et al., 2018) and JULES (Hayman et al.,
2014). Even though these process models provide wetland
CH4 emissions on a monthly time scale, we use yearly
emissions to stay consistent with the choice of

anthropogenic emissions (Table S3). The sum of
ORCHIDEE-WET emissions (7.8 Tg CH4 year�1) over
the domain is more than twice as high as that of CLASS-
CTEM (3.7 Tg CH4 year�1) and JULES (3.2 Tg CH4

year�1). The top panel of Fig. 2 shows the averaged spa-
tial distribution of the total and sectoral emissions for
both anthropogenic and natural sources.

2.3. Chemistry–transport models

We use two regional CTMs: CHIMERE (Menut et al.,
2013; Mailler et al., 2017) driven by the system PYVAR
(Fortems-Cheiney et al., 2019) and LOTOS-EUROS
(Manders et al., 2017) in a European domain covering
[31.5�–74�] in latitude and [�15�–35�] in longitude (Fig.
1). The main characteristics of the set-up of the two mod-
els can be found in Table 2. The meteorological data
used to drive both models are obtained from the
European Centre for Medium-Range Weather Forecast
(ECMWF) operational forecast product. For the
CHIMERE simulations, the boundary and initial concen-
trations of CH4 are taken either from the analysis and
forecasting system developed in the Monitoring
Atmospheric Composition and Climate (MACC) project
(Mar�ecal et al., 2015) or are pre-optimized LBCs. The
pre-optimized LBCs are 4D fields of CH4 concentrations
resulting from the inversion by Bousquet et al. (2006),
using the global scale Laboratoire de M�et�eorologie
Dynamique (LMDz) model (Hourdin et al., 2006). The
most recent available year from this inversion system is
2010, which we use to provide large-scale patterns and
seasonal cycles at the boundaries of our domain for 2015.

Table 1. Total and sectoral emissions [Tg CH4 year�1] of the TNO-MACC_III, EDGAR v4.3.2 and ECLIPSE V5a anthropogenic
inventories in our European domain.

Emissions (Tg CH4 year
-1) % of total anthropogenic emissions

SNAP code Details
TNO-MACC_III

(2011)
EDGAR

v4.3.2 (2011)
ECLIPSE
V5a (2010) TNO-MACC_III EDGAR v4.3.2 ECLIPSE V5a

2&5 Non-industrial
combustion
plants &
Distribution of
fossil fuels and
geothermal
energy

6.1 7.3 5.9 24.0 23.9 22.6

9 Waste treatment
and disposal

7.7 10.8 7.8 30.3 35.3 29.9

10 Agriculture 10.9 12.1 12.0 42.9 39.5 45.8
All Total

anthropogenic
25.4 30.6 26.1 97.2 98.7 98.5

The three main sectors used in this study are described in column ‘Details’.
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The CH4 boundary and initial conditions of the LOTOS-
EUROS model are taken from the CAMS CH4 reanalysis
product (Segers and Houweling, 2017). The global con-
centration fields and meteorological products were inter-
polated to our models’ resolutions both spatially
and temporally.

3. Methodology

3.1. Definition of error sources

We study five errors, described below; one of them is in
the emission space and four are in the concentra-
tion space:

Error in the emission space:

� ep, called hereafter the prior error, which is the error
of the emissions in the inventories and process mod-
els, particularly due to the spatial distribution of the
emissions at the sector and country scales. This error
source includes the errors due to the projection of
the inventories on the model’s grid and due to the
use of different methodology, socio-economic input
data and products used for the spatial distribution of
emissions in various inventories. The inventories use
the E-PRTR database (http://prtr.ec.europa.eu/) for
the location of facilities but when no information is
found on specific sources, internal databases or other
proxies, such as rural or urban population, are used.
For example, for the spatial distribution of landfills,
EDGAR v4.3.2 uses the E-PRTR database, while
TNO-MACC_III makes use of E-PRTR and rural
population density. The temporal distribution of ep
is not studied as emissions do not vary throughout

the year in the inventories used here. In terms of sta-
tistics, larger numbers (>three) of inventory-based
emission maps would be required to compute a more
robust estimate of ep: However, in practice, we do
not have access to an ensemble of perturbed emission
maps from inventory models for gridded CH4 emis-
sion inventories covering Europe.

Errors in the concentration space:

� Eflx called hereafter the transported-emission error.
This error source is due to the impact of the errors
in the emission inventories on the simulated mixing
ratios in the transport model domain. The error ep is
linked to Eflx mainly through the projection of the
inventories on the model’s grid and the atmospheric
transport of these emissions by the model;

� Erepr the representation error, due to the model hav-
ing a resolution that is coarser than the scales at
which emissions vary and of which in situ measure-
ments are representative;

� Et the transport error, due to discretisation with sub-
grid scale parametrisations and other approximations
of the fundamental equations of the atmospheric
transport used in a model. Further causes of Et are
the meteorological forcing (computed off-line for the
CTMs used here, by the numerical weather forecast
system of ECMWF) and the choice of physical
approximations used in a given model. The part of
the transport uncertainties arising from the meteoro-
logical forcing is limited by the use of ECMWF
products used for the two CTM configurations.
However, these two CTMs are driven by two differ-
ent versions of the ECMWF forecast product (see

Table 2. Set-ups and input data for the atmospheric chemistry–transport models CHIMERE and LOTOS-EUROS for the simulations
in 2015.

Model CHIMERE LOTOS-EUROS

Meteorology
Horizontal resolution
Frequency of data availability

ECMWF
10�10 km

3h

ECMWF
7�7 km

3h
Boundary and initial conditions

Vertical levels
Horizontal resolution (lon� lat)
Frequency of data availability

LMDz or MACC
19 & 71

3.75� � 2.5� & 0.653� � 0.653�

48 h & 3h

CH4: CAMS CH4 flux reanalysis, full
chemistry runs: MACC

34
3� � 2�

3 h
Number of levels

Top pressure
29

300 hPa
20

240 hPa
Anthropogenic emissions EDGAR v4.3.2 or TNO-MACC_III

or ECLIPSE V5a
EDGAR v4.3.2 or TNO-MACC_III

or ECLIPSE V5a
Horizontal resolutions (lon� lat) 0:5� � 0:5� or 0:25� � 0:25� or 0:5� � 0:25� 0:5� � 0:25�

Period simulated 2015 2015

The resolutions indicated for Meteorology and Boundary and initial conditions are the original ones, from which the data is
interpolated on the Horizontal resolutions.
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Table 2). We thus provide an estimate of the trans-
port error including uncertainties in the meteoro-
logical forcing, even though this component might be
underestimated.

� ELBC, called hereafter the background error, is due
to the choice of lateral boundary conditions (LBCs,
four sides and top of the domain) and ini-
tial conditions.

As the air masses in the analysed limited-area domain
change in approximately 10–14 days and this study focuses
on errors near the surface during only one year, which is
shorter than the atmospheric lifetime of CH4, errors due to
the representation of atmospheric sink processes in the two
CTMs are not considered here. Furthermore, this list of
errors does not include the aggregation error described in
Wang et al. (2017), which is based on Kaminski et al.
(2001) and Bocquet et al. (2011). This error is linked to the
inversion targeting emissions at a resolution coarser than
the CTM’s resolution. To our knowledge, inversion sys-
tems do not use the CTM’s native spatio-temporal reso-
lution as a target resolution. In many cases, the CTM’s
grid cells are grouped into coarser spatial structures (e.g.
national or regional groups) and in most cases, the tem-
poral profiles of emissions are grouped by time periods
(from a few hours to days or even years), below which a
constant profile is kept throughout the inversion proced-
ure. Inversions with the capability to handle large control
vectors, like variational inversions, often control the emis-
sions at a resolution close to that of the transport model
(e.g. Broquet et al., 2011; Fortems-Cheiney et al., 2012), at
least spatially. In that case, Eflx covers most of the aggrega-
tion error. In contrast, for inversions handling low reso-
lution control vectors (e.g. Pison et al., 2018), like when
using analytical inversion systems, the aggregation error

can dominate over many other type of errors (Wang et al.,
2017). Here, considering our future use of a variational
inverse modelling system in which all spatial and temporal
scales can be targeted (from the grid-cell and hourly scales
to the whole domain and period of interest), we do not fur-
ther investigate the aggregation error. Our aim is to esti-
mate the dominant contributions to the total transport
model and prior errors in order to propose a lower bound
for uncertainties and consistent structures of errors.

To evaluate whether an atmospheric inversion is rele-
vant to tackle the targeted CH4 emissions, we compare
the magnitudes and structures of Erepr, Et and ELBC to
Eflx: The relation of Eflx to the other errors in the concen-
tration space is valuable as Eflx contains the expected sig-
nal from emissions in the simulated mixing ratios. Several
cases are possible:

� Eflx has distinct spatio-temporal structures and/or
dominates all other types of error: emissions are so
ill-quantified, that is, ep is large and is not smoothed
out when projected by the model to the concentra-
tion space (through mainly the projection of the
inventory on the model’s grid and the simulation of
the atmospheric transport), that they introduce large
errors on the simulated mixing ratios. Therefore, any
data brings valuable knowledge on emissions in an
inversion. This can be the case of particular sectors
with little or no reliable information on emissions;

� errors have similar structures and some errors are of
the same magnitude as Eflx : the inversion may lead
to inconclusive ambiguous results;

� errors have similar structures and some errors are
large compared to Eflx : the inversion is likely to
bring only limited information and only on very
large scale aggregated CH4 budgets; in that case, it

Fig. 2. Average (top, in kg m–2 s–1) and standard deviations (SDs, bottom, in kg m�2 s�1) of yearly CH4 emissions from the
anthropogenic and natural data sets : total, three main anthropogenic emission sectors and natural wetland emissions (see Section 2.2
for definition).
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may be possible to control the sources of these errors
alongside the CH4 emissions to better optimise the
latter; for instance, regional inversions classically
include LBCs in their control vector to avoid biases
in the LBCs impacting emission estimates. In Section
4.2.2, we elaborate on this issue.

3.2. Estimates of the representation error Erepr, the
transport error Et, the transported-emission error Eflx
and the background error ELBC from simulated CH4

mixing ratios

Following Wang et al. (2017), from the available model-
ling components (Table 2), a total of 11 CHIMERE and
three LOTOS-EUROS simulations are run as listed in
Table 3. In each grid cell c, one estimate of a given Ei,
for i 2 frepr, t, flx, LBCg, consists of a time-series of
hourly differences between two simulations, / and w, of
CH4 concentrations which differ by only one aspect:

Eð/,wÞi, c ¼ ð CH4½ �/c, h� CH4½ �wc, hÞh2H (1)

with H an ensemble of hours among all the 8760 h
in 2015.

The 14 simulations available are grouped to compute:

� Three estimates of Erepr : ðR1ED�R2EDÞ, ðR1TM�
R2TMÞ, ðR1EC�R2ECÞ; each calculation is based
on two horizontal resolutions, 0:5� � 0:5� and
0:25� � 0:25�, and one inventory per estimate. The
differences are computed in the grid cells of the finer
resolution after merging the coarser resolution on the
fine resolution grid (one grid cell at 0:5� � 0:5� corre-
sponds to four grid cells at 0:25� � 0:25�). This can

lead to additional errors, which however, are
assumed to be small compared to the differences
between the simulation outputs made with different
horizontal resolution configurations. This estimation
method takes only the horizontal representation
error into account. Accounting for both the vertical
and horizontal components of the representation
error would yield a more comprehensive estimate of
Erepr: However, the way we sample the simulation
outputs (see last paragraph of this section) should
limit the vertical component of the representa-
tion error.

� Three estimates of Et : ðT1ED�T2EDÞ, ðT1TM�
T2TMÞ, ðT1EC�T2ECÞ; each calculation is based
on the two CTMs computed at the same horizontal
resolution (0:5� � 0:25�) and one inventory per esti-
mate. This gives insights into transport error charac-
teristics as different CTMs apply different
parameterisations, physical approximations, etc.
Nevertheless, in terms of statistics, it should be noted
that a larger ensemble of different CTMs would
allow a better quantification of Et:

� Three estimates of Eflx : ðIED�ITMÞ, ðITM�IECÞ,
ðIEC� IEDÞ; each calculation is based on a pair of
the three anthropogenic inventories computed with
the model CHIMERE at 0:5� � 0:5�:

� One estimate of ELBC : ðL1�L2Þ, based on the two
available LBC data set runs with CHIMERE at
0:5� � 0:5�: Similarly to Et, ELBC could be better
quantified with more than two LBC data sets.
However, at the time of the study, only a limited
number of CH4 LBC data sets were available.

Table 3. Simulations performed with the set-ups of the two chemistry–transport models (CTMs) described in Table 2.

CTM Boundary conditions Emissions Resolution (lon� lat) ID

CHIMERE MACC EDGAR v4.3.2 0:5� � 0:5� R1ED, IED
CHIMERE MACC EDGAR v4.3.2 0:25� � 0:25� R2ED
CHIMERE MACC EDGAR v4.3.2 0:5� � 0:25� T1ED
CHIMERE MACC TNO-MACC_III 0:5� � 0:5� R1TM, ITM
CHIMERE MACC TNO-MACC_III 0:25� � 0:25� R2TM
CHIMERE MACC TNO-MACC_III 0:5� � 0:25� T1TM
CHIMERE MACC ECLIPSE V5a 0:5� � 0:5� R1EC, IEC
CHIMERE MACC ECLIPSE V5a 0:25� � 0:25� R2EC
CHIMERE MACC ECLIPSE V5a 0:5� � 0:25� TEC
CHIMERE MACC EDGAR v4.3.2 0:5� � 0:5� L1
CHIMERE LMDZ EDGAR v4.3.2 0:5� � 0:5� L2
LOTOS-EUROS CAMS EDGAR v4.3.2 0:25� � 0:25� T2ED
LOTOS-EUROS CAMS TNO-MACC_III 0:5� � 0:25� T2TM
LOTOS-EUROS CAMS ECLIPSE V5a 0:5� � 0:25� T2EC

The ID(s) attributed to each simulation indicate(s) when it is used for computing differences between different resolutions (R1X–R2X,
with X ¼ ED, TM or EC, i.e. one of the inventories), between different inventories (IX1–IX2), between different transport models
(T1X–T2X) or between different boundary conditions (L1–L2). See Section 3.2 for details.
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As this study is a first step towards regional inversion
using real in situ observations, all estimates of errors are
also calculated in the grid cells matching the horizontal
and vertical location of existing measurements in Europe
(see Table S1). To determine the model layer that best
fits the height of the measurements for each site, the root
mean square error (RMSE) between measured and simu-
lated hourly mixing ratios from 2015 was computed for
all the model layers; the layer with the lowest RMSE was
then taken to compute error estimates. As CHIMERE
uses hybrid r pressure coordinates that feature small var-
iations of a few metres over time, seasonal effects on the
model layer selection are likely negligible. Note that
choosing another layer than the one with the lowest
RMSE would lead to an increase of the errors in the con-
centration space.

3.3. Metrics characterising errors

To be able to summarise estimates of error time-series,
we define aggregated metrics used later in Section 4. The
chosen metrics are the bias (even though bias can be
negative or positive, here we are interested only in the
magnitude of it), the standard deviation of errors, the
spatial correlation of errors as well as the temporal cor-
relation of errors on a given sub-sample H of hours in
2015 (see details on the choice of H in Section 3.4).

For every estimate ð/,wÞ of a given error i 2
frepr, t, flx, LBCg, we compute the bias bEð/,wÞi, c,H

and the
standard deviation rEð/,wÞi, c,H

as:

bEð/,wÞi, c,H
¼ Eð/,wÞi, c ¼ 1

CardðHÞ
X
h2H

Eð/,wÞi, c, h

rEð/,wÞi, c,H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

CardðHÞ
X
h2H

ðEð/,wÞi, c, h �bEð/,wÞi, c,H
Þ2

s
8>>>><
>>>>:

(2)

with Card(H) being the size of the sample H.
The spatial correlations of an estimate ð/,wÞ of a given

error i 2 frepr, t, flx, LBCg are obtained from the bias-
corrected correlations for pairs of grid cells ðc1, c2):

corrð/,wÞi,ðc1,c2Þ,H¼
1

CardðHÞ
P

h2H Eð/,wÞi,c1,h
�bEð/,wÞi,c1,H

� �
Eð/,wÞi,c2,h

�bEð/,wÞi,c2,H

� �
rEð/,wÞi,c1,H

�rEð/,wÞi,c2,H

(3)

The correlations are represented as the average of all
correlations from all possible pairs for a given distance
interval (Section 4.2.4):

corrð/,wÞi,d,H ¼ corrð/,wÞi,ðc1,c2Þ,H 8ðc1,c2Þnjjc1c2jj2½d,dþ50km½
n o

(4)

The temporal auto-correlation R for a given temporal
delay k (with unit days) is computed as follows:

Rð/,wÞ
i,c,H ðkÞ¼

1
CardðHÞ

P
h2H Eð/,wÞi,c,h �bEð/,wÞi,c,H

� �
Eð/,wÞi,c,hþk�bEð/,wÞi,c,H

� �
rEð/,wÞi,c,H

(5)

In most inversion studies, the temporal correlation of
errors is assumed to follow an exponential decay. In our
case, the auto-correlations quickly decrease before con-
verging to zero but do not necessarily closely follow an
exponential decay. Nevertheless, for a simple representa-
tion of the temporal correlation, we take the time after
which the auto-correlation drops below e�1:

For better readability, the spatial distribution of the
metric of a given error i 2 frepr, t, flx, LBCg is not dis-
played for all possible estimates (e.g. for all pairs of
inventories). Instead, we show the average of the metric
of interest on all estimates of the error (one for ELBC,
and three for all other errors, as detailed in Section 3.2)
in Sections 3.4, 4.2.1–4.2.3.

3.4. Temporal sampling of error time series

To investigate whether a diurnal cycle is present in the
error metrics, we compute the estimates of Erepr, Et,
Eflx, ELBC for eight sub-samples Wj of simulated hourly
concentrations over 3-h long time-windows j:

Wj ¼ ð3jÞhours; ð3j þ 3Þhours½ � (6)

To detect whether there is a period in the day which is
more favourable for assimilating observations on regional
scale, we compute the ratios of the averages of Erepr, Et
and ELBC with respect to Eflx, for each time-window j, in
each grid cell c:

rji, c ¼
Eji, c
Ejflx, c

with i 2 repr, t, LBCf g (7)

We subsequently determine the minimum and max-
imum of rji, c for each i 2 frepr, t, LBCg to signal the
time-window for which the ratio of errors to Eflx is the
smallest. These values are shown and the results described
for the locations c of the measurement sites in Fig. S1 in
Section S3 of the Supplementary material. The results dif-
fer from the choice generally made in inversions, based
on expert knowledge, to select only afternoon observa-
tions for non-mountain sites to limit the impact of
poorly-modelled shallow planetary boundary layer (PBL)
during the night and early morning. Indeed, the vertical
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mixing and its impact on the diurnal cycle of mixing
ratios are a significant source of error in CTMs
(Dabberdt et al., 2004; Locatelli et al., 2015; Koffi et al.,
2016). However, both CTMs in this study use ECMWF
data so that errors on the vertical mixing likely follow
the same diurnal pattern. It is therefore not possible here
to go further in the analysis of the impact of the errors
on the vertical mixing at the sub-diurnal scale. In order
to stay compatible with the usual choice of afternoon
observations for non-mountain sites, in the following, we
compute Erepr, Et, Eflx, ELBC in each grid cell c from simu-
lated hourly concentrations between 13 h and 17 h UTC
included. For mountain sites, we take the simulated
hourly concentrations between 00 h and 04 h UTC
included. The sample of hourly concentrations H to com-
pute error metrics has then 5 h� 365 days ¼ 1825 ele-
ments. Our computation of the transport error thus
focuses on the horizontal aspect, rather than the verti-
cal one.

3.5. Indicators of ep characteristics

As the horizontal resolutions of the emission inventories
differ, the emissions are spatially interpolated onto the
model grids with conserving at least 99% of the mass.
The consistency of the spatial distributions of the inven-
tories is represented through the average and standard
deviation (SD) of CH4 emissions per sector s in each grid
cell c (Fig. 2):

fs, c ¼ 1
3

f EDs, c þ f TMs, c þ f ECs, c

� �
(8)

SDs,c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 ðf EDs,c �fs,cÞ2þðf TMs,c �fs,cÞ2þðf ECs,c �fs,cÞ2
� �r

f s,c
�100

(9)

with fXY the annual emissions from EDGAR v4.3.2
(XY ¼ ED), TNO-MACC_III (XY ¼ TM) and ECLIPSE
V5a (XY ¼ EC).

To investigate whether the prior error ep for a given
sector includes spatial correlations, and, if so, whether
these correlations can be represented with correlation
lengths, the correlations of the SDs, c for the three main
anthropogenic sectors s are computed (Section 4.1.2). The
correlations between sectors are investigated at the
European and country scales. All correlations are ana-
lysed for significance and are considered significant when
the p value is 	0.01. At the European scale, the correla-
tions between sectors (hereafter named ‘cross-sector cor-
relations’) are computed. For each pair of sectors (s1, s2),
the two sets of three maps of differences in emissions for
this sector are used, that is, the series consisting of the

list of differences between pairs of inventories, in all grid
cells c of the European domain:

dIs, c ¼ f As, c�f Bs, c for ðI,A,BÞ
2 fð1,ED,TMÞ, ð2,ED,ECÞ, ð3,TM,ECÞg (10)

corrEuropes1, s2 ¼
1
3
1
N

PN
c¼1

P3
I¼1d

I
s1, cd

I
s2, cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
1
N

PN
c¼1

P3
I¼1d

I
s1, c2

� �
1
3
1
N

PN
c¼1

P3
I¼1d

I
s2, c2

� �r
(11)

The same method is applied for the natural wetland
emission sector. The cross-sector correlations are then
represented as a matrix (Section 4.1.3).

To enable the computation of the correlations between
two sectors (s1, s2) and between two countries, the corre-
lations between sectors and between countries (hereafter
named ‘cross-sector cross-country correlations’) are
obtained from two series which describe the 78 possible
pairs of countries among 13 selected countries (as defined
in Table 4):

dIðs,CÞ ¼ f As,C�f Bs,C
for ðI,A,BÞ 2 fð1,ED,TMÞ, ð2,ED,ECÞ, ð3,TM,ECÞg
andC 2 13 selected countries

(12)

ðL1,L2Þ listsofcountries=ðCa,CbÞ
2 L1 � L2 describe the 78 pairs of countries (13)

corrcountriess1, s2

¼
1
3
1
78

P
ðCa,CbÞ2ðL1�L2Þ

P3
I¼1d

I
ðs1,CaÞd

I
ðs2,CbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3
1
78

P
Ca2L1

P3
I¼1d

I
s1,Ca

2
� �

1
3
1
78

P
Cb2L2

P3
I¼1d

I
s2,Cb

2
� �r

(14)

The cross-sector cross-country correlations are then
represented as a matrix (Section 4.1.3). Contrary to a
classical correlation matrix representation, in which only
pairs of sectors or pairs of countries are taken into
account, the diagonal terms of the matrices in Section
4.1.3 are not equal to 1 as they represent the average cor-
relation between pairs of countries for given sectors and
are therefore always smaller than 1.

An inter-annual analysis of ep is not possible here as
the CH4 emissions in the inventories used for this study
do not vary within the year. Finally, the uncertainties of
the above elements, associated to the three spatially dis-
tributed emission inventories, are evaluated by compari-
son to the total UNFCCC national estimates and
estimates from top-down (TD) studies (Section 4.1.4).
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4. Results and discussion

4.1. Prior emission uncertainties ep

4.1.1. Absolute values of ep. Some studies assume ep to
be homogeneous over the whole domain or per land-use
categories, for example, Bergamaschi et al. (2015) with
500% uncertainty in monthly emissions (in their free
inversion setting), Tsuruta et al. (2017) with 80% over
land and Thompson et al. (2017) with 50% for total emis-
sions in the high northern latitudes. With the inventories
used here, the total emissions SD is 22% and ep depends
on the location and emission sector, as shown by the
large SDs (up to 5 � 10�9 kgm�2 s�1) for waste in almost
all countries, for fossil fuel related sectors in some coun-
tries only (e.g. the United Kingdom, the Netherlands),
for wetlands mainly in Finland, compared to low values
for agriculture in almost all countries (Fig. 2g–j). The
emissions in the three anthropogenic inventories differ
mostly in the waste and the fossil fuel related sectors,
with SDs of 58–122% and 35–124% at the national scale
in the 13 selected countries (Table 4). This can be
explained by the different distributions of area and point
sources used for these two sectors in the three inventories.
In case of wetland emissions, the SDs range between 66%
and 101%, which leads to a mean SD for all 13 countries
almost as high as in the waste sector (top panel of Fig.
4b). The SDs are lowest in the agriculture sector with val-
ues <58%.

The main hot-spots and high-emitting zones could be
assumed to be often better known and therefore better
located and specified in the inventories. This is the case
for high-emitting zones such as the Netherlands or
Brittany in France (Fig. 2a), where the emissions are
mainly due to the agricultural sector (Fig. 2b): the spatial
patterns of the three inventories are consistent (SDs <

1.5 � 10�10 kgm�2 s�1, Fig. 2f, g). Nevertheless, some

high-emitting zones or hot-spots are not represented con-
sistently in all three inventories: for example, the off-
shore fossil fuel sector in the North Sea (Fig. 2c, h).

Differences between emission inventories are also
found in low emitting areas around the coasts (Fig. 2a,
f). With differences between emissions over land and sea
being large, the effect of different horizontal resolutions
becomes distinct at the coasts. With a CTM horizontal
resolution lower than that of the inventory, land based
emissions are attributed to grid cells encompassing actu-
ally land and sea areas. This problem is smaller with
higher CTM horizontal resolutions. In general, the
approach used for the spatial projection of emissions
onto the CTM’s grid impacts the patterns in the interpo-
lated field (conservation of the mass over particular land-
use categories for example) so that the interpolation
method itself leads to errors. These discrepancies are a
source of errors that impact specifically the assimilation

Table 4 Standard deviation (SD) relative to the average (%) between the three anthropogenic and natural data sets for
selected countries.

Country Agriculture (%) Waste (%) Fossil fuel related sector (%) Wetlands (%)

AUT: Austria 29 99 54 100
BEL: Belgium 19 62 113 83
CHE: Switzerland 30 105 37 87
DEU: Germany 22 93 50 85
DNK: Denmark 29 62 48 67
ESP: Spain 28 104 48 93
FIN: Finland 48 122 124 98
FRA: France 37 83 35 101
GBR: United Kingdom 29 78 104 66
IRL: Ireland 16 99 118 94
ITA: Italy 57 80 41 77
NLD: The Netherlands 22 72 70 80
PRT: Portugal 34 58 46 95

Fig. 3. Spatial correlation lengths of the prior errors for the
agriculture, waste, fossil fuel (FF) related sectors and wetlands
(see Section 2.2 for definition) per grid cell at the 0:5� � 0:5�

horizontal resolution.
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of data from coastal measurement sites and need to be
addressed in each system.

4.1.2. Spatial correlations in ep. The spatial correlations
of the prior emission errors (Fig. 3) indicate that an expo-
nential decay function with a correlation length of

100–150 km could be used to model the errors for agri-
culture and wetlands. For the waste sector and the fossil
fuel related sectors, considering that the size of the model
grid cells is approximately 50 km � 50 km, we assume
that spatial correlations can be neglected. Tsuruta et al.
(2019) and Bousquet et al. (2011) (inversion INV1)
assumed that the errors in emissions ep are spatially
uncorrelated, which is in agreement with our analysis for
the fossil fuel related sectors. In the study of Bergamaschi
et al. (2015) (inversion S1), uncertainties of 100% per grid
cell and month and spatial correlation scale lengths of
200 km are applied to individual emission sectors.
Compared to this setting, our analysis results in a lower
average uncertainty and comparable spatial correlation
lengths for agriculture and waste. Theoretically, higher
uncertainties and lower spatial correlation lengths give
more freedom for the inversion to optimise emissions.

4.1.3. Cross-sector and cross-sector cross-country
correlations in ep. Cross-sector correlations in ep over the
whole domain are presented in Fig. 4a. These correlations
are computed with a good level of statistical significance
(p value <0.01) and are very weak (r< 0.14), reflecting
the overall independence of the sectoral emissions in the

bottom-up inventories. We also compute cross-country
cross-sector correlations (Fig. 4b) for a subset of 13 coun-
tries (see country list in Table 4). The agriculture sector is
correlated with no other sectors, which is consistent with
the cross-sector correlations over the whole domain.
However, the fossil fuel and waste sector exhibit non-neg-
ligible cross-country and cross-sector correlations
(r¼ 0.31). These small correlations are likely indirect
effects of spatial correlations embedded when building
the bottom-up inventories, for example when using prox-
ies such as population density for various sectors.

4.1.4. National-scale uncertainties: comparison to
estimates from other studies. National average emissions
of the three anthropogenic gridded inventories and uncer-
tainties estimated in this study are compared to emissions
and uncertainties from the UNFCCC national inventory
reports (NIR) for the selected 13 countries (Fig. 5).
Compared to the NIRs, average emissions of the three
anthropogenic gridded inventories are for most countries
underestimated in the agriculture sector but overestimated
in the waste and fossil fuel related sectors. However, the
average country totals of the emissions of the three
gridded inventories are still in the range of the NIR
uncertainties, which is expected as they are constructed
using similar information as the NIRs. Furthermore, the
uncertainties in the NIRs are highest in the waste sector
for most countries, in agreement with our estimated
uncertainties. This suggests that the current knowledge of
the activity data and emission factors of the waste

Fig. 4. Correlations (colour matrices): cross-sector correlations over the European domain (left) and cross-sector cross-country
correlations for 13 selected countries (right, see Table 4 for list). White¼ correlation not significant, green¼negative correlation,
violet¼positive correlation. The matching standard deviations (SD, in % of the average) are given in the top bar charts.
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emission sector remains less complete than that of the
agriculture and fossil fuel related sectors. To deal with
the large temporal and spatial variability of the emissions
in the waste sector, specific climate and operational prac-
tices should be taken into account (National Academies
of Sciences, Engineering, and Medicine, 2018).

To evaluate the results of this study, a comparison to
top-down estimates from other studies at the national
scale is also attempted (Table 5). Unfortunately, only a
few studies estimate TD emissions at national scale for
the countries that we have data available for. Thus, the
comparison is only possible for France (FRA, Pison
et al., 2018), Finland (FIN, Tsuruta et al., 2019), the
United Kingdom (GBR, Manning et al., 2011), the
United Kingdom and Ireland together (GBR þ IRL,
Bergamaschi et al., 2010), Germany (DEU, Bergamaschi
et al., 2010) and Switzerland (CHE, Henne et al., 2016).
The years covered by these studies differ. However, we
are mainly interested in the comparison of uncertainties
and we assume that they do not vary much over the
available years. For these countries, estimates are statis-
tically consistent at 61 � r, except for France. The
uncertainties reported by the TD inversion studies are

larger than the uncertainties estimated in this work for
the countries (except for CHE): TD uncertainties for
FRA, GBR and GBR þ IRL are �30% larger and the
ones for DEU and FIN are �2–3 times larger. This might
be due to the inversions being too conservative and using
large prior errors (to give more freedom to the inversion
system), which leads to large uncertainty estimates for the
posterior emissions and/or this may be due to our error
estimates being underestimated because of the similarities
(e.g. placement of large sources) in the three inventories
available for this study.

4.2. Errors in the concentration space: background
error ELBC, representation error Erepr, transport error
Et and transported-emission error Eflx

4.2.1. Absolute values of ELBC, Erepr, Et and Eflx. Figure 6
shows the spatial patterns of ELBC, Erepr, Et and Eflx over
the domain, including the average bias, SD and the ratios
of Erepr, Et and ELBC to Eflx: The annual SDs of
ELBC, Erepr, Et and Eflx at the locations of the measurement
sites are shown in Fig. 7. Despite of having the largest
bias (3–34 ppb, Fig. 6g) compared to the biases of the

Fig. 5. Anthropogenic CH4 emissions (Tg CH4 year�1) of different source sectors of the TNO-MACC_III (2011), EDGAR v4.3.2
(2011) and ECLIPSE V5a (2010) inventories and their average compared to the anthropogenic emissions of the UNFCCC (2016) for 13
selected countries (see Table 4 for list). The error bars indicate the uncertainties on the UNFCCC emissions and the uncertainties
estimated here on the average inventory emissions. The UNFCCC emissions and corresponding uncertainties of Switzerland could not
be assessed due to incomplete information in the NIR.
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other errors, ELBC has the smallest and most homoge-
neous annual SD over Europe (15–32 ppb, Fig. 6h). This
confirms that LBCs are a critical obstacle to any reliable
regional inversion. Nevertheless, their uniform structure
with low variability makes it possible to differentiate the
LBC errors from other errors (both emission-induced and
other types), and thus to optimise them in the inversion.

Patterns due to the emissions show up both in Erepr
and Et: The SD of Erepr ranges between 1 and 80 ppb over
land and reaches high values at several grid cells that
contain emission hot-spots such as capitals in Europe,
that is, Madrid, Paris and Warsaw. Maxima are found in
high-emitting zones, such as the Silesian Coal Basin in
Poland or the Po Valley in Italy (Fig. 6b). A maximum
value of 80 ppb occurs in St. Petersburg. Indeed, a hot-
spot of emissions appears in St. Petersburg in the total
emission map of the TNO-MACC_III inventory, due to
fossil fuel related emissions (see Fig. 2a and c): 54% of
the total GHG emissions in St. Petersburg come from
energy sources (ISAP, 2019).

The SD of Erepr is in general much smaller over the sea
than over the land, with values under 10 ppb, due to lim-
ited sea emissions. Nevertheless, higher values for the SD
of Erepr are found in the North Sea where numerous oil
and gas off-shore platforms are located. The SD of Et
ranges between 10 and 140 ppb over land. High values
are found over the largest emission hot-spots and areas
(Fig. 6e) rather than in areas where the transport model-
ling is in principle more challenging, such as coasts or
mountainous zones (high values for the Alps appear only
in Italy and Switzerland). The patterns in Erepr and Et
biases and SDs are linked to large gradients of concentra-
tions induced by steep gradients of emissions, which have
an impact even at a resolution as large as 0:5� � 0:5�:
Patterns due to meteorological situations and synoptic
events may occasionally generate large errors but these
events are averaged out at the yearly scale studied here.

Emission hot-spots and high-emitting zones are key
regions of interest for policy makers. The capacity of
retrieving information on the emissions through inver-
sions in these areas would then be particularly useful.
However, the very steep spatial emission gradients
encountered at scales smaller than the smallest scale used
in our work (0.25�) may lead to even higher Erepr and Et
than derived here. Hence, observations near hot-spots
should be used with caution within an inversion over
Europe at horizontal resolutions coarser
than 0:25� � 0:25�:

The SD of Eflx ranges between 2 and 140 ppb and is
the highest over grid cells where the emissions in the three
inventories differ the most, for example, over the Po
Valley, the Silesian Coal Basin, Istanbul (Fig. 6k).
Wunch et al. (2019) have shown that there is an uncer-
tainty in the spatial distribution of the emissions, based
on the comparison of EDGAR v4.2 FT2010 (Olivier and
Janssens-Maenhout, 2011) and TNO-MACC_III over
parts of Europe, the differences being larger near large
cities. Nevertheless, Eflx is not necessarily the highest near
large cities in our case because of the horizontal resolu-
tions used in the simulations remain larger than the typ-
ical scale of European mega-cities.

4.2.2. Ratios of ELBC, Erepr and Et relative to Eflx. The
ratios of the SDs of ELBC, Erepr and Et relative to the SD
of Eflx, called hereafter rELBCSD , rEreprSD , rEtSD (Fig. 6c, f, i), are
used as indicators of whether Eflx dominates the other
types of error. rEreprSD is the smallest relative error at about
1 over the entire domain (Fig. 6c); rELBCSD and rEtSD are often
2–6 (Fig. 6i, f) and therefore dominate Eflx: Even though
information about the statistics of these errors makes it
possible to characterise them correctly, the resulting
observation error matrix may be too complex due to
technical limitations, for example, it is too big for the sys-
tem to deal with it in an affordable computing time. In

Table 5. Total anthropogenic emissions [Tg CH4 year�1] and associated uncertainties as 1-r SD [Tg CH4 year�1 and %] from this
study compared to top-down (TD) emission estimates and uncertainties from other studies and to the UNFCCC emissions and
uncertainties (for country names, see Table 4).

CHE DEU FIN FRA GBR GBRþ IRL

Our study 0.21 6 0.09 (43%) 2.54 6 0.26 (10%) 0.30 6 0.14 (47%) 2.54 6 0.14 (6%) 1.89 6 0.33 (17%) 2.42 6 0.61 (25%)
UNFCCC 2.15 6 0.24 (11%) 0.18 6 0.03 (16%) 2.23 6 0.90 (40%) 2.02 6 0.31 (15%) 2.58 6 0.31 (12%)
TD studies 0.2 6 0.02 (10%)a 3.67 6 1.25 (34%)b 0.31 6 0.34 (110%)c 3.9 6 0.31 (8%)d 1.88 6 0.5 (27%)e 3.29 6 1.09 (33%)b

The UNFCCC emissions and uncertainties of Switzerland could not be assessed due to incomplete information in the NIR.
aHenne et al. (2016).
bBergamaschi et al. (2010) (inversion S1, anthropogenic, average over the study years).
cTsuruta et al. (2019) (anthropogenic).
dPison et al. (2018) (sectoral run).
eManning et al. (2011).

A PRAGMATIC PROTOCOL FOR CHARACTERISING ERRORS 13



this case, it is possible to include other variables, along-
side the targeted emissions, in the control vector. In our
case, the ratios of ELBC, Erepr and Et relative to Eflx indi-
cate that Erepr could be treated in the observation error
statistics whereas the sources of ELBC and Et may better
be controlled alongside the emissions in the inversion.
Including LBCs in the control vector is usually done in
regional inversions, but optimising the transport

alongside emissions remains challenging in most state-of-
the-art inversion systems, although first attempts exist
(e.g. Zheng et al., 2018).

4.2.3. Temporal patterns in ELBC, Erepr, Et and Eflx.
Annual biases appear in ELBC, Erepr, Et and Eflx (Fig. 6g,
a, d and j). As we have very few samples of errors (only
three inventories), the average estimate is likely not

Fig. 6. Average bias (first column) and standard deviation (SD, middle column) for 2015 of (from top to bottom) erepr, et, eLBC and
eflx in ppb and ratios of erepr, et and eLBC SDs to eflx SD. Results are shown at 0:5� � 0:5�:

14 B. SZÉNÁSI ET AL.



representative of an actual bias, but rather indicates
strong temporal correlations of errors. Eflx and Erepr auto-
correlations have characteristic time scales generally less
than 15 days (Figs. 8 and 9), which correspond to the
synoptic scale. Et scales range mainly between 5 and
50 days and ELBC scales are larger than one month over
more than half the domain. In general, over continents,
Eflx, Erepr and Et have similar temporal scales. The similar-
ity of structures requires that the magnitude of Eflx is

larger than the magnitudes of Erepr and Et to ensure effi-
cient filtering by the inversion system.

4.2.4. Spatial correlations in ELBC, Erepr, Et and Eflx. The
average spatial correlation structures of the different
errors are presented in Fig. 10. The longest characteristic
scale is found for ELBC (2450 km) and the shortest for Eflx
(100 km) and Erepr (
50–100 km). The length of Et is
intermediate (
150–550 km). Lengths shorter than the

Figure 6. (Continued).
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size of one grid cell (
50 km) indicate that spatial correla-
tions may be neglected, as is the case for Erepr for
EDGAR v4.3.2 and TNO-MACC_III. This suggests that

a network of stations with a density higher than one sta-
tion per 500 km would allow an inversion system to filter
LBC and transport errors as their characteristic lengths

Fig. 8. Characteristic time scales (in days) of the decrease of temporal auto-correlation for erepr, et, eflx and eLBC over the domain
for 2015.

Fig. 7. Standard deviations (SDs) of erepr, et, eflx and eLBC for 2015 at the 31 selected measurement sites (details in Table S1). The
colour and number give the same information.
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are larger than 500 km with EDGAR v4.3.2 and TNO-
MACC_III. However, our results show that distinguish-
ing between representation and transported-emission
errors is challenging without a very dense network
(<100 km). Most of the sites used in this study are
located at distances >100 km from each other, with only
three groups of sites at <100 km: (i) IPR, PRS, JFJ, BEO
and LAE in Switzerland and Northern Italy, (ii) GIF,
OVS and TRN in France and (iii) TAC and WAO in the
UK (see list of sites in Table S1).

Most studies, such as Bergamaschi et al. (2018),
Tsuruta et al. (2017), Locatelli et al. (2013) or Fortems-
Cheiney et al. (2012), assume the concentration errors to
be spatially uncorrelated, which is not what we would
recommend following our results. In our case, not taking
into account correlations due to error patterns common
to various measurement locations would artificially
increase the weight of observations in the cost function
used in the inversion and erroneously attribute all corre-
lated patterns to the emissions. This implies that non-
diagonal correlation matrices in observation states should

be used for the inversion, for which smart implementa-
tions are required. This would be more crucial in inver-
sions using satellite data, where the main source of
correlation is the uncertainties in radiative transfer inver-
sions to obtain total column CH4 observations.
Furthermore, the spatial coverage of satellite data is
more dense than data of uneven and sparse surface net-
works. Also, the same instrument is making the measure-
ments. For these reasons, error correlations in space and/
or time may occur and necessitate to account for off-
diagonal terms in the observation variance–covariance
matrix. This could be crucial, especially for instruments
with a large swath and short revisit time, producing a lot
of neighbouring data. Since satellite data are vertically
integrated, the here presented errors may differ and
should thus be recomputed when using satellite data
for inversions.

4.2.5. Total concentration errors. The total concentra-
tion errors at the domain scale range between 14 and
422 ppb, with an average of 29 ppb, and between 21 and
53 ppb at the measurement site locations (see Table 6).
The total values per site category are similar with aver-
ages of 43 ppb, 40 ppb and 42 ppb for coastal, mountain
and ‘other’ sites. The total concentration errors at the
Swiss sites BEO, JFJ and LAE can be compared to the
ones used in the study of Henne et al. (2016). The total
error for BEO and LAE (called LHW in Henne et al.
2016) with 38 and 46 ppb, respectively, compare well with
the ranges of total errors of 1–41 ppb for BEO and
14–44 ppb for LAE in the different inversion set-ups in
Henne et al. (2016). For JFJ, our estimate of 46 ppb is
higher than 14–20 ppb in their study. Ranges for com-
bined measurement and model errors for CH4 are also

Fig. 9. Characteristic time scales (in days) of the decrease of temporal auto-correlation for erepr, et, eflx and eLBC with the three
inventories at the 31 selected measurement sites (details in Table S1) for 2015.

Fig. 10. Spatial correlations over the whole domain for the
three estimates of erepr, et and eflx (indicated by the name of the
emission inventory used, see Section 3.2 for details) and for the
estimate of eLBC:
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reported in the study of Bergamaschi et al. (2015). Our
estimates are in the lower range of their set-ups with the
LMDz-4DVAR (3–450 ppb) and TM5-4DVAR
(3–1000 ppb) inversion systems and above the range of
10–30 ppb with TM3-STILT (except for GIC
with 21 ppb).

5. Conclusions and recommendations

This study aims at estimating errors that need to be taken
into account in atmospheric inversions of CH4 emissions
at the European scale. We have used a simple (i.e. tech-
nically ready and not expensive in computing time) and
easy to update method that consists of performing a set
of simulations using two limited-area CTMs at three dif-
ferent horizontal resolutions with inputs based on three
anthropogenic emission inventories, three data sets of
natural emissions and two sets of boundary and initial
conditions. The analysis presented here can be applied for
any atmospheric species and extended to any other region
as long as the required components (sufficient number of
emission inventories, multiple CTMs and LBC products)
are available. For example, the USA or China would be
a good option as the required components are available
for them.

We have performed the analysis for the year 2015.
Four types of errors have been estimated by computing
differences of simulated hourly mixing ratios:

� the background error ELBC, due to the lateral bound-
ary and initial conditions used by the area-lim-
ited CTMs;

� the representation error Erepr, due to the difference
of representativity between a model’s grid-cell and
atmospheric mixing ratio measurements;

� the transport error Et, due to discretisation, para-
metrisations of the fundamental equations of the
atmospheric transport used in a model and to the
meteorological inputs used by the CTMs;

� the transported-emission error Eflx, due to the mis-
representation of emissions on the spatial and tem-
poral grid of the model.

To be consistent with the usual choice of data based
on expert knowledge, the errors have been computed
from afternoon values (13–17 h UTC included) for non-
mountain sites and from night-time values (00–04 h UTC
included) for mountain sites, either in all the first-model-
layer grid cells of the European domain or at the loca-
tions (horizontal and vertical grid cell) of 31 selected
measurement sites. We have shown that this choice is not
always optimal depending on stations and that it should
be reassessed by inverse modellers (e.g. by using a

method similar to the one described in Sections 3.4
and S3).

The methodology used in this study to estimate errors
is specific to our set-up of CHIMERE (coarse horizontal
resolution, chosen inputs) for continental scale CH4 emis-
sions using a set of in situ monitoring sites. Nevertheless,
the obtained error estimates allow us to gain insights into
how these errors could be treated in a data assimilation
system for inverting CH4 emissions at the European scale,
as summarised in Table 7:

� ELBC appears to be simple to take into account
because of its uniform structure with low variability,
which makes it possible to differentiate it from the
other errors. ELBC can be considered as a parameter

Table 6. Total errors [ppb] in the concentration space at the
location of measurement sites (see more information on sites and
locations in Table S1 and in Fig. 1).

Trigram of site Total concentration errors

Mountain sites
GIC 21
JFJ 46
PDM 43
PRS 52
PUY 37
SNB 41
VAC 41
ZSF 37
Coastal sites
BIS 39
ECO 45
ERS 46
FKL 50
LMT 48
LUT 31
MHD 40
RGL 40
TAC 42
TTA 45
WAO 47
Other sites
BEO 38
CGR 46
GIF 39
IPR 37
LAE 34
OHP 45
OPE 38
OVS 39
PAL 50
PUI 53
SMR 49
TRN 37
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to invert or could even be corrected beforehand. The
relative magnitude of ELBC compared to Eflx indicates
that, in the inversion framework, the sources of ELBC
may better be controlled alongside the emissions.
This is consistent with what is usually done in
regional inversions, which include lateral boundary
and initial conditions in their control vector. At the
scale studied here, long temporal (>1 month) and
spatial (>2400 km) correlation lengths could be used
to represent ELBC:

� Erepr and Et may be underestimated in our set of sim-
ulations close to hot-spots and high-emitting zones.
This is due to the horizontal resolutions used for the
simulations being coarser than the scale at which
CH4 emission patterns actually vary. Steep gradients
of concentrations induced by steep gradients of emis-
sions encountered in certain types of activity sectors
(e.g. waste) can, therefore, not be represented well in
our models’ configurations. Even though hot-spots
and high-emitting zones are key regions for policy
makers, in which a reduction of uncertainties on
emissions brought by the inversions would be very
useful, our study shows that observations near these
areas should be used with caution with horizontal
resolutions coarser than 0:25� � 0:25�: The relative
magnitudes of Erepr and Et compared to Eflx indicate
that Erepr can be treated in the inversion within the
observation error statistics whereas the sources of Et
may better be controlled alongside the emissions in

the inversion. Nevertheless, optimising transport
characteristics at the same time as emissions remains
challenging in most state-of-the-art inversion systems.
Moreover, spatial (from 150 to 550 km depending on
the prior inventory) and temporal (from 5 to 50
days) correlation lengths would have to be used for
Et, which may be an issue because of the technical
challenge of inverting non-diagonal large matrices.

� Eflx may be represented by short spatial correlation
lengths (
100 km, i.e. twice our coarsest resolution).
Since emissions do not vary through the year in the
inventories used here, temporal aggregation errors
could not be studied and temporal patterns in Eflx
are only due to meteorology. In this case, the use of
short temporal correlation lengths (<15 days) is
recommended.

The spatial correlation lengths estimated here show
that some error patterns cover a number of measurement
sites, whereas errors in in situ fixed measurements are
generally assumed to be uncorrelated in inver-
sion systems.

Moreover, we have estimated the error in the emission
inventories, ep, particularly at the country and sector
(agriculture, waste, fossil fuel related emissions and wet-
lands) scales as atmospheric inversions require prior emis-
sion errors in their statistics of the emission space. Due
to the assumptions and proxies used for the spatial distri-
bution of area and point sources in the inventories, they

Table 7. Summary of the errors estimated in this study: main recommendations to treat each error in an inversion system for targeting
CH4 emissions in Europe at the yearly scale and orders of magnitude of correlation lengths which can be used to simply represent
some of them.

Error Magnitude relative to eflx Recommended treatment
Temporal

correlation lengths
Spatial

correlation lengths

eflx 1 controlled (emissions are
the main target of
the inversion)

<15 days (due to
meteorology, other

sources of error in time
not accounted for)


100 km

erepr 
1 In the
observation statistics

<15 days None

et 2-6 Controlled alongside
the emissions

5-50 days 150–550 km

eLBC 2–6 Controlled or in the
prior statistic or

pre-treated

>1 month >2400 km

ep Not studied In the prior statistics Not accounted for Agriculture: 100–150km
for other

sectors: negligible
Other correlations: cross-sector agriculture & waste;
fossil fuel related & waste
Cross-sector cross-country fossil fuel related & waste
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differ the most for the waste and fossil fuel related sectors
and agree better for agriculture at the European scale.
The disagreements are particularly due to some high-
emitting zones or hot-spots not being represented consist-
ently, that is, their locations and/or emissions vary
between the three inventories. Discrepancies also arise
from the projection of emissions onto the model’s grid
along the coasts, which may impact specifically the
assimilation of data from coastal measurement sites. All
cases where emission gradients between two neighbouring
types of land-use are steep will lead to such an issue.
Spatial correlation lengths that are recommended to rep-
resent ep for agricultural emissions are 
100–150 km.
Cross-sector and cross-sector cross-country correlations
show the impact of spatial correlations that are used in
the inventories. Our simple analysis based on the avail-
able inventories indicates that errors are heterogeneous
and depend on the sector and country, which is in con-
trast with most inversion studies where the assumed
uncertainties are homogeneous, with only land being dif-
ferent from sea. Finally, there is a need for an in-depth
analysis and/or update of the spatial distribution of cur-
rent emission inventories and for a more complete error
estimation study dedicated to emission inventories.

Following the method chosen here, further work
should target the following:

� Erepr and Et should be analysed on finer horizontal
resolutions, mainly with the objective of assimilating
satellite imagery.

� Et should be further analysed with different meteoro-
logical inputs, particularly to investigate the vertical
mixing representation, which is known as a large
source of error (Dabberdt et al., 2004; Locatelli
et al., 2015).

� Eflx and ep could be improved by adding simulations
based on other emission inventories; either including
new inventories that may become available, or the
same inventories with added features such as sea-
sonal or hourly time profiles. Although natural emis-
sions are small compared to anthropogenic
contributions in Europe, they are not negligible
everywhere, particularly in northern regions domi-
nated by natural wetlands. Errors of natural emis-
sions other than wetlands could be studied with the
same methodology as the anthropogenic and wet-
land emissions.

Acknowledgements

We are grateful to the colleagues at TNO for their
valuable support. We thank Matthew Lang, Diego
Santaren and Audrey Fortems-Cheiney for their helpful

advice. Calculations were performed using the resources
of LSCE, maintained by François Marabelle and the
LSCE IT team. We thank the PIs of the measurement
sites we used in this study for maintaining methane
measurements and for sharing their data through the
following contributors: World Data Centre for
Greenhouse Gases (WDCGG), Institut Catal�a de
Ci�encies del Clima (IC3), Swiss Federal Laboratories for
Materials Science and Technology (Empa), Laboratoire
des Sciences du Climat et de lEnvironnement (LSCE),
Ricerca sul Sistema Energetico (RSE), Integrated non-
CO2 Greenhouse gas Observing System (InGOS),
Integrated Carbon Observation System (ICOS),
Umweltbundesamt (UBA), Environmental Chemical
Process Laboratory (ECPL), National Oceanic and
Atmospheric Administration (NOAA) Earth System
Research Laboratories (ESRL), University of Bristol,
Norwegian Institute for Air Research (NILU), University
of Bern, Joint Research Centre (JRC), Observatoire des
Sciences de lUnivers Institut Pyth�eas (OSU), Finnish
Meteorological Institute (FMI), and University
of Helsinki.

Disclosure statement

The authors declare no competing interests.

Funding

This project is part of the MEMO2 (MEthane goes
MObile – MEasurements and MOdelling) project and has
received funding from the European Unions Horizon
2020 research and innovation programme under the
Marie Sklodowska-Curie Grant Agreement No. 722479.
Ana Maria Roxana Petrescu acknowledges the support of
the European Unions Horizon 2020 VERIFY project,
Grant No. 776810.

Data availability statement

The data that support the findings of this study are
available from the corresponding author upon request.

Supplemental data

Supplemental data for this article can be accessed here.

References

Arora, V. K., Melton, J. R. and Plummer, D. 2018. An

assessment of natural methane fluxes simulated by the

20 B. SZÉNÁSI ET AL.



CLASS-CTEM model. Biogeosciences 15, 4683–4709. https://
bg.copernicus.org/articles/15/4683/2018/.

Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Bonne, J.-L.
and co-authors. 2015. Objectified quantification of
uncertainties in Bayesian atmospheric inversions. Geosci.
Model Dev. 8, 1525–1546. https://www.geosci-model-dev.net/
8/1525/2015/.

Bergamaschi, P., Corazza, M., Karstens, U., Athanassiadou, M.,
Thompson, R. and co-authors. 2015. Top-down estimates of
European CH4 and N2O emissions based on four different
inverse models. Atmos. Chem. Phys. 15, 715–736. doi:10.5194/
acp-15-715-2015

Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M.,
Tsuruta, A. and co-authors. 2018. Inverse modelling of
European CH4 emissions during 2006–2012 using different
inverse models and reassessed atmospheric observations.
Atmos. Chem. Phys. 18, 901–920. https://www.atmos-chem-
phys.net/18/901/2018/.

Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A.,
Meinhardt, F. and co-authors. 2005. Inverse modelling of
national and European CH4 emissions using the atmospheric
zoom model TM5. Atmos. Chem. Phys. 5, 2431–2460. https://
www.atmos-chem-phys.net/5/2431/2005/.

Bergamaschi, P., Krol, M., Meirink, J. F., Dentener, F., Segers,
A. and co-authors. 2010. Inverse modeling of European CH4

emissions 2001–2006. J. Geophys. Res.: Atmos. 115, D22309.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2010JD014180.

Bocquet, M., Wu, L., and Chevallier, F. 2011. Bayesian design
of control space for optimal assimilation of observations. Part
I: Consistent multiscale formalism. Q. J. R Meteorolog. Soc.
137, 1340–1356. https://rmets.onlinelibrary.wiley.com/doi/abs/
10.1002/qj.837.

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J.,
Hauglustaine, D. A. and co-authors. 2006. Contribution of
anthropogenic and natural sources to atmospheric methane
variability. Nature 443, 439–443. doi:10.1038/nature05132

Bousquet, P., Pierangelo, C., Bacour, C., Marshall, J., Peylin, P.
and co-authors. 2018. Error budget of the methane remote
Lidar mission and its impact on the uncertainties of the
global methane budget. Journal of Geophysical Research:
Atmospheres 123, 11,766–11,785. https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2018JD028907.

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J.,
Brunke, E.-G. and co-authors. 2011. Source attribution of the
changes in atmospheric methane for 2006–2008. Atmos.
Chem. Phys. 11, 3689–3700. https://www.atmos-chem-phys.
net/11/3689/2011/.

Broquet, G., Chevallier, F., Rayner, P., Aulagnier, C., Pison, I.
and co-authors. 2011. A European summertime CO2 biogenic
flux inversion at mesoscale from continuous in situ mixing
ratio measurements. J. Geophys. Res.: Atmos. 116, D23303.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2011JD016202.

Dabberdt, W., Carroll, M., Baumgardner, D., Carmichael, G.,
Cohen, R. and co-authors. 2004. Meteorological research
needs for improved air quality forecasting: report of the 11th

prospectus development team of the U.S. Weather Research
Program. Bull. Amer. Meterol. Soc. 85, 563. doi:10.1175/
BAMS-85-4-563

EEA. 2019. Annual European Union greenhouse gas inventory
1990–2017 and inventory report 2019. https://www.eea.europa.
eu/publications/european-union-greenhouse-gas-inventory-
2019.

Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P.,
Saunois, M. and co-authors. 2012. The formaldehyde budget
as seen by a global-scale multi-constraint and multi-species
inversion system. Atmos. Chem. Phys. 12, 6699–6721. https://
www.atmos-chem-phys.net/12/6699/2012/.

Fortems-Cheiney, A., Pison, I., Dufour, G., Broquet, G.,
Berchet, A. and co-authors. 2019. Variational regional inverse
modeling of reactive species emissions with PYVAR-
CHIMERE. Geosci. Model Dev. Discuss. 2019, 1–22. https://
www.geosci-model-dev-discuss.net/gmd-2019-186/.

Ganesan, A. L., Rigby, M., Zammit-Mangion, A., Manning,
A. J., Prinn, R. G. and co-authors. 2014. Characterization of
uncertainties in atmospheric trace gas inversions using
hierarchical Bayesian methods. Atmos. Chem. Phys. 14,
3855–3864. https://www.atmos-chem-phys.net/14/3855/2014/.

Hayman, G. D., O’Connor, F. M., Dalvi, M., Clark, D. B.,
Gedney, N. and co-authors. 2014. Comparison of the
HadGEM2 climate–chemistry model against in situ and
SCIAMACHY atmospheric methane data. Atmos. Chem.
Phys. 14, 13257–13280. https://acp.copernicus.org/articles/14/
13257/2014/.

Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W.
and co-authors. 2016. Validation of the Swiss methane
emission inventory by atmospheric observations and inverse
modelling. Atmos. Chem. Phys. 16, 3683–3710. https://www.
atmos-chem-phys.net/16/3683/2016/.

Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F. and
co-authors. 2006. The LMDZ4 general circulation model:
climate performance and sensitivity to parametrized physics
with emphasis on tropical convection. Clim. Dyn. 27,
787–813. doi:10.1007/s00382-006-0158-0

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J.
and co-authors. 2018. Toward global mapping of methane with
TROPOMI: first results and intersatellite comparison to
GOSAT. Geophys. Res. Lett. 45, 3682–3689. https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1002/2018GL077259.

IPCC. 2013. Summary for policymakers. In: Climate Change
2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (ed. T. F.
Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J.
Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley),
Cambridge, United Kingdom and New York, NY, USA.
Cambridge University Press, pp. 1–30. www.
climatechange2013.org.

IPCC. 2006. IPCC Guidelines for National Greenhouse Gas
Inventories, Prepared by the National Greenhouse Gas
Inventories Programme (ed. H. S. Eggleston, L. Buendia, K.
Miwa, T. Ngara and K. Tanabe). Institute for Global
Environmental Strategies, Japan.

A PRAGMATIC PROTOCOL FOR CHARACTERISING ERRORS 21

https://bg.copernicus.org/articles/15/4683/2018/
https://bg.copernicus.org/articles/15/4683/2018/
https://www.geosci-model-dev.net/8/1525/2015/
https://www.geosci-model-dev.net/8/1525/2015/
https://doi.org/10.5194/acp-15-715-2015
https://doi.org/10.5194/acp-15-715-2015
https://www.atmos-chem-phys.net/18/901/2018/
https://www.atmos-chem-phys.net/18/901/2018/
https://www.atmos-chem-phys.net/5/2431/2005/
https://www.atmos-chem-phys.net/5/2431/2005/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014180
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014180
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.837
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.837
https://doi.org/10.1038/nature05132
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JD028907
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JD028907
https://www.atmos-chem-phys.net/11/3689/2011/
https://www.atmos-chem-phys.net/11/3689/2011/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016202
https://doi.org/10.1175/BAMS-85-4-563
https://doi.org/10.1175/BAMS-85-4-563
https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019
https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019
https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019
https://www.atmos-chem-phys.net/12/6699/2012/
https://www.atmos-chem-phys.net/12/6699/2012/
https://www.geosci-model-dev-discuss.net/gmd-2019-186/
https://www.geosci-model-dev-discuss.net/gmd-2019-186/
https://www.atmos-chem-phys.net/14/3855/2014/
https://acp.copernicus.org/articles/14/13257/2014/
https://acp.copernicus.org/articles/14/13257/2014/
https://www.atmos-chem-phys.net/16/3683/2016/
https://www.atmos-chem-phys.net/16/3683/2016/
https://doi.org/10.1007/s00382-006-0158-0
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2018GL077259
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2018GL077259
http://www.climatechange2013.org
http://www.climatechange2013.org


ISAP. 2019. Integrated Sustainability Action Plan. http://www.
stpete.org/sustainability/integrated_sustainability_action_plan.
php.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean,
M., Schaaf, E. and co-authors. 2019. EDGAR v4.3.2 Global
Atlas of the three major greenhouse gas emissions for the
period 1970–2012. Earth Syst. Sci. Data 11, 959–1002.
https://essd.copernicus.org/articles/11/959/2019/.

Jonas, M., Marland, G., Winiwarter, W., White, T., Nahorski,
Z. and co-authors. 2011. Benefits of dealing with uncertainty in
greenhouse gas inventories: introduction. In: Greenhouse Gas
Inventories: Dealing with Uncertainty, Springer Netherlands,
Dordrecht, pp. 3–18. https://doi.org/10.1007/978-94-007-1670-
4_2.

Kaminski, T., Rayner, P., Heimann, M., and and Enting, I.
2001. On aggregation errors in atmospheric transport
inversion. J. Geophys. Res. 106, 4703–4715. doi:10.1029/
2000JD900581

Koffi, E., Bergamaschi, P., Karstens, U., Krol, M., Segers, A. J.
and co-authors. 2016. Evaluation of the boundary layer
dynamics of the TM5 model. Geosci. Model Dev. Discuss. 9,
1–37.

Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M. and Denier
van der Gon, H. A. C. 2014. TNO-MACC_II emission
inventory; a multi-year (2003–2009) consistent high-resolution
European emission inventory for air quality modelling.
Atmos. Chem. Phys. 14, 10963–10976. https://www.atmos-
chem-phys.net/14/10963/2014/.

Locatelli, R., Bousquet, P., Chevallier, F., Fortems-Cheney, A.,
Szopa, S. and co-authors. 2013. Impact of transport model
errors on the global and regional methane emissions
estimated by inverse modelling. Atmos. Chem. Phys. 13,
9917–9937. https://www.atmos-chem-phys.net/13/9917/2013/.

Locatelli, R., Bousquet, P., Hourdin, F., Saunois, M., Cozic, A.
and co-authors. 2015. Atmospheric transport and chemistry
of trace gases in LMDz5B: evaluation and implications for
inverse modelling. Geosci. Model Dev. 8, 129–150. https://
gmd.copernicus.org/articles/8/129/2015/.

Lunt, M. F., Rigby, M., Ganesan, A. L. and Manning, A. J.
2016. Estimation of trace gas fluxes with objectively
determined basis functions using reversible-jump Markov
chain Monte Carlo. Geosci. Model Dev. 9, 3213–3229. https://
www.geosci-model-dev.net/9/3213/2016/.

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M.,
Couvidat, F. and co-authors. 2017. CHIMERE-2017: from
urban to hemispheric chemistry–transport modeling. Geosci.
Model Dev. 10, 2397–2423. https://www.geosci-model-dev.net/
10/2397/2017/.

Manders, A., Builtjes, P. J. H., Curier, L., Denier van der Gon,
H., Hendriks, C. and co-authors. 2017. Curriculum vitae of
the LOTOS-EUROS (v2.0) chemistry transport model.
Geosci. Model Dev. Discuss. 10, 1–53.

Manning, A. J., Doherty, S., O’ Jones, A. R., Simmonds, P. G. and
Derwent, R. G. 2011. Estimating UK methane and nitrous oxide
emissions from 1990 to 2007 using an inversion modeling
approach. J. Geophys. Res.: Atmos. 116, D02305. https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014763.

Mar�ecal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta,
J. and co-authors. 2015. A regional air quality forecasting
system over Europe: the MACC-II daily ensemble
production. Geosci. Model Dev. 8, 2777–2813. https://www.
geosci-model-dev.net/8/2777/2015/.

McNorton, J., Bousserez, N., Agust�ı-Panareda, A., Balsamo, G.,
Choulga, M. and co-authors. 2020. Representing model
uncertainty for global atmospheric CO2 flux inversions using
ECMWF-IFS-46R1. Geosci. Model Dev. Discuss. 2020, 1–30.
https://www.geosci-model-dev-discuss.net/gmd-2019-314/.

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M.,
Blond, N. and co-authors. 2013. CHIMERE 2013: a model
for regional atmospheric composition modelling. Geosci.

Model Dev. 6, 981–1028. https://www.geosci-model-dev.net/6/
981/2013/.

National Academies of Sciences, Engineering, and Medicine.
2018. Improving Characterization of Anthropogenic Methane
Emissions in the United States, 4 Addressing Uncertainties in
Anthropogenic Methane Emissions. The National Academies
Press, Washington, DC. https://www.ncbi.nlm.nih.gov/books/
NBK519298/.

Olivier, J. and Janssens-Maenhout, G. 2011. Part III: greenhouse
gas emissions. In: CO2 emissions from fuel combustion. Paris
(France): International Energy Agency (IEA). https://
publications.jrc.ec.europa.eu/repository/handle/JRC67519.

Peltola, O., Vesala, T., Gao, Y., R€aty, O., Alekseychik, P. and
co-authors. 2019. Monthly gridded data product of northern
wetland methane emissions based on upscaling eddy
covariance observations. Earth Syst. Sci. Data 11, 1263–1289.
https://www.earth-syst-sci-data.net/11/1263/2019/.

Pison, I., Berchet, A., Saunois, M., Bousquet, P., Broquet, G.
and co-authors. 2018. How a European network may help
with estimating methane emissions on the French national
scale. Atmos. Chem. Phys. 18, 3779–3798. https://www.atmos-
chem-phys.net/18/3779/2018/.

Ringeval, B., de Noblet-Ducoudr�e, N., Ciais, P., Bousquet, P.,
Prigent, C. and co-authors. 2010. An attempt to quantify the
impact of changes in wetland extent on methane emissions on
the seasonal and interannual time scales. Global Biogeochem.
Cycles 24, GB2003. https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/2008GB003354.

Ringeval, B., Friedlingstein, P., Koven, C., Ciais, P., de Noblet,
N. and co-authors. 2011. Climate-CH4 feedback from
wetlands and its interaction with the climate-CO2 feedback.
Biogeosciences 8, 2137–2157. doi:10.5194/bg-8-2137-2011

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P.
and co-authors. 2016a. The global methane budget
2000–2012. Earth Syst. Sci. Data 8, 697–751. https://www.
earth-syst-sci-data.net/8/697/2016/.

Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B. and
Canadell, J. G. 2016b. The growing role of methane in
anthropogenic climate change. Environ. Res. Lett. 11, 120207.
doi:10.1088/1748-9326/11/12/120207

Segers, A. and Houweling, S. Description of the CH4 Inversion
Production Chain. ECMWF Copernicus Report, 2017. URL
https://atmosphere.copernicus.eu/sites/default/files/2020-01/

22 B. SZÉNÁSI ET AL.

http://www.stpete.org/sustainability/integrated_sustainability_action_plan.php
http://www.stpete.org/sustainability/integrated_sustainability_action_plan.php
http://www.stpete.org/sustainability/integrated_sustainability_action_plan.php
https://essd.copernicus.org/articles/11/959/2019/
https://doi.org/10.1007/978-94-007-1670-4_2
https://doi.org/10.1007/978-94-007-1670-4_2
https://doi.org/10.1029/2000JD900581
https://doi.org/10.1029/2000JD900581
https://www.atmos-chem-phys.net/14/10963/2014/
https://www.atmos-chem-phys.net/14/10963/2014/
https://www.atmos-chem-phys.net/13/9917/2013/
https://gmd.copernicus.org/articles/8/129/2015/
https://gmd.copernicus.org/articles/8/129/2015/
https://www.geosci-model-dev.net/9/3213/2016/
https://www.geosci-model-dev.net/9/3213/2016/
https://www.geosci-model-dev.net/10/2397/2017/
https://www.geosci-model-dev.net/10/2397/2017/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014763
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014763
https://www.geosci-model-dev.net/8/2777/2015/
https://www.geosci-model-dev.net/8/2777/2015/
https://www.geosci-model-dev-discuss.net/gmd-2019-314/
https://www.geosci-model-dev.net/6/981/2013/
https://www.geosci-model-dev.net/6/981/2013/
https://www.ncbi.nlm.nih.gov/books/NBK519298/
https://www.ncbi.nlm.nih.gov/books/NBK519298/
https://publications.jrc.ec.europa.eu/repository/handle/JRC67519
https://publications.jrc.ec.europa.eu/repository/handle/JRC67519
https://www.earth-syst-sci-data.net/11/1263/2019/
https://www.atmos-chem-phys.net/18/3779/2018/
https://www.atmos-chem-phys.net/18/3779/2018/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008GB003354
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008GB003354
https://doi.org/10.5194/bg-8-2137-2011
https://www.earth-syst-sci-data.net/8/697/2016/
https://www.earth-syst-sci-data.net/8/697/2016/
https://doi.org/10.1088/1748-9326/11/12/120207
https://atmosphere.copernicus.eu/sites/default/files/2020-01/CAMS73_2018SC1_D73.5.2.2-2019_202001_production_chain_v1.pdf


CAMS73_2018SC1_D73.5.2.2-2019_202001_production_
chain_v1.pdf.

Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N.
and co-authors. 2015. Evaluating the climate and air quality
impacts of short-lived pollutants. Atmos. Chem. Phys. 15,
10529–10566. https://www.atmos-chem-phys.net/15/10529/
2015/.

Tarantola, A. 2005. Inverse Problem Theory and Methods for
Model Parameter Estimation. Society for Industrial and
Applied Mathematics, Philadelphia, PA.

Thompson, R. L., Sasakawa, M., Machida, T., Aalto, T.,
Worthy, D. and co-authors. 2017. Methane fluxes in the high
northern latitudes for 2005–2013 estimated using a Bayesian
atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572.
https://www.atmos-chem-phys.net/17/3553/2017/.

Thompson, R. L., Stohl, A., Zhou, L. X., Dlugokencky, E.,
Fukuyama, Y. and co-authors. 2015. Methane emissions in
East Asia for 2000–2011 estimated using an atmospheric
Bayesian inversion. J. Geophys. Res.: Atmos. 120, 4352–4369.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
2014JD022394.

Tsuruta, A., Aalto, T., Backman, L., Hakkarainen, J., van der
Laan-Luijkx, I. T. and co-authors. 2017. Global methane
emission estimates for 2000–2012 from CarbonTracker
Europe-CH4 v1.0. Geosci. Model Dev. 10, 1261–1289. https://
www.geosci-model-dev.net/10/1261/2017/.

Tsuruta, A., Aalto, T., Backman, L., Krol, M. C., Peters, W.
and co-authors. 2019. Methane budget estimates in Finland

from the CarbonTracker Europe-CH4 data assimilation
system. Tellus B: Chem. Phys. Meteorol. 71, 1–20. https://doi.
org/10.1080/16000889.2018.1565030.

Varon, D. J., McKeever, J., Jervis, D., Maasakkers, J. D., Pandey,
S. and co-authors. 2019. Satellite discovery of anomalously large
methane point sources from oil/gas production. Geophys. Res.
Lett. 46, 13507–13516. https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/2019GL083798.

Wang, F., Maksyutov, S., Tsuruta, A., Janardanan, R., Ito, A.
and co-authors. 2019. Methane emission estimates by the
global high-resolution inverse model using national
inventories. Remote Sensing 11, 2489. https://www.mdpi.com/
2072-4292/11/21/2489.

Wang, Y., Broquet, G., Ciais, P., Chevallier, F., Vogel, F. and
co-authors. 2017. Estimation of observation errors for large-
scale atmospheric inversion of CO2 emissions from fossil fuel
combustion. Tellus B: Chem. Phys. Meteorol. 69, 1325723.
doi:10.1080/16000889.2017.1325723

Wunch, D., Jones, D. B. A., Toon, G. C., Deutscher, N. M.,
Hase, F. and co-authors. 2019. Emissions of methane in
Europe inferred by total column measurements. Atmos. Chem.

Phys. 19, 3963–3980. https://www.atmos-chem-phys.net/19/
3963/2019/. doi:10.5194/acp-19-3963-2019

Zheng, T., French, N. H. F., and and Baxter, M. 2018.
Development of the WRF-CO2 4D-Var assimilation system
v1.0. Geosci. Model Dev. 11, 1725–1752. https://gmd.
copernicus.org/articles/11/1725/2018/.

A PRAGMATIC PROTOCOL FOR CHARACTERISING ERRORS 23

https://atmosphere.copernicus.eu/sites/default/files/2020-01/CAMS73_2018SC1_D73.5.2.2-2019_202001_production_chain_v1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2020-01/CAMS73_2018SC1_D73.5.2.2-2019_202001_production_chain_v1.pdf
https://www.atmos-chem-phys.net/15/10529/2015/
https://www.atmos-chem-phys.net/15/10529/2015/
https://www.atmos-chem-phys.net/17/3553/2017/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD022394
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD022394
https://www.geosci-model-dev.net/10/1261/2017/
https://www.geosci-model-dev.net/10/1261/2017/
https://doi.org/10.1080/16000889.2018.1565030
https://doi.org/10.1080/16000889.2018.1565030
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083798
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083798
https://www.mdpi.com/2072-4292/11/21/2489
https://www.mdpi.com/2072-4292/11/21/2489
https://doi.org/10.1080/16000889.2017.1325723
https://www.atmos-chem-phys.net/19/3963/2019/
https://www.atmos-chem-phys.net/19/3963/2019/
https://doi.org/10.5194/acp-19-3963-2019
https://gmd.copernicus.org/articles/11/1725/2018/
https://gmd.copernicus.org/articles/11/1725/2018/

	Abstract
	Introduction
	Data and model description
	Measurements
	Emissions
	Chemistry–transport models

	Methodology
	Definition of error sources
	Estimates of the representation error ɛrepr, the transport error ɛt, the transported-emission error ɛflx and the background error ɛLBC from simulated CH4 mixing ratios
	Metrics characterising errors
	Temporal sampling of error time series
	Indicators of ep characteristics

	Results and discussion
	Prior emission uncertainties ep
	Absolute values of ep
	Spatial correlations in ep
	Cross-sector and cross-sector cross-country correlations in ep
	National-scale uncertainties: comparison to estimates from other studies

	Errors in the concentration space: background error ɛLBC, representation error ɛrepr, transport error ɛt and transported-emission error ɛflx
	Absolute values of ɛLBC, ɛrepr, ɛt and ɛflx
	Ratios of ɛLBC, ɛrepr and ɛt relative to ɛflx
	Temporal patterns in ɛLBC, ɛrepr, ɛt and ɛflx
	Spatial correlations in ɛLBC, ɛrepr, ɛt and ɛflx
	Total concentration errors


	Conclusions and recommendations
	Acknowledgements
	Disclosure statement
	Funding
	Data availability statement
	Supplemental data
	References


