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ABSTRACT
Nutrients areessential resources for foodproductionbut areused inefficiently, and thereby theypollute
inland and coastal waters and are lost into the oceans. Nutrient conservation by retention and
consecutive reuse would prevent nutrient losses to the atmosphere and downstream ecosystems.
We present Smart Nutrient Retention Networks (SNRNs) as a novel management approach to
achieve nutrient conservation across networks of connected waterbodies through strategic water
quality management. To present the key features of SNRNs, we review existing knowledge of
nutrient retention processes in inland waters, water quality management options for nutrient
conservation, and nutrient retention models to develop SNRNs. We argue that successful nutrient
conservation, even at a local level, through SNRN management strategies requires clearly formulated
goals and catchment-wide system understanding. Waterbody characteristics, such as hydraulic
residence time and the presence of macrophytes, shape local nutrient retention with potential
network-wide cascading effects of improved water quality and are therefore key targets of SNRN
management strategies. Nutrient retention models that include the self-reinforcing feedback loop of
ecological water quality, nutrient retention, and nutrient loading in networks of inland waters in
relation to management options can support the development of SNRNs. We conclude that SNRNs
can contribute to sustainable use of nutrients in human food production.
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Introduction

Societal challenge

Fleets of vessels are dispatched, at great expense, to col-
lect the dung of petrels and penguins at the South Pole,
and the incalculable element of opulence which we have
on hand, we send to the sea. All the human and animal
manure which the world wastes, restored to the land
instead of being cast into the water, would suffice to
nourish the world. (Victor Hugo in “Les Misérables”:
Volume V – Jean Valjean, Second Book, 1862.)

Nutrients are essential resources for food production and
socioeconomic development, but they pollute inland
waters before they are washed to the sea. Currently,
about 95 Tg of nitrogen (N) and 16 Tg of phosphorus
(P) are applied annually as synthetic fertilizer worldwide
(Beusen et al. 2016). Together with other anthropogenic
and natural nutrient sources, this input leads to a global
nutrient loading into inland waters of 64–253 Tg N and
9–30 Tg P per year (Beusen et al. 2016, Yuan et al.

2018, Smil 2000; Fig. 1), resulting in eutrophication prob-
lems such as harmful algal blooms (Heisler et al. 2008)
and anoxia (Chislock et al. 2013). Nutrients ultimately
flow to the sea where they cause coastal eutrophication
before being lost to the sea bed or atmosphere (de
Jonge et al. 2002). Thus, although the efficiency of obtain-
ing nutrients has dramatically increased from guano
mining in the time Victor Hugo wrote Les Misérables
to mining finite deposits of mineral P and the Haber–
Bosch process used to produce N today, the critical
issue of losing these essential resources into the sea recog-
nized a century and a half ago (Hugo 1862) persists.

Networks of inland waters

Individual waterbodies (e.g., reservoirs, lakes, rivers, and
wetlands) can form a network of inland waters, exchang-
ing nutrients and other substances through hydrological
connections (Teurlincx et al. 2019) and influencing each
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other’s chemical and ecological water quality (Tundisi
et al. 1998, Carpenter and Lathrop 2014, Teurlincx et al.
2019). One waterbody can act as a net nutrient source
or sink to downstream waterbodies (Zhang et al. 2012).
Higher nutrient retention is associated with higher water
quality (i.e., clear, submerged macrophyte-dominated vs.
turbid, phytoplankton-dominated waters). Water flows
through the network influence hydraulic residence
times, which also determine nutrient retention (Van
Gerven et al. 2017). When nutrient load reduction leads
to an ecological regime shift from phytoplankton domi-
nance to submergedmacrophyte dominance in one water-
body, nutrient retention could increase locally, resulting in
lower nutrient loading to connected waterbodies (dis-
cussed later; also see Supplemental Material A). This feed-
back could cause cascading effects of improved water
quality and offer opportunities to benefit from local inter-
ventions on a network scale. However, despite the recog-
nized importance of hydrological connections on nutrient
flows and retention, water quality is generally assessed for
individual waterbodies, and only a few model studies
address the potential cascading effects of ecological
water quality and nutrient retention in connected inland
waters (Hilt et al. 2011, Van Gerven et al. 2017).

A novel approach for nutrient conservation
through water quality management

Our aim was to fill this gap in the explicit use of inland
water networks in water quality management by pre-
senting what we named Smart Nutrient Retention

Networks (SNRNs), a novel management approach for
nutrient conservation through water quality manage-
ment (Fig. 2). Here, we define nutrient conservation as
the prevention of nutrient losses to the atmosphere and
downstream ecosystems by nutrient retention and con-
secutive nutrient reuse. Nutrient retention comprises
natural internal retention within and natural losses
from waterbodies, as well as harvesting by humans.
Retained nutrients are only conserved if reused, for
example, as organic fertilizer to mitigate synthetic fertil-
izer production and application. Contrary to traditional
water quality management that focuses on nutrient pol-
lution reduction and local remediating interventions
(Paerl et al. 2016, Strokal et al. 2020), SNRNs employ
the biogeochemical nutrient retention potential of net-
works of inland waters to deal with nutrient pollution
and promote nutrient conservation. Thus, we focus on
a type of nutrient reuse that is often ignored.

SNRNs aim to restore degraded inland waters, miti-
gate further ecological degradation, prevent nutrient
losses into the ocean, and stimulate on-land reuse of
nutrients harvested from inland waters (Fig. 2, bottom
right panel) through smart combinations of catchment-
specific interventions that account for cascading effects
of improved water quality in connected waterbodies.
Hence, in SNRNs the network of inland waters is man-
aged in a smart way, where contextual adaptive manage-
ment decisions are based on actual data and prior
knowledge. This smart management includes manipula-
tion of the system’s hydrology and ecological states to
enhance nutrient retention. Moreover, nutrients in
SNRNs are retained and reused by, for example, harvest-
ing macrophytes, sediment, or fish (Fig. 2, top right
panel). Overall, SNRNs could mitigate socioeconomic
impacts related to nutrient pollution, which encompass
chemical and ecological water quality degradation and
unsustainable nutrient resource management.

In this paper, we explore current knowledge to
develop SNRN management strategies. We specifically
elaborate on (1) natural nutrient retention processes
in individual waterbodies and networks of inland
waters, (2) water quality management options for nutri-
ent conservation, and (3) nutrient retention models. We
focus on the northern temperate zone where strong
human impacts on water systems (e.g., a legacy of
intense nutrient enrichment) prevail, and regularly
refer to examples from (sub)tropical regions where
nutrient conservation is more common. Within the
northern temperate zone, we expect that the principles
of SNRNs can especially improve water quality and
nutrient management in regions with highly modified
and controlled water systems and many shallow lakes
(with potential for macrophyte-dominated vs.

Figure 1. Global nitrogen (N; gray numbers) and phosphorus (P;
blue numbers) flows in Tg per year (Smil 2000, Green et al. 2004,
Van Drecht et al. 2005, Tysmans et al. 2013, Beusen et al. 2016).
Nutrient inputs on land include natural and anthropogenic
sources. Considerable amounts of these nutrients end up in
inland waters. After entering inland waters, nutrients are
retained within waterbodies or transported into the oceans.
Note that these numbers represent estimates of global totals.
Ratios between the different flows may differ strongly between
individual river catchments (Tysmans et al. 2013). The question
mark indicates an unknown fraction of retained nutrients that
can be recovered in Smart Nutrient Retention Networks
(SNRNs) to be reused on land for nutrient conservation.
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phytoplankton-dominated states), such as lowland
western Europe.

Nutrient retention processes in inland waters

In SNRNs, nutrient retention is maximized to benefit
the whole catchment. The catchment covers the largest
spatial scale of networks of inland waters, including
connected waterbodies and the land draining into
these waters. At the waterbody level, nutrients are either
retained or flow freely with the water in dissolved or
particulate forms such as detrital matter or phytoplank-
ton (Teurlincx et al. 2019). Nutrient retention processes
include (1) natural internal retention (e.g., long-term
storage by sedimentation, burial of biomass, and P
bound to mineral particles; Uhlmajnn and Horn 1992,
Smolders et al. 2006, Finlay et al. 2013, Kong et al.
2019), (2) natural losses from the waterbody (e.g.,
denitrification and consumption by migrating water-
fowl; Saunders and Kalff 2001, Doughty et al. 2016,
Kong et al. 2019), or (3) harvesting by humans (e.g.,
in the form of macrophytes, sediment, or fish). Water
management can influence nutrient retention pathways
directly (e.g., harvesting by humans), and indirectly

through ecosystem state management (e.g., increased
denitrification by bank reshaping). In general, increases
in nutrient retention processes could decrease the risk of
harmful algal blooms. Some nutrient retention pro-
cesses counteract nutrient conservation (e.g., N2 degases
by denitrification), which enhances water quality but
constitutes a loss process.

Waterbody characteristics

The hydraulic residence time of a waterbody promotes
denitrification and sedimentation because it increases
sediment–water contact (Ahlgren et al. 1988, Jansson
et al. 1994, Saunders and Kalff 2001, Brett and Benjamin
2008, de Klein and Koelmans 2011; Table 1). Waterbod-
ies with a large volume and relatively low water dis-
charge, such as large and dammed reservoirs, have
long residence times (Maavara et al. 2015). In the
meta-analysis by Saunders and Kalff (2001), rivers had
the largest average water discharge rate, followed by
lakes and wetlands, whereas total N (TN) retention
was largest for wetlands, followed by lakes and rivers.
Although the average TN retention differed per water-
body type, it was similar in all waterbody types when

Figure 2. Smart Nutrient Retention Networks (middle panel) have multiple dimensions, that should be considered to achieve the goal(s)
set for the network of inland waters: minimized nutrient loss to the oceans, maximized nutrient retention in inland waters, good eco-
logical water quality, or maximized reuse of nutrients retained within the network (bottom right panel). At the level of individual
waterbodies, the ecological state and waterbody type influence the potential for nutrient retention (top left panel). Local interventions
can influence this nutrient retention potential, for example, by adjusting the hydrology, changing the ecological state, or harvesting
and reusing nutrient retaining ecosystem components (top right panel). At the catchment level, conditions apply which are beyond
the scope of local water managers: external nutrient loading, configuration of hydrological connections, climate change, catchment-
level legislation, and socioeconomic conditions (bottom left panel).
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correcting for discharge rates (Saunders and Kalff 2001).
Higher water residence times in wetlands may partly be
due to dense macrophyte stands that reduce flow veloc-
ity and increase sedimentation (Petticrew and Kalff
1992, Benoy and Kalff 1999, Saunders and Kalff 2001).
In streams, macrophytes may lower water velocity and
provide shelter, stimulating sedimentation (Svendsen
and Kronvang 1993, Schulz et al. 2003). The highest
nutrient storage potential in rivers was found within
and downstream of areas with macrophytes (Svendsen
and Kronvang 1993, Schulz et al. 2003). Especially in
summer, areas with macrophytes tend to retain more
nutrients, but weed cutting and autumn storm flows
counteract this temporary storage through resuspension
(Svendsen and Kronvang 1993).

Additionally, stratification, relative nutrient process-
ing rates, and the volume to surface area ratio of water-
bodies influence the strength of nutrient retention
processes (Table 1). Once a lake or reservoir stratifies
and the hypolimnion becomes anoxic, it may act as a
P source when the water column remixes or the outlet
is at the bottom of a dam (Nürnberg 1984, Kõiv et al.
2011). The meta-analysis by Kõiv et al. (2011) of 54 res-
ervoirs and lakes (0–6.6 m deep) showed that stratifying
waterbodies are generally deeper, and their P retention
capacity decreases with relative depth. This redox-
dependent P retention in lake sediment also depends
on nitrate, sulfate, and particulate iron concentrations
(Andersen 1982, Gächter and Müller 2003). Moreover,
the balance, or even tradeoff, between biogeochemical
nutrient processing rates and hydraulic residence time
may determine net nutrient retention (Höhener and
Gächter 1993, Powers et al. 2012, Schmadel et al.
2018), as described by the nutrient spiraling theory for
individual streams (Newbold et al. 1981). For example,
the combination of shorter hydraulic residence times,

relatively invariant reaction times, and larger nutrient
loadings during high-flow periods results in a lower N
retention efficiency in rivers with higher streamflow var-
iability (Ye et al. 2012). Additionally, direct P adsorp-
tion/desorption between water and sediment may be
more important than sedimentation in shallow lakes
with a relatively large sediment surface area to lake vol-
ume (Andersen 1997). Also, shallow wetlands with a
large surface area likely retain N through denitrification,
whereas those with a smaller surface area more likely
retain P by sedimentation (Hansson et al. 2005).

Moreover, the amount of retained N and P tends to
increase with nutrient loading (Prairie 1989, Saunders
and Kalff 2001, Kõiv et al. 2011, Wang et al. 2020). Saun-
ders and Kalff (2001) found that N loading is an excel-
lent statistical predictor for the magnitude of TN
retention in wetlands and lakes. Thus for N retention,
water discharge or hydraulic residence time and nutri-
ent loading are important determining factors, although
hydraulic residence time’s effect was strongest in the
global lake dataset of Finlay et al. (2013). Further, P sed-
imentation in 4 lakes worldwide was found to correlate
with P loading and in-lake P concentrations (Prairie
1989). The relation between N and P retention and
nutrient loading differs seasonally, however (Hansson
et al. 2005). Moreover, increased total P concentrations
can increase N retention by stimulating phytoplankton
production, settling, and decomposition, which
decreases dissolved oxygen concentrations and thereby
increases denitrification rates (Finlay et al. 2013). For
example, Finlay et al. (2013) showed for a diverse and
broadly representative set of lakes that N retention
was >7 times higher in P-rich eutrophic lakes than in
oligotrophic lakes, and similar trends were found by
Donald et al. (2015) for 12 reservoirs in Canada. This
dependency of nutrient retention on nutrient loading

Table 1. Illustrative examples of how waterbody type and system characteristics contribute to higher (+) or lower (−) N and P
retention, focused on the northern temperate zone.

Waterbody type System characteristics
N retention
potential

P retention
potential Reference

Dammed
reservoir

Hydraulic residence time + + Vörösmarty et al. 2003, Maavara et al. 2015
Stratification + − Nürnberg 1984, Kõiv et al. 2011, Beaulieu et al. 2014

Lake Hydraulic residence time + + Ahlgren et al. 1988, Saunders and Kalff 2001, Brett and
Benjamin 2008

Stratification + − Nürnberg 1984, Kõiv et al. 2011, Beaulieu et al. 2014
Macrophyte/phytoplankton dominance +/− +/− Hilt et al. 2017

River Hydraulic residence time + + Saunders and Kalff 2001, de Klein and Koelmans 2011
Size + + Wollheim et al. 2006
Low-flow zone presence (e.g., with
macrophytes)

+ + Svendsen and Kronvang 1993, Schulz et al. 2003

Streamflow variability − − Ye et al. 2012
Wetland Hydraulic residence time + + Jansson et al. 1994, Saunders and Kalff 2001

Volume to surface area ratio − + Hansson et al. 2005
Inundation time +/− +/− Sollie et al. 2008, Powers et al. 2012
Macrophyte stand density +/− +/− Barko and James 1998, Sollie et al. 2008
Vegetation type +/− +/− Søndergaard et al. 2001
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and seasonal variation may partly be explained by the
ecological configuration of the ecosystem in the growing
season, with limited retention in oligotrophic systems
with little macrophyte growth, increased retention in
mesotrophic systems with strong macrophyte growth,
and either high or low retention in eutrophic systems,
depending on submerged macrophyte or phytoplankton
dominance, respectively.

Especially when biological processes are dominant,
nutrient retention shows seasonal patterns along with
temperature dependencies of process rates (Kadlec
and Reddy 2001, de Klein and Koelmans 2011, Wang
et al. 2020). At higher temperatures, process rates
(e.g., of denitrification) generally increase but oxygen
levels tend to drop (Kadlec and Reddy 2001, Jeppesen
et al. 2009). Low oxygen levels may result in lower nutri-
ent retention by reducing nitrification and denitrifica-
tion (Jeppesen et al. 2009, Özen et al. 2010) and
enhancing sediment P release (Jensen and Andersen
1992). For example, in Lake Chaohu (China) low sum-
mer P retention is due to increased sediment P release
and low winter N retention is due to low rates of
denitrification (Wang et al. 2020). Reduced nutrient
retention under winter conditions can also be explained
by nitrate accumulation under ice cover and nutrient
release by senescing vegetation (White and Bayley
2001). Moreover, snow changes hydrological conditions
as it accumulates and causes long and intense runoff as
it melts (German et al. 2003). During snowmelt, this
process results in lower nutrient retention efficiencies
(German et al. 2003), probably because of shorter
hydraulic residence times.

Furthermore, climatic conditions such as precipita-
tion, temperature, and degree of seasonality (Lewis
1996) are important for nutrient retention. Especially
in tropical river lakes, seasonal precipitation may
strongly affect hydraulic residence time (Lewis 1996)
and thereby nutrient retention. In drier climates, less
nutrient loading by runoff results in lower in-lake
nutrient concentrations (Jeppesen et al. 2009, 2011,
Özen et al. 2010). By contrast, in warmer climates
more evaporation results in higher in-lake nutrient
concentrations and higher chances of harmful algal
blooms (Jeppesen et al. 2009, 2011, Özen et al. 2010).
Similarly, macrophyte cover and critical nutrient load-
ing levels at which lakes turn from clear to turbid are
expected to decrease with warming (Jeppesen et al.
2009, 2011, Özen et al. 2010), and therefore lower
nutrient retention is expected at higher temperatures.
The balance between the effects of altered hydraulic
residence time, nutrient loading, evaporation, and eco-
logical state will determine the effect of different cli-
mates on nutrient retention.

The hydrological configuration of networks of inland
waters influences local and network-wide nutrient reten-
tion. In systems with connected waterbodies, water qual-
ity, nutrient concentrations, and nutrient retention may
differ depending on surrounding landscape and position
in the catchment (Miranda et al. 2008, Schmadel et al.
2018, Teurlincx et al. 2019). For example, in river net-
works, large rivers retain more N than small rivers
because they more effectively retain N per mean length
of stream order, and they receive nutrients that are not
retained in smaller rivers or that bypass them on land
and directly enter the larger river (Wollheim et al.
2006). In general, network-wide nutrient retention is
higher with abundant retaining waterbodies, such as
lakes (Huttunen et al. 2016; see Supplemental Material
B for an example of chains of lakes modeled with
PCLake). Additionally, N removal increases with pond
roundness and connectivity between ponds and streams
(Schmadel et al. 2018). Also, when wetlands and flood-
plains temporarily connect to rivers by inundation, addi-
tional nutrient retention or release may occur (Noe and
Hupp 2007). The multi-pond system above Chaohu
Lake (China) exemplifies how connected waterbodies
can influence nutrient retention (Yin et al. 1993). The
ponds retain water, sediment, and nutrients and are
used for rice field irrigation, which enhances nutrient
recycling and retention on land. In 1993, Yin et al.
(1993) reported that from January to September overall,
99% and 98% of N and P loading was retained.

Macrophytes

An intricate balance of direct and indirect processes
determines the net effect of macrophytes on nutrient
retention (Fig. 3). Macrophytes directly contribute to
nutrient retention by assimilation and consecutive bur-
ial of plant litter (Granéli and Solander 1988, Jansson
et al. 1994, Clarke 2002, Kreiling et al. 2011), enhancing
sedimentation and decreasing resuspension (Howard-
Williams 1983, Clarke 2002, Zhu et al. 2015). Moreover,
macrophytes indirectly contribute to nutrient retention
by providing an attachment surface for nutrient con-
suming epiphytes and denitrifying bacteria (Howard-
Williams and Allanson 1981, Weisner et al. 1994) and
stimulating both P sorption and (coupled nitrification-)
denitrification by sediment oxygenation (Risgaard-
Petersen and Jensen 1997, Ottosen et al. 1999, Smolders
et al. 2002, Kreiling et al. 2011, Vila-Costa et al. 2016).
Macrophytes indirectly stimulate denitrification by (dis-
solved) organic carbon supply to the water or sediment
and sediment nitrate penetration by root water uptake
while inhibiting denitrification by competition for N
and production and release of oxygen (Weisner et al.
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1994). Moreover, shading by macrophytes may both
stimulate and inhibit denitrification because it decreases
oxygen production by photosynthesis and lowers the
water temperature, respectively (Weisner et al. 1994).
Furthermore, the net effect of macrophytes on nutrient
retention depends on the time scale of measurement
and the nutrient form (Carpenter and Lodge 1986).
For example, macrophytes accumulate nutrients during
spring and summer but release nutrients during their
senescence (Landers 1982). And in general, macrophyte
stands contribute to net particulate P retention and net
dissolved P release (Carpenter and Lodge 1986).

Macrophyte species and their functional groups may
strongly influence their effect on nutrient retention. Larger
vegetation types (e.g., helophytes) have more biomass and
are therefore expected to contribute more to nutrient
retention than low herbaceous vegetation (Sollie et al.
2008). Charophytes are more efficient nutrient sinks
than vascular macrophytes because charophytes have
lower decomposition rates and take upmost of their nutri-
ents from the water (vs. sediment) because of their larger
shoot to root ratios (Kufel and Kufel 2002). Whether a
macrophyte species is rooting and sessile or non-rooting
and (similar to phytoplankton) flowing along with the
water (Janssen et al. 2019b) is essential for their

contribution to nutrient retention. Also, the functional
group strongly influences denitrification rates. Especially,
rooted macrophytes can increase denitrification by oxy-
genating the sediment, thereby enhancing coupled nitrifi-
cation–denitrification (Risgaard-Petersen and Jensen
1997, Ottosen et al. 1999, Vila-Costa et al. 2016). Closed
mats of floatingmacrophytes may increase denitrification
and sediment P release through low dissolved oxygen
concentrations (Veraart et al. 2011, Janssen et al. 2020).
The net contribution to nutrient retention from other
(e.g., submerged) macrophyte species is less evident
(Søndergaard et al. 2001). In particular, dense macro-
phyte stands can seasonally cause a net sediment P release
from low oxygen levels (e.g., during decomposition or by
constrained water mixing) or increase pH due to high
primary production (Søndergaard 1988, Frodge et al.
1991, Barko and James 1998).

Although outcomes among studies vary, they mostly
show higher nutrient retention in macrophyte-domi-
nated over phytoplankton-dominated shallow lakes
(26 of 40 unique papers on nutrient retention in the
review by Hilt et al. 2017). For example, from Veraart
et al. (2011) we expect about 10 times more N retention
in a vegetated over an unvegetated state (with 12 h
light). The relative contribution of assimilation in

Figure 3.Macrophytes directly and indirectly influence natural nutrient retention processes (white text in brown box) through macro-
phyte processes (marked light blue). Nutrient uptake and assimilation followed by burial is the most direct route. Indirect influences
are found through the effect of macrophytes on both chemical (e.g., dissolved oxygen [DO] and organic carbon [OC] concentration)
and physical factors (marked gray). Note the importance of seasonality, nutrient form (particulate/dissolved), macrophyte functional
group, and species for macrophyte and nutrient retention processes.
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macrophytes to overall nutrient retention also varies,
with 8–77% for N and 12–73% for P (Reddy and De
Busk 1985, Kreiling et al. 2011, Veraart et al. 2011,
Wang et al. 2013). Vegetation also enhances nutrient
retention in streams (Balestrini et al. 2018). Moreover,
the nutrient retention capacity of macrophytes explains
one of the self-reinforcing (i.e., mathematically positive)
feedback loops that self-maintain macrophyte-domi-
nated versus phytoplankton-dominated states in shal-
low lakes (Scheffer et al. 1993), demonstrated by the
ecosystem model PCLake (Supplemental Material A).

Feedback loops involving macrophytes as described
by Scheffer et al. (1993) for individual waterbodies can
also emerge in hydrological networks. For example,Gillis
et al. (2014) showed that mangrove forests and seagrass
beds retain nutrients, providing positive interactions
with connected ecosystems (e.g., coral reefs) through
reduced nutrient loadings. Such spatial effects of local
nutrient retention by marine ecosystems could also be
expected in networks of inland waters (Teurlincx et al.
2019) through a self-reinforcing feedback loop between
nutrient loading, ecological water quality, and nutrient
retention in networks of inland waters (Fig. 4). The
underlying theory is that nutrient loading reduces
water quality (i.e., increases the likelihood of phyto-
plankton dominance over macrophyte dominance and
hence turbidity over clarity; Scheffer et al. 1993). Good
water quality itself results in higher nutrient retention
by the self-reinforcing feedback loop between macro-
phytes and water clarity within the waterbody. Finally,
on the hydrological network level, the increased nutrient
retention within the waterbody decreases nutrient load-
ing to downstream waterbodies, where the feedback
chain could repeat itself (i.e., has spatial cascading
effects; Klose et al. 2020), resulting in a self-reinforcing
feedback loop for the entire network of inland waters.

Water quality management options for
nutrient conservation

Hydrological management

Hydrological management strategies to retain, harvest,
and reuse more nutrients in and from inland waters
can be applied with the ultimate goal to improve nutri-
ent conservation in the entire catchment. Local changes
in hydrology and nutrient retention affect downstream
hydrology, ecology, and nutrient retention (Hilt et al.
2011, Jenny et al. 2014, Kondolf et al. 2014, Van Cap-
pellen and Maavara 2016, Teurlincx et al. 2019, Maa-
vara et al. 2020). Therefore, Hilt et al. (2011) and
Teurlincx et al. (2019) argued for a hydrological net-
work perspective and to tactically use local, upstream
interventions. Local hydrological interventions may
include water level and flow regulation by pumps,
dams, and sluices, and dechannelization (Vörösmarty
1997, Stanley and Doyle 2002, Li et al. 2013, Kong
et al. 2017, Fraaije et al. 2019, Maavara et al. 2020).
These measures alter the hydraulic residence time
and risk of hypoxia (Jenny et al. 2014), thereby
influencing nutrient retention in the waterbody
(Wang et al. 2020). Also, waterbody types may be
altered; for example, dam construction can convert
river sections into dammed reservoirs and strongly
increase P retention (Tundisi et al. 1998, Vörösmarty
et al. 2003). In addition to waterbody-level interven-
tions, management of the hydrological network struc-
ture may stimulate net nutrient retention, for
example, by increasing lateral connections between riv-
ers and vegetated lakes or wetlands (Mitsch et al. 2008,
Kreiling et al. 2011, Newcomer Johnson et al. 2016).
More natural reconstruction of hydrological networks
may have mutual benefits; for example, increased
nutrient retention and flood protection are expected

Figure 4. Schematic of the self-reinforcing (i.e., mathematically positive) feedback loop in networks of inland waters. Nutrient loading
has a negative feedback on ecological water quality, water quality has a positive feedback on nutrient retention, and nutrient reten-
tion has a negative feedback on nutrient loading downstream, overall resulting in a self-reinforcing feedback loop that cascades down
the network.
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after (re)construction of waterways and flooding areas
in the Dutch “Room for the River” and “Living with
Water” projects (Van Gerven et al. 2009).

Macrophyte-focused management

Stimulation and preservation of macrophytes (Hilt et al.
2006) may enhance nutrient retention and ecological
water quality (e.g., according to the European Water
Framework Directive). However, macrophytes may
cause problems for drinking water and hydropower pro-
duction and block waterways for boating (Tundisi et al.
1998, Hilt et al. 2006). Yet the public perception onmac-
rophyte establishment, in for example urban streams, is
generally positive or neutral (Larned et al. 2006). More-
over, macrophyte-stimulating interventions may have
multiple benefits, such as enhancing biodiversity, recre-
ational value, fish spawning areas, and nutrient reten-
tion. At present, the benefits of paludiculture (i.e., wet
agriculture/forestry on rewetted peatlands) are being
explored (Vroom et al. 2018). Moreover, more vegetated
water systems are being promoted or developed to sup-
port biodiversity, such as thousands of kilometers of
nature-friendly banks in the Netherlands (ter Veld
2014). For lakes specifically, diverse management
options to promote macrophyte dominance over phyto-
plankton dominance exist: flushing with cleaner water,
nutrient load reductions beyond the lower critical nutri-
ent load, and biomanipulation by fish removal (Janse
et al. 2008, Bernes et al. 2015, Janssen et al. 2019b).
Here, we highlight 2 more examples of macrophyte-
focused management that can be applied for nutrient
conservation: constructed wetlands and an engineering
project for macrophyte harvesting and reuse.

Constructed wetlands
Constructed wetlands are wet systems created with mac-
rophytes (and sediment), mostly used to treat wastewa-
ter. For example, reed filters in a stream bypass purify
and store water at the estate of Lankheet (the Nether-
lands; Mulder and Querner 2008), and in (sub)tropical
regions, common water hyacinth (Eichhornia crassipes)
and water lettuce (Pistia stratiotes) are used to biore-
mediate multiple wastewater types (Reddy and D’angelo
1990, Kutty et al. 2009, Lu et al. 2010, Akinbile and
Yusoff 2012). Howard-Williams (1985) extensively
reviewed N and P retention in wetlands and the early
developments of constructed wetlands, and Wu et al.
(2015) comprehensively reviewed constructed wetland
application and recent developments on their sustain-
able design. The nutrient retention effectiveness of con-
structed wetlands tends to decrease over time, especially
for P (Mitsch et al. 2014), possibly explained by

saturation of the soil and accumulation of detritus and
plant biomass (Mitsch et al. 2012). To counteract satu-
ration and accumulation effects and to maintain effec-
tiveness of the constructed wetlands, these nutrient-
retaining components should be harvested and used as
a (nutrient) source elsewhere, thereby enhancing nutri-
ent conservation (e.g., see Reddy and D’angelo 1990).
For example, the new “bio-cascade water purification”
approach applies knowledge of biogeochemical pro-
cesses in soil, water, and macrophytes to prevent satura-
tion effects in connected water basins and to conserve
nutrients by harvesting helophytes and floating macro-
phytes (Kwakernaak et al. 2015). However, to meet
increasingly strict water quality standards, research
and development is still required for appropriate plant
harvest and reuse strategies in constructed wetlands
(Wu et al. 2015).

Harvesting
More nutrients could be reused by mowing macro-
phytes (Kuiper et al. 2017), dredging sediment, or
fishing. Think of using reed as a building material
(Köbbing et al. 2013), lake-dredged materials and
decayed or processed water hyacinths as soil amend-
ments (Sigua 2009, Aremu et al. 2012, Masto et al.
2013), or fish as a food source (Edwards et al. 1997,
McIntyre et al. 2016, Kim et al. 2019). Such harvests
are currently occurring but rarely considered for nutri-
ent conservation or to combat eutrophication prob-
lems. For example, Tang and Xie (2000) considered
fish catches, like water outflow, a nutrient outflow.
Nevertheless, fishing conserved 3–4% and 10% of the
N and P loading, respectively. We noted one example
of macrophyte harvesting to purposefully remove
nutrients from a natural waterbody: an ecological engi-
neering project in subtropical Lake Caohai (China;
Wang et al. 2013). Here, seedlings of common water
hyacinth were planted in constructed enclosures, har-
vested after growth, and processed into biogas and
organic fertilizer. This process removed 76% of the
inflowing TN, with 65% of the overall retained N in
the form of macrophyte biomass. Wang et al. (2013)
concluded that “large scale utilization of E. crassipes
for removal of N in the eutrophic lake [Caohai] is prac-
ticable,” thus the potential for nutrient conservation
exists. However, harvesting should be applied with
care to avoid drastic ecosystem disruptions (Van Zui-
dam and Peeters 2012, Kuiper et al. 2017) and the
loss of indirect contributions of macrophytes to nutri-
ent retention. Moreover, risks of contaminating food
chains should be carefully assessed before reusing mac-
rophytes and dredged materials (Beyer and Stafford
1993, Aremu et al. 2012).
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Catchment-level nutrient management

Most water quality management measures are applied
to individual waterbodies but would become more effec-
tive if embedded in catchment-wide management strat-
egies, considering potentially cascading effects of
improved water quality in networks of inland waters
(Fig. 4). At the catchment level, additional measures
can be taken by, for example, regional or (inter)national
governing authorities (Fig. 2). These measures can tar-
get external nutrient loading (i.e., nutrients from
diffuse and point sources in the catchment, which may
eventually reach target waterbodies) and hydrological
connections. These issues may be addressed by
landscape-level legislation and enforcement (e.g., fertil-
izer application limits and wastewater treatment stan-
dards) or catchment-level management (e.g., changing
hydrological network structure by (re)constructing
waterways and adjusting macrophyte mowing schemes)
but are beyond the scope of local water managers. More-
over, nutrient loading and retention are influenced by
socioeconomic and climatic changes, for example land
use change, population and economic growth, increas-
ing temperatures, and changes in precipitation and
runoff (Strokal et al. 2016). These (inter)national and
global challenges require adjustments at even larger
scales.

Nutrient retention models

SNRN management strategies can be designed with the
help of nutrient retention models available at various
spatial scales (Supplemental Material C). Nutrient
retention models simulating individual waterbodies
are often process-based (i.e., employing process rates
and mechanistic insights to estimate nutrient retention;
Van Gerven et al. 2009). For example, PCLake(+) (Janse
2005, Janssen et al. 2019a), PCDitch (Janse and Van Pui-
jenbroek 1997, Janse 2005), and the GLOBIO-Wetlands
model (under development; Janse et al. 2019) are
process-based models from which nutrient retention
processes and balances can be derived (Kong et al.
2019). These models include feedback loops between
ecological states and nutrient retention and have been
used to explore water quality management options
(Janssen et al. 2019b). An example of a partly process-
based model to analyze the effect of interventions on
water quality is the Dutch KRW-Verkenner (Water
Framework Directive Explorer). Users can themselves
assign nutrient retention fractions of waterbodies,
guided by meta-models for lowland streams, shallow
lakes, and rivers that are statistically derived from the
mechanistic process-based model AquaVenus (de

Klein 2008, Van Gerven et al. 2009). Although some
of the meta-models include the effect of macrophytes
on nutrient retention, they do not include feedback
loops between nutrient loading, ecological water quality,
and nutrient retention (Van Gerven et al. 2009). Wet-
land models most explicitly cover the effect of macro-
phytes on nutrient retention and are usually more
specific, for example, focusing on either N or P, or on
a specific wetland type and location (Mitsch and Reeder
1991, Van Dam et al. 2007). Most of these and other
waterbody-level nutrient retention models include mac-
rophyte and/or phytoplankton presence (Supplemental
Material C).

On the hydrological network level (i.e., global or
catchment scale in Supplemental Material C), nutrient
retention is often expressed as a fraction of the nutrient
flow into the system that is retained and derived by stat-
istical relationships to one or multiple waterbody char-
acteristics. For example, the global model WorldQual
derives P retention in waterbodies as a function for
the whole catchment depending on hydraulic residence
time (Fink et al. 2018). In other global models, the nutri-
ent retention fraction is, in addition to hydraulic
residence time, based on denitrification and sedimenta-
tion rates (Harrison et al. 2009, Beusen et al. 2016).
GlobalNEWS includes denitrification in rivers as a func-
tion of water depth and travel time (Seitzinger et al.
2002), nutrient removal by water abstraction for irriga-
tion and other human consumptive water use, and
retention in dammed reservoirs as a function of hydrau-
lic residence time and depth (Mayorga et al. 2010). The
MARINA model builds on the latter global model but is
specified for Chinese river catchments, with multiple
subcatchments and channel section-specific nutrient
retention (Strokal et al. 2016). In addition to the reten-
tion processes in GlobalNEWS, MARINA includes dis-
solved inorganic P retention in rivers by, for example,
sedimentation and accumulation (Strokal et al. 2016).
All these and other large-scale nutrient retention models
exclude management options for individual waterbodies
and generally disregard the effect of ecological state
(Supplemental Material C).

To support the development of SNRNs, a model
should include management options and the self-rein-
forcing feedback loop of ecological water quality, nutri-
ent retention, and nutrient loading in networks of
inland waters. Hence, existing nutrient retention models
for individual waterbodies seem more promising than
large-scale models. Especially, global-scale models
strongly simplify nutrient retention, which may be jus-
tified because they are intended to identify global pollu-
tion hotspots and long-term water quality trends,
whereas local-scale models are more often designed to
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assess management options (Tang et al. 2019). Large-
scale models disregard alternative ecological states of
lakes, which might be explained by their focus on rivers,
and neither explicitly consider biogeochemical nutrient
retention processes other than denitrification. Most
local-scale models are more detailed and process-
based but also have their limitations for modeling nutri-
ent retention management at catchment-scale. For
example, these models do not focus on nutrient reten-
tion, or they focus only on specific nutrients or water-
bodies types (Supplemental Material C). The
advantage of detailed, process-based models for SNRN
management strategy development is that they more
often include management options, primary producers,
and potentially include feedback loops between ecolog-
ical states and nutrient retention. By their mechanistic
basis, these more process-based local-scale models can
serve as a building block to consider cascading effects
on a hydrological network scale; alternatively, their
insights can be applied in large-scale models.

Toward Smart Nutrient Retention Network
Management Strategies

The specific design of any SNRN management strategy
depends on the configuration and state of the targeted
network of inland waters, including its local waterbody
types and their ecological states, and availability and
efficacy of local intervention options (Fig. 2). Moreover,
successful nutrient conservation through the implemen-
tation of SNRN management strategies requires an
understanding of catchment conditions and clearly for-
mulated goals (Fig. 2). Catchment conditions include
biogeochemical and social system properties such as
external nutrient loading, hydrological connections,
climate change, catchment-level legislation, and socio-
economic conditions. Tailoring case-specific goals and
strategies to such cross-sectoral catchment conditions
is beyond the scope of water managers alone and
requires partnerships of stakeholders and involvement
of larger scale governing authorities (see catchment-
level nutrient management discussion earlier).

Formulation of clear goals before implementation is a
key task for responsible managers and stakeholders. It is
crucial that the manager is aware of potential local and
regional tradeoffs of interventions and between goals.
For example, interventions may have contrary effects
on N and P retention, denitrification can enhance
water quality but counteract nutrient conservation,
and increased flushing may locally improve water qual-
ity while deteriorating downstream ecosystems through
increased nutrient loading. To avoid unforeseen
tradeoffs, more complete and quantitative empirical

studies must be conducted on the effect of macrophytes
on nutrient retention at the level of networks of inland
waters. Empirical examples and studies of effective,
efficient, and safe nutrient harvesting and reuse can
inform the further development of SNRNs, specifically
to manage the risk of undesired changes in ecological
state and nutrient retention potential. Ideally, the
impact of SNRN management strategies on processes
and goals aside from nutrient retention and conserva-
tion should be considered, as advocated by integrated
water resource management approaches (Al-Jawad
et al. 2019). For example, greenhouse gas emissions
(Deemer et al. 2016, Chen et al. 2019), biodiversity
loss (Dudgeon 2000, Hansson et al. 2005), and sediment
starvation (Kondolf et al. 2014) should be considered.

SNRN management strategies can be designed con-
ceptually, based on expert knowledge, or with the help
of simulation models. Simulation models can provide
outcomes of multiple scenarios for quantitative compar-
ison, but integrated models must be developed to
include (1) applications to networks of inland waters;
(2) feedback between ecological states, nutrient reten-
tion, and nutrient loading; and (3) nutrient retention
management options. Networks of inland waters could
be modeled using a node-link schematization, building
on existing waterbody models, as suggested by Teur-
lincx et al. (2019). When a wide range of management
options is available, such models could be run with opti-
mization algorithms to determine the optimal solution
(Al-Jawad et al. 2019, Strokal et al. 2020). While time-
consuming and challenging, using an optimization
approach could result in novel solutions to water man-
agement problems that might not be found intuitively.

Developing complex nutrient retention network
models could drive significant improvements in net-
work-level water management for nutrient conserva-
tion. Nonetheless, these developments are not
necessary for water managers to start to include the
core principles of SNRNs. SNRN principles could, for
instance, be applied to the “River Basin Management
Plans” required by the European Water Framework
Directive (Griffiths 2002). Beyond Europe, considering
nutrient retention in networks of inland waters may
support sustainable water quality and nutrient
management.

Human food production was long dependent on, and
limited by, nutrient recycling by manure application on
agricultural lands. With the onset of the industrial age,
feeding a growing world population became increas-
ingly dependent on unsustainable fertilization tech-
niques that exploit mineral P deposits and marginally
renewable geological stocks of fossil fuels for N fixation.
Maintaining, and ensuring for all, the high living
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standards that result from such unsustainable agricul-
tural practices, but within the means of the planet, is
today’s greatest challenge (Raworth 2012). Smart Nutri-
ent Retention Networks can be one component of a sus-
tainable and just future as they are designed around
biogeochemical nutrient cycling processes and contrib-
ute directly to at least 3 UN Sustainable Development
Goals (SDGs): zero hunger (SDG 2), clean water and
sanitation (SDG 6), and responsible consumption and
production (SDG 12) (United Nations 2015).
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