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A B S T R A C T   

Climate change adaptation requires understanding of complex social ecological systems (SESs). One source of 
uncertainty in complex SESs is ambiguity, defined as the range and variety of existing perceptions in and of an 
SES, which are considered equally valid, resulting in a lack of a unique or single system understanding. Current 
modelling practices that acknowledge the presence of ambiguity in SESs focus on finding consensus with 
stakeholders; however, advanced methods for explicitly representing and aggregating ambiguity in SESs are 
underdeveloped. Moreover, understanding the influences of ambiguity on SES representation is limited. This 
paper demonstrates the presence and range of ambiguities in endogenous and exogenous system drivers and 
internal relationships based on individual fuzzy cognitive maps derived from stakeholder perceptions of climate 
change adaptation in Kenya and introduces an ambiguity based modelling process. Our results indicate that 
acknowledging ambiguity fundamentally changes SES representation and more advanced methods are required.   

1. Introduction 

Referred to by popular media as “the biggest threat facing humanity”,1 

future climate change is recognised as being hazardous for human and 
natural systems (IPCC, 2014). Adapting to climate change is a complex 
issue because of the numerous interactions between the human and 
natural systems (Pahl-Wostl, 2007). A leading concept in adaptive 
complex systems thinking is the notion of the social ecological system 
(SES; Audouin et al., 2013, Berkes and Folke, 1998; Biggs et al., 2015; 
Preise et al., 2018). In a SES, human and natural systems are inherently 
intertwined; human systems include elements such as values, decisions, 
and perceptions, and natural systems relate to biophysical elements 
including the ecological and hydrological cycles. Interactions are the 
result of any behaviour within or between the human and natural sys-
tems that reinforce or modify SES dynamics (Berkes and Folke, 1998). 

Many different approaches, methods, and tools have been success-
fully applied to improve SES understanding (e.g. Binder et al., 2013; 
Levin et al., 2013; Liu et al., 2007; Ostrom, 2009), often involving 
modelling aimed at predicting, exploring, communicating, and learning 
(Brugnach and Pahl-Wostl, 2008). Common modelling approaches 

include system dynamics models, Bayesian networks, coupled compo-
nent models, agent-based models, and knowledge-based models (Kelly 
et al., 2013). Recently, eight major challenges for SES modelling were 
identified by Elsawah et al. (2020) including bridging epistemologies, 
dealing with uncertainties, and integrating the human dimension, which 
form the broad focus of this research. First, the challenge of bridging 
epistemologies emerges because scientists disagree on how to represent 
a system due to fundamental paradigmatic differences between the so-
cial and environmental sciences. Second, the challenge of dealing with 
uncertainties emerges because of the disagreement between what is 
considered structural uncertainty (i.e. model context and model pur-
pose) and model uncertainty (i.e. data and parameters). Third, inte-
grating the human dimension in SES models remains challenging due to 
a lack of understanding about specific social systems and disagreement 
on the approaches to generalise social behaviour. Such a lack of un-
derstanding is compounded by limited research funding in this area as 
well as privacy issues associated with the use of ‘big data’ to study social 
behaviour patterns. Here, we argue that these three challenges are 
connected by one common theme—the presence of ambiguity within 
and about SESs, and the absence of mutually acceptable and replicable 
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approaches to address ambiguity in current modelling practices. 
Ambiguity is a type of uncertainty caused by the presence of multiple 

knowledge frames both about and within SESs, where “there is not a 
unique and complete understanding of the system to be managed” (Brugnach 
et al., 2008). Multiple knowledge frames are considered equally valid 
and have an impact on, for example, how a problem is defined (Dewulf 
et al., 2005). Here, we define ambiguity in SESs as the range and variety 
of existing perceptions in and of an SES, which are equally valid, and 
which result in a lack of unique or single system understanding. Ambi-
guity in SESs is currently addressed in models through participatory 
modelling (PM), which aims to generate multiple perceptions of SES 
system dynamics (Voinov et al., 2016). For example, some modelling 
approaches specifically seek to integrate the opinions and values of 
scientists and stakeholders (Tuler et al., 2017; Voinov and Gaddis, 
2017). An advantage of PM is that it can facilitate understanding of the 
underlying beliefs and values of stakeholders about their environment 
(Paolisso and Tombley, 2017), with a broad aspiration to improve 
standardised reporting and reproducible methods (Gray et al., 2018). 
Therefore, we regard participatory modelling as an important example 
of how ambiguity is currently recognised and—at least parti-
ally—accounted for in SES modelling. 

Group-modelling workshops are a novel PM method for addressing 
ambiguity in which stakeholders are facilitated towards a common un-
derstanding of an SES (e.g. Diniz et al., 2015; Henriksen et al., 2012; 
Simon and Etienne, 2010; van der Sluis et al., 2019). An advantage of 
group modelling is that ambiguity is addressed by facilitating the deci-
sion space in a way that supports collaboration; however, it is ques-
tionable whether group-modelling results in a common understanding 
because represented knowledge is dependent on group power dynamics 
(Gray et al., 2014; Turnhout et al., 2020). Alternative methods address 
this issue by collecting and aggregating individual perceptions of 
stakeholders into one model (e.g. Solana-Gutiérrez et al., 2017; Lavin 
et al., 2018; Mehryar et al., 2019). While this approach increases the 
understanding of individual SES system dynamics (Gray et al., 2014), 
when aggregated, heterogeneity in stakeholder perceptions is lost 
(Mehryar et al., 2019). Occasionally, studies have combined 
group-modelling workshops and the collection of individual and/or 
aggregated perceptions (e.g. Salliou et al., 2017). 

If the goal of PM is to model how stakeholders perceive their SES, it is 
crucial to explicitly address the diversity of perceptions and, thereby, 
inherent ambiguity. Most models derived using PM aim to develop a 
consensus system by aggregating perspectives, assuming that each 
stakeholder has limited knowledge of the entire system. Therefore, 
models that represent ambiguity are underdeveloped (Brugnach and 
Ingram, 2012). We argue that explicitly representing ambiguity funda-
mentally changes the way we understand and represent complex SESs. 
Additionally, increasing transparency in the ambiguity of models is 
necessary to advance the field of PM and complex SES representation. 
Identifying how one system can be modelled whilst also explicitly rep-
resenting multiple knowledge frames (i.e. ambiguity) is, therefore, a key 
research challenge. 

Fuzzy cognitive maps (FCMs) are commonly used for PM-based 
group model building and/or eliciting individual perspectives. In envi-
ronmental sciences, FCMs are used in a participatory setting to bridge 
the knowledge gap between stakeholders and scientists (Mallampalli 
et al., 2016; Van Vliet, 2010), qualitative and quantitative modelling 
(Kok, 2009; Van Vliet et al., 2017), and policy and practice (Sol-
ana-Guitiérrez et al., 2017). Moreover, FCMs are used to understand 
stakeholder perspectives on concepts, driving relationships, and feed-
back loops within a system (Diniz et al., 2015; Özesmi and Özesmi, 
2004). Current FCM practices concentrate on finding consensus by 
group modelling or aggregating individual FCMs. Aggregation practices 
aim to find similarities in the internal FCM structure using, for example, 
mathematical simulations (Özesmi and Özesmi, 2004), whereas FCMs 
that represent multiple perspectives could be more beneficial when di-
versity and ambiguity are openly considered (van Vliet et al., 2010). 

Aggregating individual FCMs can aid the capture of complexity because 
individual FCMs tend to contain few or no feedback loops (Levy et al., 
2018). However, while particularly accounting for ambiguity, advanced 
and mature FCM aggregation methods remain underdeveloped. To 
address these limitations, the main objectives of this study are to (1) 
explicitly represent ambiguity in complex SESs using FCMs; (2) advance 
the aggregation process of FCMs while explicitly representing ambigu-
ity; and (3) understand the influence of FCM aggregation on SES 
representation. 

2. Background 

2.1. Ambiguity in SESs 

Ambiguity, as a type of uncertainty described by Brugnach et al. 
(2008), can be approached using two broad strategies. First, a general-
ised ‘correct’ representation can be sought using epistemic strategies or, 
alternatively, ambiguity is accepted as an inherent structural uncer-
tainty that is addressed via ontological strategies. Through these ap-
proaches, epistemic strategies involve the negotiation of a mutually 
acceptable frame, and ontological strategies relate to working with 
different frames, respectively. Both approaches assume that a unique 
system exists. In practice, the combination of these two approaches is 
used to simulate the heterogeneity of perceptions by, for example, 
splitting stakeholders into different actor groups (Mehryar et al., 2019). 

Ambiguity in SESs can result from multiple system characteristics, 
such as poorly defined system boundaries or multi-scale interactions 
(Cash et al., 2006), the treatment of system entities or structures (Kelly 
et al., 2013), and the types of data employed (Elsawah et al., 2020). In 
the case of the treatment of system entities or structures, the entities of 
system dynamics encompass both endogenous drivers (concepts) and 
exogenous drivers (drivers) as well as their interrelationships. Ambi-
guity in concepts appears when decisions are made about whether or not 
a certain element is included in the system representation; ambiguity in 
drivers appears when decisions are made about the driving capacity of 
specific elements; and ambiguity in relationships appears when decision 
are made about the existence, influence, and direction of these re-
lationships. All of these system entities determine the representation and 
understanding of a system. 

Ambiguity is mainly addressed through the collection of data for 
multiple knowledge frames. For example, Brugnach and Ingram (2012) 
provide recommendations for dealing with ambiguity at the stakeholder 
facilitation stage, including facilitating recognition of in-
terdependencies, building relationships, and creating a decision space 
that supports collaboration. Therefore, excellent facilitation and careful 
stakeholder interaction are crucial for addressing ambiguity. Addition-
ally, following Bremer and Meisch (2017), who performed a compre-
hensive literature study on participation (or co-production) in climate 
change research, eight ‘lenses’ of participation that bridge two funda-
mental usages of participation. First, participation is seen as a method to 
reach a common ‘normative’ goal. Second, ‘descriptive’ participation 
focusses on how science and society shape each other and how this in-
fluences both. This framing does not, however, address methodologies 
aimed at processing multiple knowledge frames toward a posteriori 
models. 

2.2. Fuzzy cognitive maps 

A FCM is a graphical presentation of a combination of endogenous 
drivers (“concepts”) of a system and exogenous drivers (“drivers”) (Kok, 
2009; Kosko, 1986; Jetter and Kok, 2014). Drivers are activated during 
each iteration step by the state vector and are usually ‘pure’ drivers, 
indicating concepts that do not have any incoming relationships from 
the system. The visualisation of FCMs takes the form of a FCM (Fig. 1, 
left), an adjacency matrix (Box 1), and a dynamic output (Fig. 1, right) as 
a result of the final state of concepts from the iterations. The dynamic 
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output can diverge, converge, be cyclic, or be stable, depending on the 
matrix. Only stable outputs are interpretable without a threshold (or 
‘clipper’ function). FCMs usually have a focal issue/concept around 
which the system is built (Jetter and Kok, 2014). 

The aggregation of individual FCMs is frequently performed using 
matrix algebra (e.g. Singh, 2011; Solana-Gutiérrez et al., 2017; Mehryar 
et al., 2019), in which numerical values are first assigned to the re-
lationships of individual FCMs and then combined by taking the average 
or median values. This can be based on either individual relationships or 
groups of relationships (see Aminpour et al., 2020). Some alternative 
methods aggregate individual FCMs using Atlas.ti coding to determine 
the value of relationships (see Rahimi et al., 2018). Usually, all the 
aforementioned relationships are included in the final aggregated FCM. 

Averaging solves the problem of conflicting relationships when one 
stakeholder indicates a strong negative relationship and another has a 
weak positive relationship. Nevertheless, this can result in an aggregated 
FCM with a majority of medium relationships. As a result, averaging can 
cause relationships to cancel each other out (for instance, − 0.8 and +
0.8 will be 0), which results in the appearance that there is no rela-
tionship (Ozesmi, 2006). As such, the logic and reasoning of individual 
FCMs are lost, and relationships derived from individual stakeholders (i. 
e. single-stakeholder relationships) can have a large influence on the 
total system. 

FCMs are frequently analysed using FCM indices (Özesmi and 

Özesmi, 2018; Özesmi and Özesmi, 2004) to explore individual concepts 
and relationships or the overall FCM. One example is indegree, which is 
used to determine the sum of weights of incoming relationships that 
influence a certain concept. Indices used to analyse overall FCMs include 
the number of concepts and density, which is a measure of complexity 
calculated as the actual number of relationships divided by the total 
maximum number of relationships in a FCM. 

2.3. Project background 

The ‘SENSES2’ project (2017–2020) was part of the European 
Research Area for Climate Services (ERA4CS) with partners from the 
Netherlands, Germany, Sweden, and Austria. The SENSES project aimed 
to make “scenario information accessible to users in interactive transparent 
and comprehensible ways that help to convert scenario data into user-specific 
scenario knowledge”. The overall project objective of SENSES was to 
develop a toolkit in which scenarios are communicated and tailored to 
specific user groups and stakeholders by integrating climate change 
scenario information, participatory methods, and visualisation tools. 

The project incorporated regional case studies in the Netherlands 

Fig. 1. Example of concepts and relationships in a fuzzy cognitive map (FCM, left) and an example of a FCM output (right) adapted from Kok (2009).  

Box 1 
Matrix iterations in FCM 

Formula. 

Ai = Ai-1 * E. 

In which Ai is the (new) state vector after each iteration (i); A1 is the initial state vector for the iterations, usually set based on the drivers; and E 
represents the matrix of all relationships. 

To use the example of Figure 6: 

State vector A1 = (1, 0, 1). 

Matrix E =

Ai = A1 * E = (1, 0, 1) * = (1, 1.5, 1). 

The new state vector is (1, 1.5, 1). 

This process can be repeated until the FCM reaches a stable state.  

2 http://senses-project.org, https://climatescenarios.org/, http://www.jp 
i-climate.eu/ERA4CS, http://www.jpi-climate.eu/home. 
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and Kenya. The Kenyan case study focussed on integrating the indirect 
impacts of climate change—so-called transnational climate impacts 
(TCI; Hedlund et al., 2018)—into climate change adaptation scenarios 
for Kenya. In the Global South in particular, climate change can lead to 
increased vulnerability and the deterioration of natural resources. As 
such, Kenya has been classified as a water-scarce country (Falkenmark, 
1989) and prolonged droughts and extreme precipitation events have 
already led to severe impacts across society, which will presumably 
aggravated by climate change in the future (NCCAP2018-2022). 
Therefore, societal adaptation to climate change is urgently required. 

The impacts of climate change span borders, sectors, and actors 
including agriculture, water, energy, tourism, wildlife, and health, and 
the national government, civil society, and youth (NCCAP2018-2022). 
Agriculture in Kenya, which is mostly rain-fed, is the largest contributor 
to the economy and is increasingly affected by water scarcity, leading to 
economic losses (NWMP, 2013). Therefore, land and water use are 
strongly related. The involvement of multiple actors and sectors with 
multiple knowledge frames, and the fact that climate change can have 
severe impacts on land and water use, suggests that climate change 
adaptation in Kenya requires deeper SES understanding. 

3. Stakeholder engagement and methodology 

3.1. Stakeholder engagement 

Our stakeholder engagement adopted a mixed method approach 
consisting of the following three elements: (1) performing a stakeholder 
analysis, (2) determining FCM concepts, and (3) eliciting individual 
FCMs. The stakeholder analysis was based on the grey literature, FCM 
concepts were derived during a stakeholder workshop, and individual 
FCMs were elicited during the stakeholder interviews. 

3.1.1. Stakeholder analysis 
The stakeholder analysis utilised an analytical categorisation (top- 

down) and a stakeholder-led categorisation (bottom-up) of sectors and 
actors (Reed et al., 2009). The analytical categorisation was based on 
national policy documents, with the Government of Kenya proposing 
several stakeholder lists via their climate adaptation policy documents 
(KNAP2015-2030; NCCAP2018-2022). In this context, actors were 
defined as having an influence on climate change adaptation or being 
influenced by climate change adaptation. Furthermore, the policy doc-
uments indicated several sectors involved in climate change adaptation 
(NCCAP2018-2022). A stakeholder analysis by Ngigi et al. (2011) 
identified actors and sectors in Kenya, and ranked the (formal) influence 
of stakeholders on smallholder farmers. Here, actors who have 
large-to-moderate influence (i.e. non-governmental organisations 
(NGOs) and ministries) and sectors that are primarily involved in 
climate change adaptation (environment, water, and agriculture) were 
selected. 

3.1.2. Defining concepts in a stakeholder workshop 
We used the output of a stakeholder workshop brainstorming session 

to define a list of concepts for the FCMs and the focal issues of the FCM. 
The objective of the workshop, as part of the overall Kenyan case study, 
was to create a skeleton (or base) for future scenarios as tools to explore 
future transnational climate impacts for Kenya. In the brainstorming 
session, participants were invited to contribute ideas on the concepts of 
transnational climate impacts for Kenya. Global challenges for adapta-
tion from earlier research (Schweizer and O’Neill, 2014) were posted on 
the wall of the workshop room for inspiration. Additionally, the ‘Big 
Four Agenda’ from Kenya Vision20303 was provided to highlight issues 

currently addressed by the national government. The focus question of 
the brainstorm session was ‘What are the most important drivers for un-
derstanding Kenya’s vulnerability to future transnational climate risks?’, 
which was framed as challenges for climate change adaptation within 
and outside of Kenya. For the first round of brainstorming, each 
participant presented two concept ideas, which were written down on 
post-it notes. Participants could then choose to present one or two 
additional ideas. 

All individuals’ ideas were then presented to the group, collected on 
the wall, and grouped into named clusters by the SENSES facilitation 
team. At the beginning of the next session, the workshop lead facilitator 
verified that the participants agreed on the clusters. The concepts were 
subsequently labelled to determine their importance and uncertainty. 
Each participant received five red voting stickers to indicate the un-
certainty of a concept, and five green voting stickers to indicate the 
importance of a concept. This exercise began the development part of 
the workshop but it served to determine the focal issue of the FCM. 
Finally, the concepts derived from the stakeholders and the concepts 
provided by Schweizer and O’Neill (2014) were combined to generate a 
comprehensive list of concepts. 

3.1.3. Eliciting FCMs via interviews 
Interviews were conducted to further explore stakeholder perspec-

tives on relationships between the pre-defined concepts derived from 
the workshop. During the interviews, individual FCMs were created to 
connect the concepts, which were printed out to enable the stakeholders 
to indicate those that were most relevant from their own personal 
perspective. 

The purpose of the interview was explained to each participant, and 
a FCM was shown to visualise the goal of the interview. The participants 
were assured that no direct quotes would be used, and permission was 
sought for the interview to be recorded for verification purposes. Sub-
sequently, following some introductory questions, the stakeholders were 
invited to share their views on climate change effects in Kenya to 
stimulate conceptual and relational thinking. 

Each stakeholder then constructed their individual FCM, placing the 
focal issue in the centre. Concepts were then added to the map based on 
the following questions:  

1. Which concepts have a direct relationship with the focal issue?  
2. Which concepts are directly influenced by the focal issue? 

This provided the first outline of the individual’s FCM, after which 
the following questions were used to systematically discuss positive 
and/or negative relationships between each concept:  

3. Do you think concept C1 influences concept C2? (Yes/No, if so why?)  
4. If concept C1 increases, then will concept C2 increase? (Yes/No, if so 

why?) 

Finally, the stakeholders had the opportunity of adding concepts and 
defining the relative strength of their relationships based on the 
following questions:  

5. Do you think that there are crucial concepts which are missing?  
6. If concept C1 increases, how strongly does concept C2 increase? (If X 

doubles, will Z double too?)  
7. In relative terms, will the relationship A be stronger than relationship 

B (Yes/No, if so why?) 

3.2. Methodology 

The analysis methodology consisted of three elements organised 
around the three objectives. First, ambiguity was elucidated based on 
the individual FCMs. Second, a combined FCM was constructed using an 
ambiguity based aggregation (ABA) process. Third, the effects of the 

3 The ‘Big Four Agenda’ from the Kenya Vision 2030 includes the four main 
governmental focus points of (1) food security, (2) affordable housing, (3) 
manufacturing, and (4) affordable healthcare for all. 
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ABA process on the FCM indices were determined and compared with 
the indices of the common aggregation method. 

3.2.1. Elucidating ambiguity 
Three important steps were considered to explicitly represent am-

biguity using FCMs. The first step involved ranking the concepts, the 
second step involved ranking the drivers, and the third step involved 
summarising the individual matrices. In step 1, the predefined concepts 
were ranked according to how often they were included in all of the 
individual FCMs. For example, a rank score of 10 indicated agreement 
between 100% of the stakeholders, a rank score of 9 indicated 90% 

agreement, and so on. This approach elucidated the ambiguity regarding 
the inclusion of concepts in the overall SES representation. 

Step 2 involved ranking the drivers of the individual FCMs. The 
agreement on the system drivers was tested by counting how often a 
concept was considered to be a driver, defined as those concepts having 
no incoming relationships in the individual FCMs. The driver ranks were 
then coupled to the concept ranks so that each rank indicated the 
number of concepts and drivers (i.e. rank 10 with X concepts and X 
drivers). Furthermore, with the intention of limiting the number of 
drivers in the SES representation, only those were used as concepts in 
more than 30% of the individual FCMs were included. This elucidated 

Fig. 2. Steps of ambiguity based aggregation (ABA) for fuzzy cognitive maps (FCMs).  
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the ambiguity regarding the inclusion of drivers in the overall SES 
representation. 

In step 3, the individual matrices representing the individual FCMs 
were combined into one matrix. The relationships in the matrix were 
summarised as indicated in the individual FCMs (i.e. strong, medium, 
and weak; and positive and negative) without quantifying the re-
lationships. This elucidated the ambiguity in the system relationships 
and summarised the perceptions of the presence, strength, direction, and 
influence (positive/negative) of the relationships in the overall SES 
representation. 

3.2.2. Ambiguity based aggregation (ABA) 
The ABA process (Fig. 2) was based on the notion of a core agree-

ment, where we aimed to include part of the FCM characteristics (con-
cepts and drivers) that were found to have the largest degree of 
agreement. Accordingly, the starting point of the ABA were the concepts 
with the highest rank. Subsequently, the corresponding drivers with the 
highest ranking were designated, and all relationships between the 
concepts and drivers were then included. 

The ABA process adopted three common modelling procedures 
(verification, calibration, and sensitivity analysis) as presented by Aral 
(2010), where “verification is a demonstration that the modelling 
formalism is correct”, calibration is “the adjustment of parameters of the 
mathematical model such that the model agreement is maximized with 
respect to the observation data we have on the modelled system”, and a 
sensitivity analysis is “a simulation through which the modeler evalu-
ates the response of the model to changes in input parameters or 
boundary condition of the model” (Aral., 2010, p.45–48). 

The three modelling procedures were modified to fit the re-
quirements for FCM development. 

The modified verification step aimed to interpret the relationships 
between the concepts according to the collective logic of the stake-
holders and quantify them accordingly. Following La Mere et al. (2020), 
verification was performed by comparing the summarised matrix of the 
directly elicited individual FCMs with the transcribed interviews. First, 
as described by Jetter and Kok (2014), the direction of the relationship 
(i.e. positive or negative) was determined; second, the relative strength 
(strong, medium, or weak) was determined; and third, the actual nu-
merical integer was assigned. Strong relationships received a value be-
tween (− )0.9 and (− )0.7; medium relationships received a value 
between (− )0.6 and (− )0.4; and weak relationships received a value of 
(− )0.3 or (− )0.2. In each case, the final relationship value depended on 
a relative comparison with other relationships according to interview 
question 7 (see section 3.1). Relationships identified by only one 
stakeholder receive a value of (− )0.1, thereby moderating the influence 
of single stakeholder relationships in the dynamic output of the overall 
system representation. All of these verification steps and considerations 
were summarised in a table for the core system, which provided an 
overview of the core assumptions of the total ABA-FCM. 

The subsequent calibration step aimed to generate an interpretable 
stable dynamic FCM output. For this, we used Microsoft Excel to run 45 
iterations and analyse the dynamic output by visualising a graph of the 
iteration and corresponding state values of the concepts. Single- 
stakeholder relationships strongly influenced the dynamic output, 
despite their low values; therefore, all single-stakeholder relationships 
were removed. Additionally, all relationships between the concepts and 
drivers were removed because of their disproportionate effect on the 
dynamic output. These modifications generated a stable and calibrated 
dynamic FCM output. 

A sensitivity analysis was then used to examine the behaviour of the 
system based on the ‘one factor at a time’ (with Δ0.1) approach (Ten 
Broeke et al., 2016), This generated an understanding of the influence of 
the final relationship weights on the overall system. Next, all the rela-
tionship values were set to medium relationships (value of 0.5) and, 
similarly, the state vector was halved (0.5) to examine the influence of 
this boundary condition on the dynamic output. 

Using the calibrated output and behavioural understanding of the 
core FCM, the concepts and drivers with the second highest ranks (9) 
were added (ABA-9). This process was then repeated until a desired 
aggregated system representation (with a corresponding range of am-
biguity) was reached. The repetition of the process can be modified 
regarding the objective of the FCM. For example, if the aim is to un-
derstand the core of an agreement, repetition can be limited; if the aim is 
to create a holistic view of stakeholder perceptions, repetition can be 
maximized. 

3.2.3. Comparing FCM indices 
FCM system representation can be analysed in several ways (Levy 

et al., 2018; Özesemi and Özesemi, 2004). Özesemi and Özesemi (2004) 
proposed a number of indices including the number of drivers (Nd), 
number of concepts (Nc), number of relationships (Nr), and density (D), 
which is defined as Nr/Nc.2 These FCM indices were calculated for the 
individual FCMs as well as the aggregated FCM using standard aggre-
gation methods (see section 2.2). To understand how FCM indices were 
altered by the aggregation, the average and median indices of the 
aggregated FCM were calculated and compared to the average and 
median values of the individual FCMs. Finally, to examine how the FCM 
indices were altered by the ABA process, they were calculated for the 
three calibration steps of each ABA rank and compared with the indi-
vidual and standard aggregated values. 

4. Results 

4.1. Stakeholder engagement 

4.1.1. Stakeholder participation 
The stakeholder workshop, facilitated by the Swedish/Kenyan part-

ners of the project, was organised on the 10th of January 2019 in Nai-
robi. To ensure consistency between the interviewees and workshop 
participants, stakeholders to be interviewed were first approached 
during the workshop. The list of stakeholders was expanded by adding 
missing actors from the workshop and asking the participants for addi-
tional names. A total of 11 stakeholders were interviewed in Nairobi 
during ten one-and-a-half hour interviews in January and February 
2019, which provided ten individual FCMs. With a gender distribution 
of 55% female and 45% male, a workshop-interview consistency of 
36%–64% no-yes, and a mix of private and public actors within climate 
change-affected sectors, we were able to capture a representative sample 
of stakeholder perceptions (Table 1). 

Table 1 
Stakeholders interviewed during the case study. Gender distribution, actor 
group, sector, and presence in the SENSES workshop are indicated (NGO = non- 
governmental organisation).  

Actor group Sector Gender Workshop 
attendee 

Intergovernmental Climate F No 
National government Agriculture & Livestock F Yes 
National government Water (drought) M Yes 
National government Environment F No 
County government Environment M Yes 
University Climate change 

adaptation 
F Yes 

University Climate change 
adaptation 

M Yes 

Consultant Climate change 
adaptation 

F Yes 

NGO Climate change 
adaptation 

M Yes 

NGO Energy M No 
NGO Land use F No  
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4.1.2. List of concepts 
The workshop brainstorm session resulted in 19 concepts in which 

land and water use (C4) was prioritised. The concept list was completed 
with the addition of eight concepts listed by Schweizer and O’Neill 
(2014), giving 27 concepts considered a challenge for climate change 
adaptation in Kenya (see Table 2). 

4.1.3. Individual FCMs 
An example of an individual FCM is shown in Fig. 3. In general, 

stakeholders found it difficult to define relatively stronger and weaker 
relationships, and two stakeholders refused to do so. Some of the re-
lationships were, therefore, only defined in terms of their direction. 

4.2. Ambiguity in FCM concepts, drivers, and relationships 

Considerable ambiguity was revealed in the FCM concepts, drivers, 
and relationships (Fig. 4). Of the 27 pre-defined concepts, all except C14 
(supply chain risk management) were included in the individual FCMs. 
Overall, four concepts were mentioned by every stakeholder, indicating 
that 15% of the FCM concepts were mutually agreed upon. These four 
concepts were C4 (land and water use, identified as the focal issue), C6 
(rapid population growth), C19 (shared natural resources), and C21 
(quality of governance). 

There was no mutual agreement among drivers, however, with a 
total of 19 identified as those concepts having no incoming relationships 
in the individual FCMs. The highest rank score was an agreement of 50% 
for drivers C6 and C21. Based on a constraint of at least 30% agreement, 
the following five drivers remained: C6 (rapid population growth), C9 
(climate finance), C11 (national infrastructure), C20 (income per cap-
ita), and C21 (quality of governance). Two of the constrained drivers (C6 
and C21) correspond to the four concepts of mutual agreement. 

Ambiguity in the FCMs was also strong in the identified concept 
relationships, with no single relationship included in all cases. However, 
relationship between C6 (rapid population growth) and C4 (land and 
water use) was identified in 90% of the individual FCMs. The strength 
and influence (positive/negative) of the relationships also varied, and in 
some cases, relationships were undefined by the stakeholders, indicating 
uncertainty about their relative strengths. Table 3 displays the ABA-7 
matrix and its corresponding concepts, drivers, and relationships, indi-
cating a 70% agreement on the concepts. A fully summarised matrix is 
provided in the Supplementary Materials. 

4.3. Ambiguity based aggregated FCM 

For brevity, here we show the verification step and the calibration 
step of the ABA approach in detail, which accurately demonstrate the 
overall process using the verification step of ABA-10 and the calibration 
step of ABA-7. The sensitivity analysis of the ABA-7 FCM is also 
described for illustration. 

ABA-10 (Fig. 5) included four concepts (C4, C6, C19, and C21), of 
which two were drivers (C6 and C21). Between the concepts and drivers, 
seven relationships were defined, of which two were single stakeholder 
relationships (and, therefore, has not yet been removed). 

The verification step, in which the relationships were quantified for 
ABA-10, is shown in Table 4. The differences in the strength and influ-
ence (positive/negative) of the relationships occurred due to different 
interpretations of the concepts. For instance, as the focal issue, C4 was 
interpreted as the amount of land and water use as well as sustainably 
managed land and water use. Moreover, shared natural resources were 
interpreted as physical areas around the borders of Kenya by some 
stakeholders while others implied the inclusion of all shared resources 
within Kenya, such as national parks. 

Using the ABA-7 FCM matrix to illustrate the calibration steps, 15 
concepts were included, of which three were drivers connected by 94 
relationships. Starting with all relationships (calibration step 1), the 
dynamic output was unstable (Fig. 6); the end state of the concepts 

Table 2 
List of pre-defined concepts.  

Concept Name Description Source 

C1 Import of food Amount and type of food 
that is imported in Kenya. 

Workshop 

C2 Regional collaboration on 
TCI 

The degree of collaboration 
in East-African boarder 
regions to share 
information. 

Workshop 

C3 Policy implementation The degree in which policy 
is transformed in to 
tangible actions. 

Workshop 

C4 Land use change in Kenya 
(subsequently ‘land and 
water use’, identified as the 
focal issue) 

The amount of land and 
water used. 

Workshop 

C5 Knowledge management 
systems 

The degree of access to 
information platforms and 
(international) sharing of 
data/information. 

Workshop 

C6 Rapid population growth The degree of population 
growth in Kenya. 

Workshop 

C7 Access to TCI-relevant data The degree of access to 
data regarding 
transnational climate 
impacts. 

Workshop 

C8 Importing energy The amount of energy 
imported. 

Workshop 

C9 Climate finance The amount and access to 
climate finance. 

Workshop 

C10 Urbanisation and cultural 
change 

The increase of rural to 
urban migration and 
decline of rural traditions/ 
knowledge. 

Workshop 

C11 National infrastructure Infrastructure that is 
vulnerable to climate 
change, especially flooding 
(e.g. power dams/roads). 

Workshop 

C12 New economic perspective Circular economy 
businesses. 

Workshop 

C13 Tourism in Kenya Wildlife migration/ 
extinction and the effect of 
tourism. 

Workshop 

C14 Supply chain risk 
management 

An integrated and 
sustainable value chain of 
products. 

Workshop 

C15 Insecurity and terrorism The decline of adaptive 
capacity due to (the fear of) 
terrorism. 

Workshop 

C16 Healthcare Access to healthcare and 
emerging terminal 
illnesses. 

Workshop 

C17 Technology transfer Research and development 
of technologies to reduce 
vulnerabilities. 

Workshop 

C18 Extreme poverty Proportion of people in 
extreme poverty. 

Workshop 

C19 Shared natural resources Water availability and the 
quality of water/land. 

Workshop 

C20 Income per capita See Schweizer and O’Neill 
(2014) 

Literature 

C21 Quality of governance See Schweizer and O’Neill 
(2014) 

Literature 

C22 Water scarcity See Schweizer and O’Neill 
(2014) 

Literature 

C23 Proportion of population on 
coasts 

See Schweizer and O’Neill 
(2014) 

Literature 

C24 Innovation capacity See Schweizer and O’Neill 
(2014) 

Literature 

C25 Urbanization (subsequently 
merged with C10) 

See Schweizer and O’Neill 
(2014) 

Literature 

C26 Educational attainment See Schweizer and O’Neill 
(2014) 

Literature 

C27 Agricultural productivity See Schweizer and O’Neill 
(2014) 

Literature  
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increased exponentially between 20 and 30 iterations. As a next step 
(calibration step 2), all single-stakeholder relationships were removed 
from the matrix. This produced very similar results, with the same 
concepts showing positive and exponentially increasing values. In cali-
bration step 3, the additional removal of relationships on drivers led to a 
stable set of concept values (Fig. 7). This shows that when calibrating a 
FCM, removing influences on drivers is crucial. As is common in 

dynamic FCM outputs, the focal issue (C4) is pushed to the highest end 
state. The second highest end state was C10 (urbanisation and cultural 
change) followed by C27 (agricultural productivity). In addition, one 
concept (C18, extreme poverty) was identified as having a strong 
negative value. This indicates that the three drivers of rapid population 
growth, income per capita, and quality of governance (C6, C20, and 
C21) increased the amount of land and water use, enhanced 

Fig. 3. An example individual stakeholder FCM. Red lines indicate strong relationships, green lines indicate weak relationships, and blue lines indicate medium- 
strength relationships. The + and – signs next to the arrows indicate positive and negative relationships, respectively. 

Fig. 4. Ambiguity in fuzzy cognitive map (FCM) concepts (see Table 2) and drivers. Concept rank relates to the degree of agreement where the rank 10 implies 100% 
agreement, 9 implies 90% agreement, etc. The dotted line demonstrates the driver constraint of more than 30% agreement. 
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urbanisation and cultural change, increased agricultural productivity, 
and reduced extreme poverty. 

The FCM is sensitive to strong relationships; the Δ0.1 change making 

strong relationships stronger yields an explosive system that does not 
stabilise. Other value changes cause minor changes in the shape and 
end-states of the concepts. When weakening the relationships by 0.1, the 

Table 3 
Ambiguity in relationships with a summarised matrix of up to 70% agreement (ABA-7) in which relationships between 15 concepts (see Table 2) and three 
drivers are displayed. “s” indicates strong relationships, “m” indicates medium-strength relationships, and “w” indicates weak relations; “o” represents 
relationships that were not defined in the individual FCMs. Yellow boxes indicate single-stakeholder relationships, dark shade positive and light shade 
negative. 

Fig. 5. Constructed ABA-10 graph. Dark blue arrows indicate positive relationships and light blue arrows indicate negative relationships. The size of the arrow 
(thick, medium, or small) represents a strong, medium, or weak relationship, respectively. Dotted arrows are single stakeholder relationships and black arrows 
are drivers. 
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ranked order of land and water use, urbanisation, and cultural change 
was altered, but no other considerable end-state shifts occur. A recon-
struction of the ABA-7 FCM (Fig. 8) shows a strong feedback loop be-
tween land and water use, water scarcity, agricultural productivity, and 
back to land and water use. As a driver, rapid population growth en-
forces agricultural productivity and land and water use, making this 
loop even stronger. 

4.4. Influence of aggregation on FCM indices 

There was a wide range of drivers, concepts, and relationships in the 
individual FCMs (see Table 5); the number of drivers ranged from one to 
nine, the number of included concepts varied from eight to 18, and the 
number of relationships varied between 12 and 48. Importantly, the 
index values of the common aggregation method differ from those of the 
individual FCMs (Table 5); the common aggregation method produced a 
FCM without any drivers and with a considerably higher density value, 
mainly because of the high number of relationships. Although outside of 
the scope of this paper, it is worth noting that the dynamic behaviours of 
the aggregated FCMs were, consequently, also very different. 

Similar to commonly used aggregation methods, the ABA method 
also influenced the FCM properties (Table 6), with highest the density 
values in each agreement rank with all relationships (e.g. for ABA-10, 
step 1 had the highest density, and for ABA-7, step 1 had the highest 
density). Importantly, the density values of almost all the steps were 
higher than those obtained from the common aggregation method, 
largely due to the low number of concepts and the relatively high 
number of relationships. 

The two subsequent calibration steps significantly reduced the 
number of relationships and reintroduced drivers. This indicates that the 
calibrated ABA-7 included three drivers, 15 concepts, and 45 relation-
ships, corresponding to a density of 0.22. These properties are closer to 
the average and median properties of the individual FCMs than the 
values obtained using the common aggregated method. The calibration 
steps were, therefore, crucial for not only providing a stable dynamic 
FCM output but also to change the FCM properties. 

Based on Tables 5 and 6, the properties of the common FCM aggre-
gation method do not correspond with the properties of the individual 
FCMs. For example, the disappearance of drivers and the high number of 
concepts and relationships are substantially different from individual 
perceptions. In comparison, after calibration, the ABA-7 properties 
correspond to the average and median FCM properties, and provide a 
more similar aggregated model compared to stakeholder perceptions. 

This indicates that an ABA process can produce a stable output with FCM 
indices similar to individual FCMs while, at the same time, elucidating 
and aggregating multiple perspectives. 

5. Discussion and conclusions 

Given that FCMs display a substantial amount of ambiguity, our ABA 
approach provides transparent steps for aggregating multiple FCMs. The 
FCM aggregation method applied substantially influences FCM indices 
and, therefore, SES representation. Nevertheless, explicitly representing 
ambiguity in complex SESs using FCMs, while advancing the aggrega-
tion process and understanding its influence on SES representation, does 
not come without some shortcomings, which we discuss in the following 
section in context of our original objectives. 

5.1. Explicitly represent ambiguity in complex SESs with FCMs 

Grey et al. (2014) discussed multiple options for collecting data to 
build a FCM. In this study, we focussed on consensus building and scope 
setting by framing FCM concepts during a stakeholder workshop. This 
provided predefined concepts that served as inputs for the subsequent 
interviews. The main advantages of using predefined concepts for FCM 
co-production include (1) a collaborative understanding of concepts; (2) 
achieving a focussed discussion on relationships instead of concepts 
during interviews; (3) increased comparability of individual FCMs, and 
(4) minimised time requirements of individual stakeholders, thus 
limiting stakeholder fatigue. 

However, stakeholders (re-)interpreted the identified concepts 
differently, resulting in partially conflicting interpretations. As 
described by Jetter and Kok (2014), differences in the meaning of con-
cepts are common, even after a plenary participatory discussion. 
Limiting conflicting interpretations of concepts could be facilitated 
during the interviews, by briefly explaining the concepts before dis-
cussing the relationships between them for example, although this 
brings the focus back on the concepts and limits stakeholders’ freedom 
of thought. As every FCM displays an individual narrative of logic be-
tween concepts, we aimed to record this narrative rather than forcing 
one meaning upon them prior to the interview as this might lead to 
stakeholders repeating what we told them rather than voicing their own 
opinions. In our view, this ex-ante validation limits stakeholder input. 
When research is specifically aimed at comparing relationships in indi-
vidual FCMs, an increased consensus view among stakeholders could 
increase comparability. 

Fig. 6. Dynamic fuzzy cognitive map (FCM) output with the ABA process up to 70% agreement on 15 concepts and three drivers, at step 1 of the calibration.  
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While explicitly representing ambiguity, we quantified three types of 
ambiguity in the studied SESs. The first type concerns the presence of 
concepts; the second the presence and driving capacity of concepts; and 
the third the presence, direction, influence, and strength of relationships 
between the concepts. Elucidating ambiguity in the first two types has 
been realised by assessing similarities and differences in individual 
FCMs and demonstrates that multiple knowledge frames have a large 
range of ambiguities. Importantly, there might be additional types of 
ambiguity, and more exploration is needed to quantify other potential 
sources including the importance of concepts and relationships, the 
probability of relationships, the dynamics of the system, and emerging 
properties. Nevertheless, our research clearly demonstrates that the 

Table 4 
Overview of the verification step of the ABA-10 FCM. Relationships are repre-
sented as concept → concept.  

Relationship Names Combining 
individual 
FCMs 

Verification step FCM 
value 

C21 → C4 Quality of 
governance → 
Land and 
water use 

Mentioned by 
six 
stakeholders: 
3 strong 
negative 
2 strong 
positive 
1 medium 
negative 

It is assumed that a 
good quality of 
governance strongly 
decreases the amount 
of land and water that 
is used, and increases 
sustainable land and 
water use. This is 
because it is expected 
that policies will 
guide Kenyans to use 
less land and water or 
more sustainable land 
and water use. 

− 0.9 

C6 → C4 Rapid 
population 
growth → 
land and 
water use 

Mentioned by 
nine 
stakeholders: 
5 strong 
positive 
3 medium 
positive 
1 neither 
positive nor 
negative 

It is assumed that a 
larger population will 
use more land and 
water, primarily for 
food production. As 
most Kenyans rely on 
agriculture, this was 
identified as a strong 
relationship. Rapid 
population growth is 
also presumed to 
result in more 
subdivision of land 
because family land 
will be split among 
the children. These 
smaller allocations 
are, in some cases, 
not enough to provide 
for the family, 
therefore people will 
look elsewhere for 
more land and/or 
water. 

0.8 

C19 → C4 Shared 
natural 
resources → 
land and 
water use 

Mentioned by 
five 
stakeholders: 
4 medium 
positive 
1 strong 
positive 

The quality of shared 
natural resources 
influences the 
amount of land and 
water that is or can be 
used. ‘Low’ quality 
means less available 
land and water with 
sufficient quality to 
be used. Some 
transboundary 
rivers/lakes dry up or 
drop their water table 
due to the presumed 
(over)exploitation of 
neighbouring 
regions. Another 
example is the water 
quality of Lake 
Victoria, which 
results in forced 
changes of land and 
water use practices. 

0.6 

C4 → C19 Land and 
water use → 
shared natural 
resources 

Mentioned by 
three 
stakeholders: 
1 medium 
negative 
1 medium 
positive 
1 strong 
negative 

The more land and 
water is used, the less 
the state/quality of 
shared natural 
resources will be. 
This is because it is 
assumed that 
Kenyans expand their 
agricultural or 
pastoral practices to 

− 0.4  

Table 4 (continued ) 

Relationship Names Combining 
individual 
FCMs 

Verification step FCM 
value 

transboundary areas. 
An example is the 
forced migration of 
pastoral groups in the 
northern part of 
Kenya resulting in 
more land and water 
use of shared natural 
resources, such as 
water and grassland, 
which is assumed to 
result in the 
degradation of these 
resources mainly due 
to overexploitation. 
Moreover, 
deforestation for 
agricultural practices 
is a common practice 
in Kenya, which also 
influences the shared 
use of natural 
resources, such as 
national parks, 
bordering 
neighbouring 
regions. The more 
sustainable land and 
water use is, the 
higher the quality of 
the resource. 

C21 → C19 Quality of 
governance → 
Shared 
natural 
resources 

Mentioned by 
two 
stakeholders 
1 medium 
positive 
1 weak 
positive 

It is assumed that 
government 
enforcement and 
legislation will 
increase the 
management of 
protected areas, 
which can increase 
the quality of shared 
natural resources. 

0.3 

C6 → C19 Rapid 
population 
growth → 
Shared 
natural 
resources 

Mentioned by 
one 
stakeholder 
1 medium 
positive 

The stakeholder 
stated that with more 
people, more 
resources will be 
used, leading to the 
deterioration of 
natural resources. 

0.1 

C19 → C6 Shared 
natural 
resources → 
Rapid 
population 
growth 

Mentioned by 
one 
stakeholder 
1 strong 
positive 

The stakeholder 
stated that with a 
better state of shared 
natural resources, 
more food can be 
produced and a better 
state of health will be 
reached, which 
causes population 
growth. 

0.1  
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range of ambiguities in complex SESs is already extensive. Furthermore, 
it is evident that dealing with ambiguity is essential when attempting to 
understand SESs in a participatory setting owing to its strong influence 
on the represented system. 

5.2. Ambiguity based aggregation 

The ABA process involves verification, calibration, and sensitivity 

analysis. These three steps create a stable FCM with a coinciding range 
of ambiguities. By adding concepts according to their agreement rank, a 
FCM can be constructed with a transparent and flexible method that 
accounts for the degree of common understanding among all 
stakeholders. 

A central matter in FCM aggregation remains the translation of the 
linguistic valuation of relationships (strong/weak) to numerical in-
tegers. As presented, the most commonly used method for quantifying 

Fig. 7. Dynamic fuzzy cognitive map (FCM) output with the ABA process up to 70% agreement on 15 concepts and three drivers, at step 3 of the calibration.  

Fig. 8. Construction of the ABA-7 FCM. Dark blue arrows indicate positive relationships and light blue indicate negative relationships. Arrow thicknesses indicate 
strong, medium, or weak relationships, respectively. Note that this reconstruction does not show single-stakeholder relationships. The darkness of the concept (see 
Table 2) relates to the degree of agreement; dark grey, grey, light grey, and white correspond to ABA-10, ABA-9, ABA-9, and ABA-7, respectively. 
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relationships is to calculate an average value. This has the advantages of 
being straightforward, reproducible, and does not require value judg-
ments from the researchers. It also solves the problem of reproducing 
conflicting relationships when, for example, one stakeholder indicates a 
strong negative relationship and another stakeholder indicates a weak 
positive relationship. Nevertheless, the resulting aggregated FCMs are 
likely to have a majority of ‘medium’ relationships that did not exist in 
the original individual FCMs and, furthermore, relationship scores 
might cancel each other out (Özesmi, 2006). Therefore, we argue that 
averaging should not be used because the advantages do not outweigh 
the disadvantages. 

We adopted extra verification step, therefore, to quantify the re-
lationships between concepts and drivers, providing the possibility of 
incorporating logic and reasoning back into the aggregated FCM. We 
strongly argue that such a verification step enhances FCM aggregation, 
and this process should not be simplified by mathematical configura-
tions if stakeholder perceptions and ambiguity in SESs are to be fully 
understood. Although the proposed verification step still contains a 
subjective modelling choice, this choice is transparent and structured, 
which enhances reproducibility. 

The calibration step yielded a stable FCM output in this study; 
however, this will not always be the case. For example, when an indi-
vidual FCM contains a large number of relationships (especially feed-
back loops) and is highly complex, the applied calibration method will 
not suffice. However, in practice, FCMs developed from individual PM 
activities do not typically have large density values. Therefore, we 
hypothesise that the calibration steps proposed here will be useful for 

most FCMs derived through PM. 
While the proposed ABA methodology provides a more systemic way 

to represent ambiguity, an additional validation step would be advan-
tageous. As indicated by earlier research (Kok et al., 2011), the valida-
tion of stakeholder perceptions is an iterative process. Here, more 
practical reasons (e.g. budget, time, etc.) prevented us from including a 
validation step. Therefore, we do not claim that our methodology results 
in a ‘correct’ representation of stakeholder perceptions but primarily 
serves as an example of a method to explicitly account for ambiguity, 
offering an ontological approach for capturing the range of stakeholder 
ambiguities in aggregated models. 

5.3. Influence of FCM aggregation on SES representation 

Recognising and addressing ambiguity is essential as the manner by 
which we address it (or not) can fundamentally change the way we 
represent aggregated FCMs. often leads to FCMs that have radically 
different properties to any of the individual FCMs used to construct it. 
This is demonstrated by the large differences in the FCM indices of the 
common aggregation and ABA methods. Although sometimes the whole 
can be more than the sum of the parts, this is not desirable in this 
instance. In our work, we provided all identified concepts as inputs, 
thereby aiming for a description of the entire system from each stake-
holder. In this case, it is desirable to maintain the properties that indi-
vidual stakeholders attach to the system in the final product. In more 
general terms, we argue that it should always be an aim to maintain 
stakeholder views on system functioning to best represent the collective 
views of a stakeholder group. 

FCM indices are typically used to identify the characteristics of a 
FCM. In addition to those used in this study, a range of additional 
properties have been suggested including centrality, indegree, out-
degree, complexity, hierarchy, number of transmitters, and number of 
receivers (Grey et al., 2014; Özesmi and Özesmi, 2004). Here, we pur-
posefully avoided using more complicated indices as these are highly 
correlated with the counting of concepts and relationships, and illustrate 
the ambiguities in other aspects of SES characteristics. Other studies (e. 
g. Lavin et al., 2018) have also used indices to determine whether in-
dividuals share a paradigm and categorise individual FCMs into groups. 
Although an interesting approach, there is no documented evidence that 
FCM properties are indicative of the logic of the underlying system. We 
argue that FCM properties are useful for comparing FCMs and matrices 
but they cannot be used to make conclusions about stakeholder under-
standing and reasoning in an SES. 

5.4. Modelling with ambiguity 

Our research focussed on identifying how a complex SES can be 
modelled with FCMs while explicitly elucidating ambiguity. We used a 
mix of ontological and epistemic strategies by first identifying a range of 
ambiguities followed by reconstructing one FCM. In line with the 
participatory paradigm (Heron and Reason, 1997), it is assumed that 
reality is co-created by an objective and subjective set of experiences. 
However, the aggregation stage of the research adopts a more positivist 
paradigm, assuming that a consistent part of perceptions on which 
stakeholders agree exist and can be modelled. Modelling multiple per-
ceptions remains a careful balancing act but can provide insights into 
similar stakeholder paradigms. Nevertheless, a model is merely a tool to 
enable understanding of what is being modelled. Using a 
mixed-paradigmatic approach, as we did, emphasises the diversity of 
multiple perspectives while providing one model. A deep understanding 
of SESs, therefore, requires new methods to structure and quantify the 
range of ambiguities from different perspectives. 

The strength of individual PMs might not lie in the model that is 
created but in the systematic understanding of the paradigms of the 
stakeholders involved. If a model shares a paradigm with the user, it may 
improve the uptake of the model. In particular, if PM is focussed on 

Table 5 
Fuzzy cognitive model (FCM) properties of individual FCMs, averages, median, 
and sum. Abbreviations Nd, Nc, Nr, and D represent the number of drivers, 
concepts, relationships, and density, respectively.  

FCM properties Nd Nc Nr D 

FCM1 3 16 31 0.12 
FCM2 6 10 23 0.23 
FCM3 2 16 33 0.13 
FCM4 5 15 33 0.15 
FCM5 4 14 30 0.15 
FCM6 1 11 27 0.22 
FCM7 9 18 32 0.10 
FCM8 2 8 12 0.19 
FCM9 6 15 48 0.21 
FCM10 4 15 32 0.14 
Average individual FCMs 4 14 30 0.17 
Median individual FCMs 4 15 32 0.15 
Common aggregation 0 26 176 0.26 
ABA-10 aggregation 2 4 5 0.31 
ABA-9 aggregation 2 8 19 0.30 
ABA-8 aggregation 2 11 33 0.27 
ABA-7 aggregation 3 15 45 0.22  

Table 6 
Fuzzy cognitive map (FCM) properties step 1–3 of the ambiguity based aggre-
gation (ABA) calibration. Abbreviations Nd, Nc, Nr, and D represent the number 
of drivers, concepts, relationships, and density, respectively.  

Agreement rank ABA calibration step Nd Nc Nr D 

ABA-10 Step 1 1 4 7 0.44 
Step 2 2 4 5 0.31 
Step 3 2 4 5 0.31 

ABA-9 Step 1 1 8 28 0.44 
Step 2 2 8 19 0.30 
Step 3 2 8 19 0.30 

ABA-8 Step 1 1 11 58 0.50 
Step 2 2 11 33 0.27 
Step 3 2 11 33 0.27 

ABA-7 Step 1 0 15 94 0.42 
Step 2 0 15 49 0.22 
Step 3 3 15 45 0.22  
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decision support, identifying these paradigms can advance the under-
standing of how society and science shape each other. More studies and 
elaborate methods are needed to understand what we model, why we 
model it, where we simplify a model, and which choices are made during 
this process. Methods remain in their infancy but have already demon-
strated the importance of ambiguity and, therefore, the importance of 
transparent and flexible methods to account for it. 
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