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“If memory evolved, sculpted by the processes of natural selection, then its operating 
characteristics likely bear the “footprints” of ancestral selection pressures” 

- Nairne & Pandeirada (2008b, p.239) 

1.1. Introduction 

Obesity is one of the largest global health threats of our time and its prevalence 
continues to rise unabatedly since the 1980s, with recent figures estimating that 39% of 
adults worldwide were overweight and 13% were obese as of 2016 alone (Swinburn et 
al., 2019, World Health Organization, 2020). On the individual level, obesity represents 
a debilitating condition and is a precursor for many comorbidities such as cardiovascular 
diseases and diabetes (Ezzati et al., 2002; Prospective Studies Collaboration, 2009; 
World Health Organization, 2020). On a societal level, the management of obesity and 
its comorbidities incurs a steep price for public spending, with economic costs totaling 
up to 8% of a country’s overall healthcare expenditures (Kortt et al., 1998). Furthermore, 
as recently demonstrated by the COVID-19 pandemic, a higher BMI is an independent 
risk factor for disease severity and mortality (Hamer et al., 2020; Petrilli et al., 2020), and 
a large number of individuals with excessive body weight likely renders countries less 
successful at containing the spread of infection (Green & Beck, 2017; Kassir, 2020; Sattar 
et al., 2020). There is strong consensus that an individual’s diet, or energy intake, plays 
a fundamental (yet modifiable) role in the etiology and maintenance of overweight and 
obesity (World Health Organization, 2004; World Health Organization, 2020). A 
substantial body of evidence indicates that a diet rich in (saturated) fats, sodium, and 
added sugars (but poor in fruits, vegetables, and legumes) is tied to sustained weight 
gain in individuals (Hill, 2006; World Health Organization, 2004). The reduction of excess 
body weight through tackling unhealthy dietary patterns thus assumes a high ranking 
on national health agendas worldwide (World Health Organization, 2004). 

In turn, it is generally agreed upon that the modern calorie-laden food 
environment is to be held accountable for the sharp universal rise in unhealthy diets 
(Lakerveld et al., 2018; Swinburn et al., 2011; Swinburn et al., 2019). Longitudinal 
deteriorations in dietary quality – as well as gains in body weight – witnessed in the past 
40 to 50 years worldwide has largely paralleled transitions in the global food system 
towards an increased supply of processed energy-dense foods (Finucane et al., 2011; 
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Imamura et al., 2015; Swinburn et al., 2011). At lower levels, this drastic global “nutrition 
transition” has manifested as adverse changes in the physical structure of micro food 
and eating environments (e.g. supermarkets and other food retail establishments), to 
include a wider variety of cheap, palatable, and convenient calorie-rich yet nutrient-
poor foods (Lake & Townshend, 2006; Strong et al., 2008; Swinburn et al., 2011). 
Consequently, an enhanced (in-store) availability and accessibility to such items within 
a food retail environment – as well as in the quantity and proximity to unhealthy food 
retailers (e.g. fast food outlets) in one’s local built environment – creates circumstances 
conducive to the passive overconsumption of calories (Hollands et al., 2019; Pitt et al., 
2017; Strong et al., 2008). From this theoretical standpoint, overeating is conceptualized 
as a normal response to an abnormal food environment (Egger & Swinburn, 1997; 
Lakerveld et al., 2018).  

However, the emerging evidence is much more nuanced, as not everyone 
consumes excessive amounts of calories in response to abundant food cues, suggesting 
that large differences exist in how individuals navigate unhealthy food surroundings. A 
host of factors have been identified in literature that moderate individual vulnerabilities 
to an increased availability and accessibility to energy-dense foods. For instance, an 
individual’s competence in employing self-regulation strategies (e.g. reducing 
confrontation with tempting food cues; distracting oneself from temptations) can act as 
a protective buffer against easy access to high-calorie foods, either directly (de Vet et 
al., 2013) or by attenuating one’s psychological sensitivity to these cues in the 
environment (Stok et al., 2015). A greater inhibitory control capacity may also support 
healthier food navigation by terminating impulsive (prepotent) behavioral responses to 
encountered high-calorie foods, and affording individuals the ability to act in line with 
their long-term healthy eating goals (Appelhans et al., 2011; Batterink et al., 2010; 
Nederkoorn et al., 2010). Conversely, other individual-level factors can negatively 
interact with aspects of the modern food environment and lead to undesirable 
behavioral outcomes. These include one’s predisposition for external eating (van Strien 
et al., 1986), which has been shown to facilitate attentional detection of palatable food 
cues (Hou et al., 2011), and positively correlate with overeating (Davis et al., 2007) as 
well as BMI (van Strien et al., 1985). Likewise, a greater sensitivity to rewarding cues (i.e. 
reward sensitivity) is documented to bias visual attention towards appetizing foods 
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(Tapper et al., 2010), induce craving for (palatable) foods (Franken & Muris, 2005), and 
heighten preferences for high-fat and high-sugar products (Davis et al., 2007).  

Having said that, this thesis entertains the novel notion that a promising yet 
overlooked component linking an omnipresence of energy-dense foods to suboptimal 
diets lies in our extended evolutionary history as hunter-gatherers. Namely, we posit 
that individual differences in susceptibilities to the current “obesogenic” food 
environment may also (partially) be attributed to a cognitive adaptation that evolved 
for optimal foraging within harsh ancestral food landscapes: a prioritization – or “bias” 
– in human spatial memory for high-calorie foods (Allan & Allan, 2013; New et al., 
2007b). To this end, the remainder of the General Introduction is devoted to outlining 
the conceptual underpinnings of this thesis. We firstly touch upon the existence and 
theory behind evolved foraging-based adaptations in human memory (section 1.2). 
After, we focus specifically on how an apparent “high-calorie bias” in human spatial 
memory is expected to impact on individuals’ eating behavior (e.g. food choice and 
dietary intake; section 1.3), before concluding with the aim and overview of this thesis 
(section 1.4). 
 

1.2. The Adapted Mind: The Case for Foraging-related Adaptations in Human 
Memory 
1.2.1 Traditional versus adaptive accounts of human memory 

Historically, disciplines within the cognitive sciences have been reluctant to 
acknowledge evolutionary influences on the organization and workings of the human 
mind (Tooby & Cosmides, 2005; Tooby et al., 2005; see Fodor, 2000 for a commentary 
on the “superfluous” nature of evolutionary theory for human cognition). Traditional 
memory frameworks (e.g. Craik & Lockhart, 1972) thus tend to focus on structural 
explanations for how certain events are better remembered than others, rather than 
functional explanations for why these mnemonic effects occur in the first place (Nairne 
& Pandeirada, 2008b; Nairne & Pandeirada, 2010). For instance, a lot of research has 
been conducted on the proximal mechanisms underlying how visually representing an 
item improves its retention (e.g. mental elaboration; Tulving & Craik, 2000), but little 
attempt has been made to understand why memory shows such sensitivities to visual 
content (Nairne & Pandeirada, 2008b; Nairne & Pandeirada, 2010). However, by 
incorporating more functional analyses of cognitive processes – as well as recognizing 
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the important role evolutionary (fitness-based) principles plays – human memory 
operations will be better understood and ecologically-meaningful insights can be 
obtained (e.g. developing encoding techniques better suited to natural processing 
tendencies of memory systems) (Nairne & Pandeirada, 2008b; Nairne & Pandeirada, 
2010; Tooby & Cosmides, 2005). 

The crux of contemporary memory theory is that recall performance across 
situations depends predominantly on “general-purpose” learning mechanisms that do 
not differentiate between the types of information to be encoded (i.e. content-
insensitive mechanisms; Nairne, 2010; Nairne & Pandeirada, 2010; Tooby & Cosmides, 
2005). That is, encoded events are assumed to be treated equally and the likelihood of 
correct recall is mainly dependent upon factors external to the encoded information 
itself, such as the quality of the retrieval environment (Tulving & Thomson, 1973). 
Consider the widely-used “levels of processing” framework (Craik & Lockhart, 1972), 
which stipulates that one will better recall information related to an object (e.g. eating 
an apple at a certain location) with an increasing familiarity with that object (e.g. 
frequency of apple consumption), due to an enhanced ability to generate rich memory 
traces of the object that are likely to match retrieval cues present during recall. As such, 
memory performance is simply a reflection of the relative “encoding-retrieval match”, 
or degree of overlap in the constellation of cues present between encoding and 
retrieval environments (Tulving & Thomson, 1973). 

Conversely, proponents of an adaptive account of human cognition emphasize 
that our capacity to remember did not evolve in a vacuum (Nairne, 2010; Nairne & 
Pandeirada, 2008b; Tooby & Cosmides, 2005). Rather, human memory systems – much 
like other biological systems – were shaped by natural selection pressures to solve 
fitness-relevant problems, especially those encountered in the ancestral environments 
in which we evolved (Nairne, 2010). It follows then that memory mechanisms should 
adaptively show sensitivity and preference for content that carried fitness-significance 
throughout our evolutionary history (Nairne, 2010; Nairne & Pandeirada, 2008b). 
Examples of such content include – but are not limited to – locations of (edible versus 
inedible) foods, water, and shelter; and migratory patterns of predators and prey 
(Nairne & Pandeirada, 2008b). Indeed, instances in which memory faculties prioritized 
stimuli with survival importance – irrespective of personal expertise with or present utility 
of the encoded information – are increasingly documented (e.g. animacy effects on 
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episodic memory; Nairne & Pandeirada, 2008a; Nairne et al., 2017), and have been 
generalized to the domain of visual attention (e.g. attentional “tripwires” for predator 
detection; LoBue & DeLoache, 2008; New et al., 2007a). Importantly, it is this adaptive 
perspective on human memory that forms the primary conceptual point-of-departure 
of this thesis. 
1.2.2 The Paleolithic prologue: Optimal foraging as a central adaptive problem in 
ancestral food environments  

Although calorie-rich surroundings are commonplace nowadays, such foraging 
circumstances are unprecedented within the broader context of human evolutionary 
history. For around 99% of our evolutionary trajectory – spanning the entire Paleolithic 
era from roughly 2.5 million years to 12,000 years ago – our ancestors were hunter-
gatherers inhabiting a highly complex and variable food environment (Adler et al., 2006; 
Stiner & Bar-Yosef, 2005; Stiner & Kuhn, 2009; Ulijaszek, 2002). Such environments were 
defined by extreme fluctuations in energy supply, or periodic cycles of “feast and 
famine”, as spatiotemporal distributions of foods were tightly coupled with seasonal 
variations (Chakravarthy & Booth, 2004; Ulijaszek, 2002). As a result, physical activity 
and food procurement were inextricably linked, in that early humans had to engage in 
intensive foraging activities to acquire sufficient nutrition (Chakravarthy & Booth, 2004; 
Cordain et al., 1998; Eaton, 2006; Eaton et al., 1997). Indeed, the average ancestral 
hunter-gatherer was estimated to expend approximately 3000 kilocalories (kcal) of 
energy per day (Cordain et al., 1998; Eaton, 2006). In addition, there were opportunity 
costs involved with foraging: time was a fixed resource that had to be shared with other 
adaptive nonforaging activities (Winterhalder, 1981), and hunter-gatherers faced heavy 
predation risks (Hart & Sussman, 2008). Thus, the successful acquirement of high-quality 
nutritional resources – once they became available – likely formed a central adaptive 
problem in the bulk of our evolutionary past, as it represented a recurring task that 
critically affected the survival and reproduction of our hunter-gatherer predecessors 
(Cosmides & Tooby, 1997; MacArthur & Pianka, 1966).  

Optimal foraging theory states that selection pressures introduced by such 
harsh ancestral food habitats would have favored behavioral strategies that maximize 
the net energy gained per unit time spent on foraging (Schoener, 1971; Winterhalder, 
1981). In other words, the central adaptive problem of optimal foraging would select 
for behaviors (and underlying cognitive mechanisms) that lead to the energy-efficient 
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procurement of food resources (Hill et al., 1987; Schoener, 1971). In turn, an increased 
efficiency in the rate of energy capture is expected to enhance individual fitness, as 
more net energy is made available for performing adaptive tasks (e.g. provisioning 
offspring) (Gaulin & Konner, 1977; Pyke et al., 1977; Smith, 1979; Winterhalder, 1981). 
This optimal foraging principle of energy maximization has demonstrated good validity 
for predicting subsistence patterns of numerous animal species, as well as 
contemporary hunter-gatherer societies (Hill et al., 1987; Krebs et al., 1983; Smith et al., 
1983).  
1.2.2.1 Foraging-relevant sensory modalities  

The sensory modalities of vision, olfaction, and taste are deeply embedded in 
the foraging activities of human and various non-human primate species (see Dominy 
et al., 2001 and McCrickerd & Forde, 2016 for reviews). Below, we briefly recap the 
importance of each modality for the respective processes of food search and 
localization, food choice, and food consumption.  

Vision is considered a “distant” sense that acts as the first point of contact 
between an individual and a potential food item, drawing attention to relevant objects 
from long distances (McCrickerd & Forde, 2016; Schifferstein et al., 2013).  Upon visually 
appraising a food, individuals rapidly construct beliefs and expectations about its 
corresponding properties (i.e. sensory and hedonic profiles), relying on past experiences 
with (similar) products and their post-ingestive consequences (Deliza & MacFie, 1996; 
van der Laan et al., 2011). Indeed, overlapping brain regions are activated when viewing 
pictures of foods as when tasting them (Simmons et al., 2005), and previous research 
shows that mainly vision-derived expectations inform individuals during moments of 
food choice (Schifferstein et al., 2013). Interestingly, visual cues (e.g. packaging labels) 
shape not only expectations but also actual perceptions of a food’s qualities upon 
consumption, including its taste intensities and satiating capacity (Crum et al., 2011;  
Deliza & MacFie, 1996; Tijssen et al., 2017).  

Although vision was thought to be the dominant means through which we (and 
our bipedal non-human primate cousins) explore our surroundings (Elliot Smith, 1927; 
Gilad et al., 2004), a renewed appreciation for the role of olfaction in food search 
emerged with the finding that humans are able to spatially traverse environments using 
solely olfactory cues (Porter et al., 2007; Wu et al., 2020; see also Chauvin & Thierry, 
2005 and Dominy, 2004 for the integral role of olfaction in primate fruit detection and 



Chapter 1 

16 

selection). These observations are in line with the “olfactory spatial hypothesis”, which 
contends that the olfactory system of vertebrate species evolved for ecologically-
relevant navigational tasks such as locating nearby food sources (Jacobs, 2012). 
Furthermore, the utility of the olfactory sense for food choice and food intake is well-
documented: Odors are majorly responsible for the perception of food flavors (Small & 
Prescott, 2005), and exposure to ambient odors can trigger an increase in general 
appetite, as well as appetite specifically for foods with congruent caloric and taste 
characteristics (so-called “sensory-specific appetite”; Ramaekers et al. 2014; Zoon et al. 
2016). Importantly, these studies collectively demonstrate that odors are able to 
indirectly communicate a food’s intrinsic nutritional properties prior to ingestion, likely 
through previous learned pairings between flavors and post-ingestive events (e.g. 
energy delivery; Yeomans, 2006). However, there is growing evidence that odors can 
also directly flag the relative fat content – and by proxy energy value – of foods 
(Boesveldt & Lundstrom, 2014).  

Taste is the most “proximal” sense of the three, as it requires immediate contact 
between a food and the tongue as a basis for either accepting or rejecting a food item 
(McCrickerd & Forde, 2016). In contrast to vision and olfaction, taste predominantly 
functions as a macronutrient sensing system and a regulator of food intake during food 
consumption (i.e. via promoting satiation and sensory-specific satiety; Boesveldt & de 
Graaf, 2017; Vickers et al., 1998). With regards to the former, extensive literature 
indicates that the two dominant appetitive tastes (i.e. sweet and savory) serve a 
utilitarian role in the food selection of many species, by signaling the relative nutritional 
content of ingested resources: Sweet tastes signal a high-sugar (carbohydrate) content, 
whereas savory (or umami) tastes signal amino acid-rich or protein-rich items (Breslin, 
2013; van Langeveld et al., 2017; Teo et al., 2018; Yarmolinksy et al., 2009). Notably, 
individuals seem to be able to utilize the sense of taste to direct prospective food choice 
according to internal physiological (homeostatic) needs. For instance, Griffioen-Roose 
et al. (2012) found that protein-deficient individuals displayed a higher preference and 
oriented choice responses towards savory-tasting (high-protein) foods – the former 
involving both conscious and subconscious cognitive processes (i.e. increases in implicit 
and explicit wanting of savory-tasting foods). 
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1.2.3 Cognitive adaptations for energy-efficient foraging: A high-calorie “bias” in human 
spatial memory 

Although evolved foraging strategies have long been identified in various 
animal species, ranging from birds (Burke & Fulham, 2003; Cowie, 1977; Sherry et al., 
1992; Sulikowski & Burke, 2007) to non-human primates (e.g. Cunningham & Janson, 
2007; Janmaat et al., 2014; Janson, 1998), the similar expression of foraging-related 
cognitive adaptations in humans has received considerably less attention in literature 
(for some exceptions, see Ferriday et al., 2011; Krasnow et al., 2011; New et al., 2007b). 
However, in light of the prolonged importance of energy-efficient foraging for the 
survival and reproduction of ancestral hunter-gatherers (section 1.2.2), it is reasonable 
to suspect that our cognitive architecture harbors mechanisms attuned to the efficient 
procurement of nutritional resources (Nairne & Pandeirada, 2008b; Nairne & 
Pandeirada, 2010).  

Preliminary findings of New et al. (2007b) strongly imply the existence of one 
such foraging-based adaptation in human spatial (location) memory: In an outdoor 
farmer’s market, participants were led through a randomized route of six food stalls, 
with each stall featuring a traditionally “gatherable” food resource (e.g. fruits, nuts, or 
vegetables). Upon arriving at a stall, participants tasted and provided ratings (e.g. taste 
liking, frequency of consumption) on the food item on offer. Notably, they were 
unaware that the real aim of the study was to later test their memory for the foods’ 
locations. After visiting all six stalls, participants were brought to a different area of the 
market for a “surprise” food spatial memory task, which required them to recall and 
point to the stall location of each of the six foods in a randomized order. Researchers 
found that the spatial memory performance of both male and female participants 
systematically improved (i.e. pointing errors decreased) with a higher caloric density 
(kcal/100g) of a food, independently of individuals’ explicit effort to remember food 
locations, or liking and familiarity with an item (see also Seitz et al., 2021 for a recently 
demonstrated mnemonic effect of caloric content on episodic memory for eating, and 
Suarez et al., 2019 for a neurobiological basis).  

The adaptive significance of an implicit “high-calorie bias” in human spatial 
cognition can be readily inferred, as it would have optimized habitual foraging efforts 
by enabling the efficient registration and location of valuable calorie-dense resources – 
without occupying limited attentional capacities required in other pertinent tasks (e.g. 
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avoiding predators; Krasnow et al., 2011; New et al., 2007b). Yet given that merely one 
study has directly alluded to the presence of the cognitive bias so far, more rigorous in-
depth examinations of a potential inherent preference in human memory for high-
calorie food locations are warranted. For instance, it remains to be elucidated whether 
the high-calorie spatial memory bias manifests reliably across foraging-relevant sensory 
modalities (section 1.2.2.1) and with foods more characteristic of the modern 
environment, or if the magnitude of the bias’ expression varies meaningfully with other 
individual traits connected to dietary regulation (e.g. External Eating Style; section 1.1). 
 
1.3. Evolutionarily Mismatched: Foraging Minds in Modern “Obesogenic” 
Food Environments 

1.3.1 Evolutionary mismatch theories of human eating behavior and unhealthy diets 
The hypothesis that our physiological and cognitive traits were adaptively 

selected for during the course of our evolutionary history, and still persist within 
environments today that are vastly divergent from the ancestral worlds in which they 
originally evolved, was debuted in the early 1980s (Cordain et al., 2005; Eaton et al., 
1988). Since then, “evolutionary mismatch theory” has sparked a wealth of research 
principally interested in health implications of such discordances, in turn rationalizing 
health conditions like obesity as a product of a dysfunctional interaction between our 
selected traits (e.g. preferences for sweet tastes and fatty textures) and certain elements 
of our current environment (e.g. pronounced availability of ultra-processed energy-
dense foods) (Chakravarthy & Booth, 2004; Cordain et al., 2005; Eaton et al., 1988; Li et 
al., 2017; Lloyd et al., 2011). In support of this narrative, bio-anthropological data 
convincingly show dietary consequences (e.g. micronutrient deficiencies, increased 
rates of diabetes and obesity) experienced by foraging communities undergoing a rapid 
nutrition transition – away from diets dominated by wild (hunted and gathered) 
resources (see Crittenden & Schnorr, 2016 for a review). The present thesis draws from 
this evolutionary-informed framework and approaches modern eating behavior 
specifically from the vantage point of “mismatched” optimal foraging-based 
mechanisms in human spatial cognition. 
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1.3.2 Implications of a high-calorie bias in spatial memory for individuals’ eating 
behavior 

A second core objective of this thesis was to answer the question of whether 
(and in what manner) our calorie-sensitive “foraging” minds continue to impinge on our 
present-day dietary decisions – in environments where the efficient acquisition of foods 
with high energy-payoffs is no longer a fitness-limiting factor (Brunstrom et al., 2018a; 
Brunstrom et al., 2018b; Lieberman, 2006). Empirical attempts addressing the latter are 
lacking, since the study of human cognition in relation to eating behavior has mainly 
revolved around how episodic “meal” memories or working memory (attentional) 
faculties moderate prospective food choice and intake (e.g. Robinson et al., 2012; 
Werthmann et al., 2011; for comprehensive reviews see Higgs, 2016 and Higgs & 
Spetter, 2018). Also noteworthy is the observation that existing investigations often 
adopt a traditional (non-functional) viewpoint of memory processes (section 1.2.1). 
Namely, manipulations of meal memories are to a large extent assumed to be similarly 
effective across food products, regardless of possible differences in fitness-related 
properties (e.g. nutritional quality) between encoded foods. For example, it is thought 
that rehearsing the hedonic aspects of any recent eating experience can change its 
remembered enjoyment – and its ensuing effect on future food choice – by uniformly 
altering consolidation of the meal memory (Robinson et al., 2012; although see 
Robinson, 2014 for product-specific differences in determinants of remembered 
enjoyment).  

To date, only one study has embodied an adaptive memory perspective and 
assessed dietary consequences of a suspected high-calorie bias in human spatial 
cognition: In a controlled-lab experiment, Allan & Allan (2013) examined the association 
between food location memory and BMI. Using a computer-based spatial memory task, 
researchers measured individuals’ memory for locations of high-calorie snack foods 
versus that of low-calorie fruits and vegetables. During the experiment, participants 
judged food stimuli on desirability and rated their current healthy eating intentions. 
Researchers found that a superior memory for snack food locations – both alone and 
relative to memory for low-calorie food locations – predicted a higher (less healthy) 
BMI. Importantly, these effects were not attributable to an individuals’ food ratings or 
dietary intentions, as a greater spatial memory accuracy for high- versus low-calorie 
foods accounted for variance in BMI over and above that by “reflective” psychological 
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constructs (i.e. rated desirability of snack foods versus fruits and vegetables). This finding 
led the authors to conjecture that what once was an adaptive feature for promoting 
positive energy balance in ancestral food-insecure habitats, now poses maladaptive 
obesogenic consequences for individuals living in urban food-replete environments – 
especially in those with a marked expression of the cognitive bias.  

Yet, mechanistic gaps in knowledge remain. It is presently unclear how exactly 
a high-calorie bias in spatial memory can give rise to a higher BMI, seeing that the latter 
represents a very distal indicator of an individual’s dietary choices (Bouchard, 2007; 
Paradis et al., 2009). Reasoning retrospectively, it is conceivable that an improved 
memory for high-calorie food locations can ultimately contribute to weight gain, by 
making it easier for individuals to find and subsequently consume energy-dense foods 
during instances of food decision making (i.e. Allan & Allan, 2013). In other words, a 
greater expression of the high-calorie spatial memory bias may proximally facilitate 
high-calorie food search and food choice.  Indeed, the convenience or ease of 
obtaining a food item is an established factor that individuals negotiate, and often favor, 
in the food choice process (Furst et al., 1996; Sobal et al., 2006). That said, a systematic 
association with an anthropometric marker of long-term dietary intake also indicates 
the involvement of more repeated (routine) forms of eating behavior. This raises the 
possibility that the high-calorie spatial memory bias may similarly potentiate unhealthy 
patterns of behavioral responses (e.g. increased routine frequency of high-calorie food 
consumption), particularly in light of the fact that single-instance (incidental) food 
choices can create momentum for performing the same behavior within a certain 
spatiotemporal setting (Furst et al., 1996; Sobal et al., 2006) 

In sum, initial evidence suggests that a once functional bias in human spatial 
memory for high-calorie foods now operates counterproductively to increase individual 
body weight within a modern food context. The translation of the high-calorie spatial 
memory bias into suboptimal (long-term) dietary outcomes likely involves 
(intermediary) effects on both incidental and routine forms of eating behavior (e.g. food 
search, food choice and consumption). However, the exact behavioral pathways elicited 
by the cognitive bias  – and possible individual-level moderators of these processes 
(e.g. self-regulation ability; section 1.1) – require further clarification. 
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1.4. Aim and Overview of Thesis 

The main aim of this thesis was to empirically examine the existence of a 
potential inbuilt prioritization or “bias” in human spatial memory for high calorie foods, 
as well as its implications for individual eating behavior within a modern food 
environment. To this end, we devised the following five studies to systematically address 
both the expression and behavioral translation of a high-calorie bias in human spatial 
memory (see Table 1.1 and Figure 1.1 for an overview of central conceptual and 
methodological aspects of each chapter, as well as the connection between individual 
thesis chapters): 

To establish a proof-of-concept and solid theoretical basis for our remaining 
studies, we first set out to rigorously investigate whether food-specific biases in human 
spatial memory are indeed expressed, across sensory modalities (i.e. vision and 
olfaction) of ecological significance to food navigation and food choice. Therefore, 
Chapter 2 reports on two controlled lab experiments featuring a computer-based 
spatial memory task (Allan & Allan, 2013) with food images (Study 1) and food odors 
(Study 2), respectively. We also probed associations between food-specific biases in 
spatial memory and a range of (incidental and routine) eating-related parameters, in 
order to initially gauge their behavioral effects.  

Chapter 3 describes an ambitious test for the existence of the high-calorie 
spatial memory bias outside of “sanitized” lab settings. To demonstrate the external 
validity of the bias, we carried out a large multisensory field-based experiment that 
allowed for two additional noteworthy elements: spatial navigation between distinct 
(three-dimensional) positions of food stimuli, and the incidental encoding of food 
locations. This format similarly enabled us to compare food spatial memory 
performance (and corresponding biases) between different sensory environments (i.e. 
multisensory versus olfactory conditions). 

Chapter 4 improves upon previous lab-based paradigms (cf. Chapter 2) to 
assess the behavioral translation of the high-calorie spatial memory bias, by utilizing a 
real-world food environment. In a lab-plus-field experiment, we investigated the bias’ 
effects on the food search and food choice of individuals navigating an unfamiliar 
supermarket. Across two test sessions, participants first performed eye-tracking and 
spatial memory tasks in a lab setting, and then completed food search and (covert) food 
choice tasks in a supermarket.  
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In Chapter 5, our focus was on implications of the high-calorie spatial memory 
bias for individuals’ routine (repeated) eating behavior, to gain insights on top of that 
provided by more incidental (single-instance) measures (cf. Chapters 2 and 4). In an 
online experiment, we examined associations between the cognitive bias and the 
routine frequency of high-calorie snack consumption, exposure to high-calorie food 
outlets, and BMI of a large diverse sample of Dutch individuals. For the latter, we 
assessed individual psychological factors (e.g. snack purchasing habits, inhibitory 
control) that could either synergize or antagonize the bias’ behavioral effects. 

Chapter 6 questions whether the high-calorie bias in spatial memory 
represents a universal cognitive mechanism and can be reasonably generalized to 
individuals from varying cultures. Through the means of a cross-cultural online 
experiment (and data from Chapter 5), we measured and compared the food spatial 
memory of diverse populations from the USA, Japan, and the Netherlands. 

Finally in Chapter 7, we reflect on our main findings and their practical utility 
for the promotion of healthy eating, discuss the methodological composition of this 
thesis, and identify exciting directions for future research. 

 
Table 1.1. An overview of the primary research objectives of each thesis chapter.  

Chapter  Primary Research Objectives 

2 Investigate the existence of a high-calorie bias in human spatial memory across foraging-
relevant sensory modalities, and its effects on (incidental and routine) eating behavior 

3 Investigate the existence of a high-calorie bias in human spatial memory within a 
naturalistic (three-dimensional) multisensory food environment 
 

4 Investigate effects of the high-calorie spatial memory bias on the food search and food 
choice of individuals navigating a real-world food environment 

5 Investigate effects of the high-calorie spatial memory bias on individuals’ routine eating 
behavior, across diverse sociodemographic groups within a (Dutch) population 
 

6 Investigate the generalizability of the high-calorie bias in human spatial memory across 
diverse cultures, as well as sociodemographic groups within (US and Japanese) 
populations 
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Figure 1.1. An illustration of the central conceptual (i.e. bias expression versus bias translation) and 
methodological aspects of each thesis chapter, and the relation between different chapters. Boldened 
arrows indicate the direction in which results of one chapter directly informed central research questions 
of the other. 
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Abstract 

Human memory may show sensitivity to content that carried fitness-relevance 
throughout evolutionary history. We investigated whether biases in human food spatial 
memory exist and influence the eating behavior of individuals within the modern food 
environment. In two lab studies with distinct samples of 88 participants, individuals had 
to re-locate foods on a map in a computer-based spatial memory task using visual 
(Study 1) or olfactory (Study 2) cues that signaled sweet and savory high- and low-
calorie foods. Individuals consistently displayed an enhanced memory for locations of 
high-calorie and savory-tasting foods – regardless of hedonic evaluations, personal 
experiences with foods, or the time taken to encode food locations. However, we did 
not find any clear effects of the high-calorie or savory-taste bias in food spatial memory 
on eating behavior. Findings highlight that content matters deeply for the faculty of 
human food spatial memory and indicate an implicit cognitive system presumably 
attuned to ancestral priorities of optimal foraging.  
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General Introduction 

The prevailing view in cognitive psychology assumes that human memory 
consists largely of domain-general mechanisms that are insensitive to the content which 
is processed (Tulving & Thomson,1973). Conversely, advocates of a more functionalist 
agenda of human cognition contend that much like other biological systems, memory 
and its operational systems did not evolve in a vacuum (Nairne & Pandeirada, 2008b). 
Rather, memory faculties were subject to the constraints of nature’s criteria and thus 
should be functionally designed to preferentially process fitness-relevant information 
and solve adaptive problems (Nairne & Pandeirada, 2010). One such adaptive problem 
encountered across species is the efficient location and acquisition of nutritional 
resources (Schoener,1971). This research entertains the notion that natural selection 
processes shaped a cognitive adaptation that enabled ancestral humans to thrive within 
erratic food habitats of the past – a bias in spatial memory for high-calorie foods. 

During the substantial majority of human evolution, hunter-gatherers needed 
to forage intensively to attain sufficient nutrition (Eaton, 2006).  Survival was thus 
contingent upon an individual’s ability to efficiently identify and gather high-quality 
resources within a complex and variable physical environment, as well as to retrace 
those resources as they became valuable over time, by using input from various sensory 
modalities (New et al., 2007b; Winterhalder, 1981). As a result, natural selection 
pressures might have favored a functional ‘bias’ in spatial processing that enables the 
effortless registration and memory of locations of valuable calorie-dense foods 
(Krasnow et al., 2011; New et al., 2007b). Such an inbuilt spatial processing bias entails 
a preference in location memory for high-calorie foods, irrespective of individual 
hedonic evaluations or personal experiences. It follows that a once adaptive spatial 
memory mechanism could yield adverse obesogenic effects for individuals with a 
greater expression of the bias in present-day food-replete settings, by enhancing the 
navigational ease through which unhealthy high-calorie items are obtained and 
subsequently consumed (Allan & Allan, 2013). However, literature on a potential high-
calorie bias in spatial memory – and its implications for food choice and dietary intake 
within a modern food context –  remains relatively nascent. Only two pieces of evidence 
have accumulated so far: New and colleagues (2007b) were the first to discover that a 
food’s caloric content positively predicted the accuracy with which (blinded) individuals 
pointed to previously visited vendor locations within an outdoor farmers’ market. 
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Subsequently, Allan & Allan (2013) found that an improved spatial memory for high-
calorie snacks (versus low-calorie fruits and vegetables) was associated with a higher 
BMI in women, although they did not explicitly test the existence of the high-calorie 
spatial memory bias itself. Therefore, the present paper represents the first to 
systematically investigate the expression and potential behavioral effects of food-
specific biases in human spatial memory under rigorous lab conditions. 

It is similarly unknown what food- or person-specific characteristics are 
associated with this cognitive bias. Optimal foraging models of evolutionary ecology 
posit taste to be one such food-related factor. Taste perception is thought to bear great 
relevance to the course of hominid evolution, with sweet and savory (i.e. umami) 
representing the two dominant ‘appetitive’ taste modalities across many species 
(Breslin, 2013; Yarmolinsky, Zuker, & Ryba, 2009). Namely, tastes are thought to have 
aided hunter-gatherers in productive food selection by signaling specific nutritional 
contents of consumed resources – sweet for the presence of (energy-rich) sugars and 
carbohydrates, and savory for amino-acid or protein content (Breslin, 2013; Teo et al., 
2018; Yarmolinsky et al., 2009, although see Langeveld et al., 2017 and Lease, Hendrie, 
Poelman, Delahunty, & Cox, 2016 for discussion on the relationship between sweet taste 
and energy content). As sweet- and savory-tasting foods (e.g. fruit versus meat) serve 
distinct functional roles and varying priorities were potentially placed on energy versus 
nutrient (protein) intake during foraging, differences in spatial memory adaptations may 
have manifested between the respective taste modalities and their associated foods 
(Eaton, 2006).  

The magnitude of the high-calorie bias in food spatial memory may also vary 
meaningfully with person-specific characteristics such as (trait) eating styles or reward 
sensitivity. Within an evolutionary context, a high reactivity to external (rewarding) cues 
is assumed to have carried a survival advantage under conditions of resource constraint 
(Lieberman, 2006; Ulijaszek, 2002). Based on empirical observations, individual 
propensities for restrained eating, external eating, as well as sensitivity to rewarding 
stimuli, facilitate overeating through pathways such as disruptions in self-control and 
are positively associated with BMI (Castellanos et al., 2009; Davis et al., 2007; van Strien 
et al., 1986). In a similar vein, restrained eaters, external eaters, and those high in reward 
sensitivity are documented to exhibit marked attentional biases towards high-calorie 
food stimuli (Hou et al., 2011; Meule et al., 2012b; Tapper et al., 2010). However, 
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whether any of the former outcomes are systematically associated with a high-calorie 
bias in spatial memory has not been investigated to date and merits further exploration.  

The aim of the present research was two-fold: In two lab studies, we sought to 
demonstrate the existence of a high-calorie bias in human food spatial memory and its 
consequent effects on eating behavior and objective long-term markers of dietary 
intake. As a secondary objective, we explored potential food (i.e. Taste) and person-
specific factors (i.e. Eating Styles and Reward Sensitivity) associated with an enhanced 
location memory for high-calorie foods. To this end, a computerized food spatial 
memory paradigm was used with varying caloric density (High versus Low) and taste 
(Sweet versus Savory) conditions. Two classes of sensory food stimuli with evolutionary 
significance to the process of food navigation were used in the experimental paradigm: 
visual (Study 1) and olfactory (Study 2) food cues.  

In line with previous findings, the following outcomes were hypothesized:  
H1A: Individuals display a greater overall accuracy in spatial memory for high-calorie 
foods compared to low-calorie alternatives – regardless of hedonic evaluations or 
familiarity with foods.  
H1B: The high-calorie bias in spatial memory predicts unhealthy eating behaviors (e.g. 
food choice) and higher anthropometric markers of dietary intake (e.g. BMI).  

H2: Taste and person-specific factors interact with the caloric density of foods, such that 
sweet and savory high-calorie food locations are differentially retained, and an 
enhanced reward sensitivity – as well as restrained and external eating tendency – 
confers a larger degree of bias expression. 
 

Study 1 
Methodology 

Participants  

A total of 88 healthy university students (68% female; MAge = 24.7 years, SD = 
2.7, range 18-35 years) from various ethnic (65% Caucasian; 23% Asian; 9% Latino; 3% 
African and Arab) and educational backgrounds (76% postgraduates; 24% 
undergraduates) took part in the research. The sample size was determined by a priori 
power calculations: On the basis of previous work (Allan & Allan, 2013; New et al., 
2007b), we estimated an effect size f2 of 0.14 and power of 0.80 for the association 
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between the high-calorie spatial memory bias and BMI (as a proxy for long-term dietary 
intake). The final sample size would also allow us to systematically adjust for any order 
effects, by ensuring that an equal number of individuals were assigned to the different 
treatment orders. Participants were limited to the BMI range of 18.5 – 30 kg/m2 (M = 
22.5 kg/m2, SD = 2.2), to control for differential cognitive processing of food stimuli in 
extreme (i.e. underweight < 18.5 kg/m2 and obese > 30 kg/m2 ) weight classes 
(Castellanos et al., 2009; Giel et al., 2011). Furthermore, individuals did not take part in 
the study when reporting a psychological or physical intolerance to tested foods (e.g. 
meat), or in case of a (self-reported) medical history of eating or psychiatric disorders. 
Recruitment was achieved through the advertisement of study posters and flyers on 
campus buildings, social media platforms, and participant mailing lists. After providing 
written informed consent and completing two test sessions, participants were 
compensated with a 10 euro giftcard. This study received ethical approval from the 
Social Sciences Ethics Committee of Wageningen University, and was preregistered on 
the Open Science Framework database (Project URL: osf.io/ufrqv).  
Design 

The current study had a 2 (Caloric Density: High versus Low) by 2 (Taste: Sweet 
versus Savory) within-subjects crossover design. Participants were randomly assigned 
to complete four caloric density - taste conditions (High-Sweet [H_SW] e.g. Chocolate; 
High-Savory [H_SA] e.g. Chips; Low-Sweet [L_SW] e.g. Fruit; Low-Savory [L_SA] e.g. 
Vegetables) in two successive test sessions separated by a washout period of (at least) 
one week. Within a test session, each participant was required to perform a spatial 
memory task for two conditions. Importantly, the final randomization of orders was 
balanced; an equal number of individuals began in each caloric density - taste 
condition. 
Apparatus and Stimuli 

Spatial memory task.  The original E-Prime scripts and university campus 
setting of Allan & Allan (2013) were used to test food spatial memory. Participants were 
asked to imagine that an international food market – encompassing 24 food stalls – 
was taking place on a (unfamiliar) university campus. Depending on the treatment 
condition, participants were then shown a sequence of 12 pictures of either 
(sweet/savory) high-calorie items or low-calorie alternatives, followed by an image of a 
university campus map showcasing all possible stall locations (N=24), at a fixed duration 
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of three seconds each. Next, the locations of the stalls selling each food item (N=12) 
were sequentially indicated on the campus map by a green crosshair. During the 
location viewing process, participants were instructed to rate each food item on 
desirability and familiarity, and this was done at a self-determined pace. Following a 
two-minute break, participants were exposed to a series of 12 spatial memory tests in 
which they were randomly presented with one of the previously shown food images 
and required to specify (via mouse-click) its correct corresponding stall location on the 
campus map. The total number of possible stall sites (N= 24) was displayed for the 
spatial memory tests, and a stall location could be selected more than once. Assigned 
stall locations did not overlap for foods within a test session.  

Stimulus presentation.  The psychology software tool E-prime (version 2.0) 
was used for stimulus presentation and subsequent spatial memory tasks. Computers 
were standardized across the parameters of screen size (15.6 inches), resolution (1920 
x 1080), and refresh rate (60 Hertz). The order of stimulus presentation and the stimuli 
itself (i.e. food-location pairs within a campus map) were randomized differently for 
each participant.  

Food images.  Images of (sweet/savory) high- and low- calorie foods were 
obtained from the Food Pics database, where available pictures are homogenous with 
respect to resolution (600 x 450 pixels), color depth (96 dpi), background color (white), 
and camera distance (~80 cm) (Blechert et al., 2014). A set of 12 (unbranded) food 
pictures was selected to represent each caloric density - taste category – encompassing 
fruits and vegetables for the low-calorie condition, and baked and fried goods as high-
calorie variants (Figure 2.1).  High-calorie items were defined as those that contained 
at least 225 – and low-calorie items at most 60 – kcal per 100 grams of food (de Bruijn 
et al., 2017; World Cancer Research Fund/American Institute for Cancer Research, 
2007). Chosen food stimuli (N=48; see Food Pics Catalogue Numbers in the 
Supplemental Material (Appendix Chapter 2)) were matched on recognizability and 
subjective palatability across caloric density and taste groups using metadata from the 
Food Pics database [all ps >.05], and additionally piloted in a separate sample of 
students (N= 32, 53% female; MAge = 23.6 years, SD = 2.75) to ensure consistencies in 
caloric content, taste, and healthiness perceptions (see Supplementary Material for the 
pilot questionnaire (Appendix Chapter 2)).  
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The final selection of high-calorie images displayed a significantly greater mean 
caloric density (High-calorie: M = 368.40 kcal/100g, SD = 108.40; Low-calorie: M = 
30.21 kcal/100g, SD = 16.61), t(24) = 15.11, p <.001, as well as total energy content 
(High-calorie: M = 638.37 kcal/image, SD = 731.72; Low-calorie: M = 135.96 
kcal/image, SD =  234.84), U = 72.00, p < .001, compared to the low-calorie group. 
High-calorie images were also perceived as higher in caloric content (High-calorie: M 
= 76.44 mm, SD = 14.92; Low-calorie: M = 24.40 mm, SD = 17.45), Z = -11.63, p < 
.001, and less healthy (High-calorie: M = 24.24 mm, SD = 19.30; Low-calorie: M = 77.53 
mm, SD = 15.92), Z = -11.36 , p < .001, than low-calorie images. Likewise, sweet pictures 
scored higher on sweet taste expectations (Sweet: M = 74.87 mm, SD = 17.29; Savory: 
M = 24.05 mm, SD = 20.60), Z = -11.45, p < .001, and savory pictures were valued 
greater on expected savoriness (Savory: M = 58.20 mm, SD = 25.00; Sweet: M = 34.27 
mm, SD = 29.95), Z = -7.29, p < .001. 

 

Figure 2.1. Selection of food images from the Food Pics database (Blechert et al., 2014). Examples of (a) 
high-sweet, (b) high-savory, (c) low-sweet, and (d) low-savory items. 

Procedure  

Prior to starting, participants were informed that the experiment aimed to 
investigate individuals’ memory for specific foods.  The spatial faculty of memory was 
intentionally not emphasized to diffuse suspicions on the true aim of the study, and 
post-hoc (open-ended funneling) debriefing interviews confirmed the efficacy of the 
cover story. Participants were also informed that good performance would earn them 
a prize at the end of the experiment, in an effort to disguise our (covert) food choice 
measure and motivate participants to complete tasks as accurately as possible. Hunger 
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states were standardized before testing by instructing individuals to consume their 
habitual meals or snacks no later than two hours – and no sooner than 45 minutes – 
before test sessions, during which only water intake was permitted.  

Upon arrival, participants’ height and weight were recorded. After, participants 
were directed to and seated in isolated testing booths fitted with a laptop. 
Demographics (e.g. subjective SES), hunger state, restrained eating, external eating, and 
reward sensitivity data were first collected via a questionnaire. Individuals then had to 
perform a series of computer-based spatial memory tasks (adapted from Allan & Allan 
(2013), see detailed explanation above): A practice trial that involved the encoding and 
recall of (non-food) object locations was first carried out, to familiarize participants with 
the spatial memory task. Participants then proceeded to complete the actual spatial 
memory task with food images from the first caloric density- taste condition. After 
finishing, they evaluated their (perceived) performance on the preceding task. Following 
a brief (five minute) intermission, the protocol was repeated for the other assigned 
caloric density - taste condition. A test session lasted, on average, 40 minutes. 

After participants completed the study procedure for the remaining two caloric 
density- taste conditions approximately one week later in the second test session, they 
answered questions about healthy eating goals. Regardless of performance, 
participants were then led individually to a cubicle and presented with a preselected 
array of foods. Individuals were instructed to choose one food as their prize for 
performing and were left alone to make their decision. Results of the covert food choice 
task were noted down by the experimenter.  
Measurements 

Primary outcome variables.  Spatial memory accuracy for (sweet/savory) 
high- and low-calorie foods was tabulated as the average ‘pointing error’ or Euclidian 
distance (D) between true and indicated stall locations of each food type (cf. Allan & 
Allan, 2013; Nairne et al., 2012). Consequently, lower D scores denote a higher accuracy 
in food spatial memory. Spatial memory bias for (sweet/savory) high-calorie foods was 
operationalized as the discrepancy in spatial memory accuracy between high- versus 
low-calorie foods (DHigh Calorie – DLow Calorie) (cf. Allan & Allan, 2013). Accordingly, negative 
values indicate an enhanced spatial memory for calorie dense foods.  

Secondary outcome variables. Food choice was assessed through the means 
of a covert forced-choice task, as a first step in exploring whether effects on relevant 
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proximal aspects of eating behavior could manifest. A selection of foods comprising the 
previously tested caloric density - taste groups (H_SW: Chocolate bars; H_SA: Chips; 
L_SW: Apples; L_SA: snack tomatoes) was placed in wooden baskets and presented to 
participants individually at the conclusion of testing as a reward. Foods on offer 
represented small ‘snack’ items and were deemed appropriate within a university and 
day setting to control for possible contextual effects on choice. Moreover, locations of 
food groups within the baskets were randomized in each test session to rule out 
accessibility or convenience issues. 

In addition, height (m) and weight (kg) measures were collected with an 
electronic scale (SECA 704) and stadiometer (SECA 213) to obtain accurate BMI (kg/m2) 
values. 

Predictor variables.  Individual predispositions for Restrained and External 
Eating were quantified through averaging associated subscales of the Dutch Eating 
Behavior Questionnaire (Cronbach’s α = .86 and .86, respectively) (van Strien et al., 
1986). Higher scores, from a possible range of 1 to 5, point at greater tendencies 
towards respective eating styles.  

Furthermore, the Behavioral Activation System (BAS) scale was used to gauge 
individuals’ degree of Reward Sensitivity (Carver & White, 1994). Scores range from 1 
to 4 for all three BAS-related subscales (Reward Responsiveness; Drive; Fun Seeking), 
with lower values denoting greater behavioral activation sensitivities to rewarding 
stimuli. As two BAS subscales proved to have poor internal consistencies in our sample 
(Cronbach’s α ≤ .68), scores of the three subscales were aggregated in order to form a 
more reliable total BAS measure (Cronbach’s α = .79). In doing so, the number of 
parameters to be estimated in statistical models was also favorably reduced relative to 
our sample size. 

Control measures.  To account for extraneous effects of ‘wanting’ of food 
types on spatial memory accuracy, we instructed participants to rate each item’s 
Desirability by indicating on a 100mm VAS (anchored from “Not At All” to “Very Much”) 
their desire to eat the displayed food item (see Food Stimuli Ratings in the Supplemental 
Material (Appendix Chapter 2)). In addition, effects of individual exposure to a food 
type were controlled through the use of a five-item Familiarity scale (Tuorila et al., 2001). 
Two socioeconomic indexes – postal codes and the 10-point MacArthur Subjective 
Social Status Scale –  were also recorded owing to the respective relationships of 
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suboptimal dietary patterns with low neighborhood and (subjective) individual SES 
(Goodman et al., 2001; Lakerveld et al., 2015). For the former, postal codes were 
transformed into z-distributed scores of neighborhood SES using information from the 
Statusscores database of the Netherlands Institute for Social Research (SCP 
Statusscores, 2017). 

As dietary behaviors and BMI may likewise be contingent upon the strength of 
an individual’s explicit nutritional intentions, a Healthy Eating Goals measure was 
administered with two items (In my daily life, I strive to eat healthy; It is important to me 
to eat healthy foods) rated on a seven-point sale anchored from “Strongly Disagree” to 
“Strongly Agree” (Raghoebar, van Kleef, de Vet, under review). Perceived Performance 
was additionally measured on a 100mm VAS (anchored from “Not Good At All” to “Very 
Good”), as proxy of awareness of the bias. Finally, a general questionnaire documented 
both pertinent demographic characteristics (e.g. Sex, Age, Ethnicity) and Hunger states 
(100mm VAS anchored from “Not At All” to “Very Much”) at encoding. 
Data Analysis  

Data were analyzed using IBM SPSS Statistics 23 with statistical significance 
defined as p < .05. A linear mixed effects model was chosen to analyze food spatial 
memory data, as it represents a flexible and robust manner of modelling continuous 
outcomes when the assumption of independent errors is relaxed (Krueger & Tian, 2004). 
With regards to linear mixed effects modelling, a backward elimination approach was 
adopted for model selection, given that it is less prone to underfitting data and yielding 
biased (fixed effect) estimates (Cheng et al., 2009). First, the covariance structure of 
saturated models (see below) was determined based on Restricted Maximum Likelihood 
(REML) likelihood ratio tests using the -2 log likelihood (-2LL) test statistic; fixed effects 
were subsequently finalized based on Maximum Likelihood (ML) ordinary likelihood 
ratio tests using the -2LL test statistic. In either case, a selection was made on the basis 
of parsimony and final models were refitted with REML estimations. Hypotheses and 
corresponding statistical analyses were registered prior to observing data. Slightly 
deviating from our pre-registration form, perceived performance ratings were 
correlated with actual spatial memory performance and compared between caloric 
density - taste conditions. 

Caloric density, taste, person-specific factors, and food spatial 

memory accuracy (H1A and H2).  To determine whether the accuracy of food spatial 
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memory varies meaningfully with caloric content or taste aspects, we formulated a 
random intercept and slope linear mixed model with main and interaction effects of 
Caloric Density and Taste as fixed factors, Participant and Test Session as random factors 
(covariance structure: Unstructured), Sex, Age, Ethnicity, Neighborhood SES, Subjective 
SES, Taste Order, Desirability, Familiarity, and averaged Hunger scores as covariates, 
and Spatial Memory Accuracy (D) as the dependent variable.  

To examine person-specific factors that could predict the magnitude of food 
spatial memory accuracy, we included main and interaction effects (with Caloric Density) 
of Restrained Eating, External Eating, and Reward Sensitivity as predictor variables.  

Spatial memory bias for high-calorie foods and food choice (H1B).  To 
ascertain the effects of a high-calorie bias in spatial memory on eating behavior, we 
conducted a binomial logistic regression (N=1; simultaneous entry method) with the 
log odds ratio of High-Calorie Food Choice as the dependent variable and Sex, Age, 
Ethnicity, Neighborhood SES, Subjective SES, Restrained Eating, External Eating, Reward 
Sensitivity, Desirability of High- and Low-calorie foods, Familiarity with High- and Low-
calorie foods, Hunger ratings of the final test session, Healthy Eating Goals and Spatial 
Memory Bias for High- versus Low-calorie foods (DHigh Calorie – DLow Calorie) as predictor 
factors.  

Spatial memory bias for high-calorie foods and BMI (H1B).  A multiple 
linear regression (N=1; simultaneous entry method) was performed on BMI, with Sex, 
Age, Ethnicity, Neighborhood SES, Subjective SES, Restrained Eating, External Eating, 
Reward Sensitivity, Desirability of High- and Low-calorie foods, Familiarity with High- 
and Low-calorie foods, Healthy Eating Goals, and Spatial Memory Accuracy of 
respective food groups (DHigh Calorie and DLow Calorie) as predictors, to test whether food 
spatial memory would account for variation in long-term markers of dietary intake.  

A final multiple linear regression model (N=1; simultaneous entry method) was 
formulated to determine the relative effects of high- and low-calorie food spatial 
memory on BMI. Accordingly, Sex, Age, Ethnicity, Neighborhood SES, Subjective SES, 
Restrained Eating, External Eating, Reward Sensitivity, Desirability of High- versus Low-
calorie foods, Familiarity with High- versus Low-calorie foods, Healthy Eating Goals, and 
Spatial Memory Bias for High- versus Low-calorie foods (DHigh Calorie – DLow Calorie) were 
entered as independent variables. 
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Results 

Food Spatial Memory: Accuracy and Biases 

The average pointing error in food spatial memory across all caloric density-
taste conditions amounted to 129.71 pixels (95% CI = [124.09,135.32]). Perceived 
performance ratings mirrored actual spatial memory performance (i.e. pointing errors) 
moderately well (rs (350) = -.66; p < .001). Perceived performance did not differ between 
caloric density (Mean differenceHigh-Low calorie= 2.44 mm, 95% CI = [-1.05,5.93]), t(87) = 
1.39, p = .169, d = 0.15, or taste conditions (Mean differenceSweet-Savory= -2.99 mm, 95% 
CI = [-7.38,1.39]), t(87) = -1.36, p = .179, d = 0.14. 

Individuals displayed an overall enhanced memory for the location of high-
calorie foods (i.e. smaller pointing error or D) relative to low-calorie counterparts, 
F(1,4049) = 8.25, p = .004, ηp²= 0.002, 90% CI ηp² [0.0004, 0.005], indicating a bias in 
spatial memory in favor of high-calorie foods (Figure 2.2). Similarly, a main effect of 
Taste was shown with savory food locations more accurately recalled than sweet 
alternatives, F(1,4063) = 36.35, p < .001, ηp²= 0.009, 90% CI ηp² [0.005, 0.01], 
suggesting the further presence of a savory-taste bias in food spatial memory. These 
bias effects persisted regardless of demographics (e.g. Sex), hedonic evaluations, or 
personal familiarity with respective foods. Controlling for the time participants spent 
rating foods and encoding corresponding locations only marginally attenuated Caloric 
Density effects on food spatial memory accuracy, F(1,4047) = 5.46, p = .019, and 
exerted no influence on Taste effects, F(1,4064) = 29.04, p < .001. The time participants 
took to recall food locations did not have an effect on spatial memory performance, 
F(1,84) = 0.17, p = .679, ηp²= 0.002, 90% CI ηp² [0, 0.04]. 
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Figure 2.2. Spatial memory for (a) Caloric Density and (b) Taste food groups. Spatial memory accuracy was 
operationalized as the “pointing error” or distance in pixels (D) between true and indicated food locations, 
with lower D values denoting a higher accuracy in food spatial memory. A double asterisk indicates a 
significant difference with a p value lower than .01 and a triple asterisk indicates a significant difference with 
a p value lower than .001. Error bars represent 95% confidence intervals. 
 

Taste and Person-specific Moderators 

The effect of Caloric Density on food spatial memory accuracy was not 
moderated by the Taste of a food, F(1,86.14) = 0.88, p = .352, ηp²= 0.01, 90% CI ηp² 
[0, 0.07]. Likewise, none of the included person-specific factors (i.e. Restrained Eating, 
External Eating, Reward Sensitivity) and associated interactions (with Caloric Density) 
predicted spatial memory performance (all p > .05, ηp²= 0.001 [0,0.003], 3 x 10-6 [0, 3 
x 10-4], and 1 x 10-4 [0,0.001], respectively).  
Food Choice 

Contrary to expectations, the high-calorie bias in spatial memory was not 
predictive of prospective high-calorie food choice (OR = 1.00, 95% CI = [0.99,1.01]), 
Wald statistic (1) = 0.01, p = .925. Rather, an individual’s reported healthy eating 
intentions negatively predicted the odds of choosing a high-calorie food reward (OR = 
0.49, 95% CI = [0.24,0.97]), Wald statistic (1) = 4.17, p = .041.  A corresponding analysis 
was conducted to explore the influence of the savory-taste bias in spatial memory on 
savory food choice. Similarly, the bias in spatial memory for savory-tasting foods was 
not associated with the odds of choosing a savory reward (OR = 1.01, 95% CI = 
[1.00,1.01]), Wald statistic (1) = 2.47, p = .116. 
Spatial Memory Bias for High-calorie Foods in relation to BMI 

BMI was not significantly associated with either spatial memory for high- (B = -
0.004, 95% CI = [-0.01,0.002]), t(72)= -1.31, p = .194, or low-calorie food items (B = 
.002 , 95% CI = [-0.004,0.01]), t(72)= 0.64, p = .527. Taking into account the relative 
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difference in high- versus low-calorie food spatial memory (i.e. the high-calorie spatial 
memory bias), the high-calorie bias in spatial memory was likewise not predictive of BMI  
(B = -0.003 , 95% CI = [-0.01,0.002]), t(75)= -1.18, p = .122. Conversely, an individual’s 
Healthy Eating Goals, Sex, and Desirability (bias) for high-calorie foods were significant 
correlates across statistical models (see Table A2.1 in the Supplemental Material for 
the complete statistical output). 

Interim Discussion 

Using visual food cues in a controlled lab setting, results show that individuals 
displayed a more accurate memory for high-calorie food locations relative to low-
calorie counterparts. Interestingly, a main effect of taste was found, as individuals also 
better remembered locations of savory- as opposed to sweet-tasting foods. These 
effects were not explicated by differences in hedonic evaluations of foods, personal 
familiarity with foods, or the (objective) time taken to encode and recall food locations. 
The magnitude of the high-calorie bias was not further moderated by eating style 
tendencies or reward sensitivity. Finally, the high-calorie spatial memory bias elicited 
small and non-significant changes in prospective food choice and BMI, whereas an 
individual’s healthy eating goals was largely associated with both a lower likelihood of 
high-calorie food choice and BMI. 

Given that olfaction is an evolutionary old (anticipatory) sense that is intrinsically 
linked to spatial memory and food decision making (Boesveldt & de Graaf, 2017; 
Dahmani et al., 2018), Study 2 investigated whether biases in food spatial memory 
would likewise manifest with odors signaling (sweet/savory) high- and low-calorie food 
items. The sense of smell is important across foraging species for navigational tasks 
such as locating food sources, and the ability of humans to utilize odor information as 
spatial cues appears to be intact (Jacobs, 2012; Schifferstein et al., 2009). Moreover, in 
light of the fact that the previous food choice measure encompassed a limited variety 
of foods and “reward” connotations may have influenced decision making, Study 2 
explored potential effects of biases in food spatial memory on a wider spectrum of 
eating-related outcomes. We included a validated measure of food preference – an 
established psychological determinant of food choice – which reliably predicts individual 
preference for a large assortment of (sweet/savory) high- and low-calorie products (de 
Bruijn et al., 2017; Furst et al., 1996; Yeomans, 2006). Finally, in addition to BMI, we 
collected data on waist circumference, as it has been shown to be a more sensitive 
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anthropometric marker of (abdominal) adiposity that is less susceptible to confounding 
by muscle mass (Stevens et al., 2008). 

 
Study 2 

Methodology 

Participants  

A total of 88 healthy Dutch university students (78% female; MAge = 21.9 years, 
SD = 2.0, range 18-35 years; MBMI = 20.6 kg/m2, SD = 0.8) from various educational 
backgrounds (48% postgraduates; 52% undergraduates) took part in the research. The 
sample size was chosen to remain consistent with that of Study 1, as spatial memory 
performance for vision and olfaction were expected to be similar (Schifferstein et al., 
2009). Participants were limited to Dutch individuals given the use of culture-specific 
task stimuli. All other inclusion and exclusion criteria as stipulated for Study 1 were 
applied. Furthermore, participants were screened for a normal olfactory sense (scoring 
≥ 75% correct on the 16-item Sniffin’ Sticks identification test) and the absence of 
habitual smoking (Katotomichelakis et al., 2007; Kobal et al., 1996). Individuals that 
participated in the former study, reported a history of neurological or olfactory 
disorders, or were pregnant and/or lactating were not included (Ochsenbein-Kölble et 
al., 2007). Recruitment was achieved through the advertisement of study posters and 
flyers on campus buildings, social media platforms, and participant mailing lists. After 
providing written informed consent and completing a screening session in addition to 
two test sessions, participants were compensated with a 25 euro giftcard. This study 
received ethical approval from the Social Sciences Ethics Committee of Wageningen 
University, and was preregistered on the Open Science Framework database (Project 
URL: osf.io/8u2xa). 
Design 

Paralleling Study 1, the current study had a 2 (Caloric Density: High versus Low) 
by 2 (Taste: Sweet versus Savory) within-subjects crossover design with a washout 
period of (at least) one week. 
Apparatus and Stimuli 

Spatial memory task.  The original E-Prime scripts and university campus 
setting of Allan & Allan (2013) were used to test food spatial memory. Participants were 
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asked to imagine that an international food market – encompassing 12 food stalls – 
was taking place on a (unfamiliar) university campus. Depending on the treatment 
condition, participants were then asked to smell four (sequential) odor solutions that 
signaled either (sweet/savory) high-calorie foods or low-calorie alternatives at a fixed 
duration of five seconds each (Brünner et al., 2015). During the smelling of a food odor, 
the location of the stall selling the corresponding food item was displayed on the 
university campus map through the means of a green crosshair. Between presentations 
of odor-location pairs, individuals rested for an interval of 20 seconds and smelled the 
inner portion of their wrist in order to avoid olfactory fatigue and odor carry-over effects 
(Brünner et al., 2015). Following a two-minute break after the presentation of the last 
odor-location pair, participants were exposed to a series of four spatial memory tests 
in which they were randomly presented with one of the previous food odors and 
required to specify (via mouse-click) its correct corresponding stall location on the 
campus map. Similarly, individuals rested for an interval of five seconds and smelled 
their inner wrist between odor-location recalls. The total number of possible stall sites 
(N=12) was displayed for the spatial memory tests, and a stall location could be selected 
more than once. Assigned stall locations did not overlap for food odors within a test 
session.  

The spatial memory task was piloted beforehand to match difficulty levels as 
closely as possible with that of Study 1. Although the odor-based spatial memory task 
encompassed a lower number of food locations to encode and recall, it was not 
inherently easier to perform (Mean pointing error Study 2 = 196.11 pixels, SD = 206.05; 
Mean pointing error Study 1 = 129.71 pixels, SD = 186.11), U = 116147.00, p = .003, d 
= 0.34. 

Stimulus presentation.  The psychology software tool E-prime (version 2.0) 
was used for spatial memory tasks. Computers were standardized across the 
parameters of screen size (19.3 inches), resolution (1280 x 1024), and refresh rate (60 
Hertz). The order of stimulus presentation and the stimuli itself (i.e. odor-location pairs 
within a campus map) were randomized and counterbalanced across participants.  

Food odors.  A set of four odor solutions was selected to represent each caloric 
density – taste condition (Table 2.1). High- and low-calorie items were defined 
according to the same energy density cut-offs as in Study 1, using information from 
The Dutch Food Consumption table and/or USDA Food Composition Databases (RIVM, 
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2011; USDA Food Composition Databases, 2018). Odor solutions were diluted to 
medium-high perceived intensity (55-75 mm on a 100mm VAS) and presented to 
participants in (unlabeled) individual brown bottles (50ml) at a volume of 15ml each. In 
addition, odor stimuli were piloted in a separate sample of individuals (N=30, 89% 
female; Age range = 18-35 years) to ensure consistent matching between an odor and 
its food product, and correct perceptions of caloric density and taste parameters (see 
pilot questionnaire in the Supplementary Material (Appendix Chapter 2)). 

Results revealed the final selection of high-calorie odors was rated higher on 
caloric content (M = 73.03 mm, SD = 17.27) compared to the low-calorie group (M = 
32.80 mm, SD = 24.24), t(129) = 16.65, p < .001. Likewise, taste perceptions were 
congruent with expectations as sweet odors were rated higher on sweetness (Sweet: M 
= 79.32 mm, SD = 16.93; Savory: M = 26.80 mm, SD = 25.94), Z = -9.77, p < .001, while 
savory odors scored greater on savoriness ratings (Savory: M = 66.90 mm, SD = 28.25; 
Sweet: M = 14.06 mm, SD = 15.96),  Z = -9.72, p < .001. 
Procedure  

Prior to testing, participants were informed that the experiment aimed to 
investigate individuals’ memory for specific odors. As in Study 1, this cover story did not 
explicitly mention the spatial faculty of memory and was successful in diffusing 
suspicions on the true study aims as revealed in post-hoc (open-ended funneling) 
debriefing interviews. Participants were likewise informed that good performance would 
earn them the chance to win an additional reward at the end of the experiment. Hunger 
states were standardized before test sessions in the same manner as in Study 1.  
Furthermore, individuals were asked to refrain from using scented products (e.g. 
perfume) on test days, and consuming scented items (e.g. chewing gum) starting an 
hour before their test sessions. 

The experimental paradigm was identical to that of Study 1, except waist 
circumference was additionally collected at the onset of testing. Participants were also 
required to perform an odor recognition memory task following completion of the 
spatial memory task in each caloric density - taste condition. Furthermore, participants 
completed the Macronutrient and Taste Preference Ranking Task (de Bruijn et al., 2017)  
prior to answering questions on healthy eating goals in the second test session. 
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Table 2.1. Food odors used in the present study. 

a From The Dutch Food Consumption Table (RIVM, 2011) 
b From the USDA Food Composition Databases (USDA Food Composition Databases, 2018) 
c International Flavors and Fragrances 
d Propylene Glycol 
 

Measurements 

Primary outcome variables.  Spatial memory accuracy for (sweet/savory) 
high- and low-calorie foods, as well as spatial memory bias for high-calorie foods, was 
operationalized using Euclidian distances (D)  in the same manner as in Study 1 (cf. 
Allan & Allan, 2013; Nairne et al., 2012). Based on findings of the previous experiment, 
spatial memory bias for savory-tasting foods was additionally calculated as the average 

Caloric Density-
Taste Condition 

Odor Quality Kcal/100g 
food 

counterpart 

Company IPC Concentration 
(%) in solvent 

H_SW Chocolate 531a IFFc 10810180 5% in PG d 

H_SW Caramel (Dulce de 
Leche) 

382 b 

IFF 

15062070 4% in PG 

H_SW Vanilla 288 b IFF 10860896 4% in PG 

H_SW Apple bake 237 b IFF 10927267 3.4% in PG 

H_SA Butter Popcorn 535 b IFF 10922603 2% in PG 

H_SA 
Roast Beef 236 b IFF 

10924987 0.04% in demi 
water 

H_SA Roasted Peanuts      577 a        IFF 10809896 1% in PG 

H_SA 
Bacon 

     505 a       IFF SC753578 0.20% In demi 
water 

L_SW Melon 30 a IFF 15025874 2% in PG 

L_SW Pineapple 57 a IFF 10866148 1% in PG 

L_SW Pear 55 a IFF 10809904 1% in PG 

L_SW Blackcurrant 53 a IFF 10810572 0.80% in PG 

L_SA 
Asparagus 19 a IFF 

SC753579 0.04% in demi 
water 

L_SA Cucumber 13 a IFF 15311331 100% 

L_SA Tomato 20 a IFF 10939812 0.03% in PG 

L_SA 
Mushroom      18 a      

Givaudan 

P-136293 0.04% in demi 
water 
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discrepancy in spatial memory accuracy between savory- versus sweet-tasting items 
(DSavory – DSweet). Accordingly, negative values indicate an enhanced spatial memory for 
savory-tasting foods. 

Secondary outcome variables.  Individual preferences for respective caloric 
density and taste food categories were determined using an adapted version of the 
Macronutrient and Taste Preference Ranking Task [MTPRT], ran on E-prime version 2.0 
(de Bruijn et al., 2017). The MTPRT consists of three parts: practicing, liking, and ranking. 
For the “liking” portion, individuals are introduced to all 32 food images available and 
required to provide liking ratings on them (100mm VAS anchored from “Do Not Like 
At All” to “Like Extremely”). The subsequent “ranking” portion of the original task 
encompasses two sections, one focused on macronutrients and the other on taste. In 
both sections, individuals are presented with four food images in a number of trials and 
asked to rank products on each trial in order of “what they most desire to eat at this 
moment”, beginning with the most desired product. Utilizing the same principles, a 
subset of 16 products (eight high- and eight low-caloric density) from the original 
selection of food images was used to construct a (new) caloric density section of the 
ranking task. In each of eight trials, the four presented food images came from both 
caloric density categories – with a sweet and savory counterpart for each category. The 
order in which categories were displayed on the screen was randomized and 
counterbalanced; both caloric density categories appeared four times in each of the 
available four image positions. All images were presented twice, on two different 
positions. Preference scores for respective macronutrient and taste categories were 
computed using ranking frequencies and formulas from the original authors (see de 
Bruijn et al., 2017), in which a higher rank corresponded to a higher preference score. 
Accordingly, the preference for high- (or low-) calorie foods in the newly added caloric 
density section was tabulated as: (4*(#rank1) + 3*(#rank2) + 2*(#rank3) + 1*(#rank4) 
/16).  

Waist circumference (mm) was collected with a measuring tape at the midpoint 
between the lowest rib and the iliac crest, in line with World Health Organization 
guidelines. Similarly, height (m) and weight (kg) measures were collected with an 
electronic scale (SECA 704) and stadiometer (SECA 213) to obtain accurate BMI (kg/m2) 
values. 
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Predictor variables.  Individual predispositions for Restrained and External 
Eating were measured as in Study 1 (Cronbach’s α = .84 and .75, respectively) (van 
Strien et al., 1986).  Furthermore to remain consistent with Study 1, we aggregated 
scores of the three BAS subscales to form a more reliable total BAS measure 
(Cronbach’s α = .78) for Reward Sensitivity (Carver & White, 1994). In doing so, the 
number of parameters to be estimated in statistical models was also favorably reduced 
relative to our sample size. 

Control measures.  To control for effects of (odor) recognition memory on 
spatial memory performance, we required individuals to discriminate between four 
“known” (target) and four “novel” (distractor) food odors in an odor recognition 
memory task following spatial memory tasks (Brünner et al., 2015; Krasnow et al., 2011). 
A fixed presentation order of target and distractor food odors was (randomly) 
generated for each caloric density - taste condition. Odor recognition memory scores 
were calculated as the proportion of odors correctly classified within a condition: 
correctly recognized target odors (0-4) plus correctly recognized distractor odors (0-4), 
divided by the total number of targets and distractors (8). To account for extraneous 
effects of ‘liking’ or ‘wanting’ of food types on spatial memory accuracy, we instructed 
participants to additionally rate how much they liked each odor – as well as their desire 
to eat the food item associated with an odor – on a 100mm VAS (anchored from “Not 
At All” to “Very Much”; see Food Stimuli Ratings in the Supplemental Material 
(Appendix Chapter 2)) during the odor recognition memory task (Brünner et al.,2015). 

Analogous to Study 1, Neighborhood SES, Subjective SES, Healthy Eating Goals, 
and Perceived Performance were recorded. Finally, a general questionnaire 
documented both pertinent demographic characteristics (e.g. Sex, Age) and Hunger 
states (100mm VAS anchored from “Not At All” to “Very Much”) at encoding. 
Data Analysis  

Data were analyzed using IBM SPSS Statistics 23 with statistical significance 
defined as p < .05. With regards to linear mixed effects modelling, the model selection 
procedure as described for Study 1 was applied. Due to an unforeseen error during 
testing, estimates for spatial memory biases were unable to be computed for one 
participant. Consequently, only data from 87 participants were used in the second 
statistical analysis onwards. As in Study 1, hypotheses and statistical analyses were 
formulated prior to accessing data. 
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Caloric density, taste, person-specific factors, and odor-cued food 

spatial memory accuracy (H1A and H2).  To determine whether the accuracy of 
odor-cued food spatial memory varies with caloric content or taste aspects, we 
formulated a random intercept and slope linear mixed model with main and interaction 
effects of Caloric Density and Taste as fixed factors, Participant and Test Session as 
random factors (covariance structure: Unstructured), Sex, Age, Neighborhood SES, 
Subjective SES, Taste Order, Liking, Desirability, Odor recognition memory scores and 
Hunger scores as covariates, and Spatial Memory Accuracy (D) as the dependent 
variable. 

To examine person-specific factors that could predict the magnitude of (odor-
cued) food spatial memory accuracy, we included main and interaction effects (with 
Caloric Density) of Restrained Eating, External Eating, and Reward Sensitivity as 
predictor variables. 

Spatial memory biases and food preferences (H1B).  To determine whether 
the high-calorie bias in (odor-cued) spatial memory predicted an increased preference 
for high-calorie foods, we formulated a multiple linear regression model (N=1; 
simultaneous entry method) with Sex, Age, Neighborhood SES, Subjective SES, 
Restrained Eating, External Eating, Reward Sensitivity, Liking of High- versus Low-calorie 
food odors, Desirability of High- versus Low-calorie food odors, Hunger ratings of the 
final test session, Healthy Eating Goals, and Spatial Memory Bias for High- versus Low-
calorie food odors (DHigh Calorie – DLow Calorie) as predictor variables, and the relative 
preference of High- versus Low-calorie foods (PreferenceHigh Calorie – PreferenceLow Calorie) 
as the dependent variable. 

To determine whether the savory-taste bias in (odor-cued) spatial memory 
predicted an increased preference for savory-tasting foods, we formulated a multiple 
linear regression model (N=1; simultaneous entry method) with Sex, Age, 
Neighborhood SES, Subjective SES, Liking of Savory- versus Sweet-tasting food odors, 
Desirability of Savory- versus Sweet-tasting food odors, Healthy Eating Goals, and 
Spatial Memory Bias for Savory- versus Sweet-tasting food odors (DSavory – DSweet) as 
predictor variables, and the relative preference of Savory- versus Sweet-tasting foods 
(PreferenceSavory – PreferenceSweet) as the dependent variable. 

Spatial memory bias for high-calorie foods and long-term dietary 

intake (H1B).  Multiple linear regressions (N=2; simultaneous entry method) were 
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performed on BMI and Waist Circumference, with Sex, Age, Neighborhood SES, 
Subjective SES, Restrained Eating, External Eating, Reward Sensitivity, Liking of High- 
and Low-calorie food odors, Desirability of High- and Low-calorie food odors, Healthy 
Eating Goals, and Spatial Memory Accuracy (High- and Low-calorie food odors) as 
predictor variables. 

Similarly, final multiple linear regression models (N=2; simultaneous entry 
method) were formulated to take into account the relative effects of high- and low-
calorie (odor-cued) food spatial memory on BMI and Waist Circumference. Accordingly, 
Sex, Age, Neighborhood SES, Subjective SES, Restrained Eating, External Eating, Reward 
Sensitivity, Liking of High- versus Low-calorie food odors, Desirability of High- versus 
Low-calorie food odors, Healthy Eating Goals, and Spatial Memory Bias for High- versus 
Low-calorie food odors (DHigh Calorie – DLow Calorie) were entered as independent variables. 

 

Results 

Odor-cued Food Spatial Memory: Accuracy and Biases 

The average pointing error in odor-cued food spatial memory across all caloric 
density-taste conditions was 135.49 pixels (95% CI = [126.74,144.25]). Correcting for 
differences in resolution, exploratory analysis revealed this represented a significant, but 
minor, increase from that observed in Study 1 with visual food cues, F(1,184) = 7.87, p 
= .006, ηp²= 0.04, 90% CI ηp² [0.007, 0.10]. Perceived performance ratings had a 
medium negative correlation with actual pointing errors (rs (346) = -.31; p <.001). 
Perceived performance did not differ between caloric density conditions (Mean 
differenceHigh-Low calorie= 3.28 mm, 95% CI = [-2.11,8.68]), t(86) = 1.21, p = .230, d = 0.13, 
but did vary significantly between taste conditions (Mean differenceSweet-Savory= -6.39 
mm, 95% CI = [-10.98,-1.81]), t(86) = -2.77, p = .007, d = 0.30. 

Overall, individuals displayed a greater accuracy in odor-cued food spatial 
memory for high-calorie food odors (i.e. smaller pointing error or D) relative to low-
calorie odor counterparts, F(1,1240) = 18.43, p < .001, ηp²= 0.01, 90% CI ηp² [0.006, 
0.03] (Figure 2.3).  
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Figure 2.3. Odor-cued spatial memory for (a) Caloric Density and (b) Taste food groups. Spatial memory 
accuracy was operationalized as the “pointing error” or distance in pixels (D) between true and indicated 
food locations, with lower D values denoting a higher accuracy in (odor-cued) food spatial memory. A 
triple asterisk indicates a significant difference with a p value lower than .001. Error bars represent 95% 
confidence intervals. 

Similarly, savory food odor locations were more accurately recalled than sweet 
alternatives, F(1,1309) = 23.00, p < .001, ηp²= 0.02, 90% CI ηp² [0.007, 0.03]. These 
effects persisted regardless of demographics (e.g. Sex), hedonic evaluations of odors, 
or odor recognition memory scores. Furthermore, exploratory analysis revealed that the 
amount of time participants spent on spatial recall tests significantly (negatively) 
predicted spatial memory performance (B = 0.002, 95% CI = [0.001,0.003]), F(1,789) = 
7.64, p = .006, ηp²= 0.01, 90% CI ηp² [0.002, 0.02], but did not account for the observed 
bias effects. 
Taste and Person-specific Moderators 

The interaction of Caloric Density and Taste on (odor-cued) spatial memory  
performance was not significant, F(1,90.26) = 0.32, p = .573, ηp²= 0.004, 90% CI ηp² [0, 
0.05]. Restrained Eating, External Eating, Reward Sensitivity and corresponding 
interactions (with Caloric Density) were similarly not associated with (odor-cued) food 
spatial memory accuracy (all p > .05; ηp²= 1 x 10-4 [0, 0.003], 0.003 [0, 0.01], and 1 x 
10-4 [0, 0.003], respectively).  
Spatial Memory Biases and Food Preferences 

From the tested set of predictors, the high-calorie bias in (odor-cued) food 
spatial memory was not significantly associated with an increased preference for high-
calorie foods (B = -0.001, 95% CI = [-0.003,0.001]), t(74)= -1.44, p = .08. On the other 
hand, an individual’s Healthy Eating Goals correlated negatively with high-calorie food 
preferences (B = -0.29, 95% CI = [-0.54, -0.04]), t(74)= -2.32, p = .023. 
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With respect to preference biases towards savory-tasting foods, none of the 
entered predictors captured meaningful variation in measured responses (all p > .05) – 
including the savory-taste bias in (odor-cued) food spatial memory (B = -0.001, 95% CI 
= [-0.002,0.001]), t(78)= -0.66, p = .257. 
Spatial Memory Bias for High-calorie Foods in relation to BMI and Waist 

Circumference 

Spatial memory for high-calorie food odors was not associated with BMI (B = 
0.002, 95% CI = [-0.01,0.01]), t(72)= 0.53, p = .601, or waist circumference (B = 0.02, 
95% CI = [-0.14,0.18]), t(72)= 0.25, p = .801. Likewise, spatial memory for low-calorie 
food odors was not predictive of BMI (B = 0.001, 95% CI = [-0.01,0.01]), t(72)= 0.29, p 
= .775, or waist circumference (B = 0.03, 95% CI = [-0.10,0.17]), t(72)= 0.49, p = .623. 
The high-calorie bias in (odor-cued) spatial memory also did not systematically covary 
with BMI (B = 0.001, 95% CI = [-0.004,0.01]), t(75)= 0.29, p = .388, or waist 
circumference (B = 0.001, 95% CI = [-0.12,0.12]), t(75)= 0.01, p = .496. On the contrary, 
an individual’s Healthy Eating Goals, Restrained Eating tendencies, and Liking (bias) for 
high-calorie food odors proved to be robust correlates of both measures across all 
statistical models (see Tables A2.2 and A2.3 in the Supplemental Material). 
 

General Discussion 

Across two lab studies that engaged distinct sensory modalities, while 
controlling for consciously mediated valuations or personal experiences with foods, 
individuals more accurately recalled the locations of high-calorie and savory-tasting 
foods (H1A). These findings support an adaptive account of human memory and are 
compatible with the notion that spatial processing tendencies optimized for fluctuating 
ancestral food habitats may be preserved. However, the more accurate localization of 
high-calorie foods did not differ for sweet or savory foods, or across an individual’s trait 
eating style or degree of reward sensitivity (H2). Furthermore, effects of biases in food 
spatial memory were not present on eating-related parameters of food preference, 
food choice, BMI, and waist circumference (H1B).  

In line with New et al. (2007b), we found that individuals showcased a more 
accurate memory for the locations of high-calorie foods, irrespective of factors that may 
have accounted for a general learning mechanism (e.g. encoding time, personal 
affinities with foods). It is equally unlikely that this difference arose from a higher 
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attractiveness or visual salience of high-calorie food stimuli, as parallel results were 
obtained with olfactory food cues at similar perceived intensities. Notably, vision and 
olfaction are distant senses important for detecting food sources in the environment 
and directing eating behavior towards signaled products (McCrickerd & Forde, 2016; 
Ramaekers et al., 2014). Complementing these roles, our findings corroborate the 
efficacy of both sensory modalities in signaling important nutritional characteristics of 
food sources and serving as associative cues in support of spatial navigation (Dahmani 
et al., 2018; McCrickerd & Forde, 2016; Schifferstein et al., 2009). The slight advantage 
of vision over olfaction observed in spatial memory performance may be attributed to 
a greater tendency and fluency of sighted-individuals to internally represent spatial 
information in visual terms, or an overall greater difficulty of assigning verbal labels to 
(and identifying) odors (Cain, 1979; Schifferstein et al., 2009). Interestingly, further 
reinforcing the results of New et al. (2007b), the high-calorie bias in spatial memory was 
not influenced by sex. Although sex differences in spatial abilities are widely 
documented in literature (Silverman & Eals, 1992; Silverman et al., 2007), this finding 
makes sense from an evolutionary perspective, as the adaptive ancestral problem of 
efficiently (re)locating and exploiting high quality nutritional resources would have 
impinged similarly on both sexes – resulting in a sexually monomorphic but domain-
specific spatial processing mechanism (Cosmides & Tooby, 2013; Krasnow et al., 2011).  

A novel main effect of taste on spatial memory accuracy was additionally 
elucidated as individuals better remembered locations of savory- (versus sweet-) tasting 
foods – regardless of caloric content. Within the framework of adaptive memory (Nairne 
& Pandeirada, 2008b; Nairne & Pandeirada, 2010), our results suggest that the 
attainment of sufficient protein (relative to carbohydrates) may have posed a bigger 
adaptive problem faced by our hunter-gatherer ancestors. In support of this notion, 
ancestral protein consumption is estimated to have encompassed a substantial 30% of 
a 3000 kcal/day diet (Cordain et al., 2000; Eaton, 2006). This high demand coupled with 
a high variance in return rates of major protein sources (i.e. mobile animal prey), would 
have garnered a greater difficulty with meeting protein intake requirements relative to 
carbohydrates – the latter mainly sourced from (immobile) fruits and vegetables (Bird 
et al., 2009; Eaton, 2006). Therefore, we speculate that a bias in location memory for 
savory-tasting foods may be the expression of a fitness advantage that facilitated a 
more lucrative pursuit of protein-rich resources. Relatedly, studies have shown that 
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human visual attention and episodic memory are especially adept at processing 
information on self-propelling animate (e.g. animals) versus inanimate objects, 
potentially reflecting a survival mechanism to readily detect prey or predators in the 
environment (Nairne et al., 2017; New et al., 2007a). Moreover, protein intake has been 
demonstrated to be tightly regulated in humans across time and geographical 
conditions, and even “leveraged’ or prioritized over the consumption of other 
macronutrients when nutritional intake targets are not met (Cordain et al., 2000; 
Simpson & Raubenheimer, 2005). A compensatory pathway for restoring protein 
balance involves the activation of (implicit) cognitive processes that orient food 
preferences and choice behavior towards savory high-protein foods (Griffioen-Roose 
et al., 2012; Griffioen-Roose et al., 2014). Taken together, these observations add 
empirical weight to the idea that a savory-taste bias in human spatial memory may have 
been functionally selected for maintaining adequate protein status. 

In light of the difficulties associated with establishing a definitive evolutionary 
account of our findings, our data enable us to rule out a couple alternative explanations 
for the observed biases in human food spatial memory. The possibility that the high-
calorie bias arose from a conscious effort of (health-minded) individuals to strategically 
avoid high-calorie food locations can be countered with exploratory analyses that 
revealed healthy eating goals were not a significant predictor of food spatial memory 
accuracy in both studies. Indeed, such an “adaptive avoidance” hypothesis, in which 
(dieting) individuals with the high-calorie bias would adaptively avoid high-calorie food 
locations and have a lower BMI, is not supported by the existing literature (Allan & Allan, 
2013). It is also conceivable to suspect that within-experimental differences in name-
ability or depth of processing accounted for discrepancies in spatial memory 
performance – congruent with the (domain-general) levels of processing framework. 
By this account, high-calorie and savory-tasting food locations were better recalled 
because they were inherently easier to assign meaning to (Craik & Lockhart, 1972). 
However, this prospect is unlikely as we controlled for individual experience with a food 
through familiarity ratings (Study 1) and odor recognition memory scores (Study 2), the 
latter of which is known to positively covary with odor knowledge and odor naming 
abilities (Frank et al., 2010). 

Although biases in human food spatial memory are clearly expressed, their 
translation into actual eating behavior was not detected in the present work. In light of 
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observed effect sizes, potential relationships with long-term dietary intake are also likely 
to be small in magnitude. This gap may be attributed to a variety of reasons. As the 
measurement of anthropometrics temporally preceded the selection of foods, 
individuals may have been primed with a dieting or health goal, thus potentially diluting 
effects on subsequent (high-calorie) food preference and choice (van der Laan et al., 
2017). However, the one-week washout period and other implemented controls (e.g. 
anonymity/honesty reminders; covert nature of the food choice task) would have 
helped in mitigating any substantial confounding effects. In addition, as the current 
techniques used to assess food choice lacked external validity, and food spatial memory 
biases are thought to exert their influence by affording a greater navigational 
convenience, (pronounced) effects may only be present in more naturalistic food 
settings that allow for navigation within a bigger scale of space. Theoretical 
considerations are also merited, as contrary to Allan & Allan (2013), an individual’s 
reported healthy eating intentions – rather than the high-calorie spatial memory bias – 
was a robust predictor of both short- and long-term parameters of eating behavior. 
This suggests that obesogenic effects of the high-calorie bias may be effectively 
countered by an individual’s explicit health attitudes and self-regulation capacity – in a 
manner resonant with dual-processing theories of cognition (Evans, 2003). The 
potential link between the high-calorie spatial memory bias and obesogenic behaviors 
may therefore be a more nuanced process that recruits higher-order cognitive 
constructs.  

Finally, it would be worthwhile to explore the cognitive processes underlying 
food spatial memory biases. The majority of our results concerning encoding times and 
perceived performance ratings propose a link with more implicit mechanisms. It would 
therefore be interesting to see whether food-related attention biases, specifically in the 
orientation phase of attention, covary with the expression of these cognitive biases. 
These results could yield important insights to supplement existing interventional 
strategies aimed at decreasing cognitive reactivities to high-calorie food stimuli, in an 
effort to promote dietary regulation. 

In closing, our work highlights that content matters deeply for the faculty of 
human food spatial memory. Findings are reminiscent of a cognitive system presumably 
attuned to ancestral priorities of optimal foraging: one capable of assessing the 
profitability of encountered food resources and preferentially processing the locations 
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of those higher in nutritional quality – in an implicit manner that does not compete for 
volitional attention. Knowledge of these biases in human food spatial memory and their 
associated (proximal) mechanisms could inform new strategies to promote healthier 
eating behavior within the evolutionary novel “obesogenic” food landscape. 
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Food Pics Catalogue Numbers 
H_SW: 16, 41, 44, 103, 116, 134, 189, 286, 313, 344, 400, 507; H_SA: 2, 27, 53, 60, 104, 186, 
350, 416, 489, 517, 519, 555; L_SW: 199, 241, 255, 285, 386, 389, 392, 393, 407, 413, 453, 
466; L_SA: 233,250, 251, 258, 260, 264, 265, 274, 333, 335, 364, 442 
 

Study 1 Pilot Questionnaire 

Instructions: Answer all of the required questions. There are no correct or incorrect 
responses, we are interested in hearing your opinions. Do not overthink your answers; your 
first impression is usually the best. 
 
1. How many CALORIES do you think the product consists of? 
 
Very few calories                                                            Many calories 
 
2. How SWEET do you think the product tastes? 
 
           Not at all                                                    Very sweet 
 
3. How SAVORY do you think the product tastes? 
 
          Not at all                                                                            Very savory 
 
4. How HEALTHY do you think the product is? 
 
         Not at all                                                    Very healthy 
 

Study 2 Pilot Questionnaire 

Instructions: For each of the following odors, answer all of the required questions by 
placing a vertical bar (|) on the lines below. Please take some time between odors. There 
are no correct or incorrect responses, we are interested in hearing your opinions. Do not 
overthink your answers; your first impression is usually the best. 
 
1. How INTENSE do you find the odor?  
 
        Not at all                     Very much 
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Cucumber 

Melon 

Mushroom 

Pear 

 

Pineapple 

Roast Peanuts 

Tomato 

Vanilla 

 

Apple pie/bake 

Asparagus 

Bacon 

Beef 

 

Blackcurrant 

Butter popcorn 

Caramel 

Chocolate 

 

2. How many CALORIES do you think a product (with this odor) consists of? 
 
Very few calories        Many calories 
 
3. How SWEET do you think a product (with this odor) tastes? 
 
      Not at all                                                          Very sweet 
 
4. How SAVORY do you think a product (with this odor) tastes?  
 
      Not at all                     Very savory 
 
5. Which one of the following products best MATCH the odor (circle one)? 
 
 
 

 

 

 

Food Stimuli Ratings 

Study 1 

 

Instructions: Please answer the questions below for all foods. Your first impression is 
usually the best; there are no right or wrong answers. 
 

1. How much do you desire to eat the displayed food at this moment? 
 

       Not at all                                  Very much 
 
2. How familiar are you with the displayed food item? 

    1               2                  3               4                5 
 

1= I do not recognize the product; 2= I recognize the product, but I have not tasted it; 3= 
I have tasted; 4= I occasionally eat the product; 5= I regularly eat the product 
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Study 2 

 

Instructions: For each of the following odors, please indicate whether you previously 
smelled them in the task before (= “old”) or not (= “new”) by circling your answer. Also rate 
how much you like the odor and your desire to eat the food item associated with the odor. 
Please take a small break, and smell the inside of your wrist, between odors.  
 
1. This odor is:  

Old                                                                   New 
 
2. How much do you like the odor? 
 
       Not at all                                            Very much 
 
 
3. How much do you desire to eat the food item with this odor at this moment? 

 
       Not at all                                  Very much 
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Table A2.1. 
Predicting BMI (kg/m2) from (the high-calorie bias in) food spatial memory, in multiple linear regression models. 

a Males are the reference group 
bD or pointing error (Lower values denote a greater accuracy in spatial memory) 
cD High Calorie – D Low Calorie (Lower values denote a greater bias in spatial memory for high-calorie foods) 
*p < .05; ** p < .01; *** p < .001 

Variable B 95% CI Beta t p R R2 

Model 1: BMI and food spatial memory 

Constant 32.15 23.77 – 40.53  7.64 .000*** .59 .35 
Sexa -1.46 -2.55 – -0.38 -0.31 -2.69 .009**   
Age -0.02 -0.19 – 0.16 -0.02 -0.17 .868   
Ethnicity 0.13 -0.30 – 0.56 0.07 0.62 .538   
Neighborhood SES 0.11 -0.17 – 0.39 0.08 0.78 .440   
Subjective SES -0.01 -0.40 – 0.39 -0.003 -0.02 .981   
Restrained Eating 0.60 -0.12 – 1.32 0.18 1.65 .103   
External Eating -0.29 -1.11 – 0.53 -0.08 -0.71 .483   
Reward Sensitivity -1.07 -2.45 – 0.30 -0.18 -1.55 .125   
Desirability High Calorie -0.07 -0.11 – -0.03 -0.53 -3.12 .003**   
Desirability Low Calorie 0.04 -0.004 – 0.08 0.30 1.81 .075   
Familiarity High Calorie -0.41 -2.27 – 1.45 -0.06 -0.44 .662   

Familiarity Low Calorie 0.42 -1.39 – 2.23 0.07 0.46 .648   
Healthy Eating Goals -0.70 -1.22 – -0.18 -0.29 -2.66 .010*   
Spatial Memory High Calorie

b -0.004 -0.01 – 0.002 -0.17 -1.31 .194   
Spatial Memory Low Calorie

b 0.002 -0.004 – 0.01 0.08 0.64 .527   

Model 2: BMI and the high-calorie bias in spatial memory 

Constant 30.85 23.45 – 38.24  8.31 .000*** .56 .31 
Sexa -1.29 -2.32 – -0.25 -0.27 -2.47 .016*   
Age -0.01 -0.19 – 0.17 -0.01 -0.10 .923   
Ethnicity 0.07 -0.35 – 0.49 0.04 0.32 .748   
Neighborhood SES 0.10 -0.18 – 0.37 0.07 0.69 .490   
Subjective SES -0.06 -0.44 – 0.32 -0.03 -0.33 .743   
Restrained Eating 0.52 -0.19 – 1.24 0.16 1.45 .151   
External Eating -0.42 -1.22 – 0.38 -0.11 -1.04 .302   
Reward Sensitivity -0.94 -2.31 – 0.43 -0.16 -1.37 .176   
Desirability High – Low Calorie -0.05 -0.09 – -0.01 -0.35 -2.60 .011*   
Familiarity High – Low Calorie -0.34 -2.00 –1.33 -0.05 -0.40 .690   

Healthy Eating Goals -0.67 -1.19 – -0.15 -0.28 -2.57 .012*   
High-calorie Spatial Memory 

Biasc 
-0.003 -0.01 – 0.002 -0.12 -1.18 .244 
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Table A2.2. 
Predicting BMI (kg/m2) from (the high-calorie bias in) odor-cued food spatial memory, in multiple linear 
regression models. 
Variable B 95% CI Beta t p R R2 

Model 1: BMI and (odor-cued) food spatial memory 

Constant 16.14 8.19 – 24.09  4.05 .000*** .66 .44 
Sexa -0.89 -2.09 – 0.31 -0.16 -1.47 .145   
Age 0.17 -0.07 – 0.41 0.15 1.45 .152   
Neighborhood SES 0.01 -0.30 – 0.32 0.01 0.06 .950   
Subjective SES 0.01 -0.43 – 0.44 0.003 0.03 .973   
Restrained Eating 1.96 1.23 – 2.70 0.52 5.31 .000***   
External Eating -0.52 -1.57 – 0.53 -0.11 -0.98 .328   
Reward Sensitivity 0.76 -0.37 – 1.88 0.12 1.34 .183   
Liking High Calorie 0.14 0.06 – 0.23 0.81 3.29 .002**   
Liking Low Calorie -0.04 -0.12 – 0.05 -0.18 -0.83 .411   
Desirability High Calorie -0.12 -0.19 – -0.04 -0.82 -3.05 .003**   
Desirability Low Calorie 0.05 -0.03 – 0.13 0.32 1.34 .184   

Healthy Eating Goals -0.72 -1.28 – -0.16 -0.26 -2.54 .013*   
Spatial Memory High Calorie

b 0.002 -0.01 – 0.01 0.05 0.53 .601   
Spatial Memory Low Calorie

b 0.001 -0.01 – 0.01 0.03 0.29 .775   

Model 2: BMI and the high-calorie bias in (odor-cued) food spatial memory 

Constant 17.15 9.02 – 25.28  4.20 .000*** .61 .37 
Sexa -0.84 -2.07 – 0.39 -0.15 -1.36 .178   
Age 0.25 0.02 – 0.48 0.21 2.13 .036*   
Neighborhood SES -0.04 -0.36 – 0.27 -0.03 -0.26 .797   
Subjective SES 0.002 -0.44 – 0.44 0.001 0.01 .993   
Restrained Eating 1.97 1.21 – 2.73 0.53 5.17 .000***   
External Eating -0.21 -1.20 – 0.78 -0.04 -0.42 .678   
Reward Sensitivity 0.54 -0.61 – 1.69 0.09 0.93 .353   
Liking High – Low Calorie 0.09 0.01 – 0.17 0.55 2.23 .028*   

Desirability High – Low Calorie -0.08 -0.15 – -0.01 -0.54 -2.21 .030*   
Healthy Eating Goals -0.81 -1.38 – -0.23 -0.29 -2.78 .007**   
High-calorie Spatial Memory 

Biasc 

0.001 -0.004 – 0.01 0.03 0.29 .776   

aMales are the reference group 
bD or pointing error (Lower values denote a greater accuracy in spatial memory) 
cD High Calorie – D Low Calorie (Lower values denote a greater bias in spatial memory for high-calorie food odors) 
*p < .05; ** p < .01; *** p < .001 
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Table A2.3. 
Predicting waist circumference (mm) from (the high-calorie bias in) odor-cued food spatial memory, in 
multiple linear regression models. 

Variable B 95% CI Beta t p R R2 

Model 1: Waist circumference and (odor-cued) food spatial memory 

Constant 644.86 445.23 – 844.49  6.44 .000*** .80 .64 
Sexa -90.08 -120.27 – -59.90 -0.51 -5.95 .000***   
Age 8.95 2.99 – 14.91 0.24 2.99 .004**   

Neighborhood SES -8.82 -16.68 – -0.95 -0.17 -2.23 .029*   
Subjective SES -2.37 -13.23 – 8.48 -0.03 -0.44 .664   
Restrained Eating 57.17 38.69 – 75.66 0.49 6.17 .000***   
External Eating 9.25 -17.19 – 35.68 0.06 0.70 .488   
Reward Sensitivity 11.51 -16.62 – 39.63 0.06 0.82 .417   
Liking High Calorie 3.40 1.21 – 5.58 0.61 3.10 .003**   
Liking Low Calorie -1.19 -3.38 – 1.00 -0.19 -1.09 .281   
Desirability High Calorie -2.59 -4.50 –  -0.68 -0.58 -2.70 .009**   

Desirability Low Calorie 0.99 -0.89 – 2.87 0.20 1.05 .299   
Healthy Eating Goals -29.56 -43.69 – -15.43 -0.34 -4.17 .000***   
Spatial Memory High Calorie

b 0.02 -0.14 – 0.18 0.02 0.25 .801   
Spatial Memory Low Calorie

b 0.03 -0.10 – 0.17 0.04 0.49 .623   

Model 2: Waist circumference and the high-calorie bias in (odor-cued) food spatial memory 

Constant 671.73 470.51 – 872.95  6.65 .000*** .78 .60 
Sexa -90.12 -120.69 – -59.55 -0.51 -5.87 .000***   
Age 10.21 4.43 – 15.98 0.28 3.52 .001**   
Neighborhood SES -9.40 -17.18 – -1.61 -0.19 -2.41 .019*   
Subjective SES -2.47 -13.42 – 8.48 -0.04 -0.45 .655   
Restrained Eating 57.27 38.46 – 76.08 0.49 6.07 .000***   
External Eating 13.39 -11.09 – 37.87 0.09 1.09 .279   
Reward Sensitivity 7.28 -21.22 – 35.78 0.04 0.51 .612   
Liking High – Low Calorie 2.30 0.29 – 4.32 0.45 2.28 .026*   

Desirability High – Low Calorie -1.74 -3.55 – 0.07 -0.37 -1.92 .059   
Healthy Eating Goals -31.49 -45.80 – -17.18 -0.36 -4.39 .000***   
High-calorie Spatial Memory 

Biasc 0.001 -0.12 – 0.12 0.001 0.01 .991 
  

aMales are the reference group 
bD or pointing error (Lower values denote a greater accuracy in spatial memory) 
cD High Calorie – D Low Calorie (Lower values denote a greater bias in spatial memory for high-calorie food odors) 
*p < .05; ** p < .01; *** p < .001 



 

61 

  



Rachelle de Vries§

Paulina Morquecho-Campos§

Emely de Vet

Marielle de Rijk

Elbrich Postma

Kees de Graaf

Bas Engel

Sanne Boesveldt
§Contributed equally

Published in Scientific Reports (2020) 10:15174

https://doi.org/10.1038/s41598-020-72570-x



Chapter 3 
Human spatial memory  

implicitly prioritizes  

high-calorie foods



Chapter 3 

64 

Abstract 

All species face the important adaptive problem of efficiently locating high-quality 
nutritional resources. We explored whether human spatial cognition is enhanced for 
high-calorie foods, in a large multisensory experiment that covertly tested the location 
memory of people who navigated a maze-like food setting. We found that individuals 
incidentally learned and more accurately recalled locations of high-calorie foods – 
regardless of explicit hedonic valuations or personal familiarity with foods. In addition, 
the high-calorie bias in human spatial memory already became evident within a limited 
sensory environment, where solely odor information was available. These results 
suggest that human minds continue to house a cognitive system optimized for energy-
efficient foraging within erratic food habitats of the past, and highlight the often 
underestimated capabilities of the human olfactory sense. 
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Introduction 

A recurring fitness-relevant task faced by all species is the efficient pursuit of 
nutritional resources (Schoener, 1971). A central theorem of optimal foraging theory is 
that an individual’s fitness is a direct function of the efficiency with which one acquires 
energy, and natural selection pressures favour foraging traits that maximize the net rate 
of energy gain (Schoener, 1971; Pyke et al., 1977). Although this theory has been 
extensively referenced in relation to the foraging strategies of other animals (Pyke et al., 
1977), the question of whether humans also inherently carry adaptations geared toward 
energy-efficient foraging has not been thoroughly assessed to date. 

For about 99 percent of human evolution, our ancestors were hunter-gatherers 
inhabiting a highly complex and variable physical food environment, where food 
sources varied on both spatial and temporal availabilities (New et al., 2007b; 
Winterhalder, 1981). A cognitive adaptation that could have evolved to optimize 
foraging efforts within such erratic food habitats of the past is a high-calorie bias in 
spatial memory (New et al., 2007b; de Vries et al., 2020b). Such an inbuilt spatial bias 
entails the automatic registration and prioritization in memory of high-calorie food 
locations. This would have enabled foragers to efficiently navigate toward valuable 
calorie-dense resources – without competing for limited attentional capacities required 
in other important activities such as avoiding predation (Krasnow et al., 2011; New et 
al., 2007b). Indeed, a similar mechanism has been observed in other animal species 
(Cunningham & Janson, 2007; Janmaat et al., 2014; Janson, 1998). Using an innovative 
and ecologically valid experimental set-up that covertly tested the food location 
memory of more than 500 individuals, we provide first-hand evidence that human 
spatial processing is implicitly biased toward high-calorie foods. 

To mirror real-world navigation within a heterogeneous food environment as 
closely as possible, we created a maze-like setting where participants followed a specific 
route within a room to sample an assortment of (sweet and savory) high- and low-
calorie food stimuli at dispersed pillar locations (Figure 3.1). We emulated two sensory 
environments in separate rooms, each of which engaged sensory modalities 
fundamental to the processes of spatial navigation and eating behavior (Boesveldt & 
de Graaf, 2017; Jacobs, 2012; Yarmolinsky et al., 2009): In the multisensory environment 
(i.e. vision + taste + olfaction), stimuli consisted of actual food products that individuals 
had to eat, whereas individuals were instructed to only smell food odors in the olfactory 
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environment. Importantly, participants were not informed that their (spatial) memory 
would be tested afterwards, to ensure that the encoding of food locations would be 
purely incidental. We then compared performance, expressed as the proportion of 
correct food-to-pillar relocations in a surprise spatial memory task, for high-calorie 
versus low-calorie food stimuli in both sensory environments. 

 

 
Figure 3.1. Heterogeneous food environment. Example of the spatial distribution of food stimuli and 
navigation route within the maze-like experimental setting. 
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Results 

Human Spatial Memory Automatically Prioritizes High-calorie Food.  

In the multisensory environment, individuals relocated high-calorie foods to 
correct pillar locations significantly more frequently than low-calorie alternatives (High-
calorie: M = 0.63, 95% CI = [0.58,0.67]; Low-calorie: M = 0.57, 95% CI = [0.52,0.62]), 
χ2 (1)= 9.35, p = .002, OR= 1.27, 95% CI = [1.09, 1.48] (Figure 3.2). This effect occurred 
regardless of demographics, relevant state characteristics (e.g. hunger and alertness), 
hedonic evaluations of foods (i.e. liking and desirability ratings; Figure 3.3), and 
familiarity with foods. Similarly, individuals in the olfactory environment more frequently 
relocated odors signaling high-calorie foods to correct pillar locations relative to low-
calorie odor counterparts (High-calorie: M = 0.36, 95% CI = [0.33,0.39]; Low-calorie: M 
= 0.30, 95% CI = [0.27,0.34]), χ2 (1)= 6.88, p = .009, OR= 1.28, 95% CI = [1.06, 1.54] 
(Figure 3.2), while controlling for the same set of potential confounders – although the 
likelihood of a correct relocation increased with a greater familiarity with an odor 
stimulus, χ2 (1)=  47.31, p < .001, OR= 3.55, 95% CI = [2.47,5.09]. Conversely, spatial 
memory accuracy did not vary according to the taste of a food (i.e. sweet or savory) in 
either sensory condition.  
The High-calorie Bias in Human Spatial Memory Manifests with Limited 

Sensory Information. 

In a combined analysis of both sensory conditions, a better overall food 
relocation performance was observed in the multisensory compared to the olfactory 
environment (Multisensory: M = 0.58, 95% CI =[0.54,0.61]; Olfactory: M = 0.36, 95% CI 
=[0.33,0.39]), χ2 (1)= 62.95, p < .001, OR= 2.43, 95% CI = [1.95,3.03], after adjusting 
for differences between participant samples (Figure 3.2). However, the sensory nature 
of food stimuli did not moderate the effect of caloric density on spatial memory 
accuracy, χ2 (1)= 0.49, p = .486, indicating that the high-calorie spatial memory bias 
was equally expressed in both sensory environments – even where solely odor 
information was available. 
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Figure 3.2. Food spatial memory accuracy. Human spatial memory for high-calorie and low-calorie food 
stimuli in two sensory environments, expressed as the proportion of correct food-to-pillar relocations. 
Error bars represent 95% confidence intervals. 

 

Figure 3.3. Food ratings across sensory environments. Liking (a), Desirability (b), and Familiarity (c) ratings 
(on a 100mm Visual Analogue Scale) for all food stimuli in the multisensory and olfactory environment. 
Error bars represent 95% confidence intervals. 
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Discussion 

In a naturalistic multisensory experiment, individuals incidentally learned and 
more accurately recalled locations of high-calorie food stimuli. These results are 
compatible with the notion of “adaptive memory”, which contends that memory 
systems – much like other biological systems –  were shaped by the forces of natural 
selection and should therefore show sensitivity to fitness-relevant content (Nairne, 2010; 
Nairne & Pandeirada, 2008b). Indeed, alternative interpretations of our findings that are 
grounded in more traditional memory frameworks, which champion the primacy of 
content-insensitive general learning mechanisms, can be ruled out by our data (Nairne, 
2010). The possibility that the high-calorie spatial memory bias resulted from a greater 
“depth” of processing or motivational salience of high-calorie stimuli is minimal, given 
that we controlled for an individual’s personal familiarity with a food, as well as their 
explicit liking and desire to consume an item (Craik & Lockhart, 1972). In addition, high- 
and low-calorie food products were equivalent in their composition of important 
macronutrients (i.e. protein to carbohydrate and fat ratios), rendering it unlikely that 
differences in nutritional balance – rather than caloric content – is what drove the 
mnemonic advantage in the high-calorie condition (Simpson & Raubenheimer, 2005). 
However, the observation that (odor) familiarity predicted a higher frequency of overall 
correct relocations illustrates the importance of considering both content-sensitive and 
content-insensitive learning processes for human spatial cognition (de Vries et al., 
2020b).  

Remarkably, the expression of the high-calorie bias in human spatial memory 
required only a limited presence of sensory information – granted that available sensory 
cues (such as odors) can communicate the relative value (e.g. caloric content) of 
potential foods – which further speaks to the processing efficiency of the mechanism 
(Schoener, 1971; Zoon et al., 2016). We speculate that this could be due to an overlap 
in underlying (hippocampal) neural coding processes, despite variations in the 
(dominant) sensory modality used to explore the external world and significant objects 
contained within them (Schiller, 2015). For instance, it is feasible that hippocampal place 
cells show enhanced activity during recognition of objects (or cues) that flag a high-
priority resource, independently of the type of sensory input received (Schiller, 2015). 
However, a sizeable difference in overall spatial memory performance was evident 
between sensory conditions, which may have resulted from a greater variety of sensory 
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information present in the multisensory environment. Individuals in the multisensory 
environment had a wider availability of sensory modalities (e.g. visual information) to 
utilize as spatial cues during encoding, which could have yielded a richer construction 
of mental spatial representations (Downs & Stea, 2011; Schifferstein et al., 2009). Going 
forward, research efforts would benefit from additionally documenting or matching 
participant samples on individual abilities to mentally represent and flexibly manipulate 
spatial information (i.e. between the viewer-centered perspective during navigation and 
the aerial map perspective during spatial recall) (Wolbers & Hegarty, 2010), for a more 
refined comparison of (food) location memory between sensory conditions. 

In turn, differences in the expression of the high-calorie spatial memory bias 
may offer a novel explanation for why some individuals are less successful in maintaining 
a healthy energy balance within the modern food landscape (Allan & Allan, 2013). An 
enhanced memory for high-calorie food locations could make high-calorie options 
relatively easier to obtain within a diverse food environment, especially for those with a 
greater expression of the bias (Allan & Allan, 2013). In this manner, the cognitive bias 
may facilitate high-calorie food choice, by capitalizing on the tendency of individuals to 
prefer convenient easily-accessible items when making food decisions (Furst et al., 
1996). Similarly, it could stimulate individuals to visit calorie-laden food locations (e.g. 
fast food outlets) on a wider scale of space. Given the paucity of literature on the high-
calorie spatial memory bias and its potential behavioral effects, further investigation is 
merited on what other cognitive processes are associated with the bias, and how it may 
influence the manner in which people navigate contemporary food replete settings. 

Finally, our findings add to a growing literature that highlight the relevance of 
olfaction for eating behavior in humans, which is known to be the case across other 
species (Boesveldt & de Graaf, 2017; Jacobs, 2012). The human sense of smell is often 
depicted to be inferior to those of other mammals, such as dogs or rodents (McGann, 
2017). However, our observations showcase the intact ability of individuals to distinguish 
different odor types, deduce caloric properties of signaled foods from odor cues, and 
localize odor objects in space (Jacobs, 2012; Wu et al., 2020; Zoon et al., 2016). Indeed, 
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a well-developed olfactory sense is thought to have conferred a survival advantage to 
(ancestral) hunter-gatherers (Bastir et al., 2011; Majid & Kruspe, 2018). 

Taken together, we find that human minds may continue to house an implicit 
cognitive system optimized for energy-efficient foraging within the fluctuating ancestral 
food environments in which memory evolved.  
 

Materials and Methods 
Participants. This experiment was part of the three-day Lowlands Science 

2018 festival program (the Netherlands). A total of 512 attendees were analyzed: 258 
participants (47% female; MAge = 28.2 years, SD = 9.1; MBMI = 24.0 kg/m2, SD = 3.6) in 
the multisensory environment and 254 participants (50% female; MAge = 28.5 years, SD 
= 9.0, MBMI = 23.8 kg/m2, SD = 3.4) in the olfactory environment. Data from 539 
individuals were initially collected, but 21 files contained missing values and 6 files 
originated from individuals who participated in both sensory conditions which was an 
exclusion criterion. All participants (and/or their legal guardians) provided written 
informed consent prior to testing. This study was approved by the Social Sciences Ethics 
Committee of Wageningen University and was performed in accordance with relevant 
ethical guidelines and regulations. The hypothesis, full research protocol and analysis 
plan were preregistered, and can be accessed alongside reported data at 
https://osf.io/2rwmt/. 

Spatial Memory Task. Participants were brought to a starting point within a 
room (area of 12 m2). They navigated between eight pillars at a fixed pre-determined 
order that was indicated by arrow signs on the floor. Although navigation schemes 
remained constant, the assignment of food stimuli to pillar locations (i.e. encoding order 
of caloric density - taste conditions) was randomized every hour and pillar frequencies 
did not differ between conditions. Participants tasted (or smelled) and provided ratings 
(i.e. liking, desire to eat, familiarity; Figure 3.3) on a food stimulus at all pillars. 
Participants then completed a surprise spatial memory task in a separate area. During 
recall, participants were randomly presented with a sequence of previous food stimuli 
and had to indicate the pillar location of each item on a (two-dimensional) digital map 
of the relevant room. The total number of possible pillar locations (N= 8) was displayed 
anew each recall round, and a pillar location could be selected more than once. 
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Food Stimuli. Four high-calorie (M = 498.5 kcal/100g, SD = 35.8) and low- 
calorie (M = 34.3 kcal/100g, SD = 18.9) food products and odor equivalents were used, 
with an equal number of sweet (e.g. High-calorie: chocolate brownie; Low-calorie: 
apple) and savory (e.g. High-calorie: potato chip; Low-calorie: cherry tomato) options 
for each. Food odors were matched on perceived intensity (i.e. 55-75 mm on a 100 mm 
Visual Analogue Scale) between caloric density - taste conditions and validated in 
previous research (de Vries et al., 2020b). Food products were placed in bowls and 
refilled at regular time intervals to maintain a consistent presentation volume. Food 
odors were presented in (screw-capped) brown bottles (50 ml) containing scented 
cotton pads, which participants had to first open in order to smell. Odor bottles were 
also replaced regularly to uphold the desired odor intensity. All food stimuli were placed 
atop pillars and covered by identical cloches that participants had to open during 
navigation. 

Statistical Analysis. For data from each sensory environment, a generalized 
linear mixed model (GLMM) with a random slope was formulated. A GLMM was chosen 
to flexibly model for correlated errors in the (non-normal) binary outcome variable 
(Bolker et al., 2009), and linearity of covariates (on the logit scale) was shown to 
sufficiently capture their effects. The GLMM comprised fixed main and interaction effects 
for experimental factors Caloric Density and Taste, and random effects for the 
factor Participant. All effects were introduced on the logit scale. Additionally, in the fixed 
part of the model and also on the logit scale, Gender, Age (in tertiles), Subjective 
SES, Food Allergies, Hunger ratings, hours of Sleep, Alertness, Alcohol consumption, 
Drug use, Smoking, Liking, Desirability, and Familiarity were entered as 
covariates.  Binary observations, conditional upon the random effects for participants, 
were assumed to follow a Bernouilli distribution. To test whether the type of sensory 
environment (i.e. multisensory versus olfactory) moderates food spatial memory 
accuracy and expression of the high-calorie bias, observations from both sensory rooms 
were combined into a single analysis, adding fixed main and interaction effects (e.g. 
with Caloric Density) of Sensory Environment to the GLMM. Ordinary likelihood ratio 
tests (using the -2LL test statistic) were used for testing, with p values derived from an 
approximation with the chi-square distribution. Inference was based on Laplacian 
integration employing the lme4 package from R (Bates et al., 2019). Detailed 
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information on the measurement of covariates and the model selection process can be 
found at https://osf.io/2rwmt/. 

Data Availability 

The data that support the findings of this study are available on the Open Science 
Framework repository with the identifier DOI 10.17605/OSF.IO/2RWMT. 
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Locating calories:  

Does the high-calorie bias  

in human spatial memory  

influence how we navigate

the modern food environment?
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Abstract 

Human memory appears to be adaptively “biased” towards remembering the 

locations of (fitness-relevant) high-calorie nutritional resources. It remains to be 

investigated whether this high-calorie bias in human spatial memory influences how 

individuals navigate the modern food environment, and whether it is proximally 

associated with attentional processes. 60 individuals completed computer-based food 

eye-tracking and spatial memory tasks in a lab setting, as well as a food search and 

covert food choice task in an unfamiliar supermarket. The high-calorie spatial memory 

bias was replicated, as individuals more accurately recalled locations of high-calorie 

relative to low-calorie foods, regardless of hedonic evaluations or familiarity with 

foods. Although individuals were faster at (re)locating high-calorie (versus low-calorie) 

items in the supermarket, the bias did not predict a lower search time for high-calorie 

foods, or a higher proportion of high-calorie food choice. Rather, an enhanced 

memory for high-calorie food locations was associated with a lower perceived 

difficulty (i.e. greater ease) of finding high-calorie items in the supermarket, which may 

potentiate later choice of a high-calorie food. The high-calorie spatial memory bias 

was also found to be expressed independently of the amount of visual attention 

individuals allocated to high-calorie versus low-calorie foods. Findings further 

substantiate the notion that human spatial memory shows sensitivity to the caloric 

content of a potential resource and automatically prioritizes those with greater energy 

payoffs. Such a spatial mechanism that was adaptive for energy-efficient foraging 

within fluctuating ancestral food environments could presently yield maladaptive 

“obesogenic” consequences, through altering perceptions of food search 

convenience. 
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General Introduction  

A growing body of evidence proposes that the human mind was functionally 
shaped by evolutionary selection pressures to maximize fitness, much like physical traits 
were (Tooby & Cosmides, 1992; Tooby & Cosmides, 2005). That is, our present 
cognitive architecture is thought to harbour inbuilt mechanisms that were optimized for 
solving specific fitness-relevant “adaptive” problems encountered within the ancestral 
environments in which we evolved (Tooby & Cosmides, 1992; Tooby & Cosmides, 
2005). One such cognitive mechanism that could have evolved as an adaptation for 
foraging within harsh ancestral food settings is a prioritization (or bias) in human 
memory for the locations of high-calorie foods (Allan & Allan, 2013; New et al., 2007b; 
de Vries et al., 2020a; de Vries et al., 2020b). Indeed, a comparable foraging-related 
cognitive mechanism has been documented in various (non-human) primate species 
(Cunningham & Janson, 2007; Janmaat et al., 2014; Janson, 1998). However, empirical 
research on the existence of such a “high-calorie bias” in human spatial memory, and 
particularly whether (or in what manner) it influences how individuals navigate the 
modern obesogenic food environment, is currently limited. 

A recurring adaptive problem faced by all species is the efficient attainment of 
nutritional resources (Schoener, 1971). For a substantial portion of human evolutionary 
history, the acquisition of food was characterized by extensive hunting-gathering 
activities within a fluctuating landscape, where food supply varied along both temporal 
and spatial dimensions (Adler et al., 2006; Stiner & Bar-Yosef, 2005; Stiner & Kuhn, 
2009). The survival and reproductive success of an individual were therefore a function 
of the energy-efficiency of foraging bouts, such as the fluency with which a forager 
could identify and (re)locate high-quality resources, as they became available or 
valuable over time (MacArthur & Pianka, 1966; Schoener, 1971). It follows that a 
cognitive adaptation that could have evolved to support energy-efficient foraging, is 
one that automatically assesses the profitability of potential food resources and 
prioritizes the locations in memory of those higher in caloric quality (Krasnow et al., 
2011; New et al., 2007b; de Vries et al., 2020a; de Vries et al., 2020b). In a series of 
recent investigations, we obtained evidence consistent with the existence of such an 
implicit high-calorie bias in human spatial memory for foods: Across sensory modalities 
(e.g. vision and olfaction) and experimental paradigms, we found that individuals more 
accurately recalled locations of high-calorie (relative to low-calorie) food stimuli – 
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independently of hedonic food evaluations, personal familiarity with foods, encoding 
time, or encoding conditions (i.e. incidental versus intentional learning) (de Vries et al., 
2020a; de Vries et al., 2020b).  

If human spatial memory is indeed attuned to optimal foraging within erratic 
ancestral food habitats, this begs the question of what the behavioral implications of 
the high-calorie spatial memory bias are within a modern (food abundant) foraging 
context. The (once adaptive) high-calorie bias in spatial memory may presently confer 
maladaptive obesogenic effects, by directly enhancing the ease with which high-calorie 
items are located and acquired within a heterogeneous food environment (Allan & 
Allan, 2013; de Vries et al., 2020b). However, the evidence is currently inconclusive: Allan 
& Allan (2013) observed that an improved location memory for high-calorie snack foods 
(relative to low-calorie fruits and vegetables) predicted a greater BMI in women. De 
Vries et al. (2020b) similarly reasoned that the high-calorie spatial memory bias may 
promote unhealthy high-calorie food choice, but did not find any systematic 
relationships between the expression of the cognitive bias and eating-related 
parameters. Given that previous efforts were limited to either distal (anthropometric) 
markers of dietary intake or controlled food choice measures in lab settings, finer-
grained effects of the high-calorie spatial memory bias on an individual’s eating 
behavior could have gone undetected. Therefore, the current study represents a more 
powerful and ecologically valid test of the potential behavioral implications of a high-
calorie bias in human spatial memory, by examining its relation to proximate foraging-
related outcomes (i.e. food search and food choice) within a real-world food 
environment.  

Similarly, it remains to be elucidated what processes are proximally associated 
with the high-calorie bias in human spatial memory, as evolved cognitive mechanisms 
often have a neurophysiological basis (Cosmides & Tooby, 1997). These insights would 
be especially relevant for health interventions aiming to directly alter the expression of 
the bias. With regards to candidate proximal mechanisms, it is reasonable to expect 
that a bias in attention for high-calorie (relative to low-calorie) food cues may facilitate 
an enhanced memory for locations of high-calorie foods. Namely, evidence has 
accumulated for the phenomenon of “object-based spatial attention”, in which 
individuals make use of objects to guide attentional processing to specific locations in 
the visual field, such as the spatial region an object occupies (Arrington et al., 2000). As 
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such, one can assume that a greater attentional allocation to high-calorie foods could 
similarly lead to an enhanced attentional processing of (and later superior memory for) 
the locations of those items. An additional justification stems from research suggesting 
that high BMI (overweight/obese) individuals display a visual attention bias for high-
calorie foods, and the magnitude of the high-calorie spatial memory bias has been 
previously linked to a higher BMI (Allan & Allan, 2013; Castellanos et al., 2009; Hendrikse 
et al., 2015; Werthmann et al., 2011). Indeed, spatial memory performance for 
gatherable foods (e.g. fruit) has been shown to improve with the amount of attention 
deployed to them, particularly in situations of “item-specific” motivation (i.e. when a 
forager encounters a valuable high-calorie gatherable resource; Krasnow et al., 2011). 
Direct examination of the relationship between food-related attention biases and the 
high-calorie spatial memory bias is thus warranted, especially in light of the fact that 
associations between attention and (episodic) memory faculties vary depending on the 
exact information that is attended to and later recalled (e.g. Allan et al., 2012; Becker et 
al., 2005). 

In sum, the aim of the present study was twofold. Our primary research 
objective was to investigate the potential implications of a high-calorie bias in human 
spatial memory on the food search and food choice of individuals navigating a real-
world food environment. Secondly, we examined the extent to which high-calorie biases 
in visual attention are related to the high-calorie bias in spatial memory. We 
hypothesized the following outcomes: 
H1A: The high-calorie bias in spatial memory predicts a faster localization of (i.e. lower 
search time for) high-calorie relative to low-calorie foods.  
H1B: The high-calorie bias in spatial memory predicts a higher proportion of high-calorie 
food choice.  
H2: An attention bias for high-calorie foods will be positively associated with the high-
calorie spatial memory bias. 
 

Methodology 

Design 

The study had a repeated measures design with Caloric Density (High versus 
Low) as a within-subjects factor. Each participant completed a series of lab-based 
computer tasks (i.e. eye-tracking and spatial memory tasks) and a supermarket-based 
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food search and (covert) food choice task in two test sessions separated by a delay of 
at least one day. The hypotheses, experimental design, and data analysis plan were 
preregistered and are available with study data on the Open Science Framework 
database (Project URL: https://osf.io/7hmwf/).  
Participants  

60 healthy university students (73% female; MAge = 24.6 years, SD = 3.2) took 
part in the research. The majority of participants had a Caucasian background (82% 
Caucasian; 8% Asian; 8% Latino; 2% Other) and were postgraduate students (80% 
postgraduates; 20% undergraduates). The sample size was determined a priori via a 
power calculation on our primary research objective (see pre-registration link). 
Participants were limited to the BMI range of 18.5 – 30 kg/m2 (M = 22.8 kg/m2, SD = 
2.4), to minimize ceiling effects (for BMI values > 30 kg/m2) and floor effects (for BMI 
values < 18.5 kg/m2) on food-related attention bias measures (Castellanos et al., 2009; 
Giel et al., 2011). Moreover, we included only individuals who were sufficiently unfamiliar 
with the test supermarket environment (i.e. did not habitually grocery shop there, did 
not visit the supermarket in the month before testing, and self-reported a store 
familiarity score lower than 50mm on a VAS ranging from 0 (“Not At All”) to 100 (“Very 
Much”) mm), in order to circumvent potential ceiling effects on food search 
performance (O’Neill, 1992). Finally, individuals were not included when reporting a 
dietary restriction to specific foods (e.g. meat), a medical history of eating or psychiatric 
disorders, or participation in previous related studies. All participants provided written 
informed consent prior to testing and were financially compensated. This study received 
ethical approval from the Social Sciences Ethics Committee of Wageningen University. 
Apparatus and Stimuli 

Food stimuli in computer tasks. Standardized images of (sweet/savory) 
high- and low- calorie foods were obtained from the Food Pics database (Blechert et 
al., 2014). High-calorie items were defined as those that contained at least 225 – and 
low-calorie items at most 60 – kcal per 100 grams of food (de Bruijn et al., 2017; World 
Cancer Research Fund/American Institute for Cancer Research, 2007). For the spatial 
memory task, a set of 12 (unbranded) food pictures was chosen for each caloric density 
group, encompassing fruits and vegetables for the low-calorie condition, and baked 
and fried goods as high-calorie variants (de Vries et al., 2020b). For the eye-tracking 
task, a subset of 10 high- and low-calorie food stimuli from that of the spatial memory 
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task was used (see Food Pics Catalogue Numbers in the Supplemental Material 
(Appendix Chapter 4)). Importantly, an equal number of taste (i.e. sweet and savory) 
options were included across caloric density categories, as working and spatial memory 
faculties are documented to process tastes differently (Meule et al., 2012a; de Vries et 
al., 2020b). 

In both tasks, high- and low-calorie images differed on caloric density, total 
energy content, perceived caloric content, and perceived healthiness (see Table A4.1 
in the Supplemental Material). Furthermore, high- and low-calorie stimuli were matched 
on nutrient balance (i.e. protein to carbohydrate and fat ratios; Simpson et al., 2003), 
pertinent image characteristics (e.g. color, size, brightness), recognizability, and 
subjective complexity ratings (see Table A4.1) (Graham et al., 2011; Werthmann et al., 
2011).  

Free-viewing eye-tracking task. The eye-tracking paradigm was adapted 
from Graham et al. (2011) and Werthmann et al. (2011). The task was created with Tobii 
Pro Lab (Tobii Technology, Danderyd, Sweden) and run on a Windows laptop (screen 
size: 15.6 inches; resolution: 1920 x 1080) with a Tobii X2-60 eye-tracker mounted on 
the computer screen. Participants were seated approximately 65 centimeters away from 
the screen and placed their heads on a chin-rest. A five-point calibration procedure was 
conducted prior to recording.  

The eye-tracking task comprised a total of 120 trials: 80 critical trials and 40 filler 
trials. Critical trials consisted of 20 high- and low-calorie food image pairs, and each 
pair was presented four times. High- and low-calorie foods occurred equally frequently 
on the left and right sides of an image pair. Filler trials consisted of 10 pairs of non-food 
images (e.g. tools and office supplies), each also presented four times. All trials began 
with a central fixation cross that was displayed for 2000 milliseconds, whereas trials were 
shown for 3000 milliseconds. During recording, participants were instructed to look at 
presented images freely – as if they were watching television – and to focus on the 
fixation cross displayed between trials. The order of critical and filler trials was 
randomized differently for each participant. 

Unknown to participants, the computer screen was divided into a left, middle, 
and right Area of Interest [AOI]. Only visual fixations – defined as eye movements that 
are maintained for at least 100 milliseconds – directed to the left or right AOI during 
critical trials were extracted for further analyses (Werthmann et al., 2011). 
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Spatial memory task. The spatial memory task was previously validated as an 
instrument to measure food location memory accuracy in the target population (Allan 
& Allan, 2013; de Vries et al., 2020b). The task was run on E-Prime 2.0 using computers 
standardized across screen size (19.3 inches) and resolution (1280 x 1024). Participants 
were asked to imagine that an international food market with 24 food stalls was taking 
place on a (unfamiliar) university campus. Participants were then shown 12 images of 
either high-calorie foods or low-calorie alternatives, followed by an image of a university 
campus map showcasing all possible stall locations (N=24), at a duration of three 
seconds each. After, the location of the stall selling each food item (N=12) was indicated 
one-by-one on the campus map by a green crosshair. During the location viewing 
process, participants were instructed to rate each food item on desirability and 
familiarity. Following a two-minute break, participants completed a series of 12 spatial 
memory tests in which they were randomly presented with one of the previous food 
images and required to specify (via mouse-click) its correct corresponding stall location 
on the campus map. The total number of possible stall sites was displayed anew each 
recall round, and a stall location could be selected more than once although assigned 
locations did not overlap between foods. The order of stimulus presentation and the 
stimuli itself (i.e. food-location pairs) were randomized differently for each participant. 
Furthermore, the order in which participants performed the spatial memory task 
between caloric density conditions was counterbalanced. 

Food search task. The food search task was carried out using EyeQuestion 
software (Logic8 B.V., Elst, Gelderland, the Netherlands). A set of 16 food products (N=8 
per caloric density group) sold at the test supermarket (i.e. Jumbo Verberne 
Wageningen) was selected for the task. Chosen high- and low-calorie products (e.g. 
High-calorie: Chocolate cookies and Potato chips; Low-calorie: Oranges and Eggplant; 
see Table A4.2 in the Supplemental Material) had an equal number of sweet and 
savory items, were matched on spatial distributions within the supermarket (i.e. floor 
sections and vertical height) as closely as possible, and were piloted to verify correct 
caloric content and healthiness perceptions.  

For the encoding phase of the task, participants were first walked through all 
supermarket aisles by the experimenter and instructed to observe their surroundings as 
they moved. The order in which supermarket aisles were explored was counterbalanced 
across participants, ensuring that (target) high- and low-calorie aisles were encountered 
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equally often at the beginning and end of a walking sequence. Individuals were then 
provided with a tablet and presented with a sequence of images of target food 
products, which they had to (re)locate as quickly as possible within the supermarket. 
Upon finding a product, participants had to rate how difficult it was to find, product 
familiarity, and product attractiveness. Participants also had to rate how eye-catching 
they found the respective product aisle, before proceeding on to the next food item. 
The presentation order of food products during the search (recall) portion of the task 
was randomized differently per participant. 
Procedure  

Participants were informed that the experiment aimed to investigate how 
people perceive and (cognitively) process foods typically found in the modern food 
environment. They were also told that they would be rewarded with paid-for groceries 
at the end of the study as part of their compensation. Hunger states were standardized 
before sessions by instructing individuals to consume their habitual meals or snacks no 
later than two hours – and no sooner than 45 minutes – before testing. Test sessions 
were scheduled around typical breakfast and lunch times to facilitate compliance to 
pre-testing requirements, as well as outside of peak supermarket hours to ensure 
relatively calm surroundings for the food search task.  

For the first test session in the lab, participants were seated in isolated testing 
booths fitted with a computer. Data on demographics and hunger state were first 
recorded via a questionnaire. Participants then had to complete the free-viewing eye-
tracking task. Following a brief intermission, participants performed the spatial memory 
task for both caloric density conditions: Individuals were first exposed to a practice trial 
involving the encoding and recall of (non-food) object locations to familiarize 
themselves with the protocol. After, they completed the actual spatial memory task with 
(high- and low-calorie) food images, with a five-minute break between conditions. 
Upon finishing, participants answered questions on healthy eating goals. The first test 
session took approximately 60 minutes (Figure 4.1).  

At least one day later, participants arrived at the test supermarket. After 
providing preliminary ratings (i.e. Hunger), participants performed the food search task 
and rated their general sense-of-direction upon completion. As part of the covert food 
choice measure, they were then given a budget of 10 euros and 10 minutes to freely 
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shop for food items within the supermarket, the receipts of which were handed over to 
the experimenter. The second test session took an average of 30 minutes (Figure 4.1). 

 
Figure 4.1. Experimental procedure. Participants completed a series of tasks in a lab and (unfamiliar) 
supermarket setting, on two separate occasions. 
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Measurements 

Primary outcome variables. Food search performance was operationalized 
as the time (in seconds) required to (re)locate a target food product in the food search 
task, from the onset of stimulus presentation. Perceived search performance was also 
gauged by asking participants to rate how difficult it was to find a food product on a 
100mm VAS (anchored from “Not At All” to “Very Much”), as an alternative to (objective) 
search time. A similar (subjective performance) VAS scale was employed in earlier 
studies and shown to accurately covary with individuals’ actual task performance (de 
Vries et al., 2020b). Search times and difficulty ratings were averaged per caloric density 
category.  

The number of high-calorie food products bought from the (rewarded) 
groceries of each participant, expressed as a proportion of the total number of 
purchased food items, was taken as a covert measure of high-calorie food choice.  

Predictor variables. Spatial memory accuracy for high- and low-calorie foods 
was calculated as the average ‘pointing error’ or Euclidian distance (D) between true 
and indicated stall locations of each food type (cf. Allan & Allan, 2013; de Vries et al., 
2020b). Consequently, lower D scores denote a higher accuracy in food spatial memory. 
The difference in spatial memory accuracy for high- and low-calorie foods (DHigh Calorie – 
DLow Calorie) was taken to represent the high-calorie bias in spatial memory. Accordingly, 
negative values indicate an enhanced spatial memory for high-calorie foods.  

Three eye movement metrics that reflect different temporal components of 
attention were measured to directly assess attention biases for high-calorie foods 
(Castellanos et al.,2009; Graham et al., 2011; Werthmann et al., 2011): 

The gaze direction bias is an index of biases in initial attentional orientation. It 
was calculated as the number of critical trials in which the first fixation was directed to 
a high-calorie food, as a proportion of the total number of critical trials in which first 
fixations were observed. A proportion higher than 0.5 indicates an orientation bias 
towards high-calorie foods; a proportion lower than 0.5 indicates an orientation bias 
towards low-calorie foods. 

The initial fixation duration bias is a proxy for biases in early attentional 
maintenance. It represents the duration of the first fixation directed to a particular image 
type (i.e. the first fixation to occur on an image following the onset of a critical trial), and 
was calculated as the difference between the average duration of initial fixations on 
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high- and low-calorie foods (across all critical trials per participant). A positive score 
denotes a longer initial attentional maintenance on high- versus low-calorie foods. 

The gaze dwell time bias is informative of biases in maintained attention. It was 
calculated by subtracting the average fixation time (i.e. using the sum of individual 
fixations across critical trials) on low-calorie food images from the average fixation time 
on high-calorie food images. A positive score suggests a longer maintained attention 
on high-calorie foods. 

At the conclusion of testing, eye movements were detected on an average of 
98.9% of critical trials and all participants had sufficient fixation data recorded (i.e. at 
least 80% of critical trials). Gaze direction bias scores were not found to correlate with 
either initial fixation duration (rs = .04), p = .757, or gaze dwell time bias measures (rs = 
0.19), p = .152. Similarly, the (relative) amount of time individuals initially fixated on 
high-calorie food items did not correlate with the overall time individuals fixated on 
high-calorie versus low-calorie food images (rs = 0.12), p = .359, suggesting that the 
three bias scores indeed reflect different underlying components of visual attention. 

Control measures. To eliminate confounding influences of food ‘wanting’ on 
spatial memory accuracy, we required participants to rate a food item’s Desirability on 
a 100mm VAS (anchored from “Not At All” to “Very Much”) in the spatial memory task 
(de Vries et al., 2020a; de Vries et al., 2020b). Furthermore, individual exposure to a 
food type was documented using a five-item Familiarity scale (Tuorila et al., 2001) in 
both spatial memory and food search tasks. Choice options of the Familiarity scale 
reflect behaviorally-meaningful differences relevant to individual experiences with a 
food (e.g. having tasted versus not tasted a specific item; Tuorila et al., 2001), and both 
Desirability and Familiarity measures were shown to effectively capture additional 
variation in spatial memory performance not attributable to a food’s nutritional 
properties (de Vries et al., 2020a; de Vries et al., 2020b). 

To specifically control for extraneous effects on food search performance, we 
required participants to record the Attractiveness of (target) food products, how Eye-
catching a product aisle was, and Familiarity with the test supermarket on a 100mm 
VAS (anchored from “Not At All” to “Very Much”). We adopted a “continuous” VAS 
format for these controls, as opposed to an “ordinal” forced-choice alternative such as 
a Likert scale, to better detect subtle deviations in these measures between individuals 
and respective products (McCormack et al., 1988). Individuals were additionally asked 
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to quantify their General Sense-of-Direction on a seven-point scale ranging from “Poor” 
to “Good”, as self-reports of this measure are shown to correlate with field measures of 
navigational ability in unfamiliar environments (Kozlowski & Bryant, 1977; New et al., 
2007b).  

As an individual’s explicit nutritional intentions were found to significantly 
predict eating behavior in previous studies (de Vries et al., 2020b), a Healthy Eating 
Goals measure was administered with two items (In my daily life, I strive to eat healthy; 
It is important to me to eat healthy foods) rated on a seven-point sale anchored from 
“Strongly Disagree” to “Strongly Agree” (de Vries et al., 2020b). Finally, demographic 
characteristics (e.g. Sex, Age, Ethnicity) and Hunger states (100mm VAS anchored from 
“Not At All” to “Very Much”) at the onset of each test session were recorded. 
Data Analysis  

Data were analyzed using IBM SPSS Statistics 25 with statistical significance 
defined  as p < .05. The first statistical analysis was of an exploratory nature, in order to 
firstly confirm the existence of the high-calorie bias in human spatial memory prior to 
assessing its behavioral and attentional correlates. Remaining statistical models 
represent confirmatory analyses that correspond to our preregistered hypotheses.  

Caloric Density and Spatial Memory Accuracy (Exploratory). To explore 
whether human spatial memory is indeed biased for high-calorie foods, we formulated 
a random intercept linear mixed model with main and interaction effects of Caloric 
Density and Taste as fixed factors, Participant as random factor (covariance structure: 
Variance Components), Sex, Age, Ethnicity, Caloric Density Order, Desirability, 
Familiarity, and Hunger as covariates, and Spatial Memory Accuracy (D) as the 
dependent variable. The model selection process involved a backward stepwise 
approach: Fixed effects of the saturated model (above) were finalized based on 
Maximum Likelihood (ML) ordinary likelihood ratio tests using the -2 log likelihood (-
2LL) test statistic between nested models. Model selection was made on the basis of 
parsimony and the final model (with Caloric Density, Taste, and Desirability) was refitted 
with REML estimations. 

High-calorie Spatial Memory Bias and Food Search (H1A). To determine 
whether the high-calorie bias in spatial memory predicts a faster localization of high-
calorie foods, we formulated a multiple linear regression model (N=1; simultaneous 
entry method) with Search time for high- versus low-calorie foods (Time High-calorie - Time 
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Low-calorie) as the dependent variable and demographics (i.e. Sex, Age, Ethnicity), Hunger 
ratings at encoding, Encoding (Walking) order, General Sense-of-Direction, Familiarity 
with the supermarket, Familiarity with high- versus low-calorie foods, Attractiveness of 
high- versus low-calorie foods, Eye-catching ratings of high- versus low-calorie food 
aisles, and the High-calorie spatial memory bias (DHigh Calorie – DLow Calorie) as predictor 
variables.  

High-calorie Spatial Memory Bias and High-calorie Food Choice (H1B). 

To test whether the high-calorie bias in spatial memory predicts prospective high-
calorie food purchases, we performed a multiple linear regression analysis (N=1; 
simultaneous entry method) on High-calorie food choice with demographics (i.e. Sex, 
Age, Ethnicity), Hunger ratings at encoding, Familiarity with high- versus low-calorie 
foods, Attractiveness of high- versus low-calorie foods, Eye-catching ratings of high- 
versus low-calorie product aisles, Healthy Eating Goals, and the High-calorie spatial 
memory bias (DHigh Calorie – DLow Calorie) as predictor variables. 

Attention Bias for High-calorie Foods and the High-calorie Spatial 

Memory Bias (H2). To determine whether biases in attention towards high-calorie 
foods covary with the expression of the high-calorie spatial memory bias, we regressed 
(N=1; simultaneous entry method) the High-calorie spatial memory bias (DHigh Calorie – 
DLow Calorie) on demographics (i.e. Sex, Age, Ethnicity), Spatial memory task order, Hunger 
ratings at encoding, Desirability of high- versus low-calorie foods, Familiarity with high- 
versus low-calorie foods, Gaze direction bias, Initial fixation duration bias, and Gaze 
dwell time bias. 

Results 

The high-calorie bias in human spatial memory was replicated.  

In the lab-based spatial memory task, the average accuracy in food spatial 
memory across caloric density conditions was 155.92 (SD = 151.03) pixels. Individuals 
demonstrated a more accurate memory (i.e. smaller pointing error or D) for locations 
of high-calorie foods compared to that of low-calorie alternatives, F(1,1380) = 9.23, p 
= .002, ηp²= 0.007, 90% CI ηp² [0.001,0.02] (Figure 4.2A). In addition, a significant 
main effect of Taste on spatial memory accuracy was observed, with individuals better 
recalling locations of savory (as opposed to sweet) tasting stimuli, F(1,1384) = 7.90, p = 
.005, ηp²= 0.006, 90% CI ηp² [0.001,0.01] (Figure 4.2B), indicating the expression of 
high-calorie and savory-taste biases in human spatial memory, respectively. These 
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effects occurred regardless of demographics (e.g. Sex), hedonic evaluations, or 
reported familiarity with foods. Similarly, post-hoc analysis revealed that the time 
participants took to encode food locations did not influence spatial memory 
performance F(1,1399) = 0.38, p = .540, or attenuate either the high-calorie or savory-
taste bias in human spatial memory. Finally, food spatial memory accuracy improved 
with a higher rated desire to eat a food (B = -0.49, 95% CI = [-0.75, -0.23]), F(1,1405) 
= 13.52, p < .001, ηp²= 0.01, 90% CI ηp² [0.003,0.02].  

 
Figure 4.2. Spatial memory accuracy for (A) Caloric Density and (B) Taste food groups, measured as the 
“pointing error” (D; in pixels) between true and indicated food locations. Lower values indicate a lower 
pointing error and higher accuracy in food spatial memory. A double asterisk indicates a significant 
difference with p < .01. Error bars represent 95% confidence intervals. 

The high-calorie bias in spatial memory did not predict food search time, but 

a lower perceived search difficulty for high-calorie foods.  
With regard to the food search task, individuals were moderately faster at 

(re)locatinghigh-calorie than low-calorie target food products within the unfamiliar 
supermarket (47.6 ve rsus 54.1 seconds; Table A4.3), Mean search time difference High-

Low calorie= -6.48 seconds, 95% CI = [-12.54,-0.43]), t(59) = -2.14, p = .036, d = 0.35. Upon 
closer inspection, follow-up (linear mixed model) analysis showed a significant Caloric 
Density and Taste interaction, F(1,900) = 8.96, p = .003, ηp²= 0.01, 90% CI ηp² 
[0.002,0.02]. The high-calorie advantage in search time was found only for savory 
products, in which high-calorie - savory items had 9.40% lower search times compared 
to low-calorie - savory counterparts (95% CI = [3.40, 15.40]), p = .002. Perceived search 
difficulty followed search time results closely (rS (954) = .640, p < .001; Table A4.3), 
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with follow-up (linear mixed model) analysis similarly yielding a significant Caloric 
Density and Taste interaction, F(1,872) = 6.97, p = .008, ηp²= 0.01, 90% CI ηp² 
[0.001,0.02], owing to a 9.70% lower rated difficulty of finding high-calorie - savory 
(compared to low-calorie - savory) items (95% CI = [2.40, 17.10]), p = .010. 

However, the high-calorie spatial memory bias did not predict the faster 
localization of high-calorie foods in the supermarket (B = 0.04, 95% CI = [-0.06,0.14]), 
t(48)= 0.75, p = .228. Exploratory analysis revealed the high-calorie bias in spatial 
memory was instead predictive of a lower perceived difficulty (i.e. greater ease) of 
finding high-calorie relative to low-calorie products (B = 0.04, 95% CI = [0.002,0.09]), 
t(56)= 2.12, p = .039 (Table 4.1).  

Table 4.1. 
Predicting the perceived difficulty of finding high-calorie versus low-calorie food products in an unfamiliar 
supermarket environment from the high-calorie bias in spatial memory. 
Variable B 95% CI Beta t p R R2 

Model 1 a 

Constant -3.33 -6.21 – -0.47  -2.33 .024* .422 .178 

Eye-Catching High – Low Calorie -0.41 -0.64 – -0.18 -0.42 -3.54 <.001***   

Model 2 

Constant -2.58 -5.5 – 0.35  -1.77 .083 .475 .226 

Eye-Catching High – Low Calorie -0.42 -0.65 – -0.20 -0.44 -3.76 <.001***   

High-calorie Spatial Memory 

Bias b 

0.04 -0.003 – 0.08 0.22 1.88 .066   

Model 3 

Constant -2.37 -5.23 – 0.50  -1.66 .103 .526 .276 

Eye-Catching High – Low Calorie -0.49 -0.71 – -0.26 -0.51 -4.25 <.001***   

High-calorie Spatial Memory 

Bias b 

0.04 0.002 – 0.09 0.24 2.12 .039*   

Attractiveness High – Low Calorie 0.24 -0.002 – 0.48 0.24 1.98 .052   
aFrom a stepwise regression analysis, with sex, age, ethnicity, hunger ratings, encoding (walking) order, 
general sense-of-direction, familiarity with the supermarket, familiarity with high- versus low-calorie foods, 
attractiveness of high- versus low-calorie foods, and eye-catching ratings of high- versus low-calorie food 
aisles entered as covariates. 
bD High Calorie – D Low Calorie (Lower values denote a greater bias in spatial memory for high-calorie foods) 
*p < .05; ** p < .01; *** p < .001 
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The high-calorie bias in spatial memory did not predict high-calorie food 

choice. 

Across participants, high-calorie food choices accounted for 47% (range: 0 – 
100%) of all groceries purchased. The average caloric density of chosen foods was 
230.18 (SD = 106.87) kcal/100g. Contrary to expectations, the high-calorie spatial 
memory bias did not affect the proportion of high-calorie food products individuals 
purchased (B = -6.75 x 10-5, 95% CI = [-0.001,0.001]), t(50)= -0.12, p = .453. As 
exploratory tests, we alternatively operationalized high-calorie food choice as the 
proportion of total costs an individual spent on high-calorie food products, as well as 
the average caloric density of groceries chosen. However, the high-calorie spatial 
memory bias was not significantly associated with either outcome (both p’s > .05; Table 

A4.4).  
In light of the prior finding that the high-calorie spatial memory bias covaried 

with the reported difficulty of finding high-calorie (versus low-calorie) products, a 
corresponding analysis was conducted to explore the relationship between perceived 
search difficulty and prospective high-calorie food choice. A trend was found for a 
negative correlation between the perceived difficulty of finding high-calorie products 
and the proportion of high-calorie foods purchased (rs (60) = -0.25), p = .058, whereas 
no association between prospective high-calorie food choice and objective search time 
for high-calorie foods was observed (rs (60) = -0.06), p = .655. 
The high-calorie spatial memory bias was not associated with a bias in visual 

attention for high-calorie foods. 

Individuals displayed an average gaze direction bias score of 0.51 (SD = 0.06), 
which did not significantly differ from chance level, t(59)= 1.12, p = .269, indicating an 
equal initial attention orientation towards high- and low-calorie food stimuli. Regarding 
early attention maintenance, participants initially fixated on high-calorie items for a 
duration of 250.88 milliseconds (versus 239.16 milliseconds on low-calorie 
counterparts), although the high-calorie bias in initial fixation duration did not reach 
statistical significance (Initial fixation duration bias = 11.72, SD = 324.32), Z = -.55, p = 
.586. Finally, participants maintained their overall attention equally long on high- and 
low-calorie food images (274.71 versus 289.55 milliseconds, Gaze dwell time bias = -
14.84, SD = 56.31), Z = -1.72 , p = .086. 
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Results do not support an association between the high-calorie spatial memory 
bias and high-calorie biases in visual attention (Table A4.5): A more accurate memory 
for high-calorie food locations was not predicted by a heightened attention orientation 
towards high-calorie foods (B = 69.40, 95% CI = [-235.4,374.2]), t(49)= 0.46, p = .325, 
longer early attention maintenance on high-calorie foods (B = -0.03 , 95% CI = [-
0.10,0.03]), t(49)= -1.10, p = .138, or prolonged overall attention maintenance on high-
calorie foods (B = 0.06, 95% CI = [-0.29,0.42]), t(49)= 0.35, p = .364. 
 

General Discussion 

The present research is grounded on the premise that during the course of our 
evolutionary history as hunter-gatherers, human memory systems evolved mechanisms 
conducive to energy-efficient foraging. In line with previous observations that support 
such an adaptive perspective on human memory (Nairne & Pandeirada, 2008; New et 
al., 2007; de Vries et al., 2020a; de Vries et al., 2020b), our results further substantiate 
the notion that human spatial memory shows sensitivity to content and prioritizes the 
locations of high-calorie (and savoury-tasting) nutritional resources. Although 
individuals were faster at (re)locating high-calorie relative to low-calorie foods in the 
unfamiliar supermarket, the high-calorie bias in human spatial memory did not directly 
predict a lower search time for high-calorie foods, or a higher proportion of high-calorie 
food choice. Rather, a greater expression of the bias was predictive of a lower perceived 
difficulty of finding high-calorie relative to low-calorie foods in a real-world setting. 
Furthermore, the magnitude of the high-calorie spatial memory bias did not correlate 
with a bias in either attention orientation or attention maintenance for high-calorie 
foods. 

The high-calorie bias in human spatial memory was first reported by New et al. 
(2007), who found that the accuracy of recalling food locations improved linearly with 
the caloric density of a group of “traditionally” gatherable resources (i.e. fruits, 
vegetables, nuts). The present study replicates the mnemonic effect of caloric content, 
and demonstrates that it extends to foods more characteristic of the modern 
environment and of a wider range of energy densities (see also de Vries et al., 2020a 
and 2020b). Importantly, this suggests that the spatial processing bias is not designed 
to respond to a fixed repertoire of foods. Rather, it is likely that the mechanism shows 
sensitivity to the (relative) caloric quality of a food, which we learn to associate with its 
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other sensory characteristics (i.e. sight or smell) through eating experiences (Myers, 
2018; Yeomans, 2006). Indeed, there would be little adaptive value in a foraging 
mechanism that attaches itself to a fixed array of nutritional resources, as (high-priority) 
foods do not occur in precisely the same form under varying spatiotemporal 
circumstances 

The savory-taste bias in human spatial memory represents a more recent 
finding that is speculated to reflect a foraging adaptation for protein-rich resources (de 
Vries et al., 2020b). Namely, taste modality plays a functional role in the food selection 
and food intake of many animal species, by signaling the nutritional profile of a specific 
food: Sweet for a sugar- and carbohydrate-rich food, and savory for a high amino-acid 
or protein content (Breslin, 2013; Yarmolinsky et al., 2009). Given that major protein 
resources in ancestral food environments (e.g. mobile animal prey) had more variable 
return rates than carbohydrate-rich resources (e.g. immobile fruits), this suggests that it 
was a bigger adaptive problem for foragers to secure sufficient protein intake to fulfil 
their relatively high nutritional protein demands (Bird et al., 2009; Cordain et al., 2000; 
Eaton, 2006; Stiner & Kuhn, 2009). However, as locations of protein-rich foods – 
including animal prey – can follow a predictable spatial and temporal distribution due 
to seasonal variations in environmental conditions (e.g. habitual ranging and migration 
animal patterns; Bracis & Mueller, 2017), we speculate that the savory-taste spatial 
memory bias could have been adaptive in increasing the chances of successful protein 
capture (de Vries et al., 2020b). 

We expected that if individuals continue to house cognitive adaptations that are 
mismatched to existing evolutionary novel food-replete conditions, obesogenic 
consequences on foraging-related behavior could ensue (Eaton et al., 1988; Lieberman, 
2006). We found that both objective and perceived search performance were 
moderately better for (savory-tasting) high-calorie products than low-calorie 
alternatives that were matched on spatial distributions within the supermarket 
environment. However, a greater expression of the (lab-tested) high-calorie spatial 
memory bias was only systematically associated with a lower reported difficulty of 
finding high-calorie items in the supermarket. The fact that the cognitive bias did not 
account for the faster localization of high-calorie foods in the field setting may be due 
to a number of considerations, which are outlined below.  
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Firstly, whether (smaller-scale) lab-administered tests of spatial ability accurately 
reflect behavioral indices of navigation in larger real-world settings is unclear. Though 
moderately strong correlations between psychometric and field-based measures of 
spatial performance have been reported (Hegarty et al., 2006; Moffat et al., 1998; 
Murakoshi & Kawai, 2000), spatial information is learned from different visual 
perspectives (i.e. aerial or map-like perspective in psychometric spatial tasks versus 
viewer-centered perspective during actual navigation), and distinct spatial memory sub-
systems are thought to function at different scales of space (Maguire et al., 1999; 
Piccardi et al., 2010). Secondly, variation between individuals in their preferred mode of 
representing spatial information (Bocchi et al., 2019; Pazzaglia & Taylor, 2007), or 
fluency of using heuristics (e.g. pursuing aisle locations of similar products) to aid 
incomplete cognitive maps (Conlin, 2009; Murakoshi & Kawai, 2000), could have 
enabled those with a lower expression of the high-calorie spatial memory bias to 
compensate for an otherwise higher search time. For instance, goals of the food search 
task could have been better suited for individuals with a greater affinity for constructing 
cognitive maps using a certain spatial representation (i.e. landmark, route, or survey 
“spatial cognitive style”), which would have minimized effects of the high-calorie bias in 
spatial memory on navigation in those individuals (Pazzaglia & Taylor, 2007). Finally, 
the larger variation in search times – compared to that of perceived search difficulty 
ratings (Table A4.3) – of our study sample may have compromised the power to reveal 
a statistically significant effect on the former parameter, and results may likewise have 
been restricted by using search time as the only proxy for search efficiency. A more 
robust test could have supplemented time readings with those of a higher specificity 
for activity-induced energy expenditure (e.g. pedometer; Tudor-Locke et al., 2012), or 
made use of technology that is able to track real-time indoor movements. As such, it 
would be fruitful for future investigations to document both quantitative (e.g. spatial 
orientation ability; Kozlowski & Bryant, 1977) and qualitative (e.g. spatial cognitive style; 
Pazzaglia et al., 2000) individual differences in navigation-related abilities – as well as 
include a broader range of performance markers – to finer decompose food searching 
implications of the spatial processing bias.  

In a similar vein, limitations in our operationalization of food choice could have 
diluted a potential (direct) influence of the high-calorie bias in spatial memory. Despite 
the covert nature and ecologically valid context of the food choice task, it may have still 
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elicited strategic choice behavior, owing to the “reward” connotation attached to 
grocery purchases.  That is, although the physical surroundings for selecting foods was 
appropriate, the situational framing of grocery purchases as an extra gift for 
participation may have activated “reward” schemas and prompted individuals to deviate 
away from making habitual food choices (Meiselman, 1996). In light of previous null 
relationships with single-point measures of food choice (de Vries et al., 2020b), and the 
significant association of the high-calorie spatial memory bias with a marker of habitual 
diet quality (i.e. BMI) (Allan & Allan, 2013), it would be worthwhile to probe associations 
with longer-term eating behavior, as these measures would be less susceptible to 
instances of opportunistic behavior as well.  

Having said that, results reveal a potential novel pathway through which a 
superior location memory for high-calorie foods could indirectly bias future choice 
preferences towards calorie-rich options. By lowering the perceived difficulty of finding 
high-calorie items, the high-calorie spatial memory bias could make these options seem 
relatively more convenient to obtain within a diverse food environment. Convenience, 
in turn, is an established value that individuals negotiate, and often prioritize, during the 
food decision-making process (Furst et al., 1996; Sobal et al., 2006). Indeed, our data 
showed a trend for a negative correlation between the reported difficulty of finding 
high-calorie items, and the proportion of high-calorie foods individuals later purchased. 
Thus, the present study yields new mechanistic insights on how the cognitive bias can 
translate into suboptimal (long-term) dietary outcomes within a modern foraging 
context (cf. Allan & Allan, 2013). Going forward, it would be interesting to explore 
possible bias implications on a larger scale of space, by extending investigations beyond 
a single resource “patch” and towards multiple food locations. For instance, the high-
calorie spatial memory bias might also increase the frequency of visits made to 
unhealthy calorie-laden food locations (e.g. fast-food outlets).   

Finally, the high-calorie bias in spatial memory was found to be expressed 
independently of the amount of attention individuals allocated to high-calorie (versus 
low-calorie) foods. This finding illustrates another functional design feature of the bias, 
aside from calorie-sensitivity. Namely, our results align with the operating characteristics 
of an autonomous or “automatic” spatial mechanism, given that its execution was also 
not dependent upon “higher level” processes (e.g. consciously articulated dietary 
preferences or motivations) in the present study (Evans & Stanovich, 2013; New et al., 
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2007; de Vries et al., 2020a; de Vries et al., 2020b). Collectively, these observations imply 
that the high-calorie bias in spatial memory may have been adaptive for sustaining a 
high habitual foraging efficiency, as it does not compete for valuable limited attentional 
resources that would have been required in other fitness-relevant activities, such as 
avoiding predators (Evans & Stanovich, 2013; Krasnow et al., 2011). Furthermore, the 
dissociation of the bias’ expression from volitional cognitive processes posits that 
interventional strategies targeting its downstream translation into eating behaviour may 
be more effective to pursue for healthy dietary regulation. 

Taken together, our findings join an increasing literature base that position a 
food’s energy payoffs as an important factor in the operations of human spatial 
memory, and make a compelling case for an evolved (food) spatial processing system 
with calorie-sensitivity and automaticity built-in as functional design features Such a 
spatial mechanism that was adaptive in our evolutionary past for energy-efficient 
foraging may now maladaptively potentiate high-calorie food choice, through altering 
perceptions of food search convenience. 
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Food Pics Catalogue Numbers 

High-calorie: 2a, 16 a, 27 a, 44 a, 53 a, 60 a, 104, 116 a, 134 a, 286 a, 400, 517 a 

Low-calorie: 199, 233 a, 250 a, 251, 260 a, 274 a, 389 a, 393 a, 407 a, 413 a, 442 a, 453 a 

a Used in both eye-tracking and spatial memory tasks 
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Table A4.1. 

Eye-tracking 

Task 

Parameter (unit) High-calorie 

M (SD) 
Low-calorie 

M (SD) 
p 

 

 

Nutritional 

Content 

Energy density (kcal/100g) 381.5 (109.9) 31.4 (15.6) <.001 

Total energy displayed (kcal) 
 

763.3 (854.3) 198.6 (339.7) .016 

Protein to Carbohydrate and Fat Ratio a 0.2 (0.3) 0.6 (0.9) .218 

 

 

Subjective 

Ratings 

Perceived calories (mm) b 76.3 (14.8) 23.8 (16.1) <.001 

Perceived healthiness (mm) b 23.6 (19) 80.4 (15.5) <.001 

Recognizability (%) c 98.4(1.4) 96.8 (5.9) .902 

Subjective Complexity (mm) c 29.6 (6.3) 28.7 (3.7) .622 

 

 

 

 

 

Image 

Characteristics b 

Color (Red; pixels) 0.5 (0.04) 0.5(0.1) .539 

Color (Blue; pixels) 0.2 (0.03) 0.2 (0.1) .740 

Color (Green; pixels) 0.3 (0.1) 0.4 (0.1) .512 

Size (pixels) 0.3 (0.1) 0.3 (0.1) .537 

Brightness (luminance) 33.2 (9.1) 36.2 (13.1) .560 

Contrast (luminance) 49.5 (9.8) 49.3 (13.7) .960 

Complexity (pixels) 0.1 (0.03) 0.1 (0.04) .705 

Normalized Complexity (pixels) 0.3 (0.1) 0.3 (0.1) .650 
a Significantly differed between Sweet (0.11 ± 0.08) and Savory (0.74 ± 0.87) food stimuli (U = 22; p = .035). 
b Pilot results from a separate participant sample (de Vries et al., 2020b). 

c Data available from the Food Pics database (Blechert et al., 2014) 
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Spatial Memory 

Task 

Parameter (unit) High-calorie 

M (SD) 
Low-calorie 

M (SD) 
p 

 

 

Nutritional 

Content 

Energy density (kcal/100g) 382.3 (106.9) 28.5 (15.7) <.001 

Total energy displayed (kcal) 
 

685.2 (797.5) 181.6 (310.4) .006 

Protein to Carbohydrate and Fat Ratio a 0.2 (0.2) 0.6 (0.8) .178 

 

 

Subjective 

Ratings 

Perceived calories (mm) b 75.3 (16.1) 23.1 (15.8) <.001 

Perceived healthiness (mm) b 23.5 (18.5) 79.6 (15.4) <.001 

Recognizability (%) c 97.9 (2.1) 96.7 (5.5) .534 

Subjective Complexity (mm) c 29.4 (6.6) 27.7 (4.1) .331 

 

a Significantly differed between Sweet (0.11 ± 0.07) and Savory (0.68 ± 0.81) food stimuli (U = 36; p = .039). 

b Pilot results from a separate participant sample (de Vries et al., 2020b). 

c Data available from the Food Pics database (Blechert et al., 2014). 
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Table A4.2. 
High- and low-calorie food products chosen for the supermarket-based food search task.  

 Caloric Density Condition Food product (Brand) Kcal/100 g 

High-calorie 

Sweet 

Honey (Jumbo Flower Honey) 302 a 

Chocolate Cookie (Jumbo) 502 a 

Ice Cream  (Ben and Jerry’s Cookie Dough S’wich Up) 290 a 

Chocolate Wafer (Kit Kat) 515 a 

Savory 

Fried Cheese Pastry (Mora, in Dutch: Kaassoufflé) 301 a 

Chicken Cordon Bleu (Jumbo) 251 a 

Potato Chips (Pringles Hot & Spicy) 505 a 

Salami Slices (Jumbo) 457 a 

Low-calorie 

Sweet 

Ice Popsicles (Ice Kitchen Peach and Hibiscus Lollies) 55 a 

Low-fat Strawberry and Raspberry Quark (Jumbo)  42 a 

Oranges 48 b 

Pineapple Slices 54 b 

Savory 

Eggplant  20 b 

Frozen Garlic Shrimps (Jumbo) 59 a 

Frozen Creamed Spinach (Iglo) 54 a 

Tomato Cubes (Jumbo) 23 a 

a From the Jumbo supermarket website (https://www.jumbo.com/) 
b From the Dutch Food Consumption Table (RIVM, 2011) 
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Table A4.3. 
Food search times and perceived search difficulty ratings aggregated by caloric density group. 

 

 

Table A4.4. 
Predicting high-calorie food choice from the high-calorie bias in spatial memory. 
Variable B 95% CI Beta t p R R2 

Model 1:  
Proportion of high-calorie foods purchased and the high-calorie spatial memory bias  

Constant 
0.93 .03 – 1.82  2.09 

.042
* 

.429 .184 

Sexa -0.08 -0.26 – 0.09 -0.13 -0.94 .354   

Age -0.02 -0.05 – 0.01 -0.22 -1.30 .199   
Ethnicity -0.04 -0.12 – 0.04 -0.15 -0.95 .346   
Hunger -0.003 -0.01 – 0.002 -0.15 -1.12 .268   

Familiarity High – Low Calorie 0.18 -0.03 – 0.39 0.27 1.74 .089   

Attractiveness High – Low Calorie 0.00 -0.01 – 0.01 -0.01 -0.08 .934   

Eye-Catching High – Low Calorie 0.001 -0.01 – 0.01 0.05 0.32 .752   

Healthy Eating Goals 0.05 -0.04 – 0.15 0.16 1.09 .283   
High-calorie Spatial Memory 

Biasb 
-6.75 x 10-5 -0.001 – 0.001 -0.02 -0.12 .905 

  

Model 2 (exploratory):  
Proportion of high-calorie food costs and the high-calorie spatial memory bias 

Constant 0.87 -0.07 – 1.82  1.85 .070 .408 .167 
Sexa -0.09 -0.27 – 0.10 -0.14 -0.98 .333   

Age -0.02 -0.05 – 0.02 -0.16 -0.96 .342   
Ethnicity -0.05 -0.13 – 0.04 -0.19 -1.13 .262   
Hunger -0.003 -0.01 – 0.002 -0.15 -1.11 .271   

Caloric Density Condition Search Time (Seconds) Perceived Search Difficulty (mm) 

High-calorie 
Sweet Mean SD Mean SD 

48.87 40.21 30.96 24.24 
Savory 46.12 36.62 28.42 22.24 
Overall 47.50 38.44 29.69 23.27 

Low-calorie 
Sweet 

Mean SD Mean SD 
49.36 44.72 31.01 26.92 

Savory 59.19 53.95 34.40 27.74 
Overall 54.27 49.73 32.70 27.35 
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Familiarity High – Low Calorie 0.17 -0.05 – 0.39 0.24 1.52 .134   

Attractiveness High – Low Calorie 0.001 -0.01 – 0.01 0.06 0.39 .699   

Eye-Catching High – Low Calorie -0.001 -0.01 – 0.01 -0.04 -0.28 .779   

Healthy Eating Goals 0.05 -0.05 – 0.15 0.15 1.05 .299   
High-calorie Spatial Memory 

Biasb 

-8.02 x 10-5 -0.001 – 0.001 -0.02 -0.13 .894   

Model 3 (exploratory):  
Average caloric density of groceries and the high-calorie spatial memory bias 

Constant 252.42 -229.69 – 734.53  1.052 .298 .420 .177 
Sexa -16.01 -83.96 – 51.93 -0.07 -0.47 .638   

Age -1.92 -13.19 – 9.36 -0.06 -0.34 .734   
Ethnicity -19.42 -52.77 – 13.93 -0.21 -1.17 .248   
Hunger -0.02 -1.81 – 1.77 -0.003 -0.03 .979   
BMI 3.04 -9.99 – 16.06 0.07 0.47 .642   

Familiarity High – Low Calorie 89.37 9.17 – 169.56 0.36 2.24 .030
* 

  

Attractiveness High – Low Calorie -0.72 -3.48 – 2.05 -0.08 -0.52 .605   

Eye-Catching High – Low Calorie 0.75 -1.67 – 3.17 0.09 0.62 .536   

Healthy Eating Goals 5.02 -31.76 – 41.80 0.04 0.27 .785   
High-calorie Spatial Memory 

Biasb 

0.07 -0.37 – 0.52 0.05 0.34 .737   

aMales are the reference group 
bD High Calorie – D Low Calorie (Lower values denote a greater bias in spatial memory for high-calorie foods) 
*p < .05; ** p < .01; *** p < .001 
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Table A4.5. 
Predicting the high-calorie bias in spatial memory from high-calorie biases in visual attention. 
Variable B 95% CI Beta t p R R2 

Constant -15.86 -268.03 – 236.31  -0.13 .900 .509 .259 

Sexa -6.68 -49.05 – 35.69 -0.04 -0.32 .753   

Age 1.48 -4.84 – 7.80 0.07 0.47 .639   
Ethnicity -10.69 -29.96 – 8.57 -0.18 -1.12 .270   
Spatial Memory Task Order -42.66 -80.72 - -4.60 -0.32 -2.25 .029*   
Hunger 0.48 -0.43 – 1.39 0.14 1.06 .295   

Desirability High – Low Calorie -0.43 -1.46 – 0.60 -0.12 -0.83 .408   

Familiarity High – Low Calorie -6.88 -49.23 – 35.46 -0.05 -0.33 .745   

Gaze direction biasb 69.40 -235.39 – 374.18 0.06 0.46 .649   

Initial fixation duration biasb -0.03 -0.10 – 0.03 -0.16 -1.10 .276   

Gaze dwell time biasb 0.06 -0.29 – 0.42 0.05 0.35 .727   
aMales are the reference group 
bDifference between high- and low-calorie food images 

*p < .05; ** p < .01; *** p < .001 
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Abstract 

Human memory automatically prioritizes locations of high-calorie foods, likely reflecting 
an adaptation for foraging in harsh ancestral food environments. We investigated 
whether this high-calorie bias in human spatial memory yields maladaptive 
consequences for individual eating behavior in present-day food-abundant settings. In 
an online study, we tested the food spatial memory of a diverse sample of 405 
individuals, as well as examined associations between the high-calorie spatial memory 
bias and the routine frequency of high-calorie snack consumption, exposure to high-
calorie food environments, and BMI of a subset of 316 individuals. A greater expression 
of the high-calorie spatial memory bias predicted a stronger habit of purchasing high-
calorie snack foods and consequently a higher individual BMI. Although individuals from 
various sociodemographic groups expressed the high-calorie bias in spatial memory, 
our results demonstrate that those with a better inhibitory control to high-calorie foods 
were protected from bias-induced tendencies to frequent high-calorie food outlets.  
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Introduction 

Our present-day food environment boasts an abundance of cheap, convenient, 
and highly palatable energy-dense foods – promoting individuals to (over)consume 
unhealthy high-calorie items (Swinburn et al., 2011). However, not everyone overeats 
and accumulates excessive body weight, suggesting large differences between 
individuals exist in the ability to navigate “obesogenic” settings and maintain a healthy 
energy balance (Swinburn et al., 2011). A novel account for these individual differences 
proposes that susceptibility to the current food-rich landscape may (partially) stem from 
a foraging-related adaptation that evolved during our long past as hunter-gatherers. 
More specifically, from the graded expression of a cognitive adaption that enabled early 
humans to efficiently locate high-quality resources within harsh ancestral food 
environments: a prioritization – or “bias” – in spatial memory for high-calorie foods 
(Allan & Allan, 2013; New et al., 2007b; de Vries et al., 2020a; de Vries et al., 2020b). 
Here we demonstrate that the “high-calorie bias” in human spatial memory 
maladaptively influences routine eating behavior within the modern food context, and 
is expressed by individuals spanning diverse sociodemographic characteristics. 

About 99 percent of human evolutionary history is characterized by extensive 
hunting-gathering activities within a fluctuating food environment, where food 
availability varied in space and time (Eaton, 2006; Ulijaszek, 2002). In such environments, 
a fitness advantage was acquired by individuals who evolved (cognitive) mechanisms 
that maximized the net energy gained during foraging (Schoener, 1971;Winterhalder, 
1981). Empirical support for the existence of such an optimized foraging-related 
cognitive adaptation in humans is growing. Namely, human spatial memory appears to 
show sensitivity to the energy content of potential foods, and automatically prioritizes 
the locations of foods higher in caloric quality – irrespective of the sensory nature of 
food stimuli (i.e. visual versus olfactory food cues), one’s hedonic judgements of a food, 
past experiences with a food, or deliberate intention (and corresponding time taken) to 
memorize food locations (New et al., 2007b; de Vries et al., 2020a; de Vries et al., 
2020b). It is thought that this high-calorie bias in spatial memory helped hunter-
gatherers navigate erratic food habitats, by enabling them to efficiently register and 
(re)locate valuable calorie-dense resources – without occupying attentional processes 
needed in other fitness-relevant tasks (e.g. avoiding predators, caring for offspring) 
(New et al., 2007b; de Vries et al., 2020a; de Vries et al., 2020b).  
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What was once an adaptive cognitive mechanism for energy-efficient foraging 
may now operate counterproductively for individuals in urbanized food settings, where 
high-calorie foods are readily available and accessible (Allan & Allan, 2013; de Vries et 
al., 2020b; de Vries et al., under review b). Allan & Allan (2013) found that a superior 
memory for high-calorie snack locations (versus that of low-calorie fruits and 
vegetables) was associated with a higher BMI in women – an objective marker of long-
term dietary intake and strong correlate of excess body fat mass (Bouchard, 2007). 
Furthermore, de Vries et al. (under review b) showed that individuals (re)located high-
calorie products faster than spatially-matched low-calorie products in an unfamiliar 
supermarket, and a more accurate (lab-tested) memory for high-calorie versus low-
calorie food locations was associated with a greater ease of finding high-calorie 
products in the supermarket. On the other hand, null associations between the high-
calorie spatial memory bias and (primarily) lab-based and single time point measures 
of eating behavior have also been observed (de Vries et al., 2020b; de Vries et al., under 
review b). However, the latter may have resulted from the constrained spatiotemporal 
circumstances in which food decisions were investigated. Thus, to offset incidental 
responses and gain insight into an individual’s routine eating behavior, this study 
probed associations with longer-term eating-related parameters (i.e. frequency of high-
calorie snack consumption in the past month, exposure to high-calorie food 
environments in the past month, and BMI) that covered a range of typical physical and 
situational food decision-making contexts. 

If the high-calorie bias in human spatial memory is indeed linked to undesirable 
behavioral and health outcomes at present, it would be of relevance to identify “at-risk” 
subpopulations that demonstrate a great expression of the cognitive bias. Studies to 
date have mainly utilized smaller samples of young, majority-female, highly-educated, 
and health-minded individuals (cf. Allan & Allan, 2013; de Vries et al., 2020b; de Vries 
et al., under review b), which questions whether an equivalent expression of the high-
calorie spatial memory bias can be extrapolated to other sociodemographic groups 
that are exposed to systematically different structural (e.g. built food environments) and 
social (e.g. food norms) conditions. That is, the evolutionary account of the spatial 
processing bias suggests its general presence across individuals, but the graded 
expression of the bias may be a function of the food environment one is exposed to, 
which is well-documented to follow a sociodemographic gradient. For instance, the 
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local food environments of individuals who live or school in low socioeconomic status 
(SES) neighborhoods consist of a higher density of fast-food outlets, as well as a greater 
number of promotions and public advertisements featuring unhealthy energy-dense 
foods (Larson et al., 2009; Timmermans et al., 2018; Yancey et al., 2009). In addition, 
individuals with a lower income, education, occupation, perceived social status, or who 
live in disadvantaged areas display suboptimal diets and higher (less healthy) BMI (Adler 
et al., 2000; Drewnowski et al., 2014; Janssen et al., 2006; Lakerveld et al., 2015). A novel 
contributing factor to the discrepancy in dietary quality between sociodemographic 
groups could be a difference in the degree to which the high-calorie spatial memory 
bias is expressed (and interacts with varying aspects of one’s local food environment) 
to influence routine eating behavior.  

That being said, earlier observations also indicate that the translation of the 
high-calorie spatial memory bias into eating behavior is not always straightforward, and 
a more nuanced account of behavioral pathways involving psychological process 
moderators may be warranted (de Vries et al., 2020b). “Controlled” consciously-
deliberated psychological factors, such as an individual’s explicit intentions to eat 
healthy, could play a role in countering (or antagonizing) obesogenic tendencies 
induced by the cognitive bias (de Vries et al., 2020b). Moreover, the high-calorie spatial 
memory bias might potentiate high-calorie food choice by making these options seem 
more convenient to obtain in a diverse food environment (de Vries et al., under review 
b). Thus, a boundary condition for the bias to take effect could be a sufficiently high 
(deliberated) importance of “convenience” to the food decision making of individuals 
(Furst et al., 1996). By the same token, automated psychological processes, which 
require limited conscious deliberation or minimal cognitive resources, may stimulate or 
inhibit behavioral outcomes. A stronger pre-existing habit of choosing (or purchasing) 
high-calorie snack foods might synergize adverse bias implications, by increasing the 
likelihood of these behavioral responses in certain contexts (Verplanken & Orbell, 2003). 
Conversely, an individual’s ability to successfully inhibit impulsive responding to high-
calorie foods – such as those supposedly elicited by the high-calorie spatial memory 
bias – could protect against its negative effects (Batterink et al., 2010). However, these 
interactions have yet to be formally tested. 

In short, the present research had three objectives. Our first objective was to 
investigate the effect of the high-calorie spatial memory bias on individuals’ routine 
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eating behavior (i.e. high-calorie snack consumption frequency, exposure to high-
calorie food environments, and BMI). Secondly, we examined the expression of the 
high-calorie bias in human spatial memory in a diverse sample of (Dutch) individuals 
with varying sociodemographic characteristics. Finally, we considered whether specific 
psychological factors moderate behavioral effects of the high-calorie spatial memory 
bias. We hypothesized that: 
H1: The high-calorie spatial memory bias predicts a greater routine frequency of high-
calorie snack consumption, greater routine exposure to high-calorie food 
environments, and a higher BMI in individuals. 
H2: The magnitude of the high-calorie bias in human spatial memory varies across 
sociodemographic characteristics. 
H3: Psychological factors moderate effects of the high-calorie spatial memory bias on 
routine eating behavior. A higher importance of convenience in food choice, as well as 
greater snack purchasing habit strength, will synergize behavioral effects of the high-
calorie spatial memory bias. Conversely, a higher healthy eating intention and greater 
inhibitory control to high-calorie foods will antagonize behavioral effects of the high-
calorie spatial memory bias.  

Methodology 

Design 

The present study had a repeated measures design with Caloric Density (High 
versus Low) as a within-subjects factor. In an online experiment, participants had to 
complete a sequence of cognitive tasks and questionnaires in two test sessions, with a 
washout period of approximately one week. The hypotheses, experimental design, and 
statistical analysis plan were preregistered, and are available with data that support the 
findings of this study on the Open Science Framework database (Project URL: 
https://osf.io/nv7a9/). 
Participants 

Participants were a diverse sample of healthy Dutch adults (above the age of 
18) living in the Netherlands, recruited via stratified sampling (i.e. on sex, age, education 
level, and province) by the ISO-certified Flycatcher online research agency 
(www.flycatcher.eu). Individuals were not allowed to participate if they self-reported any 
dietary restrictions, a current or medical history of eating disorders, or (total or partial) 
color blindness. A total of 613 individuals were initially invited, and a response rate of 
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66.1% was achieved. Thus, 405 individuals (56.7% Male; MAge = 47.57 (±17.48) years, 
Range: 18 – 86 years; MBMI = 25.96 (± 4.71) kg/m2; Range: 18.12 – 59.52 kg/m2) took 
part in the first session that tested food spatial memory. Of the initial sample, 321 
individuals returned for the second test session (corresponding to a drop-out rate of 
20.7%), but five participants were excluded due to incomplete data. As a result, data 
from 316 participants (57.9% Male; MAge = 47.37 (±17.64) years, Range 18 – 86 years; 
MBMI = 25.86 (± 4.59) kg/m2; Range: 18.12 – 47.32 kg/m2) were used for analyzing 
behavioral outcomes. A priori power calculations (see https://osf.io/byuhe for details) 
required a minimum sample size of 312 individuals, and final participant samples 
(between test sessions) were well-matched on sociodemographic distributions (Table 

A5.1). After providing informed consent and completing the online experiment, 
participants were financially compensated. This study was approved by the Social 
Sciences Ethics Committee of Wageningen University. 
Procedure 

A general research aim was advertised to participants before testing, stating 
that the study was interested in “what people think about the modern food environment 
and the foods typically found within it”. In the first online test session, participants filled 
out a preliminary questionnaire asking background characteristics (e.g. height, weight, 
subjective SES). Next, they provided ratings on hunger state, as well as on (randomly-
presented) food stimuli (N=24) on the aspects of Liking, Desire to Eat, and Familiarity. 
Finally, individuals performed the spatial memory task for both high- and low-calorie 
foods, with a five-minute rest between conditions. The first session took approximately 
40 minutes.  

In the second test session, approximately one week later, participants first 
recorded their hunger state. Individuals then had to complete the food-specific go/no-
go task and five questionnaires (i.e. snack FFQ, food environment visits, importance of 
convenience, snack purchasing habit strength, and healthy eating intentions) in a 
randomized manner, to circumvent possible order effects on answering. The second 
session took approximately 20 minutes. 
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Apparatus and Stimuli 

Food stimuli in cognitive tasks. Standardized images depicting high- and 
low- calorie foods were sourced from the Food Pics database1 (Blechert et al., 2014). 
Consistent with earlier investigations (de Vries et al., 2020a; de Vries et al., 2020b; de 
Vries et al., under review b), items were considered high-calorie if they contained at 
least 225 kcal – and low-calorie if they contained at most 60 kcal – per 100 grams of 
food. 

For cognitive tasks, a set of 24 (unbranded) food pictures was used as food 
stimuli, with 12 images for each caloric density category (de Vries et al., under review 
b). Importantly, an equal number of sweet and savory items were present across caloric 
density groups (e.g. High-calorie: hamburger and chocolate bar; Low-calorie: tomato 
and watermelon), as (spatial) memory mechanisms may respond to taste modalities 
differently (Meule et al., 2012a; de Vries et al., 2020b; de Vries et al., under review b). 
High- and low-calorie food stimuli were equivalent in macronutrient balance (i.e. 
protein to carbohydrate and fat ratios; Simpson & Raubenheimer, 2005), 
recognizability, and a wide range of image characteristics (see Table A5.2 in the 
Supplemental Material). Conversely, high-calorie food images displayed a greater 
energy density (kcal/100g) as well as total energy content (kcal), and were correctly 
perceived to contain more calories and to be less healthy compared to low-calorie 
alternatives in a separate pilot study (Table A5.2). 

Spatial memory task. The computer-based spatial memory task has been 
validated for use in the target population in previous studies (Allan & Allan, 2013; de 
Vries et al., 2020b; de Vries et al., under review b). For the task, participants were 
instructed to imagine that an international food market with 24 food stalls was taking 
place within an (unfamiliar) university campus setting. They were then shown 12 images 
of either high-calorie or low-calorie foods, followed by an image of the university 
campus map showcasing all 24 possible stall locations, at a fixed duration of three 
seconds each.  

 
1Food Pics Catalogue Numbers 
High-calorie: 2, 16 , 27, 44 , 53 , 60 , 104, 116 , 134 , 286 , 400, 517 
Low-calorie: 199, 233 , 250 , 251, 260 , 274 , 389 , 393 , 407 , 413 , 442 , 453  
Non-food: 1086, 1094, 1129, 1143, 1155, 1210 
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Next, the location of the stall selling a food item was indicated on the campus 
map by a green crosshair, and this was done in a sequential manner for all food stimuli 
within a caloric density condition (N=12). After a two-minute rest, participants 
performed a series of 12 spatial memory tests, in which they were randomly-presented 
with one of the previous food images and required to click on its correct assigned stall 
location on the campus map. All possible stall sites were displayed anew each recall 
round, and participants could select the same stall location more than once, even 
though locations did not overlap between foods. Following a five-minute intermission, 
participants repeated the spatial encoding and recall procedure for the remaining 12 
foods of the other caloric density condition. Task stimuli (i.e. food-locations pairs within 
the campus map), as well as the stimuli presentation order, were randomized differently 
for each participant. The order in which participants completed the spatial memory task 
between caloric density categories was also counterbalanced. Prior to the actual task, 
participants first practiced encoding and recalling locations of non-food objects on the 
campus map, to familiarize themselves with the spatial memory paradigm. 

Food-specific go/no-go task. The food-specific go/no-go task used to 
measure inhibitory responses to high-calorie foods was adapted from Chen et al., 2018. 
The task consisted of one practice block and six experimental blocks in total.  

First, participants underwent a practice block consisting of six (randomized) trials 
with non-food images1, in order to associate “go” responses (i.e. spacebar press) and 
“no-go” responses (i.e. no spacebar press) with specific cues (i.e. a blue or grey-colored 
image border). The assignment of a (blue or grey) border color as a “go “or “no-go” 
cue was counterbalanced across participants. At the onset of a trial, an image appeared 
immediately on the screen and a (blue or grey) colored border was presented after 150 
milliseconds. Both image and border were then shown for 1500 milliseconds, followed 
by a fixation cross. To facilitate accurate performance on the task (Wodka et al., 2009), 
we jittered the duration of the fixation cross between trials (i.e. from 1000 to 1500 
milliseconds, in 100 millisecond increments). A minimum number of practice trials (≥ 
80%) needed to be successfully responded to before individuals could proceed on to 
the experimental phase, and feedback was provided during practice trials.  

During experimental blocks, low-calorie food images (N=12) were consistently 
paired with a “go” cue, and high-calorie food images (N=12) with a “no-go” cue. 
Participants were instructed to respond as quickly and accurately as possible to the cues 
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after the presentation of a food image. Each experimental block encompassed 24 trials, 
with each food image appearing once in a randomized order, resulting in 144 
experimental trials (N=72 for both high- and low-calorie stimuli) per participant. Unlike 
the practice block, feedback was not given during experimental trials. 
Measurements 

Primary outcome variables. Routine frequency of high-calorie snack 
consumption was gauged using a modified snack-specific food frequency 
questionnaire, that was designed and validated for use in the Dutch population (Dutch 
snack FFQ; Streppel et al., 2013). Individuals had to specify how frequently in the past 
month they consumed a wide range of (sweet and savory) high-calorie snack foods 
commonly eaten in the Netherlands (e.g. baked goods, chocolate bars, cheese, and 
potato chips). Response categories spanned from “none” to “six to seven times per 
week”. The frequency of consumption was averaged across all snack foods for each 
participant. 

A food environment questionnaire was developed to assess routine exposure 
to high-calorie food environments. The questionnaire asked individuals to indicate the 
frequency of visits made within the past month to a range of (randomly-presented) 
physical food retail outlet types typically found in the Netherlands (e.g. supermarket, 
cafeteria; see Food Environment Questionnaire in the Supplemental Material 
(Appendix Chapter 5); USDA Foreign Agricultural Service, 2017). The questionnaire 
was piloted in a separate sample of Dutch individuals (N = 35; 51.4% Male; MAge = 22.03 
(± 2.79) years) to ensure that selected food retail outlet types were sufficiently 
recognizable. The classification of a food retail outlet as a “high-calorie food 
environment” was advised by guidelines on healthy food environments from the 
Netherlands Nutrition Centre Foundation (Voedingscentrum), and was centered on the 
availability criterion (Voedingscentrum, 2020). Namely, we classified high-calorie food 
environments as those having more than 40% of “unhealthy” high-calorie products on 
offer, the latter defined as (high-calorie) foods that are not included in the Wheel of 
Five Dutch dietary guidelines (Brink et al., 2019; Voedingscentrum, 2020). As such, a 
more conservative approach was adopted during classification, such that we only 
considered outlets that offer an overrepresentation of energy-dense foods (e.g. fast 
food outlets and confectionary stores; N=13 in total) as high-calorie food environments. 
Our final classification was cross-checked – and confirmed to be in line with – expert-
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derived “healthiness scores” of urban Dutch food outlet types (Timmermans et al., 
2018). As with the snack FFQ, response categories spanned from “none” to “six to seven 
times per week”, and the frequency of visits to high-calorie food locations in the past 
month was averaged per individual. 

In addition, individuals self-reported their height (cm) and weight (kg), in order 
to obtain information on BMI (kg/m2). 

Predictor variables.  Spatial memory accuracy for high- and low-calorie foods 
was determined by averaging the ‘pointing error’ or Euclidian distance (D) between 
correct and recalled stall locations of each food group (Allan & Allan, 2013; de Vries et 
al., 2020b; de Vries et al., under review b). Therefore, lower D scores correspond to a 
higher accuracy in food spatial memory. The high-calorie bias in spatial memory was 
calculated by taking the difference in spatial memory accuracy for high- and low-calorie 
foods (DHigh Calorie – DLow Calorie). As such, lower (negative) values denote an enhanced 
memory for high-calorie food locations.  

We adapted the food choice questionnaire (Steptoe et al., 1995) to measure 
the importance of convenience to the food decision making process of individuals. 
Participants had to rate five statements, such as “It is important to me that the food I 
eat on a typical day is easily available in shops and supermarkets”, on a four-point scale 
(from “Not Important At All” to “Very Important”). Responses were averaged, with larger 
values representing a higher importance attached to convenience in food choice. The 
questionnaire showed a good internal consistency in our sample (Cronbach’s α = 0.84).  

Snack purchasing habit strength was assessed with an adapted version of the 
self-reported habit index (SRHI), which focused on the core SRHI elements of frequency 
and automaticity (Verplanken & Orbell, 2003; de Vet et al., 2015). “Snacks” were 
explicitly defined as high-calorie items through the provision of examples (e.g. chips, 
cookies, candy, and fries) on questionnaire instructions. The questionnaire inquired 
about (high-calorie) snack purchasing behavior, and comprised of six items that 
individuals had to rate on a five-point scale (ranging from “Strongly Disagree” to 
“Strongly Agree”). Sample statements include “Buying snacks is something I do 
frequently” and “Buying snacks is something I do without thinking”. Separate scores on 
scale items were averaged, with a higher overall score indicating a greater snack 
purchasing habit strength. The questionnaire displayed a good internal consistency 
(Cronbach’s α = 0.92).  
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Participants’ healthy eating intentions were recorded with two items (i.e. “In my 
daily life, I strive to eat healthy” and “It is important to me to eat healthy foods”) rated 
on a seven-point scale anchored from “Strongly Disagree” to “Strongly Agree” 
(Raghoebar et al., under review). 

An individual’s inhibitory control to high-calorie foods was established by 
calculating the rate of commission errors (i.e. number of failures of inhibition divided by 
the total number of no-go trials) committed in the food-specific go/no-go task 
(Batterink et al., 2010; Chen et al., 2018). A higher proportion indicates a lower ability 
to inhibit responses towards high-calorie food stimuli. 

Finally, we collected sociodemographic information on sex, age, ethnicity, 
objective SES (i.e. annual household income, highest education level, and occupation), 
subjective SES (10-point MacArthur Subjective Social Status Scale; Adler et al., 2000), 
and neighborhood SES (Table A5.1). Household income was composed of five 
categories: (1) minimum (less than 14,100 euros per year), (2) below the national 
average (14,100 – 36,500 euros per year), (3) approximately the national average 
(36,500 – 43,500 euros per year), (4) one to two times the national average (43,500 – 
73,000 euros per year), and (5) two or more times the national average (≥ 73,000 euros 
per year). Highest education level followed the Dutch education classification system 
and was coded as 11 categories, spanning from (1) none or primary school education 
to (11) university master, doctoral, or postdoctoral (Table A5.1). Occupation was 
categorized into two groups: (1) employed and (2) unemployed. Due to the absence of 
income information on 71 participants (22.5%) of the second test session, and the lower 
robustness of linear regression models to missing data (Hughes et al., 2019), objective 
SES was operationalized as a composite measure (i.e. by standardizing each available 
variable and taking their mean; Adler et al., 2000) in the analysis of behavioral outcomes. 
Neighborhood SES was obtained from individual postal codes, which were translated 
into respective (z-distributed) neighborhood SES scores using the Statusscores 
database of the Netherlands Institute for Social Research (SCP Statusscores, 2017). 

Control measures. As hedonic valuations of – and previous experiences with 
– a food can impinge on the accuracy of recalling its location (de Vries et al., 2020a; de 
Vries et al., 2020b), we required participants to rate each food stimulus along the 
parameters of Liking and Desire to Eat on a 100mm VAS (anchored from “Not At All” 
to “Very Much”), as well as Familiarity on a five-point scale (Tuorila et al., 2001). 
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Furthermore, hunger states at the onset of testing were documented using a 100mm 
VAS (anchored from “Not At All” to “Very Much”). 
Data Analysis 

Data analysis was conducted with IBM SPSS Statistics 25. Statistical significance 
was defined as p < .05, with the exception of the second and third confirmatory 
analyses, which made use of a Bonferroni correction for multiple (N=3) behavioral 
outcomes. The αadjusted for the latter two tests was therefore set at .017. We first 
examined the existence and expression of the high-calorie spatial memory bias in our 
sample, before dissecting the bias’ behavioral implications. 

Expression of the High-calorie Spatial Memory Bias. To demonstrate the 
existence of a high-calorie bias in human spatial memory, we analyzed food spatial 
memory data using a linear mixed effects model (LMM), due to its flexibility and 
robustness in modelling continuous correlated outcomes (Krueger & Tian, 2004). Our 
saturated LMM comprised of a random intercept and slope with main and interaction 
effects of Caloric Density and Taste as fixed factors, Participant and Time as random 
factors (covariance structure: Unstructured), Sex, Age, Ethnicity, Household Income, 
Education, Occupation, Subjective SES, Neighborhood SES,  Liking, Desirability, 
Familiarity, and Hunger as covariates, and log10 (y+1) transformed Spatial Memory 
Accuracy (D) as the dependent variable. To test for sociodemographic moderators of 
the bias, we entered respective interactions between Caloric Density and all 
sociodemographic factors as additional fixed effects.  

The model selection process made use of a backward stepwise approach. First, 
the covariance matrix of random effects in the saturated LMM was determined using 
Restricted Maximum Likelihood (REML) ratio tests using the -2 log likelihood (-2LL) test 
statistic. Then, the fixed part of the saturated LMM was simplified based on Maximum 
Likelihood (ML) ratio tests using the -2LL test statistic. In both cases, the most 
parsimonious model was selected and the final LMM was refitted with REML estimations. 
The finalized LMM was cross-checked with a forward stepwise modelling method. 

High-calorie Spatial Memory Bias and Routine Eating Behavior. To test 
whether the high-calorie bias in spatial memory predicts routine eating behavior, we 
carried out a multiple linear regression analysis on each outcome variable (N=3), with 
Sex, Age, Ethnicity, Objective SES (composite), Subjective SES, Neighborhood SES, 
Liking of high- vs low-calorie foods, Desirability of high- vs low-calorie foods, Familiarity 
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with high- vs low-calorie foods, Importance of Convenience, Snack purchasing habit 
strength, Healthy Eating Intentions, Inhibitory Control, and the High-calorie spatial 
memory bias (DHigh Calorie – DLow Calorie) as predictor variables.  

As models for high-calorie food environment exposure and BMI violated the 
assumption of homoskedasticity, we performed regression analyses using the “HC 3” 
heteroskedasticity-consistent standard error estimator (Hayes & Cai, 2007).  

High-calorie Spatial Memory Bias, Psychological Moderators, and 

Long-term Eating Behavior. To determine whether individual psychological factors 
moderate potential effects of the high-calorie spatial memory bias on routine eating 
behavior, we included respective interactions between the High-calorie spatial memory 
bias (DHigh Calorie – DLow Calorie) and Importance of Convenience, Snack purchasing habit 
strength, Healthy Eating Intentions, and Inhibitory Control as additional predictors in 
previous multiple linear regression models. 

Again, regression analyses for high-calorie food environment exposure and BMI 
employed robust (HC3-generated) standard errors.  

 
Results 

The high-calorie bias in human spatial memory is replicated and equally 

expressed across sociodemographic groups. 

The average accuracy in spatial memory (i.e. pointing error or D) observed 
across food stimuli was 236.35 (SD = 217.44; Range = 0 – 1370.43) pixels. 

The caloric density of a food positively predicted how accurate its location was 
recalled, as individuals demonstrated 4.67% lower pointing errors on average for high-
calorie food locations compared to low-calorie counterparts, F(1,308) = 5.66, p = .018, 
ηp² = 0.02, 90%CI ηp² = [0.002, 0.05]. The high-calorie bias in spatial memory, though 
small in size, remained significant after controlling for demographic characteristics, 
hunger state, hedonic food evaluations, and familiarity with foods. In contrast, spatial 
memory accuracy was not affected by the Taste (i.e. sweet or savory) of a food item, 
F(1,6796) = 2.51, p = .113. Among the tested covariates, only Education, F(1,306) = 
16.99, p < .001, ηp²= 0.05, 90% CI ηp² [0.02,0.10], and Age, F(1,306) = 31.53, p <.001, 
ηp²= 0.09, 90% CI ηp² [0.05,0.15], influenced overall food spatial memory to a similar 
degree as Caloric Density. A higher education level corresponded to having 3.50% 



 

121 

lower pointing errors on average, whereas a unit increase in age yielded a 0.81% rise 
in pointing errors. 

None of the interactions between Caloric Density and sociodemographic factors 
(e.g. Sex, Age, Education) reached significance, indicating that the magnitude of the 
high-calorie spatial memory bias did not differ across sociodemographic groups (all p 
> .05). 
The high-calorie bias in human spatial memory does not directly predict 

routine snack consumption frequency, high-calorie food environment visits, 

or BMI.  

Participants consumed high-calorie snack foods an average of 3.50 (SD = 1.94; 
Range = 0.16 – 10.03) times in a month, and visited high-calorie food environments to 
eat or purchase foods an average of 0.5 (SD = 0.65 ; Range = 0 – 7.15) times in a 
month. 

No evidence was found for a direct (main) effect of the high-calorie spatial 
memory bias on the frequency of high-calorie snack consumption in a month, B = 
0.001, 95% CI = [0.001,0.003], t(301) = 0.92, p = .181 (Table A5.3). Furthermore, an 
enhanced memory for high-calorie food locations did not directly result in more 
frequent exposure to high-calorie food environments, B = 0.00, 95% CI = [0.00, 0.001], 
t(301) = 1.14, p = .128 (Table A5.4), or a higher BMI in individuals, B = -7.29 x 10-5, 
95% CI = [-0.01, 0.01], t(301) = -0.03, p = .489 (Table A5.5).  
Inhibitory control moderates the effect of the high-calorie spatial memory 

bias on routine high-calorie food environment visits. 

Participants reported a medium snack purchasing habit strength of 2.17 (SD = 
0.89; Range = 1 - 5), an above-average importance of convenience when making food 
decisions (M = 2.71 (± 0.59), Range: 1.2 – 4.0), and a high intention to eat a healthy diet 
in daily life (M = 5.31 (± 1.07), Range: 1 – 7). Finally, the mean commission error rate 
observed in the food-specific go/no-go task was 0.02 (SD = 0.05; Range = 0 – 0.58), 
amounting to a mean of 1.44 failed no-go trials (SD = 3.6; Range = 0 – 42).  

Taking psychological constructs into account as possible moderators of 
behavioral effects, we observed a significant interaction between the high-calorie spatial 
memory bias and inhibitory control, B = -0.02, 95%CI = [-0.03, -0.003], t(297) = -2.38, 
p = .009, as well as a trend for a moderating role of snack purchasing habit strength, B 
= 0.001, 95%CI = [1.98 x 10-5, 0.002], t(297) = 2.02, p = .023, on the frequency of visits 
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to high-calorie food environments in a month. Interaction terms between the high-
calorie spatial memory bias and all possible moderators, in either high-calorie snack 
consumption frequency or BMI models, were otherwise not significant (all p > .017; 
Tables A5.3 and A5.5).  

Follow-up simple slopes analysis on the significant interaction revealed that 
individuals with low commission error rates (i.e. high inhibitory control towards high-
calorie foods) visit high-calorie food environments less regularly as expression of the 
high-calorie spatial memory bias increases, B = 0.001, p = .001. Furthermore, 
exploratory (simple slopes) analysis into the trending moderation by snack purchasing 
habit strength showed opposing effects to the high-calorie spatial memory bias: 
individuals with a greater habit strength visit high-calorie food environments less 
regularly as expression of the high-calorie bias in spatial memory increases (and visit 
high-calorie food environments more regularly as expression of the high-calorie spatial 
memory bias decreases), B = 0.001, p = .017 .  
The high-calorie spatial memory bias indirectly predicts a higher BMI, by 

promoting a greater snack purchasing habit strength. 

Guided by the counterintuitive observation that snack purchasing habits 
seemingly minimize effects of the high-calorie spatial memory bias on high-calorie food 
environment visits, we further explored the relationship between the two predictors. 

A Spearman’s correlation revealed, albeit weakly, that as expression of the high-
calorie bias in spatial memory increases, so does snack purchasing habit strength, 
rs(316) = -0.11, p =.049 (Table A5.6). As snack purchasing habit strength was shown 
to predict BMI in prior confirmatory analysis (Table A5.5), we reasoned that it could 
act as an intermediary component within the behavioral pathway. Therefore, we tested 
for an indirect association between the high-calorie spatial memory bias and BMI, via 
an individual’s snack purchasing habit strength. Mediation analysis was carried out using 
the bias corrected bootstrapping method – producing 95% bias corrected confidence 
intervals for the total indirect association, derived from 5.000 bootstrap resamples 
(Hayes, 2017). Results yielded a significant indirect effect of the high-calorie spatial 
memory bias on BMI that was mediated by snack purchasing habit strength, B = -0.001, 
95% CI [-0.003, -0.0002]. An enhanced memory (i.e. lower pointing errors) for high-
calorie food locations predicted a greater snack purchasing habit strength (B = -0.001, 
p =.037), and consequently a higher individual BMI (B = 1.07, p < .001).  
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Discussion  

We demonstrate once again that human memory inherently gives priority to 
locations of foods with high energy-payoffs. (New et al., 2007b; de Vries et al., 2020a; 
de Vries et al., 2020b; de Vries et al., under review b). More importantly, our findings 
attest to the maladaptive quality of this high-calorie bias in human spatial memory 
within a modern foraging context, as a greater expression of the bias predicted a 
stronger habit of purchasing high-calorie snack foods and a higher subsequent BMI 
(H1). The expression of the high-calorie spatial memory bias was similar across 
sociodemographic characteristics (H2), and we found variation in the circumstances 
under which the bias translates into routine eating behavior (H3). Specifically, individuals 
with a high ability to inhibit impulsive responses to high-calorie foods were shielded 
from bias-induced tendencies to frequent high-calorie food outlets (Figure 5.1).  

We provide the first mechanistic insights into how an (inbuilt) superior memory 
for high-calorie food locations impacts present-day eating behavior in obesogenic food 
environments. Contrary to expectations, the main effect of the high-calorie spatial 
memory bias on BMI was indirect in nature, and snack purchasing habit strength played 
a mediating (as opposed to moderating) role in this regard. A defining feature in the 
development and strengthening of a habit is when a behavioral response is sufficiently 
and satisfactorily repeated within a specific context, until the point of “automaticity” in 
which solely environmental cues can elicit the corresponding behavior (Verplanken & 
Arts, 1999; Verplanken & Orbell, 2003). Therefore, our results collectively suggest that 
it is not merely the frequency of high-calorie food choice that is targeted. Rather, it is a 
high frequency coupled with a high automaticity of choosing to consume high-calorie 
foods within a specific context, that forms an essential component in behavioral 
pathways of the bias. In other words, adverse implications of the high-calorie spatial 
memory bias likely stem from its ability to automatize certain patterns of undesirable 
responses in particular situations; the bias may strengthen the mental association 
between a specific environmental cue (i.e. sight or smell of a high-calorie snack food) 
and unhealthy behavior (i.e. purchasing the snack food), when a “goal” such as satisfying 
(physiological or hedonic) hunger is activated.   
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Figure 5.1. Synthesis of main findings. Relationships shown by bolded lines were significant. The high-
calorie bias in human spatial memory was replicated and expressed to a similar degree across 
sociodemographic groups. In turn, the high-calorie spatial memory bias indirectly predicted a higher BMI, 
by fostering a stronger habit of purchasing high-calorie snack foods (bolded unbroken line). Furthermore, 
the cognitive bias (directly) predicted greater routine visits to high-calorie food outlets, but this effect was 
antagonized by an individual’s inhibitory control to high-calorie foods (bolded broken line). 
 

Consequently, the cognitive bias and its immediate downstream psychological 
targets are expected to fall under the category of automated “impulsive” drivers of 
dietary behavior (Evans & Stanovich, 2013; Hofmann et al., 2009; Strack & Deutsch, 
2004). In the psychology literature, a distinction is made between estimates of the 
variance in health-related behavior that can be attributed to automated versus 
controlled “reflective” processes (Armitage & Conner, 2001; Hardeman et al., 2002; 



 

125 

Sheeran et al., 2001). Although estimates vary, it is generally agreed upon that both 
classes of processes compete with one another to gain control over resulting behavior 
when in conflict (Evans & Stanovich, 2013; Hofmann et al., 2009; Nederkoorn et al., 
2010; Strack & Deutsch, 2004). The discovery that the implicit high-calorie spatial 
memory bias propels us to visit energy-rich food environments by default, unless 
intervened upon by an individual’s controlled effort to inhibit impulsive responses to 
high-calorie foods, complements such a dual-systems perspective. Relatedly, although 
behavioral changes produced by the spatial processing bias appear small, these 
outcomes are specific for a one-unit (pixel) increase, which is not representative of the 
actual scale of bias differences between individuals. Individuals deviated in their 
expression of the high-calorie spatial memory bias at a magnitude of 102 pixels on 
average, resembling estimates from previous investigations (de Vries et al., 2020b; de 
Vries et al., under review b). Accordingly, a bigger impact on eating-related parameters 
is forecasted in practice, and possibly even further exacerbated in situations where 
“reflective” goal-oriented psychological systems are typically impaired (e.g. during 
energy-depleted states; Hoffman et al., 2009). 

The fact that the high-calorie spatial memory bias was reproduced in a large 
sample of individuals with diverging sociodemographic characteristics adds substantial 
internal and external validity to previous demonstrations of the bias. Indeed, the effect 
of caloric density on food spatial memory accuracy was comparable in size to that of 
earlier studies with smaller and more homogeneous participant samples (de Vries et al., 
2020b; de Vries et al., under review b). The mnemonic value of a food’s caloric quality 
was likewise not explicated by effects of general learning mechanisms, such as the 
motivational salience or familiarity of a food, which can similarly aid spatial memory 
performance (Craik & Lockhart, 1972; de Vries et al., 2020a; de Vries et al., 2020b; de 
Vries et al., under review b). Thus, our findings also lend credibility to functional (or 
adaptive) considerations of human memory (Nairne, 2010; Nairne & Pandeirada, 
2008b). Still, to strengthen an adaptive evolutionary account of the high-calorie spatial 
memory bias further, future research could compare its expression in cultures that differ 
widely on spatial cognitive strategies, as well as perceptions and attitudes towards food. 
The observation of congruent findings in spite of culture-specific differences would 
empirically bolster the idea that the spatial processing bias represents a (universally 
expressed) cognitive adaptation (Nairne, 2010). 
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More pragmatically, because our results show that the mnemonic effect of 
caloric content was equivalent across sociodemographic groups, this implies that 
variation at the level of (overall) bias expression most likely originates from added 
influences of general learning processes (e.g. food liking, wanting, and familiarity) on 
food spatial memory. Besides caloric density, hedonic evaluations and past exposures 
to a food also respectively determine the overall accuracy of recalling its location in 
space (de Vries et al., 2020a; de Vries et al., 2020b; de Vries et al., under review b). 
These aspects are calibrated differently between individuals, depending on 
accumulated learning experiences throughout one’s life course (Sobal et al., 2006), and 
can similarly vary along a sociodemographic gradient. For instance, (implicit) liking and 
frequency of consuming (low-calorie) fruits tend to correlate negatively with income 
and education levels (Pechey et al., 2015). Therefore, individuals (and subpopulations) 
with a high affinity and familiarity with high-calorie foods would presumably showcase 
the greatest expression of the high-calorie spatial memory bias, due to supporting 
contributions from these processes. By the same token, those with more positive 
learned associations and greater exposure to low-calorie alternatives would likely be 
able to “mask” the inherent spatial recall advantage of energy-dense foods and fall on 
the lower end of the bias spectrum. 

In closing, foraging adaptations that evolved during our extended history as 
hunter-gatherers seemingly persist and exert an influence on how we navigate 
evolutionary-novel calorie-laden food landscapes today. Our results posit that 
embedded within our cognitive architecture is a calorie-sensitive spatial prioritization 
mechanism that once formed part of a successful foraging strategy, but now 
detrimentally leads us to purchase high-calorie snack foods habitually, visit high-calorie 
food outlets, and accumulate body weight. However, an improved ability to 
appropriately modify responses to high-calorie foods can help mitigate the bias’ 
harmful dietary effects. 
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Table A5.1. 
Sociodemographic characteristics of participant samples across the two online test sessions. 

Sociodemographic 

Characteristic 

Test Session 1 a 

(N = 405) 
Test Session 2 a 

(N = 316) 

Sex (% Male) 56.7 57.9 

Age (years)  47.57 (±17.48) 
Range: 18 - 86 

47.37 (±17.64) 
Range: 18 - 86 

Ethnicity (% 

Caucasian) 
98.8 98.4 

Education (%) None or primary education: 0.5 
Pre-vocational secondary education: 4.7 

Theoretical pre-vocational secondary 
education: 17.3 

Middle-level applied education: 25.9 
Higher general or scientific education: 13.8 

University of applied sciences 
(propaedeutic): 3.0 

University of applied sciences (bachelor): 
13.6 

University of applied sciences (master): 0.3 
University propaedeutic: 2.0 

University bachelor: 2.5 
University master/ doctoral/ postdoctoral: 

16.5 

None or primary education: 0.6 
Pre-vocational secondary education: 5.1 

Theoretical pre-vocational secondary 
education: 18.4 

Middle-level applied education: 25.6 
Higher general or scientific education: 14.6 

University of applied sciences 
(propaedeutic): 2.8 

University of applied sciences (bachelor): 
13.0 

University of applied sciences (master): 0.3 
University propaedeutic: 1.9 

University bachelor: 2.8 
University master/ doctoral/ postdoctoral: 

14.9 
Income (%) 

 

Minimum: 3.7 
 Below the national average: 16.3 

 Approximately the national average: 22.2 
1 to 2 times the national average: 24.2 

2 or more times the national average: 11.1 
Missing: 22.5 

Minimum: 3.5 
 Below the national average: 15.8 

 Approximately the national average: 21.2 
1 to 2 times the national average: 25.9 

2 or more times the national average: 11.1 
Missing: 22.5 

Occupation (%) Employed: 67.9 
Unemployed: 32.1 

Employed: 67.1 
Unemployed: 32.9 

Subjective SES b  6.79 (±1.40) 
Range: 1 - 10 

6.79 (±1.38) 
Range: 2 - 10 

Neighborhood SES 
c 

-0.05 (±1.18) 
Range: -5.66 – 2.25 

-0.08 (±1.19) 
Range: -5.66 – 2.25 

a Test session 1 investigated food spatial memory; Test session 2 investigated behavioral outcomes. 
b 10-point scale (Adler et al., 2000) 
c  Z-distributed neighborhood SES scores (SCP Statusscores, 2017) 
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Table A5.2. 
Characteristics of high- and low-calorie food images used in the spatial memory task. 

Spatial 

Memory Task 

Parameter (unit) High-calorie 

M (SD) 
Low-calorie 

M (SD) 
p 

Nutritional 

Content 

Energy density (kcal/100g) 382.3 (106.9) 28.5 (15.7) <.001 
Total energy displayed (kcal) 685.2 (797.5) 181.6 (310.4) .006 

Protein to Carbohydrate and Fat Ratio 0.2 (0.2) 0.6 (0.8) .178 

Subjective 

Ratings 

Perceived calories (mm) a 75.3 (16.1) 23.1 (15.8) <.001 
Perceived healthiness (mm) a 23.5 (18.5) 79.6 (15.4) <.001 

Recognizability (%) b 97.9 (2.1) 96.7 (5.5) .534 
Subjective Complexity (mm) b 29.4 (6.6) 27.7 (4.1) .331 

Image 

Characteristics 

b 

Color (Red; pixels) 0.5 (0.04) 0.5 (0.1) .499 
Color (Blue; pixels) 0.2 (0.03) 0.2 (0.1) .977 

Color (Green; pixels) 0.3 (0.02) 0.4 (0.1) .496 
Size (pixels) 0.3 (0.1) 0.3 (0.1) .850 

Brightness (luminance) 32.9 (9.0) 34.5 (12.5) .711 
Contrast (luminance) 48.7 (9.9) 48.8 (12.5) .983 
Complexity (pixels) 0.1 (0.02) 0.1 (0.04) .805 

Normalized Complexity (pixels) 0.2 (0.1) 0.3 (0.1) .496 
a Pilot results from a separate participant sample (de Vries et al., 2020). 
b Data available from the Food Pics database (Blechert et al., 2014 
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Food Environment Questionnaire 
Instructions: For each of the locations below, choose how often you have visited this location in the past 

month to eat food or buy food. 

Never 1x per 
month 

2-3x per 
month 

1x per week 2-3x per 
week 

4-5x per 
week 

6-7x per 
week 

o Supermarket a 
o Pastry shop (patisserie) b  
o Mini supermarket a 
o Department store a  
o Discounters a  
o Kiosk b (at the train/bus station) 
o Gas station a,b  
o Toko (traditional Asian supermarket or shop) 
o Bakery b 
o Food bank 
o Market 
o Delivery/ take-away a  
o Grillroom/shoarma a, b  
o Snackbar/Fastfood outlet a,b 
o Restaurant a  
o Cafeteria (at school/work) 
o Delicatessen shop a  
o Vegetable or fruit shop 
o Butcher 
o Fish seller 
o Cheese shop b 
o Reform store a  
o Chocolate shop a,b  
o Nuts shop b 
o Sweets (confectionary) store a ,b  
o Ice cream shop b 
o Pie or tart shop b 
o Lunchroom/coffee company a  
o Café 
o Cupcake/muffin shop b 
o Country/farm shop 
 

a Specific examples of store type in the Netherlands were mentioned. 
b Classified as a high-calorie food environment. 
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Table A5.3. 
Predicting routine frequency of high-calorie snack consumption from the high-calorie bias in spatial memory. 
Variable B 95% CI Beta t p R R2 

Model 1:  
Main effect of the high-calorie spatial memory bias 

Constant -0.03 -2.53 – 2.47  -0.02 .983 .329 .108 
Sexa 0.32 -0.11 – 0.76 0.08 1.46 .146   
Age 0.02 0.01 – 0.04 0.22 3.68 .000*   
Ethnicity 0.12 -1.04 – 1.28 0.01 0.20 .840   
Objective SES -0.31 -0.64 – 0.03 -0.11 -1.79 .074   
Subjective SES 0.02 -0.14 – 0.17 0.01 0.22 .829   
Neighborhood SES -0.02 -0.20 – 0.17 -0.01 -0.16 .875   
Liking High – Low Calorie 0.01 -0.02 – 0.03 0.05 0.48 .632   
Desirability High – Low Calorie 0.001 -0.02 – 0.02 0.01 0.12 .904   
Familiarity High – Low Calorie 0.34 -0.45 – 1.14 0.08 0.85 .394   
Importance of Convenience 0.40 0.03 – 0.78 0.12 2.12 .035   
Snack Purchasing Habit 
Strength 

0.34 0.08 – 0.60 0.16 2.61  .010* 
  

Healthy Eating Intentions -0.01 -0.22 – 0.20 -0.01 -0.08 .938   
Inhibitory Controlb -0.52 -4.65 – 3.60 -0.25 -0.25 .803   
High-calorie Spatial Memory 

Biasc 
0.001 -0.001 – 0.003 0.05 0.92 .361 

  

Model 2: Interaction effects between the high-calorie spatial memory bias and psychological factors 

Constant 1.71   1.75 .082 .336 .113 
Sexa 0.33 -0.10 – 0.77 0.09 1.50 .135   
Age 0.03 0.01 – 0.04 0.23 3.74 .000*   
Ethnicity 0.13 -1.04 – 1.31 0.01 0.23 .822   
Objective SES -0.27 -0.61 – 0.08 -0.09 -1.51 .133   
Subjective SES 0.02 -0.15 – 0.17 0.01 0.18 .855   
Neighborhood SES -0.01 -0.20 – 0.17 -0.01 -0.13 .901   
Liking High – Low Calorie 0.01 -0.02 – 0.03 0.05 0.46 .643   
Desirability High – Low Calorie 0.002 -0.02 – 0.02 0.02 0.21 .838   
Familiarity High – Low Calorie 0.31 -0.50 – 1.11 0.07 0.75 .454   

Importance of Convenience 0.39 0.01 – 0.77 0.12 2.02 .044   
Snack Purchasing Habit 
Strength 

0.35 0.09 – 0.61 0.16 2.64 .009*   

Healthy Eating Intentions -0.03 -0.24 – 0.19 -0.01 -0.25 .807   
Inhibitory Controlb -0.63 -4.80 – 3.54 -0.02 -0.30 .766   
High-calorie Spatial Memory 

Biasc 

0.001 -0.001 – 0.003 0.05 0.80 .423   

HC SMB*Snack Purchase Habit 0.00 -0.002 – 0.003 0.02 0.30 .766   
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HC SMB*Importance 
Convenience 

0.002 -0.002 – 0.01 0.06 1.04 .299   

HC SMB*Inhibitory Control -0.001 -0.03 – 0.03 -0.003 -0.05 .964   
HC SMB*Healthy Eating 
Intentions 

0.00 -0.003 – 0.002 -0.02 -0.30 .764   

aMales are the reference group. 
bRate of commission errors in food-specific go/no-go task (Higher scores denote a lower inhibitory control to 
high-calorie foods). 
c D High Calorie – D Low Calorie [HC SMB] (Lower values denote a greater bias in spatial memory for high-calorie foods). 
*Significant at αadjusted = .017 (two-tailed). 
 

Table A5.4. 
Predicting routine visits to high-calorie food environments from the high-calorie bias in spatial memory. 
Variable B 95% CI Robust 

SE  

t p 

Model 1: Main effect of the high-calorie spatial memory bias 

Constant 0.07 -1.30 – 1.45 0.70 0.11 .916 
Sexa -0.02 -0.15 – 0.11 0.06 -0.31 .760 
Age 0.01 -0.002 – 0.01 0.004 1.30 .193 
Ethnicity 0.41 -1.02 – 1.83 0.72 0.56 .577 
Objective SES 0.13 -0.02 – 0.28 0.08 1.71 .089 
Subjective SES -0.01 -0.08 – 0.06 0.03 -0.29 .770 
Neighborhood SES -0.003 -0.08 – 0.07 0.04 -0.09 .932 
Liking High – Low Calorie -0.01 -0.01 – 0.002 0.004 -1.51 .133 
Desirability High – Low Calorie 0.003 -0.003 – 0.01 0.003 1.04 .301 
Familiarity High – Low Calorie 0.08 -0.20 – 0.36 0.14 0.56 .579 
Importance of Convenience -0.13 -0.27 – 0.01 0.07 -1.81 .071 
Snack Purchasing Habit Strength 0.11 -0.02 – 0.24 0.07 1.70 .090 
Healthy Eating Intentions -0.01 -0.09 – 0.08 0.04 -0.13 .895 
Inhibitory Controlb 2.21 -2.46 – 6.88 2.37 0.93 .352 
High-calorie Spatial Memory Biasc 0.00 0.00 – 0.001 0.00 1.14 .255 
Model 2: Interaction effects between the high-calorie spatial memory bias and psychological 

factors 

Constant -0.04 -1.25 – 1.18 0.62 -0.06 .951 
Sexa -0.02 -0.14 – 0.11 0.06 -0.25 .805 
Age 0.01 -0.001 – 0.01 0.004 1.56 .119 
Ethnicity 0.38 -0.97 – 1.73 0.69 0.56 .578 
Objective SES 0.13 -0.01 – 0.28 0.08 1.78 .076 
Subjective SES -0.01 -0.07 – 0.06 0.03 -0.25 .802 
Neighborhood SES -0.004 -0.08 – 0.07 0.04 -0.10 .918 
Liking High – Low Calorie -0.01 -0.01 – 0.01 0.004 -1.42 .158 
Desirability High – Low Calorie 0.004 -0.22 – 0.33 0.003 1.18 .241 
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Familiarity High – Low Calorie 0.05 0.02 – 0.26 0.14 0.37 .713 

Importance of Convenience -0.13 -0.26 – 0.003 0.07 -1.92 .056 
Snack Purchasing Habit Strength 0.14 -0.26 – 0.003 0.06 2.22 .027 
Healthy Eating Intentions -0.01 -0.10 – 0.07 0.04 -0.29 .773 
Inhibitory Controlb 1.94 -0.61 – 4.48 1.29 1.50 .136 
High-calorie Spatial Memory Biasc 0.001 0.00 – 0.001 0.00 1.57 .117 
HC SMB* Snack Purchase Habit 0.001 1.98 x 10-5 – 0.002 0.00 2.02 .045 
HC SMB*Importance Convenience 0.00 -0.001 – 0.001 0.00 0.85 .395 
HC SMB*Inhibitory Control -0.02 -0.03 - -0.003 0.01 -2.38 .018* 
HC SMB*Healthy Eating Intentions 0.00 -0.001 – 0.001 0.00 -0.35 .730 
aMales are the reference group. 
bRate of commission errors in food-specific go/no-go task (Higher scores denote a lower inhibitory control to 
high-calorie foods). 
c D High Calorie – D Low Calorie [HC SMB] (Lower values denote a greater bias in spatial memory for high-calorie foods). 
*Significant at αadjusted = .017 (two-tailed). 
 

Table A5.5. 
Predicting BMI from the high-calorie bias in spatial memory. 

 

 

Variable B 95% CI Robust 

SE  

t p 

Model 1: Main effect of the high-calorie spatial memory bias 

Constant 27.80 22.48 – 33.12 2.70 10.28 .000* 
Sexa -1.14 -2.21 - -0.07 0.54 -2.10 .037 
Age 0.07 0.04 – 0.09 0.01 4.63 .000* 
Ethnicity -3.21 -6.20 - -0.22 1.52 -2.11 .035 
Objective SES -0.40 -1.20 – 0.39 0.40 -1.00 .321 
Subjective SES -0.25 -0.64 – 0.15 0.20 -1.23 .221 
Neighborhood SES 0.28 -0.11 – 0.68 0.20 1.42 .157 
Liking High – Low Calorie 0.01 -0.04 – 0.05 0.02 0.23 .821 
Desirability High – Low Calorie -0.02 -0.06 – 0.02 0.02 -0.87 .387 
Familiarity High – Low Calorie 0.38 -1.43 – 2.19 0.92 0.42 .679 
Importance of Convenience -0.06 -0.94 – 0.81 0.45 -0.14 .887 
Snack Purchasing Habit Strength 1.25 0.53 – 1.97 0.36 3.44 .001* 
Healthy Eating Intentions -0.15 -0.59 – 0.30 0.23 -0.65 .516 
Inhibitory Controlb -8.04 -14.55 - -1.53 3.31 -2.43 .016* 
High-calorie Spatial Memory Biasc -7.29 x 10-5 -0.01 – 0.01 0.003 -0.03 .977 
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aMales are the reference group. 
bRate of commission errors in food-specific go/no-go task (Higher scores denote a lower inhibitory control to 
high-calorie foods). 
c D High Calorie – D Low Calorie [HC SMB] (Lower values denote a greater bias in spatial memory for high-calorie foods). 
*Significant at αadjusted = .017 (two-tailed). 
 

  

Model 2: Interaction effects between the high-calorie spatial memory bias and psychological factors 

Constant 29.12 24.15 – 34.08 2.52 11.54 .000* 
Sexa -1.16 -2.23 - -0.09 0.54 -2.13 .034 
Age 0.06 0.04 – 0.09 0.01 4.45 .000* 
Ethnicity -3.22 -6.53 – 0.09 1.68 -1.91 .057 
Objective SES -0.53 -1.35 – 0.30 0.42 -1.25 .213 
Subjective SES -0.20 -0.61 – 0.21 0.21 -0.94 .347 
Neighborhood SES 0.28 -0.12 – 0.68 0.20 1.38 .170 
Liking High – Low Calorie 0.01 -0.04 – 0.05 0.02 0.32 .753 
Desirability High – Low Calorie -0.02 -0.06 – 0.02 0.02 -0.84 .404 
Familiarity High – Low Calorie 0.23 -1.60 – 2.06 0.93 0.25 .802 

Importance of Convenience -0.11 -1.01 – 0.78 0.46 -0.25 .803 
Snack Purchasing Habit Strength 1.25 0.55 – 1.94 0.35 3.53 .000* 
Healthy Eating Intentions -0.11 -0.55 – 0.33 0.22 -0.50 .619 
Inhibitory Controlb -7.79 -20.44 – 4.86 6.43 -1.21 .226 
High-calorie Spatial Memory Biasc 0.001 -0.01 – 0.01 0.003 0.28 .777 
HC SMB* Snack Purchase Habit -0.002 -0.01 – 0.01 0.004 -0.60 .552 
HC SMB*Importance Convenience 0.002 -0.01 – 0.01 0.005 0.31 .759 
HC SMB*Inhibitory Control -0.02 -0.11 – 0.07 0.05 -0.41 .686 
HC SMB*Healthy Eating Intentions 0.004 -0.002 – 0.01 0.003 1.42 .157 
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Table A5.6. 

Intercorrelations (rs with df = 316) between all measured predictor and outcome variables. 

 1 2 3 4 5 6 7 8 

High-calorie 

Spatial Memory 

Biasa 

 -0.11* -0.02 0.11* -0.09 -0.01 0.05 -0.04 

Snack 

Purchasing Habit 

Strength 

  0.22** 0.15** -0.33** 0.19** 0.12* 0.17** 

Importance of 

Convenience 

 

   -0.01 -0.10 0.12* -0.09 -
0.004 

Inhibitory 

Controlb 

    -0.09 0.01 -0.06 0.01 

Healthy Eating 

Intentions 

     -0.05 -0.10 -0.14* 

Routine High-

calorie Snack 

Consumption 

Frequency 

      0.24** 0.07 

Routine High-

calorie Food 

Environment 

Visits 

       0.12* 

BMI         

a D High Calorie – D Low Calorie (Lower values denote a greater bias in spatial memory for high-calorie foods). 
b Rate of commission errors in food-specific go/no-go task (Higher scores denote a lower inhibitory control 
to high-calorie foods). 
*p < .05 (two-tailed); ** p < .01 (two-tailed) 
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Abstract 

Background: Human memory appears to prioritize locations of high-calorie 
foods, likely as an adaptation for foraging within fluctuating ancestral food 
environments. Importantly, this “high-calorie bias” in human spatial memory yields 
consequences for individual eating behavior in present-day food-abundant settings.  
However, as studies have mainly been conducted in European (Dutch) populations to 
date, we investigated whether the existence of the cognitive bias can be reasonably 
generalized across countries that vary on culturally-relevant domains, such as that of 
the USA and Japan. Furthermore, we probed sociodemographic factors that covary with 
the expression of the high-calorie spatial memory bias within different populations. 

Methods: In an online experiment, we measured the food location memory of 
diverse participants from the USA (N=72; 44.4% Male; 54 ±15.99 years) and Japan 
(N=74; 56.8% Male; 50.85 ±17.32 years), using a validated computer-based spatial 
memory task with standardized images of high-calorie and low-calorie foods. To 
directly compare the magnitude of the high-calorie spatial memory bias in a broader 
cultural scope, we also included data from a previous online experiment that identically 
tested the food spatial memory of a Dutch sample (N=405; 56.7% Male; 47.57 ±17.48 
years). 

Results: Across distinct cultures, individuals more accurately recalled (i.e. 
displayed lower pointing errors for) locations of high-calorie foods versus that of low-
calorie alternatives – regardless of hedonic preferences, familiarity with foods, and 
encoding times. The high-calorie bias in spatial memory was also expressed to a similar 
degree across diverse sociodemographic groups within a population.  

Conclusions: Our results demonstrate that the high-calorie bias in spatial 
memory transcends sociocultural boundaries. Since the cognitive bias can negatively 
impact on our dietary decisions, it would be wise to invest in health promotion strategies 
that help to counter our seemingly universal capacity to efficiently (re)locate energy-
dense foods.   
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Introduction 

Essentially all organisms require energy from food to survive and reproduce 
(Pyke et al., 1977). Many nutritional ecology models underlying individuals’ eating 
behavior are thus based on the fundamental assumption that natural selection favored 
foraging strategies that maximize the rate of energy gain (Pyke et al., 1977; 
Raubenheimer et al., 2009; Schoener, 1971). Although evolved energy-efficient 
foraging mechanisms have long been recognized in various animal species – ranging 
from birds (Burke & Fulham, 2003; Cowie, 1977; Krebs, 1990; Sulikowski & Burke, 2007) 
to non-human primates (e.g. Cunningham & Janson, 2007; Janmaat et al., 2014; 
Nakagawa, 2009) – the similar existence of foraging-related cognitive adaptations in 
humans has received less attention in literature (Krasnow et al., 2011; New et al., 2007b; 
Suarez et al., 2019).  

In a series of recent studies, we accumulated evidence consistent with the 
expression of a cognitive system in humans adapted for the efficient procurement of 
fitness-relevant nutritional resources. Across various experimental paradigms, we found 
that human memory shows sensitivity to the (relative) caloric “profitability” of a potential 
food, and more accurately recalls the locations of foods higher in energy density (de 
Vries et al., 2020a; de Vries et al., 2020b; see also New et al., 2007b). The  prioritization 
of high-calorie food locations in memory occurred independently of the sensory 
modality an individual used to explore food stimuli (i.e. vision versus olfaction), an 
individual’s personal dietary preferences or familiarity with a food, and even one’s 
conscious effort or explicit instruction to encode food locations (cf. de Vries et al., 
2020a). Importantly, this inherent “high-calorie bias” in human spatial memory yields 
consequences for how individuals navigate present-day obesogenic food 
environments, as an increased expression of the cognitive bias was found to predict a 
greater reported ease of locating high-calorie foods in a supermarket, more routine 
visits to high-calorie food retail locations (e.g. fast-food outlets), a stronger habit of 
purchasing high-calorie snack foods and a subsequently higher (less healthy) BMI (Allan 
& Allan, 2013; de Vries et al., under review a; de Vries et al., under review b). Thus, a 
cognitive mechanism that likely evolved as an adaptation for optimal foraging within 
fluctuating ancestral food environments, now maladaptively potentiates the selection 
and consumption of unhealthy high-calorie foods within our current food-abundant 
landscape. 
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However, as investigations have predominantly been conducted in European 
(Dutch) populations to date, it is less clear whether the existence of the high-calorie bias 
in spatial memory can be reasonably generalized to members of other countries. The 
evolutionary locus of the spatial processing bias strongly implies it to be a component 
of our universal cognitive architecture, thus its expression should be reliably observed 
across cultures (Krasnow et al., 2011; Nairne, 2010; Tooby & Cosmides, 2005). 
Therefore, the present study set out to directly test this notion in two additional 
countries (i.e. USA and Japan) that diverge from one another on cultural domains 
relevant for food-specific spatial memory. Specifically, “Western” North American and 
“Eastern” Japanese cultures display different modes of cognitive processing, such as in 
the perception of visual objects and their contexts (Chua et al., 2005; Kitayama et al., 
2003; Nisbett et al., 2001), as well as the description of spatial relations between objects 
(Krasnow et al., 2011; Mainwaring et al., 2003). Relatedly, the physical layout of food 
environments deviates significantly between these countries, which may impact on the 
spatial reference system or perspective (e.g. reliance on landmarks) that individuals 
adopt, as well as the types of foods that individuals regularly consume (Ardilla, 1993; 
Pitt et al., 2017; Mainwaring et al., 2003; Montello, 1995). Finally, attitudes towards food 
and the assumed role food plays in daily life are known to vary cross-culturally: 
European individuals generally associate food most with pleasure, whereas American 
individuals generally emphasize the health (as opposed to hedonic) utility of food, and 
Japanese individuals tend to occupy an intermediate position on viewing food as either 
a medium for health or pleasure (Rozin et al., 1999; see Werle et al., 2013 for cultural 
differences in the “unhealthy food = tasty” intuition).  

Given the behavioral and health implications of the high-calorie spatial memory 
bias, our secondary research objective was to identify potential “at-risk” subgroups 
within a population that showcase a marked expression of the bias. Literature 
increasingly suggests that dietary quality and BMI follow a sociodemographic gradient, 
in that individuals with a lower socioeconomic position (i.e. lower income, education, 
occupational status, or perceived social standing) generally exhibit poorer dietary 
patterns and a higher body weight (Adler et al., 2000; Drewnowski et al., 2014; Lakerveld 
et al., 2015). The latter is often attributed to the fact that socially disadvantaged 
individuals tend to be exposed to less healthy physical food environments with an 
increased availability and accessibility to high-calorie foods (Ford & Dzewaltowski, 2008; 
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Larson et al., 2009; Timmermans et al., 2018).  A novel explanation for how apparent 
structural differences in local food environments can give rise to dietary disparities 
between sociodemographic classes could involve systematic differences in the 
magnitude to which the high-calorie spatial memory bias is expressed and takes effect 
between groups. To explicitly assess this, we probed sociodemographic factors that 
covary with the expression of the high-calorie spatial memory bias within different 
populations. 

Taken together, we hypothesized that: 
H1A: The high-calorie spatial memory bias is expressed across different cultures. 
Specifically, individuals within a country (i.e. USA and Japan) will display a greater overall 
accuracy in spatial memory for high-calorie foods compared to low-calorie alternatives 
– regardless of subjective evaluations and familiarity with foods. 
H1B: Sociodemographic factors moderate the expression of the high-calorie bias in 
human food spatial memory. 

Methodology 

Design 

The present study had a two-by-two mixed factorial design with Country (USA 
versus Japan) as a between-subjects factor and Caloric Density (High versus Low) as a 
within-subjects factor. In an online experiment, participants had to complete food-
specific spatial memory tasks and a series of questionnaires. The hypotheses, 
experimental design, and statistical analysis plan were preregistered, and are accessible 
with study data on the Open Science Framework database (Project URL: 
https://osf.io/ptgda/). For a final exploratory analysis, we included data from a previous 
online experiment that tested the food spatial memory of a Dutch sample in an identical 
manner (Project URL: https://osf.io/nv7a9/ ; de Vries et al., under review a). The latter 
was performed to directly compare the magnitude of the high-calorie spatial memory 
bias in a broader cultural scope (i.e. between American, Asian, and European 
populations; Rozin et al., 1999). This study was approved by the Social Sciences Ethics 
Committee of Wageningen University. 
Participants 

Participants were a diverse sample of healthy adults (above the age of 18) from 
the USA and Japan, respectively. Individuals were recruited by the ISO-certified 
Flycatcher online research agency (www.flycatcher.eu), and excluded from participating 
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in the case of any self-reported illnesses or dietary restrictions, a current or medical 
history of eating disorders, or (total or partial) color blindness. A total of 121 individuals 
initially responded from the US population, but 43 (35.5%) participants did not fulfil one 
or more selection criteria (i.e. 20 (16.5%) self-reported poor health or a pre-existing 
health condition; 5 (4.1%) reported color blindness; 18 (14.9%) reported food 
restrictions), 5 (4.1%) dropped-out prior to the food spatial memory task, and 1 
participant (0.8%) was removed due to poor response quality. A final sample of 72 
individuals (44.4% Male; MAge = 54 (±15.99) years, Range: 23 – 83 years) was thus 
obtained from the USA. With regards to the Japanese population, 191 panelists initially 
responded, with 116 (60.7%) individuals excluded at the beginning of the experiment 
on the basis of our selection criteria (i.e. 104 (54.5%) self-reported poor health or a pre-
existing health condition; 1 (0.5%) reported color blindness; 11 (5.8%) reported food 
restrictions), and 1 (0.5%) dropped-out prior to the food spatial memory task. Thus, 
data from 74 individuals (56.8% Male; MAge = 50.85 (±17.32) years, Range: 19 – 89 
years) were collected for the Japanese sample. A priori power calculations for our 
confirmatory analyses (see https://osf.io/ptgda/) yielded a minimum number of 70 
individuals to detect the high-calorie spatial memory bias within US and Japanese 
populations. Final participant samples of the two countries had similar 
sociodemographic distributions (Table A6.1). For our exploratory multi-country 
analysis, data pulled from the Dutch sample consisted of 405 individuals that fulfilled 
the same inclusion and exclusion criteria (56.7% Male; MAge = 47.57 (±17.48) years, 
Range: 18 – 86 years; for details see de Vries et al., under review a). After providing 
informed consent and completing the online experiment, participants were debriefed 
and financially compensated.  
Procedure 

Prior to testing, participants were provided with the general aim of the research, 
which was to investigate “what people think about foods that are commonly found 
within the modern food environment”. Participants first documented their 
sociodemographic characteristics (e.g. ethnicity, objective SES, and subjective SES) in a 
preliminary questionnaire. After, they rated their current hunger state and provided 
ratings on all  (randomly-presented) food stimuli (N=24) on the parameters of Liking, 
Desire to Eat, and Familiarity. Individuals then completed the spatial memory task for 
both high- and low-calorie foods, with a five-minute break between caloric density 
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conditions. Finally, participants reported their height and weight, as well as answered 
questions on their healthy eating goals. The latter two questionnaires were presented 
in a counterbalanced manner (within each country), in order to minimize possible order 
effects on answers. The online test session took approximately 40 minutes to complete. 
Apparatus and Stimuli 

Food stimuli in spatial memory task. Images of high- and low-calorie foods 
were taken from the extended Food Pics database, which contains standardized 
pictures of Western, Asian, and Middle Eastern foods (Blechert et al., 2019). Foods were 
considered “high-calorie” if they contained at least 225 kcal – and “low-calorie” if they 
contained at most 60 kcal – per 100 grams of food weight (cf. de Vries et al., 2020b).  

A set of 24 (unbranded) food pictures was used as stimuli for the spatial memory 
task, with 12 images of both high- and low-calorie items (de Vries et al., under review 
a; de Vries et al., under review b). The selection of final food images was modified 
differently for each country, based on results of a pilot study involving a separate sample 
of the target population in each country (N= 31 for the US sample and N= 29 for the 
Japanese sample; Table A6.2). For both countries, an equal number of sweet and 
savory foods were included across caloric density categories, to account for potential 
taste effects on spatial memory performance (de Vries et al., 2020b; de Vries et al., 
under review b). Furthermore, high-calorie stimuli showcased a greater energy density 
(kcal/100g) as well as total energy content (kcal) relative to low-calorie alternatives, and 
were correctly perceived as less healthy and to contain more calories (Table A6.2). On 
the other hand, high- and low-calorie foods were matched on macronutrient balance 
(i.e. protein to carbohydrate and fat ratios; Simpson & Raubenheimer, 2005), 
recognizability, and important perceptual characteristics (e.g. color and complexity) in 
the final stimuli sets of both populations (Table A6.2).  

Spatial memory task. The computer-based spatial memory task was 
validated in diverse European samples as an instrument to measure food location 
memory accuracy (Allan & Allan, 2013; de Vries et al., 2020b; de Vries et al., under 
review a; de Vries et al., under review b). Participants were first instructed to imagine 
that an international food market with 24 food stalls was taking place on an (unfamiliar) 
university campus. They were then shown 12 images of either high- or low-calorie 
foods, followed by an image of a map of the university campus with all 24 possible stall 
locations, at a fixed duration of three seconds each. After this initial viewing phase, the 
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location of the stall selling a food item was indicated on the campus map by a green 
crosshair, and this was consecutively done for all food stimuli within a caloric density 
condition (N=12). Individuals then rested for two minutes, after of which they had to 
perform a series of 12 spatial memory trials. On each trial, participants were randomly-
presented with one of the previous food images and required to recall (via mouse-click) 
its correct assigned stall location on the campus map. All 24 possible stall sites were 
displayed anew each recall round, and participants could select the same stall location 
more than once, even though (correct) locations did not overlap between foods. 
Following a five-minute break, the spatial encoding and recall procedure was repeated 
for the remaining 12 foods of the other caloric density category. Food-location pairs 
within the campus map, as well as the order in which they were presented, were 
randomized uniquely for each participant. The order in which individuals completed the 
spatial memory task between caloric density conditions was counterbalanced within 
each country. Prior to the actual task with food images, participants first practiced 
encoding and recalling locations of non-food objects on the campus map, to familiarize 
themselves with the task paradigm. Importantly, the Japanese version of the spatial 
memory task (as well as administered questionnaires; see below) was translated using 
official language services, and the online experiment was piloted in a small separate 
sample (N=3) of native Japanese speakers for clarity and ease of comprehension, 
following successful internal pre-tests by the research agency.  
Measurements 

Primary outcome variables. The pointing error, or Euclidian distance (D) 
between correct and recalled stall locations, was averaged across all high- and low-
calorie food stimuli to calculate an individual’s spatial memory accuracy for high- and 
low-calorie foods, respectively (Allan & Allan, 2013; de Vries et al., 2020b). As such, 
lower D scores indicate a higher accuracy in food spatial memory. The difference in 
spatial memory accuracy for high- versus low-calorie foods ((DHigh Calorie – DLow Calorie) of 
each individual was taken to represent the high-calorie bias in spatial memory. It follows 
that lower (negative) values denote an increased expression of the high-calorie spatial 
memory bias. 

Predictor variables.  Information on the sociodemographic variables of sex, 
age, ethnicity, objective SES (i.e. highest education level, annual household income, and 
occupation), and subjective SES (10-point MacArthur Subjective Social Status Scale; 
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Adler et al., 2000) were collected (Table A6.1). Ethnicity was defined as the ethnic 
group an individual most strongly identifies with, and was coded into 7 possible 
categories for both populations: (1) White (2) Black/African/Caribbean (3) Asian (4) 
Latino (5) Arab (6) Other (7) Not Applicable (National Institutes of Health, 2015). Highest 
education level followed the national education classification system of a country, 
spanning from (1) elementary school to (6) university postgraduate for the US 
population, and from (1) lower secondary school to (8) university postgraduate for the 
Japanese population. Household income comprised of five categories, with (absolute 
gross) amounts adjusted for each country: (1) minimum, (2) below the national average, 
(3) approximately the national average, (4) one to two times the national average, and 
(5) two or more times the national average (Table A6.1). Occupation was classified 
into two groups across samples: (1) currently employed and (2) currently unemployed.  

Control measures. Participants rated each food stimulus on Liking and Desire 
to Eat on a 100mm VAS (anchored from “Not At All” to “Very Much”), as well as 
Familiarity on a five-point scale (Tuorila et al., 2001), given that hedonic evaluations and 
previous exposure to a food were shown to account for additional variation in food 
spatial memory accuracy (de Vries et al., 2020a; de Vries et al., 2020b; de Vries et al., 
under review b). Similarly, hunger states were recorded at the onset of testing using a 
100mm VAS (anchored from “Not At All” to “Very Much”). 

As final (exploratory) checks, we required individuals to self-report their height 
(in cm or feet) and weight (in kg or pounds), in order to filter out any residual variance 
in food spatial memory performance attributable to BMI-related differences in (implicit) 
food attitudes or overall memory function (Czyzewska & Graham, 2008; Kanoski & 
Davidson, 2010; Loprinzi & Frith, 2018; Roefs and Jansen, 2002). Likewise, we asked 
participants to answer a Healthy Eating Goals questionnaire with two items (In my daily 
life, I strive to eat healthy; It is important to me to eat healthy foods) rated on a seven-
point sale anchored from “Strongly Disagree” to “Strongly Agree”, as a measure of the 
importance they assigned to dietary self-regulation (Carver & Scheier, 2000; de Vries et 
al., 2020b). The time a participant took to encode a food location (in milliseconds) 
during the cognitive task was also recorded, in order to effectively rule out a general 
learning account of differences in (spatial) memory performance – rather than a specific 
mnemonic effect of a food’s caloric content (de Vries et al., 2020a; de Vries et al., 2020b; 
de Vries et al., under review b). 
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Data Analysis 

Data was analyzed with IBM SPSS Statistics 25. Statistical significance was 
defined as p < .05. Food spatial memory data was analyzed using a linear mixed effects 
model (LMM), which represents a flexible and robust technique to model continuous 
data with correlated errors (Krueger & Tian, 2004). In the case of significant interaction 
effects, Fisher’s LSD post-hoc tests were conducted. 

The LMM fitting procedure made use of a backward stepwise approach. The 
covariance matrix of random effects in the saturated LMM (below) was established using 
Restricted Maximum Likelihood (REML) ratio tests and the -2 log likelihood (-2LL) test 
statistic. Next, the fixed part of the saturated LMM was simplified using Maximum 
Likelihood (ML) ratio tests and the -2LL test statistic. In both cases, the most 
parsimonious model was selected for and the final LMM was refitted with REML 
estimations. The finalized LMM was cross-checked with a forward stepwise modelling 
process and fulfilled all necessary assumptions. Income information was missing from a 
minority of participants (i.e. 8.3% and 2.7% from USA and Japan samples, respectively). 
Highly improbable BMI values of less than 13 kg/m2 in 2 instances of the US sample – 
and less than 16 kg/m2 in 1 instance of the Japanese sample (WHO Expert Consultation, 
2004) – were also removed. However, LMM are generally robust to (conditionally) 
missing covariate data and the validity of estimated parameters in our final reported 
models was thus likely preserved (Graham, 2009; Schielzeth et al., 2020).  

Expression of the High-calorie Spatial Memory Bias Across Countries 

(H1A and H1B). To examine whether the high-calorie bias in human spatial memory 
generalizes across cultures (H1A), we formulated a random intercept and slope LMM for 
each country (N=2), with main and interaction effects of Caloric Density and Taste as 
fixed factors, Participant and Time as random factors (covariance structure: 
Unstructured), Sex, Age, Ethnicity, Education, Household Income, Occupation, 
Subjective SES, Liking, Desirability, Familiarity, and Hunger as covariates, and Spatial 
Memory Accuracy (D) as the dependent variable.  

To test for (country-specific) sociodemographic moderators of the bias (H1B), 
we entered respective interactions between Caloric Density and all sociodemographic 
factors as additional fixed effects in the LMM of each population.  

Moderation of Caloric Density Effects by Country (Exploratory). We 
combined data of the present study with that of a previous online experiment that 
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measured the food spatial memory of individuals from the Netherlands in an identical 
manner (de Vries et al., under review a), to obtain sufficient power and test whether the 
magnitude of the high-calorie spatial memory bias differs across populations. We 
conducted a (random intercept and slope) LMM analysis on the combined dataset of 3 
countries (i.e. USA, Japan, and the Netherlands), with main and interaction effects of 
Country, Caloric Density and Taste as fixed factors, Participant and Time as random 
factors (covariance structure: Unstructured), Sex, Age, Ethnicity, Education, Household 
Income, Occupation, Subjective SES, Liking, Desirability, Familiarity, and Hunger as 
covariates, and log10 (y+1) transformed Spatial Memory Accuracy (D) as the dependent 
variable. Since education classification systems differ per country, we standardized the 
categorization of Education into 7 possible levels, ranging from (1) primary education 
to (7) university postgraduate, following the International Standard Classification of 
Education (ISCED) guidelines (UNESCO Institute for Statistics, 2012). 

We included individual interactions between Caloric Density and 
sociodemographic factors, to explore whether moderation effects would hold in a 
broader cultural context.  

Results 

The high-calorie bias in spatial memory was demonstrated across 

sociodemographic groups in the US sample. 

Individuals in the US sample exhibited an average food spatial memory accuracy 
(i.e. average pointing error or D) of 316.64 pixels (SD = 209.10; Range = 0.68 – 1329.97). 

The Caloric Density of a food was a significant (small-to-medium sized) 
predictor of how accurate its location was later recalled, F(1,70) = 4.08, p = .047, ηp² = 
0.06, 90%CI ηp² = [0.0004, 0.16], as individuals demonstrated lower pointing errors on 
average for locations of high-calorie foods relative to low-calorie alternatives (Mean 
difference = -99.23 pixels, 95% CI = [-197.19, -1.28]; Figure 6.1). The enhanced 
memory for high-calorie food locations was not due to sociodemographic 
characteristics, hunger state, food liking, wanting of a food, or familiarity with a food. 
Among tested covariates, spatial memory performance was also shown to be influenced 
to a larger degree by an individual’s Ethnicity, in which Black/African/Caribbean 
individuals generally displayed larger pointing errors than those from Caucasian, Asian, 
and Latino ethnic groups (Table A6.3).  Furthermore, final checks yielded a significant 
positive effect (B = -0.003) of encoding time – as well as negative effect (B = 5.12) of 
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BMI  – on overall spatial memory accuracy, with similar sizes to that of Caloric Density 
(Table A6.3). However, none of these additional controls attenuated the effect of – or 
variation in food spatial memory accounted for by – Caloric Density, F(1,68) = 4.26, p 
= .043, ηp² = 0.06, 90%CI ηp² = [0.001, 0.17]. The spatial recall of a food did not depend 
on its Taste quality (i.e. sweet versus savory), F(1,1583) = 0.37, p = .546. 

With regards to sociodemographic moderators, an initial trend was found for 
the interaction between Caloric Density and Education, F(2,67) = 2.58, p = .083, in which 
a higher education level tended to improve spatial memory performance for low-calorie 
foods only. However, this trend was eliminated upon controlling for individuals’ BMI, 
F(2,63) = 2.12, p = .128. None of the remaining interactions proved to be significant, 
indicating that the high-calorie bias in spatial memory was equally expressed across 
sociodemographic groups in the US sample. 
The high-calorie bias in spatial memory was specific to savory-tasting foods 

in the Japanese sample. 

Individuals in the Japanese sample displayed an average food spatial memory 
accuracy of 322.05 pixels (SD = 236.54; Range = 0 – 1301.42), which mirrored the 
distribution of pointing errors in the US sample. 

After controlling for sociodemographic variables, hunger, and respective food 
ratings,  a significant but small interaction effect between Caloric Density and Taste on 
spatial memory performance was observed, F(1,1584) = 4.06, p = .044, ηp² = 0.003, 
90%CI ηp² = [0.0001, 0.01]. Post-hoc (LSD) comparisons revealed that although 
individuals showcased lower pointing errors for high- versus low-calorie foods across 
Taste groups, the difference only reached significance for savory-tasting items (Mean 
difference = -40.41 pixels, 95% CI = [-76.14, -4.68]; Figure 6.1). In addition, food spatial 
memory improved to a similar degree with a higher rated Desirability of a food (B = -
0.59), and females generally performed better than males (Table A6.4). On the other 
hand, neither BMI, reported nutritional intentions, nor encoding time predicted the 
accuracy of recalling food locations, as shown in final exploratory checks (all p > .05). 

Finally, a significantly moderate interaction between Caloric Density and the  
sociodemographic variable of Occupation was observed, F(2,69) = 3.24, p = .045, ηp² 
= 0.09, 90%CI ηp² = [0.002, 0.32], in which employed individuals displayed lower 
pointing errors for low-calorie foods relative to unemployed individuals (Mean 
difference = -90.93 pixels, 95% CI = [-168.89, -12.96]), p = .023. None of the remaining 
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interactions proved to be significant, indicating that locations of high-calorie foods were 
similarly prioritized (over that of low-calorie foods) across Japanese sociodemographic 
groups.   
The magnitude of the high-calorie spatial memory bias was similar across US, 

Japanese, and Dutch populations.  

In a combined exploratory analysis of the food spatial memory of individuals 
from the USA, Japan, and the Netherlands, a significant medium-sized main effect of 
Country was found, F(2,548) = 25.08, p < .001, ηp²= 0.08, 90% CI ηp² [0.09,0.22], as 
Dutch participants displayed overall lower pointing errors than both US (Mean 
difference = - 28.65% errors, 95% CI = [-18.71%, -38.58%]), p < .001, and Japanese 
samples (Mean difference = - 25.35% errors, 95% CI = [-15.61%, -35.09%]), p < .001. 
Spatial memory performance did not differ between US and Japanese participants, p = 
.611. 

Controlling for general effects of Country, Caloric Density and Taste were shown 
to systematically predict food spatial memory accuracy to a small degree, owing to 
3.11% lower pointing errors for high-calorie foods (95% CI = [-16.32%, -0.54%]; Figure 

6.1), F(1,552) = 4.44, p = .036, ηp²= 0.01, 90% CI ηp² [0.0003,0.02], and 2.69%  lower 
pointing errors for savory-tasting foods, F(1,12177) = 6.89, p = .009, ηp²= 0.001, 90% 
CI ηp² [0.0001,0.001], respectively. Importantly however, he interaction between 
Country and Caloric Density was not significant, p = .349, suggesting that the enhanced 
memory for high-calorie food locations was similar in magnitude across tested 
populations. Of the remaining covariates, a higher Education level (B = -0.04) and a 
higher rated Desirability of a food (B = -0.001) was associated with better spatial 
memory performance, whereas a male Sex and older Age (B = 0.007) predicted larger 
pointing errors, all with comparable effect sizes to Caloric Density (Table A6.5). Final 
checks revealed a further small influence of task (encoding) times (B = -3.71 x 10-6; 
Table A6.5), but this did not mitigate any of the aforementioned effects. 
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Figure 6.1. Standardized mean differences in spatial memory performance (D) for high-calorie versus low-
calorie foods across populations. Lower (negative) values indicate a greater accuracy in spatial memory for 
high-calorie foods. A significant Caloric Density*Taste interaction was found in the Japanese sample, thus 
differences are stratified per Taste group. An asterisk denotes the significant expression of the high-calorie 
spatial memory bias within a population at p < 0.05.  

Discussion 

The present study utilized a cross-cultural online experiment to investigate the 
widespread existence of a bias in human spatial cognition for high-calorie foods. We 
found that individuals native to cultures varying on relevant cognitive characteristics, 
built food environments, and food attitudes were effectively identical in their food 
relocation performance: Locations of resources with a higher caloric quality were more 
accurately recalled than that of low-calorie alternatives to a similar degree across 
countries, regardless of individuals’ hedonic preferences, familiarity with foods, or 
deliberate effort to encode food locations. The high-calorie bias in spatial memory was 
also uniformly expressed by diverse sociodemographic groups within a population. 
These results add empirical weight to the idea that the inherent spatial prioritization of 
high-calorie foods represents a component of our universal (human) cognitive 
architecture (New et al., 2007b; de Vries et al., 2020a; de Vries et al., 2020b). 
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Cross-cultural comparisons provide a powerful yet previously unexplored tool 
to eliminate competing macro-level explanations for the mnemonic effect of caloric 
content on human spatial memory (e.g. culture-specific attitudes towards high-calorie 
foods), and our investigation shows first-hand that the cognitive bias transcends cultural 
boundaries (Lewis et al., 2017; Nairne, 2010; Tooby & Cosmides, 2005). Though the 
spatial memory advantage of high-calorie foods was small in magnitude, a food’s 
caloric density consistently accounted for a comparable amount of variation in pointing 
errors as general (reward-based) learning mechanisms (e.g. food desirability) across 
countries. Importantly, previous studies also established that a small one-unit (pixel) 
improvement in the relative memory accuracy for high-calorie food locations was 
sufficient to induce a subtle but significant change in eating behavior (e.g. 0.001 – 0.01 
increase in BMI ), after controlling for more explicit determinants such as an individual’s 
reported healthy eating intentions (Allan & Allan, 2013; de Vries et al., under review a; 
de Vries et al., under review b). Taken together, results position a food’s intrinsic 
nutritional properties as an ecologically-valid factor in the operations and behavioral 
consequences of human spatial cognition. 

Our findings likewise imply that individual-level interventions aiming to reduce 
the overall expression of the cognitive bias to promote healthier dietary regulation 
would benefit from targeting other predictors of food spatial memory that are more 
likely under one’s volitional control (e.g. reducing encoding time for high-calorie food 
locations by lowering the visual salience of high-calorie products). The same principle 
may be applied for minimizing social dietary inequalities: Training a higher desirability 
for healthier low-calorie items (e.g. fruits and vegetables) – which is especially 
compromised in socially disadvantaged groups (Pechey et al., 2015) – can help to offset 
the underlying spatial recall advantage of energy-dense foods experienced across 
sociodemographic strata. Indeed, we found some support for such sociodemographic 
discrepancies in our Japanese sample, as unemployed individuals displayed 
systematically higher pointing errors for low-calorie foods relative to employed 
individuals. From a public health perspective, however, a more parsimonious and 
perhaps effective approach to support healthy eating behavior on both individual and 
group levels would be to limit the availability of high-calorie products, as well as high-
calorie food locations (e.g. fast food outlets), in the immediate environment. Such 
structural modifications to the physical food environment would help to steer food 



Chapter 6 
 

154 

choice towards healthier alternatives, irrespective of individuals’ responsiveness to 
proposed cognitive interventions (Hollands et al., 2019; Pitt et al., 2017). 

That said, this study is not without its limitations. Firstly, our US and Japanese 
samples were not fully representative of respective adult populations at a national scale. 
Nevertheless, study samples had similar sociodemographic distributions and this 
allowed for a fair comparison of caloric density effects between cultures, which was our 
primary research interest. Moreover, one could argue that our resulting food images 
were still more “westernized” in nature, despite efforts to tailor them cross-culturally. 
The latter could have contributed to the initial Caloric Density-Taste interaction 
observed in our Japan analysis, as more contextually-appropriate items were available 
for our savory-tasting stimuli (e.g. ramen). We believe this speaks to a greater need for 
food image databases (e.g. Blechert et al., 2019; Charbonnier et al., 2016) to amplify 
existing efforts to diversify their collection of standardized pictures and increase cross-
cultural applicability.  

In closing, diverse sociodemographic groups from three distinct cultures were 
shown to display an identical food spatial memory “signature”: individuals automatically 
prioritized in memory the locations of foods with a higher caloric content. Since the 
high-calorie bias in spatial memory can negatively impact on our dietary decisions, it 
would be wise to invest in health promotion strategies that help to counter our 
seemingly universal capacity to efficiently (re)locate energy-dense foods.   
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Table A6.1. 
Background characteristics of participant samples across cultures. 

 USA (N = 72) Japan  (N = 74) 

Sex (% Male) 32 (44.4%) 42 (56.8%) 
Age (years)  54 (± 16) 

Range: 23 – 83 

 50.9 (± 17.3) 
Range: 19 – 89 

Ethnicity (%) White: 58 (80.6%) 
Black/African/Caribbean: 5 (6.9%) 

Asian: 4 (5.6%) 
Latino: 2 (2.8%) 
Other: 1 (1.4%) 

Not Applicable: 2 (2.8%) 

White: 4 (5.4%) 
Asian: 69 (93.2%) 

Not Applicable: 1 (1.4%) 

Education (%) Elementary school: - 
Middle school: - 

High school: 36 (50%) 
Community College/Junior College: 6 

(8.3%) 
University undergraduate: 17 (23.6%) 
University postgraduate: 13 (18.1%) 

Lower secondary school: 6 (8.1%) 
Upper secondary general or vocational 

education: 19 (25.7%) 
Associate degree junior college: 1 (1.4%) 

Associate diploma college of technology: 5 
(6.8%) 

Diploma professional training college: 2 
(2.7%) 

Advanced diploma professional training 
college: 3 (4.1%) 

University undergraduate: 35 (47.3%) 
University postgraduate: 3 (4.1%) 

Income (%) 
 

Minimum: 8 (11.1%) 
 Below the national average: 22 

(30.6%) 
 Approximately the national average: 

26 (36.1%) 
1 to 2 times the national average: 7 

(9.7%) 
2 or more times the national average: 

3 (4.2%) 
Missing: 6 (8.3%) 

Minimum: 6 (8.1%) 
 Below the national average: 25 (33.8%) 
 Approximately the national average: 18 

(24.3%) 
1 to 2 times the national average: 14 (18.9%) 

2 or more times the national average: 9 
(12.2%) 

Missing: 2 (2.7%) 

Occupation  

(% Employed) 
32 (44.4%) 50  (67.6%) 

Subjective SES a 6 (± 2.0) 
Range: 2 – 10 

5.28 (± 2.0) 
Range: 1 – 9 

BMI 27.3 (± 5.5)  
Range: 18.4 – 51.1 
Missing: 2 (2.8%) 

22.0 (± 3.2) 
Range: 16.9 – 34.3 
Missing: 1 (1.4%) 
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Healthy Eating 

Goals b 

5.3 (± 1.1)  
Range: 1 – 7 

5.0 (± 1.3) 
Range: 1 – 7 

a 10-point scale (Adler et al., 2000). 
b 7-point scale (de Vries et al., 2020b). 

 

Table A6.2. 
Characteristics of high- and low-calorie food stimuli used in the spatial memory task across cultures. 

Spatial 

Memory Task - 

USA a 

Parameter (unit) High-calorie 

M (SD) 
Low-calorie 

M (SD) 
p 

Nutritional 

Content b 

Energy density (kcal/100g) 381.3 (111.7) 30.8 (16.1) <.001 

Total energy displayed (kcal) 677.9 (797.8) 115.4 (112.1) <.001 

Protein to Carbohydrate and Fat Ratio 0.2 (0.2) 0.4 (0.4) .514 

Subjective 

Ratings c 

Perceived calories (mm)  85.9 (19.6) 29.3 (23.3) <.001 

Perceived healthiness (mm)  21.3 (23.6) 78 (24.2) <.001 

Recognizability (%)  83.6 (6.7) 81.16 (6.7) .381 

Image 

Characteristics 

b 

Color (Red; pixels) 0.5 (0.03) 0.5 (0.1) .796 

Color (Green; pixels) 0.3 (0.03) 0.4 (0.1) .211 

Color (Blue; pixels) 0.2 (0.03) 0.2 (0.1) .159 

Size (pixels) 0.3 (0.1) 0.3 (0.1) .861 

Brightness (luminance) 33.3 (9.2) 31.5 (8.3) .620 

Contrast (luminance) 48.2 (9.2) 45.2 (13.2) .518 

Complexity (pixels) 0.1 (0.02) 0.1 (0.03) .602 

Normalized Complexity (pixels) 0.3 (0.1) 0.3 (0.1) .985 
a Food Pics catalogue numbers High-calorie: 2,4,16,27,53,60,103,104,116,134,286,517; Low-calorie: 
199,233,250,251,260,364,389,392,413,442,453,466 
b Data available from the Food Pics database (Blechert et al., 2019). 
c Pilot results from a separate sample of the target population (N = 31; 45.2% Male; MAge = 51.5 (± 16.4) years, 
Range: 23 – 85 years) 
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Spatial Memory Task 

- Japan a 

Parameter (unit) High-calorie 

M (SD) 
Low-

calorie 

M (SD) 

p 

Nutritional Content b 

Energy density (kcal/100g) 378 (109.1) 32 (16.3) <.001 

Total energy displayed (kcal) 692.1 (788.5) 119.9 
(109.1) 

<.001 

Protein to Carbohydrate and Fat 
Ratio 

0.2 (0.2) 0.3 (0.4) .755 

Subjective Ratings c 

Perceived calories (mm)  80.8 (17) 41.8 (25.5) <.001 

Perceived healthiness (mm)  36.4 (26.9) 73.9 (19.9) <.001 

Recognizability (%)  91.1 (5.2) 91.7 (7.4) .823 

Image 

Characteristics b 

Color (Red; pixels) 0.5 (0.03) 0.5 (01) .729 

Color (Green; pixels) 0.3 (0.03) 0.4 (0.1) .223 

Color (Blue; pixels) 0.2 (0.03) 0.2 (0.1) .300 

Size (pixels) 0.3 (0.1) 0.3 (0.1) .426 

Brightness (luminance) 37.1 (13) 30.6 (9.1) .169 

Contrast (luminance) 49.5 (8.2) 46.1 (13.4) .463 

Complexity (pixels) 0.1 (0.03) 0.1 (0.03) .114 

Normalized Complexity (pixels) 0.3 (0.1) 0.3 (0.1) .927 
a Food Pics catalogue numbers High-calorie: 2,4,16,27,53,60,103,116,134,286,517,619; Low-calorie: 
199,233,250,251,260,333,389,392,413,442,453,466 
b Data available from the Food Pics database (Blechert et al., 2019). 
c Pilot results from a separate sample of the target population (N = 29; 48.3% Male; MAge = 48.6 (± 16.5) years, 
Range: 19 – 80 years) 
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Table A6.3. 
Finalized linear mixed effects models (LMM) of food spatial memory performance of the US sample. 
Variable F Df1 Df2 p ηp² 90%CI ηp² 

Model 1: Best-fitting LMM1 

Intercept 59.95 1 65 <.001* - - 
Caloric Density 4.08 1 70 .047* 0.06 0.0004 – 0.16 
Taste 0.37 1 1583.2 .546 - - 
Ethnicity 2.47 5 65 .041* 0.16 0.02 – 0.63 
Caloric Density*Education 2.58 2 67.4 .083 - - 

Model 2: Best-fitting LMM with exploratory covariates (i.e. BMI, Healthy Eating Goals, and 

Encoding Time) 1 
Intercept 2.74 1 59.5 .103 - - 
Caloric Density 4.26 1 67.8 .043* 0.06 0.001 – 0.17 
Taste 0.26 1 1534.2 .612 - - 
Ethnicity 2.41 5 59.6 .047* 0.17 0.007 – 0.65 
Caloric Density*Education 2.12 2 63.4 .128 - - 
BMI 6.25 1 59.6 .015* 0.09 0.01 – 0.23 
Healthy Eating Goals 0.08 1 59.5 .779 - - 
Encoding Time 11.9 1 557.9 .001* 0.02 0.01 – 0.05 
1 Dependent variable = Food spatial memory accuracy (D) 
*Significant at α = 0.05 

 

Table A6.4. 
Finalized linear mixed effects model (LMM) of food spatial memory performance of the Japanese sample. 

 Variable F Df1 Df2 p ηp² 90%CI ηp² 

Model 1: Best-fitting LMM (with and without exploratory covariates of BMI, Healthy Eating 

Goals, and Encoding Time) 1 
Intercept 297.79 1 128.1 <.001* - - 
Caloric Density 2.00 1 70.1 .161 - - 
Taste 1.32 1 1584.2 .251 - - 
Desirability 7.63 1 1471.9 .006* 0.05 0.001 – 0.01 
Sex 4.38 1 68.10 .040* 0.06 0.002 – 0.17 
Caloric Density*Taste 4.06 1 1583.6 .044* 0.003 0.0001 – 0.01 
Caloric Density*Occupation 3.24 2 69.03 .045* 0.09 0.002 – 0.32 

1 Dependent variable = Food spatial memory accuracy (D) 
*Significant at α = 0.05 
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Table A6.5. 
Finalized linear mixed effects models (LMM) of food spatial memory performance of the combined (i.e. 
USA, Japan, and the Netherlands) sample. 
Variable F Df1 Df2 p ηp² 90%CI ηp² 

Model 1: Best-fitting LMM1 

Intercept 488.7 1 556.2 <.001* - - 
Country 25.08 2 548.1 <.001* 0.08 0.09 – 0.22 
Caloric Density 4.44 1 552.1 .036* 0.01 0.0003 – 0.02 
Taste 6.89 1 12177.3 .009* 0.001 0.0001 – 0.001 
Sex 7.44 1 544.1 .007* 0.01 0.002 – 0.03 
Age 45.89 1 544 <.001* 0.08 0.05 – 0.12 
Education 14.41 1 544 <.001* 0.03 0.01 – 0.05 
Desirability 5.97 1 11595 .015* 0.001 0.0001 – 0.001 

Model 2: Best-fitting LMM with exploratory covariates (i.e. BMI and Task/Encoding Time) 1 
Intercept 205.59 1 543.1 <.001* - - 
Country 27.13 2 544.9 <.001* 0.09 0.1 – 0.23 
Caloric Density 4.36 1 548.3 .037* 0.01 0.0002 – 0.02 
Taste 6.87 1 12103.2 .009* 0.001 0.0001 – 0.002 
Sex 6.36 1 538.3 .012* 0.01 0.001 – 0.03 
Age 43.92 1 538.8 <.001* 0.08 0.04 – 0.1 
Education 11.76 1 538 .001* 0.02 0.01 – 0.05 
Desirability 5.97 1 11498.5 .015* 0.001 0.0001 – 0.001 
BMI 2.09 1 538 .148 - - 
Task (Encoding) Time 11.04 1 13034 .001* 0.001 0.0002 – 0.002 
1 Dependent variable = Food spatial memory accuracy (D) 
*Significant at α = 0.05 
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7.1 Aim and Main Findings 

The modern food environment is characterized by the proliferation of cheap, 
convenient, and highly palatable energy dense foods, stimulating the 
(over)consumption of ‘unhealthy’ high-calorie items (Egger & Swinburn, 1997; Hill et al., 
2003; Lakerveld et al., 2018). However, not everyone overeats and develops a positive 
energy balance, indicating that large differences exist in how individuals respond to the 
heightened systemic availability and accessibility of high-calorie foods (Swinburn et al., 
2011; Small, 2009; Wardle, 2007). Identifying the factors that underlie these individual 
differences has become an important research theme within the fields of human eating 
behavior and health psychology, and has significant implications for (public) health 
promotion efforts and expenditures (Kortt et al., 1998; Swinburn et al., 2011). This thesis 
is grounded on the novel premise that differences in the ability to successfully navigate 
current “obesogenic” settings may (partially) stem from a cognitive adaptation that 
evolved for optimal foraging within harsh ancestral food environments. Specifically, 
from the graded expression of a calorie-sensitive cognitive system that enabled 
ancestral humans to efficiently (re)locate valuable nutritional resources with varying 
spatiotemporal availabilities – a bias in spatial memory for high-calorie foods (Allan & 
Allan, 2013; New et al., 2007b).  

The overall aim of this thesis was to advance existing empirical observations on 
the presence and behavioral consequences of a high-calorie bias in human spatial 
memory (Allan & Allan, 2013; New et al., 2007b). Chapters 2, 3, and 6 primarily 
investigated the expression of the high-calorie bias in spatial memory across 
ecologically-valid sensory modalities (e.g. vision and olfaction), diverse 
sociodemographic groups within a population, and cultures that differ in cognitive 
processing characteristics and attitudes towards food. Chapters 2, 4 and 5 were 
centrally focused on examining the potential translation of the cognitive bias into 
proximal (e.g. food search) and distal (e.g. BMI) – as well as incidental (e.g. grocery 
purchases) and routine (e.g. high-calorie food environment visits) – measures of 
individual eating behavior.  

An overview of the main results of each chapter is provided in Figure 7.1. 
Through a series of lab-based, field-based, and online multisensory experimental 
paradigms, Chapters 2 to 6 consistently demonstrate that human memory shows 
sensitivity to the caloric quality of foods, and automatically prioritizes the locations of 
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those with higher energy payoffs. Furthermore, findings confirm the maladaptive 
potential of the cognitive bias for individuals’ eating behavior within a modern foraging 
context. A greater expression of the high-calorie bias in spatial memory predicted a 
lower perceived difficulty of finding high-calorie foods in a supermarket (Chapter 4), 
more routine visits to high-calorie food outlets (Chapter 5), stronger snack purchasing 
habits and a subsequently higher BMI (Chapter 5). This final chapter reflects on key 
conceptual insights and methodological features of the thesis, as well as addresses 
practical implications for health interventions and recommendations for future research. 

 

 
Figure 7.1. Synthesis of findings on the expression and translation of the high-calorie bias in human spatial 
memory. Relationships between boldened concepts (i.e. boldened unbroken lines) were found to be 
significant in at least one thesis chapter. A boldened line with a slanted end indicates a significant 
antagonistic effect. 
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7.2 Theoretical Reflections 
In the following sections, I will reflect on this thesis’ findings from a theoretical 

standpoint. I will first elaborate on aspects pertaining to the expression of the high-
calorie bias in spatial memory (sections 7.2.1 and 7.2.2), then pursue the bias’ 
translation into dietary outcomes (sections 7.2.3 and 7.2.4), and culminate with a 
commentary on how researching human spatial cognition and eating behavior in 
tandem has mutually benefitted both scientific domains (section 7.2.5). 
7.2.1 The high-calorie bias in human spatial memory is widely expressed, and bears the 
characteristics of an autonomous and efficient foraging-related mechanism. 

Chapters 5 and 6 illustrate first-hand that members of varying cultures, as well 
as diverse sociodemographic groups within a population, all exhibit an enhanced 
memory for the locations of high-calorie foods to a similar degree (Figure 7.1). These 
results are compatible with the notion that the high-calorie bias in spatial memory 
represents a component of our universal (human) cognitive architecture (Krasnow et 
al., 2011; Nairne, 2010; Tooby & Cosmides, 2005). Central to the explanation of a 
potential cognitive adaption, however, is a careful examination of its complex functional 
design, which enabled it to solve a particular adaptive problem in our evolutionary past 
(Cosmides & Tooby, 1997; Tooby & Cosmides, 2005). A complete description of the 
underlying properties of the high-calorie bias in spatial memory will also better inform 
intervention strategies that could target its activity in an effort to promote healthier diets 
(see sections 7.4 and 7.5.1). Apart from showing sensitivity to the (relative) caloric 
content of a potential food, two principal functional features of the high-calorie spatial 
memory bias emerged from our investigations: 

Firstly, the high-calorie bias in human spatial memory was found to develop 
outside of an individual’s conscious effort (i.e. encoding times; Chapters 2, 4, and 6) 
or explicit instruction (Chapter 3) to encode food locations. Relatedly, individuals 
showcased an enhanced memory for high-calorie food locations regardless of their 
reported dietary preferences (e.g. Liking, Desirability; Chapters 2 to 6), previous 
exposure to foods (i.e. Familiarity; Chapters 2 to 6), deliberated nutritional intentions 
(e.g. Healthy Eating Goals; Chapters 2 and 6), or the amount of attention they 
allocated to high-calorie foods (Chapter 4) (Figure 7.1). Importantly, food-specific 
biases in early- and late- components of attention, as measured in Chapter 4, can be 
considered more objective proxies of unconscious versus conscious appetitive 
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motivations towards high-calorie foods, respectively (Werthmann, 2014). Our 
observations thus align with a mechanism that has autonomy or automaticity built into 
its architecture, in that its execution does not depend on an individual’s volitional control 
and occurs as soon as its triggering stimuli (i.e. high-calorie food cues) are encountered 
– the latter a hallmark of an “impulsive” (Type 1) cognitive process (Evans, 2008; Evans 
& Stanovich, 2013; Stanovich, 2009; Strack & Deutsch, 2004). 

Moreover, Chapters 2 to 6 demonstrate that the high-calorie spatial memory 
bias already manifests within a single isolated sensory modality (i.e. using food images 
or food odors; Figure 7.1), and Chapter 3 in particular provides direct evidence that 
its expression is not altered by an increasing range of sensory cues. This strongly implies 
that the cognitive bias requires only a limited presence of sensory information to be 
fully operational, and speaks to a mechanism with a high processing efficiency in that 
the bias performs as effectively in situations with less available spatial (sensory) task 
resources (Eysenck & Calvo, 1992). However, we believe an important precondition for 
the overall workings of the high-calorie bias in spatial memory – which we accordingly 
piloted for in all our studies – is that extant sensory cues have to be sufficiently 
recognizable (or minimally familiar) to individuals. That is, in order for individuals to 
successfully gauge the energetic “profitability” of a food based on encountered sensory 
cues, they need to have had previous eating experiences with a food item (or closely 
similar analogues) and learned to associate information on caloric quality with its 
sensory properties (Myers, 2018; Schoener, 1971; Yeomans, 2006). It follows that the 
spatial processing bias is unlikely to discriminate between completely novel foods, 
unless the differential energy return rates of such foods are to be readily detected prior 
to ingestion (e.g. smelling fat content from a distance; Boesveldt & Lundström, 2014) 
or shortly after tasting (e.g. Smeets et al., 2011).  

Collectively, these characteristics closely resemble the performance signature of 
an evolved spatial system wired for optimizing habitual foraging efforts, as together 
they would have (1) enabled the effortless registration and prioritization in memory of 
the location of sensory cues signaling energy-rich nutritional resources, (2) supported 
the efficient navigation towards these high priority resources as they became available 
or valuable (e.g. ripe) with seasonal fluctuations, and (3) conferred the added advantage 
of freeing up limited attentional resources to be used in other fitness-relevant tasks (e.g. 
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avoiding predators, caring for vulnerable members) (Krasnow et al., 2011; New et al., 
2007b; Schoener, 1971). 
7.2.2 Distinct spatial adaptations are expressed for efficient energy attainment and 
protein balance. 

Besides energy content, the Taste quality of a food also independently 
predicted how well its spatial position was later recalled, with locations of savory-tasting 
foods prioritized above that of sweet-tasting alternatives. We speculated that the latter 
could reflect a foraging adaptation for protein-rich resources, in light of the nutrient-
signaling function of tastes (Breslin, 2013; Teo et al., 2018; Yarmolinsky et al., 2009). This 
was further informed by anthropological data showing that ancestral hunter-gatherers 
had relatively high nutritional protein demands, and major protein sources (i.e. mobile 
animal prey) were more difficult to successfully capture than carbohydrate-rich 
resources (i.e. immobile fruits) (Bird et al., 2009; Cordain et al., 2000). Indeed, protein 
balance is tightly regulated across animal species, and there is evidence that protein 
homeostasis in humans can be maintained by (implicit) cognitive processes (Griffioen-
Roose et al., 2012; Simpson & Raubenheimmer, 2000). 

Unlike the high-calorie spatial memory bias however, the savory-taste bias in 
human food spatial memory was observed in only four out of six studies (cf. Chapters 

2, 4, and 6). The reason for the discrepancy in robustness between Caloric Density and 
Taste effects is unclear. One possibility concerns inconsistencies in the macronutrient 
balance of food stimuli between Taste groups. In Chapter 3, sweet- and savory-tasting 
items were unintendedly matched on macronutrient composition (i.e. protein to 
carbohydrate and fat ratios). Thus during this instance, foods were equivalent on the 
aspect of nutrient balance between Taste conditions, which would have eliminated the 
supposed fitness-advantage of a more accurate location memory for (protein-rich) 
savory-tasting resources (Breslin, 2013; Simpson & Raubenheimer, 2005; Yarmolinksy 
et al., 2009). It must be noted though that in Chapter 5, an influence of Taste on spatial 
memory performance was absent despite a systematically higher protein to 
carbohydrate and fat ratio of savory-tasting foods. However, the latter may have 
resulted from a compromised power to detect a significant Taste effect, as the slight 
prioritization of savory food locations in memory became apparent later within a larger 
study sample (Chapter 6). It therefore seems that the savory-taste bias in spatial 
memory is responsive to a food’s relative protein (to non-protein) content. Taken 
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together, results reinforce the importance of macronutrient balance (i.e. protein to 
carbohydrate and fat ratios) to the food choice trajectories of human and non-human 
species, and attest to the utility of optimal foraging models that adopt the regulation of 
nutrients (as opposed to energy) as a currency (Felton et al., 2009; Simpson et al., 2003; 
Simpson & Raubenheimer, 2005; Winterhalder, 1981). 
7.2.3 Immediate effects of the high-calorie spatial memory bias are mainly on 
psychological processes preceding (incidental and routine) food choice. 

Another replicated finding of this thesis was that, contrary to expectations, the 
high-calorie bias in human spatial memory does not directly translate into individuals’ 
food choices (cf. Chapters 2, 4, and 5; Figure 7.1). Rather, Chapter 4 saw that the 
bias can potentiate the future (incidental) choice of a high-calorie food indirectly, by 
manipulating the subjective ease of acquiring these options in one’s immediate 
surroundings and exploiting individuals’ propensities to prefer highly convenient foods 
during instances of decision-making (Furst et al., 1996; Sobal et al., 2006). Chapter 5 
places these results against a wider spatiotemporal background and elucidates the 
capacity of the high-calorie bias in spatial memory to foster stronger snack purchasing 
habits, as well as a greater routine frequency of visiting high-calorie food outlets 
(Figure 7.1). This similarly indicates that the bias may play a more downstream role in 
stimulating unhealthy routine high-calorie food choice, by either creating momentum 
for repeated calorie-dense food selections within certain contexts (Sobal et al., 2006; 
Verplanken & Orbell, 2003), or regularly placing individuals in physical contexts that 
increase the likelihood of choosing a high-calorie item (Cardello, 1994; Meiselman, 
2006; see inter-variable correlations in Table S6 of Chapter 5). 

On that note, it must be reiterated that the modest changes induced by the 
spatial processing bias on perceived high- versus low-calorie search difficulty (B = 0.04), 
snack purchasing habit strength (B = -0.001), routine high-calorie food environment 
visits (B = -0.02), and BMI (B = -0.001 for an indirect effect and B = -0.01 for a direct 
effect in Allan & Allan, 2013), were for a one-unit pixel increase in the relative accuracy 
of recalling high-calorie food locations.  However, these changes likely represent a 
systematic underestimation of the forecasted impact on these outcomes in practice, as 
standardized between-subject differences in the expression of the high-calorie spatial 
memory bias ranged from 67 pixels (Chapter 4) to 102 pixels (Chapter 5) across 
studies. 
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7.2.4 “Reflective” goal-oriented psychological processes are important for healthy 
dietary regulation and can protect against the high-calorie spatial memory bias’ 
maladaptive “impulsive” effects. 

A final recurring theme of this thesis pertains to the predictive validity of an 
individual’s “reflective” goal-oriented psychological processes in determining healthy 
eating behavior, and the seemingly antagonistic dynamic between one’s controlled 
dietary regulation efforts and “impulsive” maladaptive responses the high-calorie bias 
in spatial memory translates into (Evans, 2003; Evans & Stanovich, 2013; Hofmann et 
al., 2008; Strack & Deutsch, 2004). In a health-minded sample of participants, 
individuals’ reasoned intentions towards healthy eating proved to be the sole robust 
predictor of proximal (e.g. food choice) as well as distal (e.g. BMI) eating-related 
measures, whereas the high-calorie bias in spatial memory failed to exert any effects 
(see Chapter 2; Figure 7.1). This presented the first indication of possibly conflicting 
and competing roles of the high-calorie spatial memory bias versus more reflective (i.e. 
Healthy Eating Goals) precursors of eating behavior. The importance of goal-directed 
psychological constructs was further strengthened in Chapter 5, which also provided 
more concrete evidence for a dual-systems account of individuals’ routine dietary 
behavior involving the cognitive bias. Chapter 5 saw that an enhanced ability to inhibit 
responding to high-calorie food stimuli was independently associated with a lower BMI, 
whereas stronger (bias-mediated) snack purchasing habits translated into a higher body 
weight (Figure 7.1). More interesting, however, was the observation that an individual’s 
inhibitory control directly interacted with the high-calorie bias in spatial memory to 
reduce the frequency of visits made to calorie-laden food environments (Figure 7.1). 
A noteworthy outgrowth of this dual-systems account is that, given one’s established 
motivation to maintain a healthy diet, the tendency of the bias to impair self-regulation 
efforts and assume greater control over eating behavior will be most pronounced under 
circumstances in which self-control resources are low (e.g. in a cognitively-taxing or 
emotionally-distressed state; Hofmann et al., 2009; Hofmann et al., 2008).  
7.2.5 Insights into human eating behavior advance our theoretical understanding of 
human spatial cognition.  

The focus so far has been on how the operations of human spatial memory can 
be used to rationalize our eating behavior. Indeed, literature is replete with reports on 
the influence of human memory – especially episodic and working memory – on 
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individuals’ food choice and food intake (see Higgs & Spetter, 2018 and Higgs et al., 
2012 for a review). However, we wish to conclude this section by reflecting on the utility 
of the reverse relationship. We illustrate below how studying human eating behavior in 
this thesis has mutually advanced our theoretical understanding of human spatial 
cognition. 

Traditional frameworks of human memory – including the faculty of spatial 
memory – largely argue for the primacy of “general-purpose” learning mechanisms, 
which do not differentiate between the types of information that are processed (Nairne, 
2010; Nairne & Pandeirada, 2010; Tooby & Cosmides, 1992). In this view, the control of 
recall performance is delegated to the “match” or degree of overlap in cues present 
between encoding and retrieval contexts (Tulving & Thomson, 1973). It follows that 
mnemonic encoding techniques are those that create “elaborated” memory traces and 
generate multiple possible retrieval cues that will likely match those present in recall 
environments (Craik & Lockhart, 1972; Craik & Tulving, 1975). As such, modern memory 
theory is content-insensitive at its core, because it assumes that environmental aspects 
– as opposed to information content – determine the likelihood of correct recall (Nairne, 
2010). Our findings on the widespread mnemonic effect of a food’s caloric content 
challenge these conventional assumptions, and join an increasing literature base 
centered on the notion of adaptive memory, which advocates a more functional 
account of human memory that is content-sensitive and attuned to processing fitness-
relevant information (Nairne, 2010; Nairne & Pandeirada, 2010).  

That being said, this thesis far from condones the complete abandonment of a 
“blank-slate” perspective of human cognition in favor of a purely “nativist” one, in which 
our cognitive architecture predominantly consists of separate specialized problem-
solving systems as is often championed by evolutionary psychology (Tooby & 
Cosmides, 2005). Rather, our work empirically substantiates a hybrid model of human 
(food) spatial memory, by acknowledging the mutually exclusive yet equally important 
roles that nutrition-sensitive and general learning mechanisms play in its operations. 
The latter becomes evident when comparing effect sizes of the main determinants of 
spatial recall performance across studies. Despite differences in sensory modalities, 
participant samples, and experimental procedures, a food’s intrinsic Caloric Density (and 
Taste) consistently accounted for a comparable (unique) proportion of variance in 
spatial memory accuracy as its rated Liking, Desirability, and Familiarity, and even the 
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time an individual took to encode food locations within intentional learning paradigms 
(e.g. Chapters 2 and 6; see Haun et al., 2006 for a similar interpretation of human 
spatial cognition).  

 
7.3 Methodological Considerations 

7.3.1 Strength: Variety of studies included 
The methodological composition of this thesis strongly delivered on two major 

fronts. The first concerns the inclusion of a variety of experimental paradigms – 
encompassing lab-based, field-based, and online-mediated studies – to address a set 
of complementary research questions on the cognitive bias. The relevance of each study 
type for the specific aims of this thesis are elaborated on below. 

The use of highly-controlled lab experiments in Chapter 2 was conducive to 
obtaining rigorous evidence for the existence of food-specific biases in human spatial 
memory. This experimental format allowed us to simultaneously control for potential 
confounders (e.g. differences in encoding times), avoid floor or ceiling effects in our 
primary research objectives (e.g. by standardizing hunger state), effectively manipulate 
Caloric Density and Taste features of food stimuli, as well as isolate effects on spatial 
memory performance unique to the nutritional properties of a food (Falk & Heckman, 
2009; Webster & Sell, 2007). These two beginning experiments also proved to be a 
crucial step in validating task materials (i.e. adapted computer-based spatial memory 
task, standardized food images and food odors) for use in remaining studies. By the 
same token, examining the expression of both the high-calorie spatial memory bias and 
high-calorie biases in visual attention in the lab in Chapter 4 provided a robust test of 
whether their associations would be internally valid (Roe & Just, 2009).  

After establishing a proof-of-concept in Chapter 2, our follow-up investigation 
within the field setting of Chapter 3 was an ambitious test for the generalizability of 
the high-calorie bias in spatial memory to more “naturalistic” foraging circumstances. 
The methodological set-up of Chapter 3 made it possible to (randomly) assign foods 
to dispersed locations in three-dimensional space and for individuals to spatially 
navigate between food stimuli. It also permitted the integration of an incidental learning 
procedure and the accommodation of a large and more heterogeneous sample of 
participants, which would have been difficult to achieve in our lab-based experimental 
paradigm. Relatedly, the semi-controlled supermarket setting in Chapter 4 was not 
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only ecologically-valid for dissecting real-world eating behavior in a modern foraging 
context, but it similarly proved useful in detecting small changes in food search 
parameters that likely would have remained hidden in “noisier” natural field experiments 
(e.g. recording participant movements unobtrusively during peak supermarket hours; 
Harrison and List, 2004). 

Finally, our online-mediated studies were instrumental to further demonstrating 
the external validity of the cognitive bias and its behavioral consequences across 
sociodemographic groups (Chapters 5 and 6), cultures (Chapter 6), and situational 
testing conditions, given that individuals were free to complete online experiments at a 
place and time of their choosing (Chapters 5 and 6). An online study format was 
particularly beneficial for giving us access to subpopulations (e.g. low socioeconomic 
position, overweight/obese individuals) and those native to a completely different 
culture, that otherwise would have been very challenging to reach using conventional 
recruitment methods (Reips, 2000; Wright, 2005). Importantly, stratified sampling based 
on sociodemographic variables (e.g. age, education level) was feasible in Chapter 5, 
which culminated in a nationally representative sample of our target Dutch population 
that we could draw study conclusions from. 
7.3.2 Strength: Range of eating behavior measures 

This thesis also featured a broad range of eating behavior measures, which 
varied on conceptually meaningful temporal (i.e. proximal to distal effects) and 
frequency (i.e. incidental to routine behavior) dimensions (Figure 7.2). In doing so, we 
covered a wide spectrum of possibilities in assessing behavioral targets of the high-
calorie spatial memory bias. The pros and cons of each category of investigated 
outcomes are discussed below. 
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Figure 7.2. The collection of eating behavior measures featured in this thesis, which varied on temporal and 
frequency dimensions. The temporal (proximal – distal) axis refers to the position of a measure along the 
hypothesized behavioral chain of events triggered by the high-calorie spatial memory bias. The frequency 
(incidental – routine) axis reflects whether a measure denotes a single-instance or repeated form of eating 
behavior as operationalized in this thesis. As our distal measures only concerned individuals’ long-term 
eating behavior, incidental-distal variants were absent from this thesis. 
 

Incidental and proximal markers of eating behavior (i.e. food preference and 
food choice) were employed in Chapter 2 as a first exploratory step to gauge the bias’ 
effects. In light of the established association between the high-calorie bias in spatial 
memory and individual BMI (Allan & Allan, 2013), we reasoned that the latter could 
have resulted from a greater bias-induced tendency to prefer and prospectively choose 
for high-calorie foods more upstream in the behavioral pathway (Allan & Allan, 2013; 
Paradis et al., 2009; Rothemund et al., 2007; Stoeckel et al., 2008). In addition, from a 
methodological standpoint, the Macronutrient and Taste Preference Ranking Task 
demonstrated good reliability and construct validity in previous investigations (de Bruijn 
et al., 2017; de Vries et al., 2018; de Vries et al., 2019), and our lab-based food choice 
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measure enabled us to covertly record participant food selections (under the guise of 
a “performance prize”) while controlling for product availability and product placement 
aspects (Hollands et al., 2019; van Kleef et al., 2012). Outcomes of the same category 
were chosen in Chapter 4 (i.e. objective and subjective food search times; high-calorie 
grocery purchases) based on the same theoretical grounds, but with the added 
methodological benefit of an ecologically-valid (physical) food navigation context. 
Despite possessing certain advantages, a notable caveat of incidental measures is that 
they capture one mere “snapshot” in time of an individual’s eating trajectory. As such, 
they may not accurately reflect one’s longitudinal dietary choices, which aggregate 
multiple timepoints and situations (Furst et al., 1996; Sobal & Bisogni, 2009; Sobal et al., 
2006). On a related note, our incidental parameters lacked an appropriate situational 
backdrop to assess an individual’s default dietary decisions (e.g. by framing food 
choices as an experimental reward; Meiselman, 2006). This may have unduly impacted 
our results, as task instructions could have activated more deliberated or strategic 
processes during decision-making, when most food decisions are intuitive and heuristic 
in nature (Furst et al.,1996; Köster, 2009; Sobal & Bisogni, 2009). 

Therefore, we increasingly adopted more routine and contextually-diverse 
eating-related parameters, in order to approximate an individual’s habitual behavioral 
patterns as best as possible. Chapter 5 included routine frequencies of (proximal) high-
calorie snack consumption and high-calorie food environment exposure. We utilized a 
culture-specific snack FFQ for the former, which encompassed an exhaustive range of 
high-calorie snack foods commonly eaten in the Netherlands and was validated for use 
in the Dutch population (Streppel et al., 2013). For the second routine-proximal 
measure, we developed a questionnaire to classify high-calorie food environments and 
calculate the frequency of (monthly) visits to them. Although our Food Environment 
Questionnaire has yet to be formally validated against individuals’ actual movements 
between food retail outlets (see section 7.5.2), our classification system paralleled 
expert-derived “healthiness scores” of urban Dutch food outlet types (Timmermans et 
al., 2018) and the questionnaire showed good usability in the study and its preceding 
pilot. Finally, routine and distal indicators of eating behavior (i.e. BMI and Waist 
Circumference; Chapters 2 and 5) were relevant to investigate for reasons of health 
and replicability (cf. Allan & Allan, 2013). Namely, both BMI and Waist Circumference 
serve as good objective anthropometric proxies of excess fat mass (Bouchard, 2007) 
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and dietary quality (Paradis et al., 2009; Newby et al., 2003; Newby et al., 2004), albeit 
with differing sensitivities to (regional) adiposity (Stevens et al., 2008). A disadvantage 
generally associated with distal outcomes is that they ultimately represent a product of 
a complex interplay of factors (i.e. energy expenditure in addition to energy intake), and 
are thus less “powered” to detect a hypothesized effect on, and limited in providing 
detailed mechanistic insights when used alone. Furthermore, a downside of our routine 
behavioral measures is that they mainly concerned self-reported questionnaires, which 
are susceptible to report biases due to social desirability effects (Hebert et al., 1995; van 
de Mortel, 2008). However, self-reports presented the only feasible option for a large 
online study format, sufficient controls (e.g.  anonymity and honesty reminders, 
question order randomization, data quality checks) were implemented to reduce the 
risk of biased responses.  
7.3.3 Limitation: Spatial memory task variants 

The first limitation of this thesis concerns the inclusion of only two spatial 
memory task variants, with the computer-based (two-dimensional map) version being 
the dominant means of measuring individual food spatial memory across studies (i.e. 
all but Chapter 3).  

The computer-based food spatial memory task embodies a classic “table-top” 
paradigm to test object location memory (e.g. Pezdek et al., 1986), and performance 
on the task was shown to previously covary with a conceptually-relevant marker of long-
term dietary intake (i.e. BMI; Allan & Allan, 2013), as well as other (incidental and routine) 
eating-related parameters in this thesis (Chapters 4 and 5; Figure 7.1). However, an 
enhanced (computer-tested) memory for high-calorie food locations did not correlate 
with actual food search behavior in a larger supermarket setting, despite observing a 
faster localization of high- versus low-calorie foods in the latter (Chapter 4; Figure 

7.1). As discussed in Chapter 4, this could be attributed to the fact that human spatial 
memory is a complex cognitive faculty, and distinct spatial systems – as well as distinct 
forms of spatial learning – are known to function at different scales and layouts of space 
(Hegarty et al., 2006; McNamara & Shelton, 2003; Pazzaglia & Taylor, 2007; Piccardi et 
al., 2010). Relatedly, variations in the availability of sensory (spatial) information for 
individuals to use in spatial tasks between navigational contexts could have contributed 
to this discrepancy (Wolbers & Hegarty, 2010). For instance, additional visual cues (e.g. 
product and aisle “landmarks”) were likely present in the supermarket, which could have 
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allowed for a richer construction of cognitive maps compared to the lab-based 
computerized task version (Downs & Stea, 2011; Wolbers & Hegarty, 2010).  

As such, we cannot exclude the possibility that a partial dissociation exists 
between performance on the computer-based food spatial memory task and real-world 
food wayfinding behavior (for a similar conclusion see Hegarty et al., 2006; but see 
Chapter 3 and New et al., 2007b for replication of the high-calorie spatial memory bias 
in a larger maze-like food setting and outdoor food market). A promising development 
in this regard concerns the use of virtual spatial navigation tasks, which can mirror the 
sensory complexity of three-dimensional environments (e.g. by incorporating odors; 
Radvansky & Dombeck, 2018) and closely approximates individuals’ large-scale spatial 
ability (Cogné et al., 2017; Ventura et al., 2013). Virtual environments can also 
accommodate individual differences in spatial cognition (e.g. orientation ability and 
cognitive styles in spatial representation; Kozlowski & Bryant, 1977; Pazzaglia & Taylor, 
2007), to better disentangle food navigation implications of the spatial processing bias. 
7.3.4 Limitation: Participant populations 

Finally, although this thesis investigated the expression and translation of the 
high-calorie spatial memory bias in varied sociodemographic and cultural groups (cf. 
Chapters 5 and 6), an adaptive account of the cognitive bias can be further 
corroborated by including more indigenous participant populations in future research 
efforts. Notably, to assess the generalizability of the spatial processing bias, we recruited 
samples from exclusively urbanized societies that have some diversity in spatial 
cognition (i.e. conceptualizing spatial object relations; Mainwaring et al., 2003), but 
these cross-cultural variations were perhaps not substantial enough (Majid et al., 2014). 
That is, language structures how individuals specify the locations of objects with respect 
to a reference object, and the dominant referencing style (or frame) between US 
English, Japanese, and even Dutch speakers is largely the same. Thus, given sufficient 
resources, the current evidence could be supplemented with food spatial memory data 
from certain indigenous tribal groups that practice a categorically different spatial 
relational language compared to post-industrialized societies (e.g. Haun et al.,2006; 
Majid et al., 2004). An additional advantage of studying this population is that modern 
hunter-gatherer tribes have an improved ability to name and discriminate between 
odor qualities (Majid & Kruspe, 2018; Wnuk & Majid, 2014), which would enable a more 
fair comparison of bias expression between sensory modalities (cf. Chapters 2 and 3). 
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7.4 Practical Implications for Health Interventions 

Insights on the capability of the high-calorie bias in spatial memory to impinge 
on how individuals forage within present-day food settings – and the specific 
intermediary processes that are involved (Figure 7.1) – offer a new perspective for 
existing interventions that aim to stimulate healthier food navigation within obesogenic 
environments. Though not explicitly tested in this thesis, we distinguish between health 
promotion strategies that could effectively intervene at the overall expression of the 
high-calorie spatial memory bias, versus those that target a more downstream process 
and may thus directly mitigate the bias’ translation into undesirable dietary outcomes. 

Chapters 2, 3, 4, and 6 illustrate how the prioritization in memory of high-
calorie food locations appears to operate autonomously and rapidly, which questions 
how susceptible the effect of caloric density on food spatial memory would be to 
attempts that aim to simply curtail it (e.g. via (re)training attentional allocation to low-
calorie foods; Kemps et al., 2014). Furthermore, the high-calorie bias in spatial memory 
requires minimal sensory information to be expressed (cf. Chapters 2 and 3), implying 
that the cognitive bias is likely to be triggered as soon as high-calorie food cues are 
perceived in one’s surroundings. To remedy this construction on an individual level, one 
approach would be to focus on other – equally potent– determinants of human food 
spatial memory (see section 7.2.5 for discussion on effect sizes of determinants). That 
is, nutritional interventions intending to effectively counter (or “mask”) the underlying 
spatial prioritization of high-calorie foods could benefit from increasing individuals’ 
hedonic valuations of – and familiarity with – healthy low-calorie items. Such 
interventions entail repeated taste exposures and reward-based conditioning strategies 
(e.g. flavor-consequence learning with fruits and vegetables; Appleton et al., 2018; 
Yeomans, 2006). An advantage of this approach is that food preferences and food 
exposure can mutually reinforce one another over time (Birch, 1999; Corsini et al., 2013), 
thus an individual’s spatial memory for low-calorie foods can conceivably be enhanced 
using the same (smaller) set of techniques that simultaneously increase desirability and 
familiarity of low-calorie options. 

In addition, drawing on findings from Chapter 5, two classes of behavior 
change strategies may be operationalized to disrupt the translation of the high-calorie 
spatial memory bias. Firstly, to resist bias-induced tendencies to visit high-calorie food 
outlets (Figure 7.1), individuals’ ability to withhold responses to high-calorie foods can 
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be trained with the use of food-specific Go/No Go paradigms (Jones et al., 2016; Veling 
et al., 2017). Food Go/No Go training has been shown to moderately reduce hedonic 
valuations, choice and intake of no-go food items (e.g. snack foods), as well as facilitate 
short-term weight loss, in studies using both healthy-weight and obese populations 
(Chen et al., 2018; Veling et al., 2013). Notably, this approach may particularly be 
beneficial in instances when reflective self-control processes typically fail (e.g. Hofmann 
et al., 2008; Hofmann et al., 2009), as Food Go/No Go training is thought to strengthen 
a more automatized form of response inhibition (Littman & Takács, 2017; Veling et al., 
2017). Secondly, the capacity of the spatial processing bias to form or consolidate snack 
purchasing habits (Chapter 5;  Figure 7.1) merits the consideration of behavior 
change strategies that integrate a contextual component with a behavioral one. The 
latter consists of techniques such as implementation intentions (e.g. “If I feel hungry on 
the way home from work, then I will buy an apple instead of chips at the train station”) 
and cue monitoring (e.g. feeling hungry on the way home from work cues me to 
purchase chips at the train station) (Abraham & Michie, 2008). Literature demonstrates 
that implementation intentions and cue-monitoring – especially when used in 
combination – represent a promising manner to reinforce healthy eating behavior (e.g. 
increase fruit and vegetable intake), as well as diminish existing unhealthy dietary habits 
(e.g. unhealthy snack consumption) (Adriaanse et al., 2011; Michie et al., 2009; 
Verhoeven et al., 2014). 

Alternatively, policy makers could opt for a more parsimonious structural 
approach to curb both the expression and translation of the high-calorie bias in spatial 
memory, by reversing the greater systemic availability and accessibility to unhealthy 
high-calorie items in our current food landscape (Lake & Townshend, 2006; Pitt et al., 
2017; Swinburn et al., 2011). Strategically limiting the range and prominence of (ultra-
processed) energy dense options in situational contexts where food decisions are 
regularly made (e.g. supermarkets) may prove useful in reducing the frequency with 
which the spatial processing mechanism is activated for these unhealthy highly calorific 
items. By the same token, increasing the variety and environmental salience of low-
calorie options (e.g. placing low-calorie instead of high-calorie items at check-out 
counters and other high-traffic areas) may steer food choice towards healthier 
alternatives, by enhancing their (perceived) convenience and essentially “levelling out” 
the inherent (perceived) search advantage of high-calorie foods – especially for 
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individuals in which the cognitive bias is greatest expressed (see Chapter 4; Figure 

7.1). Indeed, there is growing support for the efficacy of such alterations to the physical 
(micro) food environment, or its corresponding choice architecture, in promoting 
healthy food consumption (Hollands et al., 2019; van Kleef et al., 2012; Pechey & 
Marteau, 2018). 

In summary, a plethora of intervention opportunities – on both an individual 
and structural level – exists that can cater to specific components in behavioral pathways 
of the high-calorie spatial memory bias. Although proposed strategies may address 
upstream (bias expression) versus downstream (bias translation) processes to varying 
degrees of success  individually (Hennessy et al., 2020; Spring et al., 2020; Turton et al., 
2016), the most desirable and sustainable outcomes are expected when a variety of 
techniques, which act on multiple levels, are used concurrently (Hofmann et al., 2009; 
Johnson et al., 2014).  

 
7.5 Future Research Directions 

Yet, pressing questions on the inner workings of the high-calorie bias in human 
spatial memory remain. Below, we delineate two distinct research lines that would be 
worthwhile to pursue on the scientific agenda for the cognitive bias. 
7.5.1 Hijacking the spatial prioritization system to favor healthier food choices 

Inspired by the philosophy of utilizing “flaws” in human decision making to 
advance desirable behavior (Thaler & Sunstein, 2008), future research should examine 
whether we are able to capitalize on the functional characteristics (i.e. calorie-sensitivity, 
automaticity, and efficiency; section 7.2.1) of the spatial prioritization mechanism and 
use it to actively guide individuals towards healthier food choices.  

More specifically, it is presently not entirely clear whether the high-calorie spatial 
memory bias responds to the actual or perceived caloric quality of a food, as the actual 
energy density of a food item was always congruent with (relative) perceptions of its 
caloric content in the majority of studies to date. The question therefore remains 
whether the prioritization of a food in spatial memory – according to its fitness relevance 
– is determined by its objective or subjective caloric content, during instances when the 
two aspects are dissociated from one another. There is evidence suggesting that the 
perception and experience of calories can be shaped by visual pre-ingestive cues (e.g. 
packaging labels), and resulting “top-down” expectations of the nutritional content of a 
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food are able to override its intrinsic nutritional properties in driving (post-ingestive) 
physiological responses (Crum et al., 2011). Interestingly, the opposite trend in favor of 
actual caloric content has likewise been observed: Reward-related brain regions are 
differentially activated by food products similar in perceptual characteristics that only 
deviate on caloric content, upon and even prior to tasting (Frank et al., 2008; Smeets et 
al., 2011). Determining which tendency would apply most to the operations of the high-
calorie spatial memory bias has yet to be done. The latter can be achieved with a lab-
based experiment that manipulates perceived caloric content by varying nutritional 
labels on (calorie-matched) food products (e.g. Crum et al., 2011). If it does prove 
possible to “hijack” the high-calorie bias in spatial memory to our advantage – by 
tricking our minds to develop an enhanced spatial memory for low-calorie products 
that are framed to be higher in caloric content – this could ultimately reduce the reliance 
of individuals on finite self-regulation resources to meet their healthy eating goals, 
especially in “tempting” situations of low self-control (cf. section 7.2.4). 
7.5.2 Optimizing behavioral insights and fine-tuning interventions on the high-calorie 
spatial memory bias 

Another exciting avenue for future research relates to the optimization of 
intervention efforts targeting the cognitive bias. Although the usefulness of our 
proposed approaches (see section 7.4) has yet to be ascertained in practice, these 
suggestions can be further supplemented with in-depth behavioral knowledge 
generated by methodologies that were not presently covered.  

For instance, to finer decompose behavioral consequences of the high-calorie 
bias in human spatial memory, future studies could longitudinally track individuals’ 
eating behavior and food navigation in real-time using a smartphone application. 
GPS-based technology is available to monitor participants’ behavior and movements 
in large outdoor spaces (e.g. between food outlets), and a beacon-based equivalent 
can be used for tracking in smaller spaces (e.g. within a single food outlet) (Elliston 
et al., 2017; McKay et al., 2019; Poelman et al., 2020; Spook et al., 2013). These 
measurements would provide a rare spatiotemporal “blueprint” for an individual’s 
momentary food decisions (e.g. food purchases), as well as high-resolution (context-
rich) insights into individuals’ extended eating patterns, both of which would facilitate 
the design of more personalized and ecologically-valid behavior change techniques. 
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To this end, it would also be interesting to assess whether (and to what degree) 
the overall expression of the high-calorie bias in spatial memory changes in time and 
space, by repeatedly measuring individuals’ food spatial memory at various times and 
physical locations across multiple days. Literature shows that an individual’s valuations 
and preferences for a food are influenced by the immediate spatiotemporal context 
one makes food decisions in (e.g. one may prefer to eat high-calorie sweet foods such 
as cereal for breakfast at home in the morning; Cardello, 1994; Meiselman, 2006; 
Spence, 2021). Furthermore, hippocampal-dependent (spatial) memory function can 
be regulated by feeding-relevant endocrine systems (e.g. ghrelin and insulin 
concentrations), the latter of which fluctuate around mealtimes within a day (Suarez et 
al., 2019). It is therefore reasonable to expect that the overall degree to which high-
calorie food locations are prioritized in memory – averaging across all effects – could 
similarly exhibit a dynamic quality across spatiotemporal circumstances. If so, 
intervention strategies could use this information to concentrate treatment during 
certain “focal points” within a day, when the bias is typically highest expressed by an 
individual.  

 
7.6 Concluding Remarks 

The present thesis provides compelling evidence for an inbuilt prioritization of 
high-calorie food locations in human memory. Importantly, this high-calorie bias in 
human spatial memory maladaptively influences how we navigate the modern food 
environment, by increasing the perceived ease of locating high-calorie foods, habitual 
high-calorie snack food purchases, visits to high-calorie food outlets, and individual 
BMI. Although diverse populations were all shown to express the spatial processing bias, 
individuals with a better ability to inhibit responding to high-calorie foods were 
protected from the bias’ translation into undesirable dietary outcomes. Future research 
initiatives on the cognitive bias would benefit from incorporating more real-world 
methods to measure food spatial memory and capture individual eating behavior in 
“real-time” across spatiotemporal contexts. The effectiveness of proposed intervention 
techniques targeting the expression or behavioral translation of the high-calorie spatial 
memory bias should likewise be assessed in a broad participant demographic. In 
closing, human minds seem to be adapted for the efficient location and consumption 
of high-calorie foods within the harsh ancestral food environments in which we evolved. 
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Fine-tuning ways to mitigate unwanted tendencies of our “foraging minds” would bring 
us a step closer to promoting healthier eating behavior within our evolutionary-novel 
calorie-abundant food landscape. 
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The modern food environment is characterized by the proliferation of cheap, 
convenient, and highly palatable energy dense foods, stimulating the 
(over)consumption of ‘unhealthy’ high-calorie items (Egger & Swinburn, 1997; Hill et al., 
2003; Lakerveld et al., 2018). However, not everyone overeats and develops a positive 
energy balance, indicating that large differences exist in how individuals respond to the 
heightened systemic availability and accessibility of high-calorie foods (Swinburn et al., 
2011; Small, 2009; Wardle, 2007). Identifying the factors that underlie these individual 
differences has become an important research theme within the fields of human eating 
behavior and health psychology, and has significant implications for (public) health 
promotion efforts and expenditures (Kortt et al., 1998; Swinburn et al., 2011). This thesis 
is grounded on the novel premise that differences in the ability to successfully navigate 
current “obesogenic” settings may (partially) stem from a cognitive adaptation that 
evolved for optimal foraging within harsh ancestral food environments. Specifically, 
from the graded expression of a calorie-sensitive cognitive system that enabled 
ancestral humans to efficiently (re)locate valuable nutritional resources with varying 
spatiotemporal availabilities – a bias in spatial memory for high-calorie foods (Allan & 
Allan, 2013; New et al., 2007).  

The overall aim of this thesis was to empirically examine the existence of a 
potential inbuilt prioritization, or “bias” in human spatial memory for high calorie foods, 
as well as its implications for individual eating behavior within a modern food 
environment. To this end, we devised the following five studies to systematically address 
both the expression and behavioral translation of a high-calorie bias in human spatial 
memory: 

In Chapter 2, we first set out to rigorously investigate whether food-specific 
biases in human spatial memory are indeed expressed, across sensory modalities (i.e. 
vision and olfaction) of ecological significance to food navigation and food choice. We 
report on two controlled lab experiments featuring a computer-based spatial memory 
task with food images (Study 1; N = 88) and food odors (Study 2; N = 88), respectively. 
We also probed associations between food-specific biases in spatial memory and a 
range of (incidental and routine) eating-related parameters, in order to initially gauge 
their behavioral effects. We found that individuals more accurately recalled the locations 
of high-calorie and savory-tasting foods, while controlling for consciously mediated 
valuations or personal experiences with foods. However, the more accurate localization 
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of high-calorie foods did not differ for sweet or savory foods, or with an individual's trait 
eating style or degree of reward sensitivity. Furthermore, effects of biases in food spatial 
memory were not present on eating-related parameters of food preference, food 
choice, BMI, and waist circumference. 

Chapter 3 describes an ambitious test for the existence of the high-calorie 
spatial memory bias outside of “sanitized” lab settings. To demonstrate the external 
validity of the bias, we carried out a large (N = 512) multisensory field-based experiment 
that allowed for two additional noteworthy elements: spatial navigation between distinct 
(three-dimensional) positions of food stimuli, and the incidental encoding of food 
locations. This format similarly enabled us to compare food spatial memory 
performance (and corresponding biases) between different sensory environments (i.e. 
multisensory conditions (N = 258) versus olfactory (N = 254) conditions). Overall, we 
found that individuals incidentally learned and more accurately recalled locations of 
high-calorie foods – regardless of explicit hedonic valuations or personal familiarity with 
foods. In addition, the high-calorie spatial memory bias was equally expressed in both 
sensory environments – even where solely odor information was available.  

Chapter 4 improves upon previous lab-based paradigms (cf. Chapter 2) to 
assess the behavioral translation of the high-calorie spatial memory bias, by utilizing a 
real-world food environment. In a lab-plus-field experiment, we investigated the bias’ 
effects on the food search and food choice of 60 individuals navigating an unfamiliar 
supermarket. Across two test sessions, participants first performed eye-tracking and 
spatial memory tasks in a lab setting, and then completed food search and (covert) food 
choice tasks in a supermarket. Although individuals were faster at localizing high-calorie 
versus low-calorie foods in the supermarket, the high-calorie spatial memory bias did 
not predict a lower search time for high-calorie foods, or a higher proportion of high-
calorie food choice. In addition, expression of the high-calorie bias in spatial memory 
was not associated with a bias in attention for high-calorie foods. Rather, an enhanced 
memory for high-calorie food locations was associated with a lower perceived difficulty 
(i.e. greater ease) of finding high-calorie items in the supermarket, which may potentiate 
later choice of a high-calorie food.  

In Chapter 5, our focus was on implications of the high-calorie spatial memory 
bias for individuals’ routine (repeated) eating behavior, to gain insights on top of that 
provided by more incidental (single-instance) measures (cf. Chapters 2 and 4). In an 
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online study, we tested the food spatial memory of a diverse sample of 405 individuals, 
as well as examined associations between the high-calorie spatial memory bias and the 
routine frequency of high-calorie snack consumption, exposure to high-calorie food 
environments, and BMI of a subset of 316 individuals. For the latter, we assessed 
individual psychological factors (e.g. snack purchasing habits, inhibitory control) that 
could either synergize or antagonize the bias’ behavioral effects. A greater expression 
of the high-calorie spatial memory bias predicted a stronger habit of purchasing high-
calorie snack foods and consequently a higher individual BMI. Although individuals from 
various sociodemographic groups expressed the high-calorie bias in spatial memory, 
our results demonstrate that those with a better inhibitory control to high-calorie foods 
were protected from bias-induced tendencies to frequent high-calorie food outlets.  

Chapter 6 questions whether the high-calorie bias in spatial memory 
represents a universal cognitive mechanism and can be reasonably generalized to 
individuals from varying cultures. Through the means of a cross-cultural online 
experiment (and data from Chapter 5), we measured and compared the food spatial 
memory of diverse populations from the USA (N = 72), Japan (N = 74), and the 
Netherlands (N = 405) using a standardized computer-based spatial memory task. We 
demonstrate that individuals native to cultures that diverge on relevant cognitive 
characteristics, built food environments, and food attitudes were effectively identical in 
their food relocation performance: Locations of resources with a higher caloric quality 
were more accurately recalled than that of low-calorie alternatives to a similar degree 
across countries, regardless of individuals’ hedonic preferences and familiarity with 
foods, or explicit effort to encode food locations. The high-calorie bias in spatial 
memory was also uniformly expressed by diverse sociodemographic groups within a 
population.  

In conclusion, the work described in this thesis provides compelling evidence 
for an inbuilt prioritization of high-calorie food locations in human memory. 
Importantly, this high-calorie bias in human spatial memory maladaptively influences 
how we navigate the modern food environment, by increasing the perceived ease of 
locating high-calorie foods, habitual high-calorie snack food purchases, visits to high-
calorie food outlets, and individual BMI. Though diverse populations were all shown to 
express the spatial processing bias, individuals with a better ability to inhibit responding 
to high-calorie foods were protected from the bias’ translation into undesirable dietary 
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outcomes (i.e. increased visits to high-calorie food outlets). Future research initiatives 
would benefit from incorporating more real-world methods to measure food spatial 
memory and capture individual eating behavior in “real-time” within multiple 
spatiotemporal contexts. In closing, human minds seem to be adapted for the efficient 
location and consumption of high-calorie foods within the harsh ancestral food 
environments in which we evolved. Fine-tuning ways to mitigate unwanted tendencies 
of our “foraging minds” would bring us a step closer to promoting healthier eating 
behavior within our evolutionary-novel calorie-abundant food landscape. 
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A High-calorie Bias in  
Human Spatial Memory and its  
Implications for Eating Behavior

On Monday August 30th (16:00) at  

the Aula of Wageningen University &  

Research Generaal Foulkesweg 1,  

6703 BG, Wageningen

It is also possible to follow my defense 

online, and the link will be communicated 

to you closer to the date.

Paranymphs

Paulina Morquecho-Campos  

paulina.morquechoc@gmail.com

Sanne Raghoebar  

sanne.raghoebar@wur.nl

Rachelle de Vries

Troelstraweg 103

6702AH Wageningen

rachelle.devries@wur.nl
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