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a b s t r a c t

Reaction–diffusion equations (RDEs) are often derived as continuum limits of lattice-based discrete
models. Recently, a discrete model which allows the rates of movement, proliferation and death
to depend upon whether the agents are isolated has been proposed, and this approach gives
various RDEs where the diffusion term is convex and can become negative (Johnston et al., 2017),
i.e. forward–backward–forward diffusion. Numerical simulations suggest these RDEs support shock-
fronted travelling waves when the reaction term includes an Allee effect. In this work we formalise
these preliminary numerical observations by analysing the shock-fronted travelling waves through em-
bedding the RDE into a larger class of higher order partial differential equations (PDEs). Subsequently,
we use geometric singular perturbation theory to study this larger class of equations and prove the
existence of these shock-fronted travelling waves. Most notable, we show that different embeddings
yield shock-fronted travelling waves with different properties.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Reaction–diffusion equations (RDEs) are widely used to study
opulation dynamics in cell biology and ecology [1]. Often, U(x, t)
epresents a population density and provides a macroscopic de-
cription of individual behaviour. For RDEs established from the
ontinuum limit of stochastic models, a solution of the RDE not
nly shows the macroscopic evolution of U(x, t), but it also re-

flects how microscopic behaviour of individuals influences the
macroscopic outcomes [2–7]. Johnston et al. [4] introduced a
lattice-based stochastic model to study how a population of indi-
viduals can undergo motility, proliferation and death events with
the aim of studying biological and ecological invasion, see Fig. 1.
In this figure we represent individuals as agents on lattice sites
where one agent is a grouped agent if it has at least one occupied
neighbouring lattice site and it is an isolated agent otherwise.
During each time step of duration τ , isolated agents attempt to
move to nearest neighbour lattice sites with a probability P i

m,
ttempt to proliferate to form new agents in neighbour sites
ith a probability P i

p and to die with a probability P i
d. Similarly,

rouped agents attempt to move to neighbour sites with a proba-
ility Pg

m, attempt to proliferate to form new agents in neighbour
ites with a probability Pg

p and to die with a probability Pg
d . By
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considering these different behaviours of isolated and grouped
agents, including motility, proliferation and death events, an RDE
with a nonlinear diffusivity function and a logistic or Allee type
reaction term was derived as the continuum limit. In particular,

∂U
∂t

=
∂

∂x

(
D(U)

∂U
∂x

)
+ R (U) , (1)

here U(x, t) represents the total population density at position
∈ R and time t ∈ R+.
The nonlinear diffusivity function is given by

(U) = 3(Di − Dg )U2
− 4(Di − Dg )U + Di, (2)

here Di ≥ 0 and Dg ≥ 0 are diffusivities of the isolated and
rouped agents, respectively. When Di > 4Dg , D(U) has two real

roots, α and β , which are centred around 2/3, and are given by

α =
2
3

(
1 −

√
Di − 4Dg

4(Di − Dg )

)
, β =

2
3

(
1 +

√
Di − 4Dg

4(Di − Dg )

)
, (3)

and D(U) < 0 for U ∈ (α, β). While the negativity of a nonlinear
diffusivity function is sometimes related to aggregation in the
underlying discrete model [8], here it is actually a macroscopic
effect of the isolated and the grouped motility of the agents, to-
gether with competition for space, that leads to a net aggregation
effect [4]. The condition Di > 4Dg implies that the motility rate of
isolated agents is greater than the motility rate of grouped agents,
which is consistent with the common biological observation that
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic depiction of the evolution rules of the lattice-based model
introduced in [4]. Pink discs represent isolated agents and blue discs represent
grouped agents. During each time step of duration τ , isolated agents attempt
o move to nearest neighbour lattice sites with a probability P i

m , attempt to
roliferate to form new agents in neighbour sites with a probability P i

p and
to die with a probability P i

d . Similarly, grouped agents attempt to move to
neighbour sites with a probability Pg

m , attempt to proliferate to form new agents
in neighbour sites with a probability Pg

p and to die with a probability Pg
d . The

attempts that would move to an occupied site or place an agent on an occupied
site are aborted. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

isolated leader cells are more motile than follower cells [9,10]. Note
that Di and Dg are related to P i

m and Pg
m, respectively, in the lattice-

based model in Fig. 1. Full details of the discrete model and the
continuum limit derivation are given in [4]. We note that other
motility mechanisms can also generate nonlinear diffusion terms.
For example, a different motility mechanism that determines the
direction of moving based on the occupancy of the neighbouring
cells provides a range of nonlinear diffusion terms in [11].

The reaction term, whose parameters are also related to pa-
rameters in the lattice-based model depicted in Fig. 1, is given by

R (U) = λgU(1 − U) + (λi − λg − Ki + Kg )U(1 − U)2 − KgU, (4)

where λi ≥ 0 and λg ≥ 0 are the proliferation rates of isolated
and grouped agents, respectively; Ki ≥ 0 and Kg ≥ 0 are the
death rates of isolated and grouped agents, respectively [4]. If
the proliferation mechanism is the same for isolated and grouped
agents and no death event occurs, that is, λi = λg and Ki = Kg =

0, then (4) simplifies to a logistic reaction term

R(U) = λgU(1 − U). (5)

If the proliferation and death mechanisms are either competitive
or co-operative, that is, λi ̸= λg and Ki ̸= Kg [12,13], then the
reaction term takes the form of an Allee effect [13]. For simplicity,
but without loss of generality, we assume Kg = 0.1 Subsequently,
(4) simplifies to

R(U) = rU(1 − U)(U − A), (6)

where r = Ki−λi+λg is the intrinsic growth rate and A = 1−λg/r
is the Allee parameter [4]. If r > λg , which is equivalent to Ki > λi
and thus implies that isolated agents have a higher death rate
than proliferation rate, then 0 < A < 1 and R(U) < 0 in (0, A)
and R(U) > 0 in (A, 1). This represents the strong Allee effect.
Conversely, if 0 < r < λg , which implies that isolated agents
have a higher birth rate than death rate, then A < 0 and R(U) > 0
in (0, 1). This is called the weak Allee effect [4]. See Fig. 2 for the
different potential forms of R(U). For simplicity, we assume that
A ̸= α and A ̸= β .

1 Although we assume Ki = Kg = 0 to obtain the logistic reaction term
5) and Kg = 0 to obtain the Allee reaction term (6), similar reaction terms are
btained without these assumptions by scaling the population density U(x, t) [4].
2

Understanding travelling wave solutions, that is, solutions that
propagate through space with a fixed shape and a constant speed,
is important in the study of biological and ecological invasion
processes [14–17]. In this work, we are interested in travelling
wave solutions supported by (1) with Di > 4Dg , such that the
nonlinear diffusivity function is negative for U ∈ (α, β), see (3).
In this case, the nonlinear diffusivity function can be written as

D (U) = 3(Di − Dg )(U − α)(U − β), (7)

that is, D(U) changes its sign twice for U ∈ [0, 1]. The correspond-
ing forward–backward–forward diffusion operator is known in
the theory of phase transitions where sharp interfaces between
two different phases may occur, for example, in the process
of spinodal decomposition modelled by the Cahn–Hilliard equa-
tion [18]. This differs from classical conservation (or balance) laws
such as transport equations which also support sharp-fronted
solutions.

With the implicit finite difference method introduced in [4],
numerical solutions of (1) with D(U) as in (7) and with either
logistic or weak Allee forms for R(U) lead to smooth travelling
wave solutions with positive speeds, while simulations of (1) with
D(U) as in (7) and strong Allee forms for R(U) lead to shock-
fronted travelling wave solutions with either positive or negative
speeds [4,6], see Fig. 3 for different travelling wave solutions at
t = t1, t2, t3, with t1 < t2 < t3. To calculate the wave speed, we
locate the front of the wave by looking for the left-most coordi-
nate xl satisfying U(xl, t) < 10−3. Then, we estimate the speed
from the distance the front of the wave has travelled from t2 to
t3. We observe that the propagation direction of a travelling wave
solution nontrivially depends on the nonlinearities in Fig. 3. It is
of our interest to further explore this relationship between the
speed of travelling wave solutions and the nonlinear diffusion and
reaction terms. We will show that, with a varying reaction term,
the speed of a shock-fronted travelling wave solution changes
continuously from positive to negative, see Fig. 7(c). On the other
hand, the speeds of the shock-fronted travelling wave solutions
are much smaller than the speeds of the smooth travelling wave
solutions, which potentially indicates that the dynamics giving
rise to shock-fronted travelling waves are different to the dynam-
ics that give rise to smooth travelling waves. Note that with the
nonlinear diffusivity function D(U) centred around 2/3 given by
(2) we only observe shock-fronted travelling wave solutions with
the strong Allee effect. However, a forward–backward–forward
nonlinear diffusivity function which is not centred around 2/3
may also lead to shock-fronted travelling wave solutions with
logistic or weak Allee forms of R(U), see Figures 9 and 10 in [6]
or an example.

Ferracuti et al. [19] showed that there exist smooth travelling
ave solutions of (1) with logistic R(U) for a range of positive
ave speeds based on the comparison method [20]. Kuzmin and
uggerini [21] provided necessary conditions for the existence of
mooth travelling wave solutions of (1) with R(U) that takes the
orm of an Allee effect and the speed of the wave can be either
egative or positive according to the shape of D(U) and R(U).
owever, to the best of our knowledge, the existence of shock-
ronted travelling wave solutions to (1) with D(U)(7) and R(U)
taking the form of an Allee effect is an open question. The meth-
ods used in [21] can also be used to identify necessary conditions
for the existence of shock-fronted travelling wave solutions. In
particular, let U1 and U2 (with U1 ≤ α < β ≤ U2) denote the U-
values at the endpoints of the shock, then a necessary condition
for the existence of a monotonically decreasing shock-fronted
left-travelling wave solution is∫ Ua

D(U)R(U)dU < 0 , (8)

0
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Fig. 2. (a) The nonlinear diffusivity function D(U)(2) centred around 2/3 (dashed line). (b) The reaction term R(u) corresponding to the logistic growth with λg = 1
(red), the weak Allee effect with r = 0.8 and A = −0.9 (blue), and the strong Allee effect with r = 3 and A = 0.3 (green). (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Travelling wave solutions of (1) evolving from a Heaviside initial condition, U = 1 for x ∈ [−20, 40] and U = 0 for x ∈ (40, 120], with Di = 0.25 and Dg = 0.05
such that D(U) = 0.6U2

− 0.8U + 0.25 in (a), (e), (g), Di = 0.025 and Dg = 0.005 such that D(U) = 0.06U2
− 0.08U + 0.025 in (c) and for different R(U). The implicit

inite difference method we used had no-flux boundary conditions, a time step δt = 0.01, a space step δx = 0.1 and an error tolerance 10−6 . With a logistic type
(U) = 0.75U(1 − U), (a) shows a travelling wave solution with speed c = 0.86 at t1 = 20, t2 = 40, t3 = 60. With a weak Allee type R(U) = 0.5U(1 − U)(U + 0.2),

where λi = 0.5, λg = 0.6 and Ki = 0.4, (c) shows a smooth travelling wave solution with c = 0.098 at t1 = 100, t2 = 200, t3 = 300. With a strong Allee type
R(U) = 0.5U(1−U)(U −0.2), where λi = 0.4, λg = 0.4 and Ki = 0.5, (e) shows a shock-fronted travelling wave solution with positive speed c = 0.0123 at t1 = 1000,
t2 = 2000, t3 = 3000. With a different strong Allee type R(U) = 0.3U(1 − U)(U − 1/3), where λi = 0.4, λg = 0.2 and Ki = 0.5, (h) shows a shock-fronted travelling
ave solution with negative speed c = −0.0127 at t1 = 500, t2 = 1000, t3 = 1500. (b) & (d) show the derivatives of the last simulated travelling wave solutions

n (a) & (c) and highlight the smoothness of the waves. (f) & (h) show the derivatives of the last simulated travelling wave solutions in (e) & (g) and highlight the
hocks in these waves.
W
t
−

or all Ua ∈ (0,U1). Similarly, a necessary condition for the
xistence of a monotonically decreasing shock-fronted right-
ravelling wave solution is∫ 1

Ub

D(U)R(U)dU > 0 , (9)

for all Ub ∈ (U2, 1). We refer to Appendix A for a derivation,
inspired by [21], of these necessary conditions. Heuristically this
means that for shock-fronted travelling wave solutions with a
positive speed, the A value in R(U), in order to satisfy (9), should
not be too close to 1. Since A = 1− λg/r where r = Ki − λi + λg ,
this implies that a relatively much higher death rate of isolated
agents compared to the birth rate of isolated agents will not result
in a successful invasion event. Similarly, a very small birth rate of
grouped agents will also not result in a successful invasion event.

In [6], we derived, among other things, the same condition as
in [19] for the existence of smooth travelling wave solutions of (1)
with logistic R(U) by using a geometric approach. Furthermore,
geometric approaches have been used to study shock-fronted
travelling wave solutions. For example, in [16,17], the authors
studied shock-fronted travelling wave solutions in an advection–
reaction–diffusion equation for malignant tumour invasion using
geometric singular perturbation theory (GSPT) [22–24] and ca-
nard theory [25–27]. In this work, we use GSPT to further explore
3

the existence of shock-fronted travelling wave solutions of (1)
with limx→−∞ U(x, t) = 1 and limx→∞ U(x, t) = 0.2 Moreover,
we assume Di > 4Dg – such that D(U) < 0 for U ∈ (α, β) –
and Kg = 0 and r > λg – such that we have a strong Allee
effect type R(U). To apply GSPT, we smooth out the shock and
regularise (1) by adding a small higher order perturbation term.
This embeds (1) into a larger class of PDEs. Regularisation of
RDEs is typically considered in one of two ways [28,29]. The first
method of regularisation accounts for non-local effects by adding
a small fourth-order spatial derivative term [29,30]. In particular,
Eq. (1) becomes

∂U
∂t

=
∂

∂x

(
D(U)

∂U
∂x

)
+ R(U) − ε2

∂4U
∂x4

, 0 ≤ ε ≪ 1. (10)

ithout the reaction term, that is, R(U) ≡ 0, (10) simplifies
o the Cahn–Hilliard equation where the regularisation term
ε2∂4U/∂x4 represents the interfacial energy contribution to the

2 U ≡ 0 and U ≡ 1 are both constant solutions of (1) with the logistic R(U)
and the weak and strong Allee type R(U). However, U ≡ 0 and U ≡ 1 are both
PDE stable for the strong Allee type R(U), while only U ≡ 1 is PDE stable for
the logistic R(U) and the weak Allee type R(U). Therefore, it is no surprise that
left-moving travelling wave solutions are only found for the strong Allee type
R(U), see Fig. 3.
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hemical potential [30]. Studies of the Cahn–Hilliard equation
nspire us to consider F (U) =

∫
D(U)dU , which represents a bulk

chemical potential [29], in constructing solutions of (10).
The second method of regularisation accounts for viscous re-

laxation by adding a small mixed derivative term [28,31,32]. In
particular, Eq. (1) becomes

∂U
∂t

=
∂

∂x

(
D(U)

∂U
∂x

)
+ R(U) + ε

∂3U
∂x2∂t

, 0 ≤ ε ≪ 1. (11)

The reason for considering a perturbation term of order ε, rather
than ε2, will become apparent in Section 3 when we apply a
dynamical system approach to construct the travelling wave so-
lution. It is important that the sign of the perturbation terms in
(10) and (11) is such that setting ε > 0 generally leads to well-
posed problems. However, see [6] and references therein, for a
further discussion related to the well-posedness of (1). Also note
that other types of regularisations have been used to smooth out
shocks [33].

In Section 2, we study travelling wave solutions of (10) and
first derive a higher-dimensional slow-fast system of ordinary dif-
ferential equations (ODEs). The related reduced singular limit ODE
systems give useful information of underlying shock-fronted trav-
elling wave solutions of (1) and (10) based on GSPT and Fenichel
theory [22]. Because the reduced systems are algebraically in-
tractable, we use a numerical ODE solver to determine the speed
of the shock-fronted travelling wave solutions. In Section 3, we
use a similar approach to establish a different higher-dimensional
system of ODEs based on the viscous relaxation PDE (11) and
find shock-fronted travelling wave solutions with different prop-
erties. Note that in this case, GSPT has to be extended since the
critical manifold loses normal hyperbolicity near a fold point.
Although (10) and (11) are the same in the singular limit ε = 0,
they yield shock-fronted travelling wave solutions with different
speeds and different shock sizes when ε > 0. Finally, we discuss
various extensions of the current work including the relationship
between the discrete model and the continuous description, the
option of including different regularisation terms, the possibility
of shock-fronted travelling wave solutions with logistic R(U) and
the spectral stability of travelling wave solutions of (1).

Remark 1. In the remainder of this article we will use nonlinear
diffusivity functions D(U) (2) and reaction terms R(U) (4) that
are larger than the D(U) and R(U) used in Fig. 3 to generate
larger speeds. As the model based on (1) is dimensionless, those
larger parameters in D(U) and R(U) still correspond to the pa-
rameters introduced in the latticed-based model in Fig. 1 upon
rescaling space and/or time. However, note that the connection
between the discrete and continuum models is only accurate
when the rate of motility of both the grouped and isolated agents
is much greater than rate of proliferation and death of both the
grouped and isolated agents and this should be kept in mind
when rescaling space and/or time. For more details, see [4].

2. Non-local regularisation

In this section, we look for shock-fronted travelling wave
solutions of (10) connecting U = 1 to U = 0. We first introduce a
travelling wave coordinate to transform (10) into a fourth-order
ODE. Next, we use a dynamical system approach to transform the
ODE into a four-dimensional singular perturbed slow-fast system.
The four-dimensional system has two equivalent forms as ε ̸= 0.
However, these forms produce different lower-dimensional sub-
systems, called the reduced problem and the layer problem in the
singular limit ε = 0.3 The concatenation of solutions of each of

3 The reduced problem is called the slow reduced system and the layer
roblem is called the fast reduced system in studies of phase separation, see

for example [34].
 a

4

the subsystems yields a solution of the four-dimensional system
in the singular limit. We give an outline, and conclude based
on GSPT, that it persists for ε sufficiently small in the full four-
dimensional system. This solution corresponds to a travelling
wave solution of (10).

2.1. Preliminary observations

A travelling wave solution of (10) is a solution of the form
U(x, t) = u(x − ct) = u(z), where c ∈ R is the constant speed
f the travelling wave solution and z = x − ct is the travelling
ave coordinate. Writing (10) in its travelling wave coordinate

eads to
∂U
∂t

= −
∂

∂z

(
ε2
∂3U
∂z3

− cU −
∂

∂z
(F (U))

)
+ R(U), (12)

here F (U) =
∫
D(U)dU and the reaction term R(U) (6) is

f strong Allee effect type. A travelling wave solution u(z) is a
tationary solution to (12) that asymptotes to one as z → −∞

nd to zero as z → ∞. Thus, it satisfies

=
d
dz

(
ε2

d3u
dz3

− cu −
d
dz

(F (u))
)

− R(u). (13)

pon defining

:= ε2
d3u
dz3

− cu −
d
dz

(F (u)), v := ε2
d2u
dz2

− F (u), w := ε
du
dz
,

(14)

(13) transforms into a four-dimensional singular perturbed slow-
fast dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
du
dz

= w,

ε
dw
dz

= v + F (u),

dp
dz

= R(u),

dv
dz

= p + cu.

(15)

Here, (u, w) ∈ R2 are fast variables and (p, v) ∈ R2 are slow
variables. By using a stretched, or fast variable, ξ = z/ε [22], (15)
is transformed into an equivalent fast system, provided ε ̸= 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dξ

= w,

dw
dξ

= v + F (u),

dp
dξ

= εR(u),

dv
dξ

= ε(p + cu).

(16)

The three fixed points4 of the two equivalent systems (15) and
(16) are

P0
ε = (0, 0, 0,−F (0)), P1

ε = (1, 0,−c,−F (1)), PA
ε = (A, 0,−cA,−F (A)),

(17)

nd we are interested in heteroclinic orbits connecting P1
ε with

0
ε as these correspond to travelling wave solutions of (10) that

4 Even though the fixed points are independent of ε, we use the subscript ε
o indicate that these are fixed points of the full four-dimensional systems (15)
nd (16).
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symptote to 1 as x → −∞ and to 0 as x → ∞. Note that due to
he symmetry (w, p, z, c) ↦→ (−w,−p,−z,−c) of system (15),
he existence of a heteroclinic orbit connecting P1

ε with P0
ε also

mplies the existence of a heteroclinic orbit connecting P0
ε with

P1
ε and this latter orbit corresponds to a travelling wave solution

of (10) that asymptotes to 0 as x → −∞ and to 1 as x → ∞ and
moves in the opposite direction.

The characteristic equation of the Jacobian of (16) is given by

τ 4 − D(u)τ 2 − ετ c − ε2R′(u) = 0, (18)

where we used that F ′(u) = D(u) and observe that u = 0, 1 or
A at a fixed point. Upon substituting a regular expansion τ =

τa + ετb + O(ε2) into (18), we obtain an expansion for the four
eigenvalues of the Jacobian

τ±

1 (u) =
−c ±

√
c2 − 4D(u)R′(u)
2D(u)

ε + O(ε2),

τ±

2 (u) = ±

√
D(u) +

c
2D(u)

ε + O(ε2).
(19)

t P0
ε , R

′(0) < 0, D(0) > 0, thus τ+

1,2(0) > 0, τ−

1,2(0) < 0. Similarly,
at P1

ε , R
′(1) < 0, D(1) > 0 and τ+

1,2(1) > 0, τ−

1,2(1) < 0. That is,
oth the stable and unstable manifolds P0,1

ε are two-dimensional.
t PA

ε , the stable and unstable manifolds depend on the sign of c .
f c > 0, the stable manifold of PA

ε is three-dimensional and the
nstable manifold of PA

ε is one-dimensional, while the situation
or the stable and unstable manifolds of PA

ε is the opposite for
c < 0. For c = 0, that is, for a standing wave, we again have that
the stable and unstable manifold of PA

ε are two-dimensional.
While the slow system (15) and the fast system (16) are equiv-

alent for ε ̸= 0, they have different singular limits. The singular
limit of the fast system, that is, the layer problem, describes the
dynamics near the shock and the fast variables (u, w) will change
significantly here while the slow variables (p, v) are to leading
order constant. In contrast, the singular limit of the slow system,
that is, the reduced problem, describes the dynamics away from
the shock and here the fast variables will be slaved to the slow
variables.

2.2. Layer problem

The layer problem is obtained by letting ε → 0 in the fast
system (16), which gives⎧⎪⎪⎨⎪⎪⎩

du
dξ

= w,

dw
dξ

= v + F (u),
(20)

s well as dp/dξ = 0 and dv/dξ = 0, that is, (p, v) ∈ R2 are
onstants in (20). The union of fixed points of (20)

0 := {(u, w, p, v) ∈ R4
: w = 0, F (u) = −v}, (21)

orms a two-dimensional invariant manifold, which is the so-
alled critical manifold [24], see Fig. 4. In this figure we show
projection of the four-dimensional phase plane of (15) and

he critical manifold M0, where the projection of the hetero-
linic orbit on the two subsystems indicates the dynamics of a
hock-fronted travelling wave solution in the singular limit.
The Jacobian of (20) is

=

(
0 1

D(u) 0

)
,

ith eigenvalues

(u, w) = ±

√
D(u). (22)
±

5

Therefore, the manifold M0 loses normal hyperbolicity when
D(u) ≤ 0, that is, for u ∈ [α, β] the eigenvalues τ±(22) are purely
maginary. As such, we split the critical manifold M0 into two
wo-dimensional normally hyperbolic saddle-type branches

M+

0 := {(u, w, p, v) ∈ R4
: w = 0, F (u) = −v, u ∈ [0, α)},

M−

0 := {(u, w, p, v) ∈ R4
: w = 0, F (u) = −v, u ∈ (β, 1]},

a two-dimensional not normally hyperbolic centre-type branch

M0
0 := {(u, w, p, v) ∈ R4

: w = 0, F (u) = −v, u ∈ (α, β)},

and the two one-dimensional boundary sets

F+

0 := {(u, w, p, v) ∈ R4
: w = 0, F (u) = −v, u = α},

F−

0 := {(u, w, p, v) ∈ R4
: w = 0, F (u) = −v, u = β}.

The layer problem (20) describes the dynamics near the shock
away from the critical manifold. It is a Hamiltonian system and,
as such, we are looking for a heteroclinic orbit connecting M−

0
with M+

0 . The Hamiltonian of (20) is given by

H(u, w) = −
1
2
w2

+ G(u) + vu,

here G(u) =
∫
F (u) du. Any solution is confined to a level set of

he Hamiltonian and we have that

(u+) + vu+
= G(u−) + vu−,

here u±
∈ M±

0 are the end-points of the heteroclinic orbit such
hat 0 < u+ < α < β < u− < 1. This is equivalent to the integral
quation∫ u−

u+

(F (u) + v) du = 0, (23)

hich is the well-known equal area rule, see, for example, [30].
ecall that F (u) =

∫
D(u) du and F (u) thus has an integration

onstant. Therefore, for a specific F (u) the value of v satisfying the
qual area rule (23) is unique. In Appendix B we show that (20)
upports two heteroclinic orbits connecting (u+, 0) and (u−, 0)
nd these heteroclinic orbits

(
u0,±
h , w

0,±
h

)
are given by

u0,±
h (ξ ) =

u−
+ u+

2
±

u−
− u+

2
tanh

(
−

a(u−
− u+)
2

ξ

)
,

w
0,±
h (ξ ) = ∓

a(u−
− u+)2

4
sech2

(
−

a(u−
− u+)
2

ξ

)
,

where a =
√
(Di − Dg )/2 and we recall that u− > u+ by

construction. See Fig. 5. We note that, although the manifold M0
loses normal hyperbolicity when D(u) ≤ 0, it will not influence
the construction of the solution as the corresponding slow dy-
namics takes place fully on the normally hyperbolic branches
M±

0 . In contrast, the loss of normal hyperbolicity becomes crucial
in Section 3 where we study travelling wave solutions for the
viscous relaxation model (11).

2.3. Reduced problem

The reduced problem is obtained from (15) by letting ε → 0,
which gives⎧⎪⎨⎪⎩

dp
dz

= R(u),

dv
= p + cu,

(24)
dz
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(
v

a
(

M

Fig. 4. (a) A projection of the four-dimensional phase plane of (15) and the critical manifold M0 . A shock-fronted travelling wave solution of (10) as shown in (b)
corresponds to a heteroclinic orbit (indicated in blue in (a)) that starts at P1

ε on the normally hyperbolic branch M−

0 of M0 and that follows the dynamics of the
reduced problem (RP), whose projection on the (u, p)-plane is shown in (c), before it jumps to the other normally hyperbolic branch M+

0 according to the dynamics
of the layer problem (LP). The projection of the layer dynamics on the (u, w)-plane, since p and v are constant, is shown in (d) and the two blue curves connecting
u− and u+ in (a) correspond to the heteroclinic orbits

(
u0,±
h , w

0,±
h

)
in (d). On M+

0 , the heteroclinic orbit again follows the dynamics of the reduced problem and

asymptotes to P0
ε . A shock-fronted travelling wave solution is thus composed by orbits in the reduced problem and the layer problem as indicated in (b). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. (a) & (b) The case when u+ and u− satisfy the equal area rule (23) with D(u) = 6(u− 7/12)(u− 3/4) leading to F (u) = 2u3
− 4u2

+ 21u/8 and v = −61/108.
c) The related phase plane of (20) including the two heteroclinic orbits

(
u0,±
h , w

0,±
h

)
. (d) & (e) The case when u+ and u− do not satisfy the equal area rule with

= −163/288. (f) The related phase plane.
T

n
f
M

nd the two algebraic constraints w = 0 and v+F (u) = 0. Hence,
24) simplifies to⎧⎪⎨⎪⎩

−D(u)
du
dz

= p + cu,

dp
dz

= R(u).
(25)

oreover, since w = 0 and F (u) = −v, (25) governs the flow on
the critical manifold M . The reduced problem is singular along
0

6

the two lines u = α and u = β since D(α) = D(β) = 0.
herefore, we transform (25) into a desingularised system5 by

5 Deriving the desingularised system from (25) is, strictly speaking, not
ecessary for our analysis as we only need to consider (25) on M±

0 away
rom α and β since the heteroclinic orbit of the layer problem jumps from

−

0 ∋ u− > β to M+

0 ∋ u+ < α, see Figs. 4 and 5. However, the desingularised
system is more amenable to analysis and we thus study the dynamics of this
desingularised system.
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sing a stretched variable dψ = dz/D(u) [6,35]⎧⎪⎪⎨⎪⎪⎩
du
dψ

= −p − cu,

dp
dψ

= D(u)R(u).
(26)

t is important to note that, while the stretching changes the
peed along a trajectory in a nonlinear fashion, the trajectories
f the phase portraits of the reduced problem (25) and the desin-
ularised problem (26) are the same. However, the orientation
long a trajectory is reversed for u ∈ (α, β) as D(u) < 0.
System (26) has five fixed points (0, 0), (α,−cα), (A,−cA),

β,−cβ) and (1,−c). The eigenvalues and eigenvectors of the
Jacobian of (26) are given by

τ± =
−c ±

√
c2 − 4(D(u)R′(u) + D′(u)R(u))

2
, E± = (1,−τ∓).

f we let χ1 be the minimum of the set {A, α, β}, χ3 its maximum,
nd χ2 the remaining element, then the characteristics of D(u)
nd R(u) yield the following results:

• (0, 0), (1,−c) and (χ2,−cχ2) are saddles; and
• (χi,−cχi), i ∈ {1, 3}, is a(n)

– stable node for c > 2
√
D(χi)R′(χi);

– stable spiral for 0 < c < 2
√
D(χi)R′(χi);

– centre for c = 0;
– unstable spiral for −2

√
D(χi)R′(χi) < c < 0; and

– unstable node for c < −2
√
D(χi)R′(χi).

2.4. The construction of the heteroclinic orbit in the singular limit

Since the fixed points P0,1
ε (17) are on the normally hyperbolic

branches M±

0 of the critical manifold M0, a shock-fronted trav-
elling wave solution to (10) corresponds to a heteroclinic orbit of
(15) that, to leading order, starts on M−

0 , follows the dynamics of
the reduced problem (25) before it jumps, according to the layer
dynamics (20), to the other normally hyperbolic branch M+

0 on
which it asymptotes to P0

ε following the dynamics of (25) again.
In particular, if we split the spatial domain z ∈ (−∞,∞) into
three parts

z ∈ I−s := (−∞,−
√
ε) , z ∈ If := [−

√
ε,

√
ε] , z ∈ I+s := (

√
ε,∞) ,

(27)

here, without loss of generality, we centre the shock interval If
round the origin due to the translation invariance of (12), then
he heteroclinic orbit is, to leading order, on M±

0 and governed
y the reduced problem (25) for z ∈ I±s , while it is, to leading
rder, governed by the layer problem (20) for z ∈ If , see Fig. 4.
Since w = 0 and F (u) = −v on the critical manifold,

he fixed points (0, 0) and (1,−c) of the reduced problem (25)
orrespond to P0

ε and P1
ε , respectively. Furthermore, the analysis

f the layer problem (20) – which is independent of the speed c
indicates there may exist shocks with endpoints u− (> β) and

+ (< α). Consequently, if there exists a shock-fronted travelling
ave solution of (10) with a shock from u− to u+, it relates to
wo trajectories in system (25), see also Fig. 4. These, in turn,
elate to two corresponding trajectories in the desingularised
ystem (26). One is the unique trajectory γ+, for a given speed
, that starts on the line {(u+, p+), p+

∈ R} and approaches
0, 0) as ψ → ∞, while the other one is the unique trajectory
− that arrives at the line {(u−, p−), p−

∈ R} and approaches
1,−c) as ψ → −∞. Note that these unique trajectories can
ntersect the lines {(u±, p±), p±

∈ R} multiple times, see, for
nstance, Fig. 6(a). However, only the first intersections may lead
7

Fig. 6. (a)–(c) Phase planes of the desingularised system (26) for different values
of c with D(u) = 6(u− 7/12)(u− 3/4) and R(u) = 5u(1− u)(u− 1/5). The green
and black dots are fixed points and red points are the endpoints u± of the
fast jump (as derived from the layer problem). The black solid lines are the
nullclines p = −cu. The red straight solid line in (b) indicates the shock from
u−, p−

∗
) to (u+, p+

∗
), while the grey straight lines in (a) & (c) cannot lead to

hocks as p+
∗

̸= p−
∗
. With c = 0.197, it leads to a feasible desingularised system

here p+
∗

= p−
∗
. (d) The difference ∆p = p+

∗
− p−

∗
as a function of c shows that

p = 0 for c = c0 ≈ 0.197. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

o monotone travelling wave solutions. Therefore, we only look
or these first intersections. As p is a slow variable, it should,
o leading order, hold constant at the endpoints of the shock
dp/dξ = 0 in the singular limit). Hence, we are interested in
he speeds c0 for which the p-value of the trajectory γ− at u−,
say p−

∗
, is the same as the p-value of the trajectory γ+ at u+, say

p+
∗
, see Fig. 6(b). These c-values determine the actual speed of the

shock-fronted travelling wave solution.
As the stable and unstable manifolds of (0, 0) and (1,−c)

are algebraically too complicated to study analytically, we use
numerical tools to detect the speeds leading to a feasible desin-
gularised system (26). In particular, we use the function ode45
in MATLAB to obtain the phase plane of (26) and then calculate
∆p := p+

∗
− p−

∗
for different speeds c . Note that we locate the

initial points of trajectories approaching (0, 0) or (1,−c) with a
small step along their eigenvectors. We find the crossing point of
the trajectory leaving from (1,−c) and the straight line u = u− as
(u−, p−

∗
) and the crossing point of the trajectory arriving at (0, 0)

and the straight line u = u+ as (u+, p+
∗
). Finally, we calculate ∆p

as function of c .
As shown in Fig. 6, for a given prototypical D(u) = 6(u −

7/12)(u − 3/4) and R(u) = 5u(1 − u)(u − 1/5), the difference
between two p-values at u± is zero when c = c0 ≈ 0.197,
that is, the phase plane of (26) aligns the endpoints of the shock
u−

→ u+ when c = c0 ≈ 0.197. Thus, in the singular
limit ε → 0, we expect that (10), with the given D(u) and
R(u), supports a shock-fronted right-travelling wave solution with
speed c = c0 ≈ 0.197, see Fig. 3(b).

We now consider two methods to numerically obtain the
shock-fronted travelling wave solutions. First, we solve the ODEs
system (15) with Matlab’s ODE solver ‘bvp4c’ in Fig. 7(a). Next, we
simulate solutions of the perturbed PDE (10) with the method of
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Fig. 7. The comparison between numerical and analytical asymptotic results. (a) Numerical simulation of (15) with D(u) = 6(u−7/12)(u−3/4), R(u) = 5u(1−u)(u−1/5)
nd ε = 10−5 obtained using Matlab ODE solver ‘bvp4c’ with space step δx = 0.05. Boundary conditions are u(−20) = 1, w(−20) = 0, w(120) = 0, p(−20) =

c, v(120) = −F (0) and q(−20) = −5 (where dq/dz = u). With an initial guess c0 = 0.197 based on the asymptotic result, the ODE solver generates c = 0.1971. (b)
he numerically obtained (u, p)-trajectory in terms of the stretched variable ψ (green line) superimposed onto the phase plane of the desingularised system (26) with

c = c0 = 0.197. (c) The numerically (green) and analytically (red) obtained speeds for a varying reaction term of the form R(u) = 5u(1 − u)(u − A) with A ∈ (0, 0.5).
In (c), we again use the analytical asymptotic speed as the initial guess to obtain the numerical speed. (d) Numerical simulation of the regularised PDE (10) with
ϵ = 10−5 and space step δx = 0.005. We consider a Heaviside initial condition with no-flux boundary conditions and obtain c ≈ 0.209. (e) The numerically obtained
(u, p)-trajectory in terms of the stretched variable ψ (green line) superimposed onto the phase plane of the desingularised system (26) with c = 0.197. (f) The
numerically (orange) and analytically (red) obtained speeds for a varying reaction term R(U) = 5U(1−U)(U−A) with A ∈ (0, 0.5). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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lines in Fig. 7(d). As numerically solving (10) is time-consuming,
we consider a smaller domain x ∈ [0, 30] compared to the
domain x ∈ [−20, 120] in Fig. 3, and a Heaviside initial condition
U = 1 for x ∈ [0, 15] and U = 0 for x ∈ (15, 30]. We further
compare the numerical results with our analytical results from
the singular limit. With the diffusivity function and reaction term
as above, the numerical results and analytical asymptotic results
to leading order coincide, see Figs. 7(b) and (d). Furthermore,
in Figs. 7(c) and (f), we compare the numerical and analytical
asymptotic speeds for reaction terms of the form R(u) = 5u(1 −

u)(u − A) with varying A. Again, the numerical and analytical
asymptotic speeds to leading order coincide.

2.5. Persistence analysis

For c = c0, the orbit in the layer problem connecting u− to
+ and the orbits in the reduced problem and desingularised
roblem connecting 1 to u− and connecting u+ to 0 form a
omplete heteroclinic orbit connecting 1 to 0 in the singular limit
→ 0. Below we will argue that such solution persists in the

our-dimensional system (15) for sufficiently small ε, i.e. 0 <

≪ 1. Note that we do not present the full proof for the
ersistence claim – which follows from geometric singular per-
urbation theory (GSPT) based on Fenichel’s persistence theorems
22–24] since M±

0 are normally hyperbolic – because this is
ather standard, but quite technical, at this stage. Instead, we
rovide some heuristic arguments for the persistence.
The endpoints of the heteroclinic orbit in the full system (15)

re P0
ε and P1

ε (17) and the heteroclinic orbit lies in the intersec-
ion of the two-dimensional stable manifold of P0

ε , W
s(P0

ε ), and
he two-dimensional unstable manifold of P1

ε , W
u(P1

ε ), see (19).
his intersection will generically not be transversal since the full
ystem is four-dimensional, i.e. 2+2−1 < 4. Therefore, we extend
8

the full system (15) to a five-dimensional system by appending it
with an equation for the unknown speed {c ′

= 0}. That is, we
hreat c as a variable and not as an unknown parameter. In the
xtended system the heteroclinic orbit now lies in the intersec-
ion of the three-dimensional centre stable manifold Wcs(P0

ε ) and
he three-dimensional centre unstable manifold Wu(P1

ε ) and this
ntersection will generically be transversal since the full system
s five-dimensional, i.e. 3 + 3 − 1 = 5. Typically, transversality
ollows from a Melnikov-type analysis [23,36,37]. We decided
o omit this calculation, but its proof is numerically verified in
ig. 6(b) and (d). As a result, and for sufficiently small ε, the
eteroclinic orbit will persist with a nearby speed c(ε), with
(0) = c0, the speed found in the singular limit. Finally, recall that
uch a heteroclinic orbit corresponds to a shock-fronted travelling
ave solution of (10).

. Viscous relaxation

In this section, we study shock-fronted travelling wave solu-
ions in (11) and we use similar mathematical techniques as in
ection 2 to obtain a three-dimensional singular perturbed slow-
ast system. The reduced problem is the same as in Section 2,
owever, it has different algebraic constraints. In contrast, the
ayer problem is different and only one-dimensional which leads
o shocks with different characteristics. Since the methodology
f the analysis is similar, we only present a succinct and brief
erivation of the main results.

.1. Preliminary observations

The travelling wave solution of (11) of interest here is a
olution of
d
(
εc

d2u
2 − cu −

d
(F (u))

)
= R(u), (28)
dz dz dz
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hat asymptotes to one as z → −∞ and to zero as z → ∞. Here,
:= x − ct is again the travelling wave coordinate. Next, with

ome abuse of notation, we define

:= εc
d2u
dz2

− cu −
d
dz

(F (u)), v := εc
du
dz

− F (u), (29)

nd transform (28) into a three-dimensional singular perturbed
low-fast dynamical system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε
du
dz

=
1
c
(v + F (u)),

dp
dz

= R(u),

dv
dz

= p + cu,

(30)

here u ∈ R is fast variable and (p, v) ∈ R2 are slow variables.
y using a stretched variable ξ = z/ε, (30) is transformed into an
quivalent fast system, provided ε ̸= 0,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

du
dξ

=
1
c
(v + F (u)),

dp
dξ

= εR(u),

dv
dξ

= ε(p + cu).

(31)

he fixed points of the two equivalent systems (30) and (31) are
0
ε = (0, 0,−F (0)), Q A

ε = (A,−cA,−F (A)), Q 1
ε = (1,−c,−F (1)),

and we are interested in heteroclinic orbits connecting Q 0
ε with

Q 1
ε . The Jacobian of (31) has three eigenvalues with the expansion

of ε

τ±

1 (u) =
−c ±

√
c2 − 4D(u)R′(u)
2D(u)

ε + O(ε2),

τ2(u) =
D(u)
c

+
c

D(u)
ε + O(ε2).

At Q 0
ε , R

′(0) < 0, D(0) > 0, thus, τ+

1 (0) > 0, τ−

1 (0) < 0 and
τ2(0) > 0. Similarly, at Q 1

ε , R
′(1) < 0, D(1) > 0, thus, τ+

1 (1) > 0,
τ−

1 (1) < 0 and τ2(1) > 0. That is, the stable manifolds of Q 0,1
ε

are one-dimensional and the unstable manifolds of Q 0,1
ε are two-

dimensional. At Q A
ε , for positive speeds, the stable manifold is

two-dimensional and the unstable manifold is one-dimensional;
for negative speeds, the stable manifold is one-dimensional and
the unstable manifold is two-dimensional.

3.2. Layer problem

Letting ε → 0 in (31) gives the layer problem

du
dξ

=
1
c
(v + F (u)), (32)

nd dp/dξ = 0 and dv/dξ = 0. Thus, we have a two-dimensional
critical manifold

M̂0 := {(u, p, v) ∈ R3
: F (u) = −v}.

pon recalling that F ′(u) = D(u), we observe that the critical
anifold loses normal hyperbolicity along the one-dimensional
et

ˆ := {(u, p, v) ∈ M̂0 : D(u) = 0},

which has two branches

F̂ = F̂+
∪ F̂−

:= {(u, p, v) ∈ M̂ : u = α} ∪ {(u, p, v) ∈ M̂ : u = β}.
0 0 t

9

hus, we split the critical manifold into five branches M̂0 =

ˆ −

0 ∪ F̂−
∪ M̂0

0 ∪ F̂+
∪ M̂+

0 , with

ˆ +

0 := {(u, p, v) ∈ R3
: u < α}, M̂−

0 := {(u, p, v) ∈ R3
: u > β},

repelling manifolds for c > 0 and attracting manifolds for c < 0.
Similarly

M̂0
0 = {(u, p, v) ∈ R3

: α < u < β},

is an attracting manifold for c > 0 and an unstable manifold
for c < 0, see Fig. 8. We note that, as F (u) is cubic, the critical
manifold is similar to a nullcline of the well-known van der Pol
oscillator [38].

Considering the stability of the different branches of critical
manifold, there may exist connections between M̂±

0 and M̂0
0 and

between M̂±

0 and F̂∓. In contrast to the previous section, we are
now interested in connections between M̂±

0 and F̂∓ since we
are looking for travelling wave solutions that connect u = 0 and
u = 1, and both of these points are on M̂±

0 . There are two ways
to establish these connections. If c > 0, M̂±

0 are repelling and
F (u) = −v has two non-repeating real roots β and ul (< α), or
u = α and ur (> β). In this case, the related shocks are ur

→ α

and ul
→ β , see Fig. 8(a). If c < 0, M̂±

0 are attracting. and the
related shocks are in the opposite direction α → ur and β → ul,
see Fig. 8(b).

3.3. Reduced problem

The reduced problem of (30), obtained by letting ε → 0, is the
same as the reduced problem (25) of the previous section and is
given by⎧⎪⎨⎪⎩

−D(u)
du
dz

= p + cu,

dp
dz

= R(u).

imilarly, its desingularised system6 is the same and given by⎧⎪⎪⎨⎪⎪⎩
du
dψ

= −p − cu,

dp
dψ

= D(u)R(u).
(33)

owever, note that the slow variable p is defined differently, see
14) and (29), and thus has a different meaning.

.4. The construction of the heteroclinic orbit in the singular limit

From the analysis of the layer problem (32), the shocks ur
→ α

nd ul
→ β have positive speeds, while the shocks in the opposite

irections, α → ur and β → ul, have negative speed. The shocks
r

→ α and β → ul potentially relate, in the singular limit, to
rajectories of (30) leaving from u = 1 and arriving at u = 0,
hat is, they have the asymptotic conditions limz→−∞ u = 1
nd limz→∞ u = 0 we are interested in. In contrast, the shocks
l
→ β and α → ur correspond to trajectories with the opposite

symptotic conditions limz→−∞ u = 0 and limz→∞ u = 1.
hus, we are interested in positive speeds c for which there
xist trajectories of the desingularised system (33) that connect
1,−c) with (ur , p∗) and (α, p∗) with (0, 0) (both in forward ψ).
imilarly, we are interested in negative speeds c for which there
xist trajectories of the desingularised system (33) that connect
1,−c) with (β, p∗) and (ul, p∗) with (0, 0).

6 The desingularised system is required this time because we need to study
he dynamics around u = α and u = β where the reduced problem is singular.
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Fig. 8. (a) Connections from M̂±

0 to F̂∓ for c > 0. (b) These connections are reversed for c < 0.
T
C

),
Following the same procedure as in the previous section using
de45 in MATLAB, we can now construct orbits of the correspond
o heteroclinic orbits in the singular limit of (30), and thus to
hock-fronted travelling wave solutions of (11). See Fig. 9 for two
rototypical examples of these orbits. One corresponding to a
hock-fronted travelling wave solution with positive speed and
ne with negative speed.

.5. Persistence analysis

To show that these singular orbits indeed persist for ε suffi-
ient small, and thus correspond to shock-fronted travelling wave
olutions of (11), we have to proceed in a similar fashion as
n the previous section and extend the full three-dimensional
ystem (30) with an equation for the speed {c ′

= 0} (since the
table and unstable manifolds Ws,u(Q 0,1

ε ) are respectively one
nd two-dimensional and 1 + 2 − 1 < 3) such that transver-
ality is generically possible. Transversality again follows from a
elnikov-type argument, but we have to extend Fenichel the-
ry near the regular fold point F̂±, where the critical manifold
oses normal hyperbolicity — one of the necessary conditions
or Fenichel’s persistence theorems. This way, we can show that
he orbits persist even though in the singular limit we leave, or
rrive at, the critical manifold at a fold point F̂±. We decided
o not go into the details of this analysis and refer to [39], and
eferences therein, instead, for an outline how the persistence of
hese singular orbits can be shown. In the end, this shows the
ersistence of the heteroclinic orbit for sufficiently small ε and
ith nearby speed c(ε), with c(0) = c0, the speed found in the
ingular limit.

. Summary, discussion and outlook

In this article, we studied shock-fronted travelling wave solu-
ions supported by the RDE (1) with a convex nonlinear diffusivity
unction D(U)(2) that is negative for U ∈ (α, β) (3), and with
n Allee-type reaction-term R(U)(6). This RDE with forward–
ackward–forward diffusion was previously derived by [4] from
lattice-based stochastic model modelling a population of indi-
iduals and groups that can undergo movement, birth and death
vents to describe the its macroscopic behaviour. We studied the
DE by adding two different small regularisations; a non-local
egularisation −ε2∂4U/∂x4, with ε small, see (10) and Section 2,
nd a viscous relaxation ε∂3U/(∂x2∂t), see (11) and Section 3.
ote that in the singular limit ε → 0 both PDEs reduce to (1).
These two regularisations allowed us to use a dynamical sys-

ems approach to study the shock-fronted travelling wave solu-
ions. In particular, for the non-local regularisation the PDE (10)
ould be reduced to a singularly perturbed four-dimensional sys-
em of ODEs (15). As the regularisation term is assumed to be
mall there is a scale separation in this system of ODEs. This
llowed for a further reduction by investigating (15) singular
imit in the fast and slow scalings. The singular limit in the fast
10
able 1
omparison of the results for the two different regularisations. Recall that u−

and u+ are obtained from the equal area rule (23), ur and α are fixed points of
the layer problem (32) leading to shock-fronted travelling wave solutions with
positive speeds, while ul and β are fixed points of the layer problem (32) leading
to shock-fronted travelling wave solutions with negative speeds.

Regularisation −ε2
∂4U
∂x4

ε
∂3U
∂x2∂t

Shock size u−
− u+ β − ul ur

− α

Speed c ∈ R c < 0 c > 0
Slow-fast system 4-D system 3-D system
Layer problem 2-D system 1-D system
Reduced problem The same 2-D system

scaling, called the layer problem (20), described the dynamics
near the shock of a shock-fronted travelling wave solutions, and
was a two-dimensional Hamiltonian system independent of the
speed c , see Fig. 5. The singular limit in the slow scaling, called the
reduced problem (24), was a singular two-dimensional system
of ODEs. It is constrained to the critical manifold M0 (21) and
described the dynamics away from the shock. Note that we use
MATLAB to investigate the reduced problem as it is algebraically
too involved to determine the sought after trajectories. A shock-
fronted travelling wave solution can now be constructed, in the
singular limit, upon concatenating the three parts of the solution,
see Fig. 4 and 6. Subsequently, GSPT can be used to show that the
solution persists for sufficiently small ε. Note that the details of
this final calculation were omitted, instead it was shown that the
dynamics of the full ODE (15) agrees with the obtained results in
the singular limit, see Fig. 7.

For the viscous relaxation the PDE (10) could be reduced to
a singularly perturbed three-dimensional system of ODEs (30).
Whilst this ODE had the same reduced problem as with the non-
local regularisation, it had a different layer problem (32). This
difference can lead to shock-fronted travelling wave solutions
with different characteristics for same nonlinear diffusivity func-
tion D(U) (2) and reaction-term R(U) (6), see Fig. 10 and Table 1.
In addition, as the shock-connection in the layer problem is at
a point where the critical manifold loses normal hyperbolicity,
GSPT has to be extended to prove the persistence of the singular
orbit for sufficiently small ε. Again, details of this computation
were omitted.

4.1. Regularisations and the lattice-based stochastic model

While the two regularised PDEs have the same singular limit (1
the different regularisations yielded shock-fronted travelling wave
solutions with different characteristics. As the numerical schemes
used to simulate (1) naturally introduce artificial regularisation
(and error) terms and, as shown in this article, different reg-
ularisations yield shock-fronted travelling wave solutions with
different characteristics, the connection between the numeri-
cal solutions of (1) and the solutions of (10) and (11) is very
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Fig. 9. (a) and (b) Phase planes of the desingularised system (26) with D(u) = 6(u − 7/12)(u − 3/4) and R(u) = 5u(1 − u)(u − A) with A = 1/5 (a) and A = 2/5
(b). In the former case, we observe a shock ur

→ α with a positive speed c = c0 = 0.199, while in the latter case we have a shock β → ul with a negative speed
= c0 = −0.241. (c) The change of speed as function of A where the line with positive speed represents shocks ur

→ α and the line with negative speed represents
hocks β → ul . We remark that we could not find an Allee type R(u) for which both types of travelling wave solutions exist simultaneously.
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Fig. 10. (a) – (d) Phase planes of the desingularised system (26)/(33) with
(u) = 6(u − 7/12)(u − 3/4) and R(u) = 5u(1 − u)(u − A) with A = 1/5 (a)
(c) and A = 2/5 (b) & (d). For A = 1/5 in the non-local regularisation we

bserve a shock u−
→ u+ for c = 0.197, while for A = 1/5 in the viscous

elaxation we observe a shock ur
→ α for c = 0.199. For A = 2/5 in the

on-local regularisation we observe a shock u−
→ u+ for c = −0.245, while for

= 2/5 in the viscous relaxation we observe a shock β → ul for c = −0.241.
e) The three different types of shocks, u−

→ u+ , ur
→ α and β → ul , for

hanging A from 0 to 0.5. The dashed line A = 0.2 relates to (a) & (b) and the
ashed line A = 0.4 relates to (c) & (d). (f) For a D(u) not centred around 2/3
he differences among the speeds of the shocks is more prevalent. In particular,
(u) = 6(u − 2/5)(u − 3/4)..

nteresting. While using standard implicit finite difference ap-
roximations enables us to explore various numerical solutions
f (10) without difficulty, obtaining numerical solutions of (11)
s far more challenging. The complication in solving (11) and
btaining grid-independent solutions arises because of the mixed
hird derivative term. Therefore, we leave the development and
xploration of numerical methods of solving (11) as future work.
n addition, (1) was derived from a lattice-based stochastic model
11
nd during this derivation of the continuous description small
igher order terms were omitted. Including some of these small
igher order terms would potentially result in a (differently) reg-
larised version of (1), which in turn could lead to shock-fronted
ravelling wave solutions with different properties. Therefore,
tudying the connection between the lattice-based stochastic
odels and the regularisations is also an interesting topic.
For instance, a natural question to ask is what happens when

e consider a linear combination of the non-local regularisation
considered in Section 2) and viscous regularisation (considered
n Section 3)

∂U
∂t

=
∂

∂x

(
D(U)

∂U
∂x

)
+ R(U) + (1 − µ)ε

∂3U
∂x2∂t

− µε2
∂4U
∂x4

,

where µ ∈ (0, 1) is a constant. Note that µ = 0 corresponds
to the viscous regularisation (11) and µ = 1 corresponds to
the non-local regularisation (10). The associated four-dimensional
slow-fast system7 is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εµ
du
dz

= (µ− 1) cu + w,

ε
dw
dz

= v + F (u),

dp
dz

= R(u),

dv
dz

= p + cu.

(34)

he corresponding layer problem is⎧⎪⎪⎨⎪⎪⎩
du
dξ

=

(
1 −

1
µ

)
cu +

1
µ
w,

dw
dξ

= v + F (u).
(35)

ystem (35) can have up to three fixed points depending on v. If
leads to one fixed point, there is no heteroclinic orbit. If v leads

o two fixed points, the two fixed points are P r
= (ur , wr ) and

α
= (α,wα), or Pβ = (β,wβ ) and P l

= (ul, wl). When c > 0,
here could exist a heteroclinic orbit connecting P r to Pα with
pecific c and µ, as P r is a saddle and Pα is a degenerate stable
node. Similarly, when c < 0, there could exist a heteroclinic orbit
connecting Pβ to P l with specific c and µ, as P l is a saddle and Pβ
is a degenerate unstable node. If v is such that (35) has three fixed
points P−

= (u−, w−), P0
= (u0, w0) and P+

= (u+, w+), where
u+ < α < u0 < β < u−, P− and P+ are saddles and P0 is either
a stable node or a stable spiral when c > 0 and it is an unstable
node or an unstable spiral when c < 0. Therefore, we expect (35)
to support heteroclinic orbits connecting (u−, w−) with (u+, w+)

7 For µ = 0 this slow-fast system is actually three-dimensional and given by
(30).
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ith specific c and µ. We leave the detailed study to see if
hese heteroclinic orbits in the layer problem lead to heteroclinic
rbits in the full system (34) for future work. Furthermore, the
hysical meaning of this combination of regularisation terms, and
ts connection to the underlying discrete model are worthy of
uture investigation.

.2. Generalisations

In this article, we concentrated on a specific quadratic nonlin-
ar diffusivity function D(U) (2) centred around 2/3 and a specific
llee-type reaction-term R(U) (6) as these were derived from

an underlying lattice-based stochastic model [4]. However, the
techniques used in this article can in fact be easily extended to
more general nonlinear diffusivity functions and reaction terms.
For instance, if we change the reaction term from an Allee type (6)
to a logistic type (5) (as studied in [6]), we can still construct
the higher-dimensional systems based on the two regularisa-
tions (10) and (11). Since the two layer problems (20) and (32)
only depend on F (u), the anti-derivative of D(u), and not on
R(u), we obtain the same conditions for the shocks as for the
Allee type reaction term. That is, for the non-local regularisation
the shocks will have, to leading order, endpoints u− and u+,
while the shocks will have, to leading order, endpoints ur and
α or ul and β for the viscous relaxation. In other words, the
size of the shock depends on the relaxation and the nonlinear
diffusivity function D(U), but not the reaction term R(U). For
both regularisations, the reduced desingularised problem has four
fixed points which are determined by the roots of the product
of the nonlinear diffusivity function D(U) and the reaction term
R(U). In particular, the fixed points are (0, 0), (1,−c), (α,−cα)
nd (β,−cβ). In the desingularised system, the fixed point (0, 0)
s a stable node or stable spiral for c > 0 and an unstable node
r unstable spiral for c < 0. For shock-fronted travelling wave
olutions with the asymptotic conditions limz→−∞ U = 1 and
imz→∞ U = 0, we expect (0, 0) to be stable in the desingularised
roblem. Therefore, we expect those travelling wave solutions
o have positive speeds. Hence, if the reaction term is logistic,
e do not expect shock-fronted travelling wave solutions with
egative speeds. However, using other boundary conditions may
rovide novel characteristics, see [15,40] for examples of moving
oundary problems with logistic type reaction terms.

.3. Stability

Another natural extension of this work is to analyse the sta-
ility of the constructed shock-fronted travelling wave solutions.
his was partly done for smooth travelling wave solution sup-
orted by (1) with D(U) as in (2) and logistic reaction term

R(U) (5) in [6]. In that article we studied the absolute spectrum of
the associated desingularised stability problem and showed that
for speeds above the minimal wave speed, the essential spec-
trum [41,42] of the desingularised system can always be weighted
into the left-half plane, while this is not possible for speeds below
the minimal wave speed [6]. This analysis can be repeated for
the shock-fronted travelling wave solutions constructed in this
article since the essential spectrum is related to the behaviour of
the wave at infinity and thus only determined by the asymptotic
end states of the shock-fronted travelling wave solution under
consideration. For brevity we decided not to show this computa-
tion and instead refer to [6]. In short, the computation shows that
the essential spectrum of the associated desingularised stability
problems of (1), (10) and (11) are all fully contained in the left-
half plane, see Fig. 11, thus there are no absolute instabilities.
However, what remains to be determined is the point spectrum,
12
Fig. 11. The essential spectrums (shaded green regions plus boundaries) of the
desingularised stability problems associated to (1) (a), (10) (b) and (11) (c) with
ε = 0.1. Note that the essential spectrums are to leading order the same and
ully contained in the left-half plane. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this
rticle.)

s well as the connection of the essential spectrum of the asso-
iated desingularised stability problem and the original stability
roblem, to complete the linear stability analysis. This is part of
uture work, see also the discussion in [6].
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ppendix A. Necessary conditions for shock-fronted travelling
ave solutions

In this section, we follow [21] and derive the two necessary
onditions (8) and (9) for the existence of shock-fronted travelling
ave solutions as mentioned in the Introduction. A shock-fronted
ravelling wave solutions of (1) solves the travelling wave ODE

c
du
dz

+
d
dz

(
D(u)

du
dz

)
+ R(u) = 0,

here z := x − ct is the travelling wave coordinate. Define
(u) := D(u)du/dz in (0, u1) ∪ (u2, 1), that is, g(u) is defined in
he region where the travelling wave solution u is smooth. As we
ocus on monotonically decreasing travelling wave solutions we
ave that g(u) < 0. The travelling wave ODE can now be written
s

(u)
(
d(g(u))

du
+ c

)
= −R(u)D(u). (A.1)

ntegrating both sides (A.1) between 0 and ua(< u1) gives
ua

0
g(u)dg(u) + c

∫ ua

0
g(u)du = −

∫ ua

0
R(u)D(u)du,

hich leads to

= −

∫ ua

0
R(u)D(u)du +

1
2
(g(ua))2∫ ua

0
g(u)du

.

hus, for c < 0 a necessary condition for the existence of a
hock-fronted travelling wave solution is
ua

R(u)D(u)du < −
1
(g(ua))2 < 0.
0 2
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Similarly, integrating (A.1) between ub(> u2) and 1 gives

c = −

∫ 1

ub

R(u)D(u)du −
1
2
(g(ub))2∫ 1

ub

g(u)du
,

hich, for c > 0, leads to the necessary condition
1

ub

R(u)D(u)du >
1
2
(g(ub))2 > 0.

Appendix B. The heteroclinic orbits of the layer problem

We derive the analytic expressions for the heteroclinic orbits
given in the layer problem supported by⎧⎪⎪⎨⎪⎪⎩

du
dξ

= w,

dw
dξ

= v + F (u),

here v is a constant. Based on its Hamiltonian, we require

(u, w) = −
1
2
w2

+ G(u) + vu = 0,

on the heteroclinic orbits
(
u0,±
h , w

0,±
h

)
. Subsequently, we obtain

w = ±

√
2 (G(u) + vu).

Note that G(u) has two integration constants. With specific inte-
gration constants, w(u) can become a second-order polynomial
with specific roots. That is, we can write w as

w(u) = ±

√
2 (G(u) + vu) = ±

√
a2(u − B1)2(u − B2)2.

urthermore, as w(u±) = 0, we can write w as

w(u) = ±a
(
u − u+

) (
u − u−

)
,

where a =
√
(Di − Dg )/2 > 0. If we assume w < 0 in (u+, u−),

hen we have
du
dξ

= a(u − u+)(u − u−). (B.1)

eriving Eq. (B.1) gives

0,+
h (ξ ) =

u+
+ u−

2
+

u−
− u+

2
tanh

(
−

a(u−
− u+)
2

ξ

)
.

ubsequently, we obtain the expression of w(ξ ):

0,+
h (ξ ) = −

a(u−
− u+)2

4
sech2

(
−

a(u−
− u+)
2

ξ

)
,

hich satisfies limξ→±∞w(ξ ) = 0. Similarly, for the asymptotic
onditions limξ→−∞ u(ξ ) = u+ and limξ→∞ u(ξ ) = u−, we have

du
dξ

= −a(u − u+)(u − u−). (B.2)

Subsequently, solving (B.2) gives the expressions of u0,−
h (ξ ) and

0,−
h (ξ ):

u0,−
h (ξ ) =

u−
+ u+

2
−

u−
− u+

2
tanh

(
−

a(u−
− u+)
2

ξ

)
,

w
0,−
h (ξ ) =

a(u−
− u+)2

4
sech2

(
−

a(u−
− u+)
2

ξ

)
.
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