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ABSTRACT

Onion is cultivated worldwide for its bulbs, but production is threatened by pathogens and pests. Three distinct diseases of onion are caused by
species that belong to the fungal genus Botrytis. Leaf blight is a well-known foliar disease caused by B. squamosa that can cause serious yield losses.
Neck rot is a postharvest disease that manifests in bulbs after storage and is associated with three species: B. aclada, B. allii, and B. byssoidea. The
symptomless infection of onion plants in the field makes it difficult to predict the incidence of neck rot in storage, although progress on the detection
of latent infection has been made. In onion cultivation for seed production, blighting of the inflorescence is caused by all four onion-specific Botrytis
species plus the broad host range pathogen B. cinerea. Flower blight can reduce seed yield and contaminate seed. In this review, the long history of
Botrytis diseases of onion is discussed, as well as recent and future approaches to acquire a better understanding of the biology and ecology of
Botrytis spp. pathogenic on onion. New fundamental insights in the genetic, biochemical, and physiological aspects of Botrytis–onion interactions
are essential to improve the breeding of Botrytis-resistant onion cultivars.
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BACKGROUND

Onion (Allium cepa) is one of the most important vegetable
crops worldwide. It is grown for its edible bulbous organs, which
have high nutritional value and give a specific pungent flavor to
the diets of many people worldwide. For bulb production, onion
is cultivated as an annual crop that can be sown from seed or
planted from pregrown sets that enable early harvest. For seed
production, however, onion is cultivated as a biennial crop because
inflorescences are formed in the second year. After harvest, bulbs
can be consumed directly or processed, but some varieties are
also well suited for storage, which makes onion available year
round. In 2018, nearly 100 million tonnes of onion was produced
worldwide, on a total production area of more than 5 million ha
(FAOSTAT 2020).

As for many other vegetable crops, the production of onion
bulbs is threatened by numerous pathogens and pests from awide
variety of taxa (Schwartz and Mohan 2008). Notorious threats
are the insect pest Thrips tabaci; the fungal disease Fusarium
basal rot, caused predominantly by Fusarium oxysporum f. sp.
cepae; and the Iris yellow spot virus. All are capable of causing
serious diseases that can reduce yield (Cramer 2000; Gent et al.
2006; Gill et al. 2015). Remarkably, there is one fungal genus,
Botrytis, that contains as many as five species that cause multiple
distinct diseases on all organs of the onion plant: bulbs, leaves,
and inflorescences.

The Ascomycete genus Botrytis consists of approximately 35
species that are known as necrotrophic plant pathogens (Garfinkel
et al. 2019; Hyde et al. 2014). Themost well known and extensively
studied model species is B. cinerea, which is able to infect >1,400
plant species including onion (Elad et al. 2016). Phylogenetic
analysis ofBotrytis has divided the genus into two clades.B. cinerea
and B. pseudocinerea, both pathogens with a broad host range,
belong to clade 1, whereas the species in clade 2 are mostly host
specific to one or a few taxonomically related plant species (Hyde
et al. 2014; Staats et al. 2005). Four Botrytis species in clade 2 are
exclusively pathogenic on onion and known as causal agents of
diseases that form a serious threat in onion cultivation, and another
four Botrytis species are pathogenic on related Allium hosts.

†Corresponding author: J. A. L. van Kan; jan.vankan@wur.nl

Funding: This study was financially supported by Stichting voor de Technische
Wetenschappen grant 15003.

The author(s) declare no conflict of interest.

Copyright © 2021 The Author(s). This is an open access article
distributed under the CC BY-NC-ND 4.0 International license.

464 PHYTOPATHOLOGY®

Phytopathology® • 2021 • 111:464-473 • https://doi.org/10.1094/PHYTO-06-20-0258-IA

mailto:jan.vankan@wur.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1094/PHYTO-06-20-0258-IA


This review focuses on diseases that are caused byBotrytis spp. on
onion (Table 1). The most well-known disease is leaf blight, a foliar
disease caused by B. squamosa, which is characterized by necrotic
spots on onion leaves that eventually result in blighting. Another
important disease of onion is neck rot, a troublesome infection that
manifests in bulb tissue. Three differentBotrytis species are knownas
causal agents of neck rot: B. allii, B. aclada, and B. byssoidea.
Furthermore, there is a blight disease of the inflorescence, known
herein as flower blight, to which all the aforementioned onion-
infecting species are associated, including B. cinerea. Besides the
pathology of the diseases, recent and future approaches to elucidate
infection biology and host specificity of Botrytis spp. pathogenic on
onion are discussed, as well as perspectives to guide breeding for
onion cultivars resistant to Botrytis spp.

BOTRYTIS LEAF BLIGHT

Pathology. Botrytis leaf blight is a foliar disease of onion caused
by B. squamosa. This fungus was first described in 1925 and was
reported to cause a disease of onion named small sclerotial neck rot
(Walker 1925a). Several decades later, B. squamosa was isolated
from diseased leaves, and the species was recognized as the causal
agent of onion leaf blight (Hickman and Ashworth 1943; Page
1953). When artificially inoculated on mature onion leaves,
B. cinerea is also able to cause symptoms. However, the superficial
leaf flecks caused by B. cinerea never grow into the intercellular
spaces of the leaf and do not cause blighting (Hancock and Lorbeer
1963). Occasionally B. cinerea is detected on plants showing
symptoms of leaf blight, but it is usually accompanied byB. squamosa
and is thus not considered the causal agent of the disease (Hickman and
Ashworth 1943; Misawa and Takeuchi 2015). Leaf blight is a major

disease in almost all onion production areas worldwide, including
Europe, Asia, Australia, and North and South America (Carisse et al.
2011). Although information on yield losses caused by leaf blight is
limited, in untreated plots losses of £30% have been reported (De
Visser 1996; Shoemaker and Lorbeer 1977b).

The symptoms and histopathology of B. squamosa have been
reviewed in the past (Lacy and Lorbeer 2008b; Lorbeer 1992;
Lorbeer et al. 2007) andwill be summarized here.When a conidium
of B. squamosa lands on the surface of an onion leaf, it can
germinate and form a germ tube. At the tip of the germ tube an
appressorium develops that is able to penetrate the leaf cuticle. The
appressorium is often formed on top of anticlinal walls of epidermal
cells and enables the fungus to enter the leaf tissue by growing
through the middle lamella that separates the anticlinal walls.
Alternatively, germ tubes grow into the leaf tissue directly by
entering via stomata. Upon leaf entry, hyphae grow mostly
intercellularly and enter the cavity of the hollow onion leaf. The
collapse of epidermal and mesophyll cells results in the first
characteristic symptoms of leaf blight, which can be observed as
small necrotic spots on the onion leaves (Fig. 1A). The subsequent
spreading of hyphae results in expansion of the lesion. The lesions
are often surrounded by a chlorotic halo, and sometimes a
characteristic longitudinal slit develops within the lesion. In a later
stage of the infection leaves start to blight, leading to early leaf
senescence and consequently reduced plant growth. On necrotic
plant tissue the fungus produces new conidia that are dispersed by
wind to other leaves and initiate a new infection cycle, providing a
source of secondary inoculum.

Besides conidia, B. squamosa produces sclerotia on colonized
plant parts, especially under conditions that are not conducive to
conidiation. Sclerotia can last on decomposing plant material for

TABLE 1
Overview of the different Botrytis species pathogenic on onion, with names of diseases on corresponding plant parts

Species Leaves Bulbs Inflorescence

B. squamosa Leaf blight Small sclerotial neck rot Flower blight

B. aclada naa Neck rot Flower blight

B. allii na Neck rot Flower blight

B. byssoidea na Mycelial neck rot Flower blight

B. cinerea Superficial leaf flecks Brown stain Flower blight

a na, not applicable.

FIGURE 1
Symptoms of A, leaf blight on a mature onion leaf caused by Botrytis squamosa showing necrotic leaf spots; B, neck rot on a sliced onion bulb; and C,
flower blight on the umbel of an onion flower.
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severalmonths and function as overwintering structures (Ellerbrock
and Lorbeer 1977c). When the new growing season starts, sclerotia
are able to form apothecia, which play a role in the sexual
reproduction of the fungus (Bergquist and Lorbeer 1972).
Alternatively, sclerotia can produce new conidia as a primary
source of inoculum (Ellerbrock and Lorbeer 1977a). Other sources
of primary inoculum include conidia grown on colonized leaves of
sprouted bulbs in cull piles, onion plants in seed production fields,
and volunteer onion plants that grow around bulb production fields
and remain from bulbs from the previous year (Ellerbrock and
Lorbeer 1977a; Lorbeer 1992; Lorbeer et al. 2007).

The severity of a leaf blight epidemic is strongly influenced by
environmental factors. For development of lesions a temperature of
about 20�C is optimal, and a leaf wetness period of at least 6 to 8 h is
needed for initiation of infection (Alderman and Lacy 1983;
Alderman et al. 1985; Sutton et al. 1984). Longer leaf wetness
periods of £48 h increase the number of lesions (Shoemaker and
Lorbeer 1977a). Conidiation on colonized plant parts is promoted
by moderate temperatures of 14 to 20�C and also requires moist
conditions in the form of leaf wetness or high relative humidity
(Lorbeer et al. 2007; Sutton et al. 1983, 1978).

Control. Because of the fast progression of the disease, onion
growers heavily rely on preventive fungicides applied at 7- to 10-
day intervals for £14 sprays per growing season (Carisse et al. 2011;
Carisse andTremblay 2007). Forecastingmodels for leaf blight help
growers time their fungicide sprays based on weather conditions
and the amount of airborne conidia above the onion canopy,
measured by spore traps (Carisse et al. 2012, 2008; Lacy and
Pontius 1983; Sutton et al. 1986; Vincelli and Lorbeer 1989).
Forecasting models allow fungicides to be used more efficiently,
reducing the total number of sprays per growing season (Carisse
et al. 2005; De Visser 1996). Increasing awareness of the negative
effects of fungicide use on the environment, as well as the risk of
resistance development in the target fungus, has resulted in
restrictions on the number of admitted fungicides. Some strains of
B. squamosa have become insensitive to active ingredients that have
been used for control of leaf blight, such as iprodione. Because of
cross-resistance, these strains have also become insensitive to
vinclozolin, which, like iprodione, belongs to the dicarboximide
fungicides (Carisse et al. 2011; Carisse and Tremblay 2007; Presly
and Maude 1982; Tremblay et al. 2003). Currently, fungicides
against leaf blight are based on active ingredients from different
classes, such as mancozeb (dithiocarbamate), prothioconazole
(triazole), and fluoxastrobin (strobilurin), and using these products
in tandem reduces the probability of resistant B. squamosa
populations. However, relying on fungicide treatments alone is
not a durable strategy to combat leaf blight. Some studies have
focused on biocontrol ofB. squamosa by suppressing its sporulation
via antagonists, but this research has not led to commercially
available products against leaf blight (Köhl et al. 1992, 2003).

To reduce the reliance on fungicides, scientists and breeders are
searching for sources of natural resistance against Botrytis leaf
blight. In general, all commercial onion varieties are susceptible to
leaf blight (Bergquist and Lorbeer 1971; Tremblay et al. 2003), but
variation has been observed in levels of susceptibility between
cultivars (Araújo et al. 2018). Strong resistance to B. squamosa has
been reported in a wild relative of onion, A. roylei. Resistance was
determined to be conferred by a single gene (named Bs1), which
behaved in a partially dominant manner and resulted in high levels
of resistance in progeny plants of A. cepa × A. roylei (de Vries et al.
1992; van der Meer and de Vries 1990). A quantitative trait locus
for resistance to B. squamosa from A. roylei was identified on
chromosome 6 via the use of single nucleotide polymorphism
markers in an interspecific three-way cross population [A. cepa ×
F1(A. roylei × A. fistulosum)] segregating for resistance (Scholten
et al. 2016). The large size of the quantitative trait locus region
indicated that, apart from the Bs1 gene, minor genes from A. roylei

or A. fistulosummay have affected resistance levels in plants of this
population. Backcrossing of the Bs1 resistance gene into A. cepa
resulted in lines that resemble cultivated onion with a quantitative
level of resistance against leaf blight (Hyde et al. 2015). A second
source of resistance was found in another relative of onion, the
Japanese bunching or Welsh onion (A. fistulosum) (Bergquist and
Lorbeer 1971; Currah and Maude 1984).

Onion related Allium species may be used in breeding programs
to breed for resistance (Kik 2002), but crossing Allium species that
range in genome sizes may result in low fertility in progeny plants
(Labani and Elkington 1987; van Raamsdonk et al. 2003). An
example of a successful introgression of disease resistance is the
introgression of downymildew resistance fromA. roylei into onion.
After many years of backcrossing and subsequent selfing, breeding
has led to the development and release of downy mildew–resistant
onion varieties (Scholten et al. 2007). For optimal exploitation of
related species in breeding programs, it is important to gain a better
understanding of the molecular mechanisms underlying leaf blight
resistance, for which a lot of research is still needed.

BOTRYTIS NECK ROT

Pathology. Botrytis neck rot is a serious disease of onion bulbs
that causes postharvest losses. As the name suggests, it results in
rotting of the neck area of the onion bulb, where tissue softens and
turns brown as it decays (Fig. 1B). Often, sclerotia develop between
the rotting scales of the bulb. Additionally, mycelium and gray
conidia can be observed on the outer surface of the neck area (Lacy
and Lorbeer 2008a; Lorbeer et al. 2007). Although infection takes
place in the field, symptoms of neck rot are typically observed after
bulbs are taken from storage (Maude and Presly 1977b). Neck rot is
reported in all major onion production areas worldwide, and yield
losses can reach 50%, although they vary widely between years
(Chilvers and du Toit 2006; Chilvers et al. 2004; Hwang et al. 2016;
Khan et al. 2013; Maude and Presly 1977a, b).

Multiple Botrytis species are known to be associated with neck
rot.B. allii andB. aclada are considered to be themain causal agents
(Chilvers and du Toit 2006). Also, B. byssoidea can cause neck rot,
but because the disease usually displays more pronounced mycelial
growth and less sclerotia and conidia formation, the disease caused
by B. byssoidea is sometimes called mycelial neck rot (Lacy and
Lorbeer 2008a; Lorbeer et al. 2007; Owen et al. 1950).B. squamosa
has also been associated with a neck rot disease of onion, as can be
seen from the original name “small sclerotial neck rot” (Walker
1925a), which is sporadically observed in onion plants and is more
regarded as a late-stage symptom of severe leaf blight infections
(Lorbeer et al. 2007). Occasionally, B. cinerea is isolated from
rotting onion necks, often together with B. allii or B. aclada (Rod
1984) and is therefore not considered a causal agent of the disease
(Yohalem et al. 2003). Furthermore, B. cinerea is able to cause
brown stain, a rarely observed superficial discoloration of the outer
dry scales of bulbs that does not cause problems in bulb production
(Clark and Lorbeer 1973a, b).

B. aclada and B. allii occupy the same ecological niche, and the
morphological differences between them are subtle. Therefore,
B. aclada and B. allii were not distinguished for a long time, and
their names were used synonymously for one species causing onion
neck rot (Hennebert 1973). Based on chromosome number and size
of conidia, two subgroups could be distinguished, one that has 16
chromosomes, like other Botrytis species, and one that has 32
chromosomes, with conidia approximately double in volume
(Shirane et al. 1989). Molecular fingerprinting studies confirmed
the existence of two subgroups and showed that both differ from
B. byssoidea (Nielsen et al. 2001). Sequencing of DNA fragments
demonstrated that the subgroup containing 32 chromosomes was
the result of a hybridization event with one ancestor from the
subgroup containing 16 chromosomes and the other ancestor being
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B. byssoidea (Nielsen and Yohalem 2001). The subgroup with 16
chromosomes was named B. aclada, and the subgroup with 32
chromosomes was named B. allii (Yohalem et al. 2003). Because
the names B. aclada and B. allii were used synonymously until
2003, literature until 2003 could refer to either of them. Sequence
analysis of phylogenetically informative gene sequences of two
B. allii isolates revealed that these isolates arose from independent
hybridization events (Staats et al. 2005).

Botrytis neck rot typically remains symptomless during the
growing season of onion plants. First symptoms are generally
observed after bulbs have been harvested and stored. The
asymptomatic infection makes it difficult to predict yield losses
and to develop control strategies that can be applied in the field to
mitigate the damage. To unravel the infection biology of neck rot
and to elucidate how the fungus reaches the neck area without
causing symptoms, several hypotheses about the infection strategy
have been proposed.

One of the infection strategies proposed is a symptomless
infection of the leaves followed by endophytic growth toward the
bulb.A study byTichelaar (1967) suggests that conidia ofB. allii are
able to germinate and penetrate the surface of onion leaves without
causing a plant response. The hyphae grow in the epidermis, and
when the leaves senesce the fungus colonizes the underlying
mesophyll tissue without causing symptoms (Tichelaar 1967). In
this way, the fungus grows through the leaves toward the bulb,
resulting in latent infection of the neck area. By contrast, other
studies have reported that inoculation of onion leaves with spores of
B. allii triggers leaf flecks, and sometimes expanding lesions are
observed (Presly 1985b; Stewart and Mansfield 1984). Because
such symptoms are not observed in the field, artificial inoculations
may not be representative for studying the infection biology of neck
rot in the field.

Another infection strategy thatmay contribute to the incidence of
neck rot is infection through seed. B. allii was detected in
commercial onion seed batches, with £71% of seed samples being
infected (du Toit et al. 2004; Maude and Presly 1977b; Stewart and
Franicevic 1994). The fungus was detected externally on the seed
coat and internally, and it was found to survive for £3 years (du Toit
et al. 2004;Maude and Presly 1977b).B. alliiwas reported to spread
from the infected seed to the seedling, first being detected in the
cotyledon, later in the true leaves, and eventually in the neck of the
mature onion (Maude and Presly 1977b; Stewart and Franicevic
1994). Although growth of the fungus throughout living plant tissue
was always symptomless, conidiophores were observed after
colonized leaf tissue senesced and turned necrotic, indicating that
seed transmission is not the only way the disease spreads (Maude
and Presly 1977b; Tichelaar 1967). Although several studies
reported a high correlation between the percentage of infected seed
and the incidence of neck rot in storage (Maude 1983; Maude and
Presly 1977a; Stewart and Franicevic 1994), in a wet growing
season the incidence of bulbs with neck rot was greater than the
occurrence of infection in seeds (Maude and Presly 1977a). During
storage, no further spread of the fungus was observed from infected
to healthy bulbs, suggesting that infection occurs only in the field
(Maude and Presly 1977a).

In addition to infection through seed and latent infection of
leaves, it is hypothesized that bulb infection occurs just before
harvest at the moment the foliage is cut, leaving a wound above the
neck area providing a perfect point of entry for germinating conidia
of neck rot fungi (Maude et al. 1984).

Control. To reduce the incidence of neck rot in storage, several
control strategies have been developed that aim to reduce infec-
tion during onion cultivation. Application of preventive fungicides
to control neck rot is a common practice in onion cultivation
(Kritzman 1983; Presly 1984), but it has led to B. allii populations
that are resistant to active compounds such as benomyl and
carbendazim (Gladders et al. 1994; Kritzman 1983; Viljanen-

Rolinson et al. 2007). Today, fungicide sprays with the active
ingredients fluopyram, tebuconazole, boscalid, and pyraclostrobin
are commonly applied in onion cultivation and are simultaneously
effective against both leaf blight and neck rot. Fungicides are also
applied on seeds to reduce the level of seedborne inoculum.
Treatment of seeds has been reported to drastically reduce the
incidence of neck rot, but its effectiveness can be countervailed by
spread of the disease in the field under favorableweather conditions
(Maude and Presly 1977a). To prevent seed becoming a source of
neck rot, seed batches are tested for the presence of Botrytis spp.,
and contaminated batches are disinfected. Also, after harvest bulbs
can be treated with fungicides to reduce fungal growth inside the
bulbs and decrease the incidence of neck rot in storage (Ali and El
Shabrawy 1979; Grinstein et al. 1992).

As an alternative to fungicides, several studies have focused on
biological control of neck rot. Rod (1984) explored the potential
of antagonistic fungi as biocontrol agents to inhibit the growth of
B. allii and identified several candidates. Different strains of
Trichoderma viride were found to have an inhibitory effect on
growth of Botrytis spp. (Morris and Lane 1990; Roulston and Lane
1988). Köhl et al. (1997) reported that Ulocladium atrum could be
used as a potential biocontrol agent against neck rot. Sporulation of
B. aclada on necrotic leaf tissue could be suppressed by competition
for tissue colonization by the antagonistic fungus, but growth into
living leaf tissue could not be stopped (Köhl et al. 1995, 1999;
Yohalem et al. 2004).

Breeding for onion varieties resistant to neck rot is difficult
because of the different causal agents and the complexity of
performing biologically relevant disease assays. There are differ-
ences in susceptibility between onion varieties, and the few studies
that focused on resistance breeding against neck rot concluded that
susceptibility is a quantitative trait that shows continuous variation
and is at least in part heritable (Lin et al. 1995; Vik and Aastveit
1984).

Cultural control methods also are applied to limit the chances of
neck rot infection in bulb storage. To prevent infection through the
wound that arises after the leaves are cut, bulbs are lifted from the
soil and left on the field to dry for several days, a process called
curing. During that process, the top of the onion dries, making it
more difficult for fungi to grow into the neck of the bulb (Maude
et al. 1984). To speed up that process and to further inhibit fungal
growth, bulbs are often cured with heated air (Gunkel et al. 1971;
Harrow and Harris 1969; Maude et al. 1984; Walker 1925b).

Despite the development of control strategies, neck rot remains
difficult to control and is thus a major problem in storage of onions.
The latent nature of the infection makes it difficult to predict the
incidence of neck rot in storage. However, diagnostic methods have
been developed that detect the presence of neck rot fungi in seeds,
plants, or bulbs with the aim of predicting the incidence of neck rot
in storage. The first method that was developed is based on the
outgrowth of fungi on selective media in which only Botrytis
species are capable to grow (Kritzman and Netzer 1978; Lorbeer
and Tichelaar 1970). Subsequently, the different neck rot species
can be distinguished based on their macroscopic and microscopic
morphological characteristics. An accurate guideline for fungal
isolation and characterization of species is described inChilvers and
du Toit (2006). To predict disease incidence by using diagnostic
tools, a more efficient and direct method than traditional fungal
isolation is preferred. Nielsen et al. (2002) developed a diagnostic
tool to detect and distinguish B. aclada, B. allii, and B. byssoidea.
This method, based on PCR followed by restriction fragment length
polymorphism, enables detection of B. aclada in symptomless
onion leaves (Nielsen et al. 2002). An adaptation of the PCR
protocol that includes magnetic capture hybridization increased the
speed and sensitivity of detection (Walcott et al. 2004). A real-time
PCR (qRT-PCR)method to quantify the amount of Botrytis neck rot
fungi in onion seed was developed by Chilvers et al. (2007). This
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assay uses specific primer pairs that are optimized to anneal only to
B. aclada,B. allii, andB. byssoideawithout targeting other Botrytis
species or other fungi commonly detected on onion seed. In addition
to this qRT-PCR method, which was based on SYBR Green
chemistry, another qRT-PCR was developed for determining the
quantity of B. aclada in bulb tissue based on TaqMan probe-based
chemistry (Coolong et al. 2008). Khan et al. (2013) developed a
high-resolution melting analysis assay that allowed fast and simple
discrimination between neck rot species. Alternatively to DNA-
based detection, an enzyme-linked immunosorbent assay was
developed to detect B. allii by using polyclonal antisera (Linfield
et al. 1995). Also, volatiles produced by infected bulbs can be used
in metabolite profiling to detect neck rot in bulbs (Li et al. 2011).
More specifically, Prithiviraj et al. (2004) distinguished bulbs
infected with B. allii from uninfected bulbs, and also from bulbs
infected with other fungi and bacteria. Bulbs infected with B. allii,
bulbs infected with Burkholderia cepacia, and mock-treated bulbs
could be distinguished based on their volatile profile (Li et al. 2011).
Although several methods for the detection and identification of
neck rot fungi have been developed, for detecting either latent leaf
infection or contaminated seed, sampling is the most problematic
factor. Optimization of sample size, distribution of samples, and
timing are difficult to assess in advance, although they are essential
for an accurate prediction of the incidence of neck rot in storage.
The latent nature of neck rot infection remains a significant problem
in developing strategies to mitigate neck rot.

BOTRYTIS FLOWER BLIGHT

Pathology. In onion cultivation, Botrytis spp. present a serious
threat not only in bulb production but also in seed production.
B. cinerea, B. squamosa, B. allii, B. aclada, and to a lesser extent
B. byssoidea are known to cause blighting and girdling of the scapes
(seed stalks) and blighting of the umbel and flowers (Chilvers and
du Toit 2006; du Toit et al. 2004; Ellerbrock and Lorbeer 1977b;
Lorbeer 1992; Lutyńska 1968; Schwartz and Mohan 2008b, c;
Ramsey and Lorbeer 1986b). Furthermore, there is one report
describing the identification of Botryotinia porri (causal agent of
Botrytis rot of garlic and leek) from blighted onion flowers (du Toit
et al. 2002). B. allii was isolated from both blighted flowers and
asymptomatic flowers, suggesting the possibility of a latent
infection in flower parts, as described for neck rot (du Toit et al.
2004). Here, the term flower blight is used for all blighting and
girdling of florets, umbels, scapes, and immature seed capsules of
onion caused by Botrytis spp.

Infection of scapes starts at any point along the seed stalk, with
the formation of lesions that consist of shriveling necrotic tissue.
Expanding lesions can lead to girdling of the entire seed stalk and
eventually to senescence of the umbel (Fig. 1C). Scapes and umbels
that show severe symptoms of blight may fall over, resulting in
reduction of seed yield (Ellerbrock and Lorbeer 1977b; Schwartz
and Mohan 2008b; Netzer and Dishon 1966). Often conidia are
formed on the surface of the lesions in a patchy distribution or in a
pattern of concentric rings (du Toit et al. 2004; Ramsey and Lorbeer
1986b). Infectionmay also occur on individual florets. Open florets
are more susceptible than unopen florets or immature seeds
(Ramsey and Lorbeer 1986c). Floral infection may lead to infected
seeds or, depending on themoment of infection, drastically reduced
seed set as a result of the shriveling of immature seeds (Blodgett
1946; Ellerbrock and Lorbeer 1977b; Schwartz andMohan 2008c).
Seed transmission may be especially important for B. aclada and
B. allii, for which correlations exist between the presence of the
pathogen in the seeds and the incidence of neck rot in storage bulbs
(Lorbeer 1992).

Flower blight in seed production fields can cause £80% reduction
in seed yield, especially in years with high precipitation (Ellerbrock
and Lorbeer 1977b; Netzer and Dishon 1966; Ramsey and Lorbeer

1986a, b). The influence of environmental conditions on flower
blight has been determined via artificial inoculations. Optimal
conditions to promote floret blighting are similar for the three
species B. squamosa, B. allii, and B. cinerea, with an optimum
temperature between 21 and 24�C. Periods of free moisture of up to
48 h are necessary for infection and blighting of all inflorescence
parts (Ramsey and Lorbeer 1986a). Inoculations with B. cinerea,
B. squamosa, and B. allii resulted in blighting of flowers and seed
production losses of 98, 93, and 47% respectively, as comparedwith
noninoculated controls. Inoculations with B. byssoidea did not lead
to blighting (Ramsey and Lorbeer 1986c) or to significantly lower
seed production (Ellerbrock and Lorbeer 1977b). B. squamosa
blighted a higher percentage of florets than B. cinerea and B. allii
independentof inoculumconcentration, suggesting thatB. squamosa is
the most aggressive species (Ramsey and Lorbeer 1986c), although
the relative significance of the different Botrytis spp. to flower
blight is difficult to assess and may differ between regions and
growing seasons.

Control. In seed production fields flower blight is commonly
controlled with fungicide treatments. Sprays with chlorothalonil,
benomyl, and mancozeb resulted in increased seed yield of 142, 93,
and 60% respectively, as compared with untreated fields (Ellerbrock
and Lorbeer 1977b). In a study in Israel, treatments of seed production
fields with iprodione or vinclozolin resulted in yields, with a 45%
increase in total seed weight per plant (Kritzman 1983). Also,
sprays with boron increased seed yield and quality (El-Magd et al.
1989). Fungicide treatments are still used to reduce seed yield losses
and to minimize the chance of contaminated seed. Development of
biological control agents and breeding for resistant onion varieties
against flower blight have not yet been studied.

PERSPECTIVE

Research onBotrytis species in onion has a long history, andmost
of the work described was performed several decades ago. It is
remarkable how little progress has been made in the past two
decades in increasing our knowledge of Botrytis–onion interac-
tions, which can be exploited to rationally develop novel concepts
for controlling these diseases in onion. New approaches are needed
to acquire a better fundamental understanding of the biology and
ecology of these fungi and of the genetic, biochemical, and
physiological aspects of their interactions with onion tissues, either
leaf, bulb, or inflorescence, which is essential to improve the
breeding of Botrytis-resistant onion cultivars.

What makes Botrytis spp. pathogenic on Allium unique? As
many as eight Botrytis species are pathogenic exclusively on plants
in the genus Allium. In addition to B. squamosa, B. aclada, B.
allii, and B. byssoidea, which exclusively infect A. cepa, four
other species are host specific to other Allium species. B. porri
is a pathogen of leek and garlic (A. porrum, A. sativum), B.
sphaerosperma is pathogenic on three-cornered leek (A. trique-
trum), B. globosa causes disease on wild garlic (A. ursinum), and
B. sinoalli is a pathogen of Japanese bunching or Welsh onion
(A. fistulosum) (Chilvers and du Toit 2006; Elad et al. 2016; Zhang
et al. 2010). The Allium-pathogenic Botrytis species are not each
other’s closest relatives but are dispersed throughout the Botrytis
phylogeny (Valero-Jiménez et al. 2020). This suggests that their
common ancestor was able to infect Allium and that either this
ability was lost multiple times during evolution or the ability to
infect Allium has been acquired multiple times independently. To
elucidate why so many Botrytis species are specialized on the same
plant genus, genomic information about these species could provide
insights to unravel mechanisms underlying host specificity. For
example, in F. oxysporum, isolates with different host specificities
(formae specialis) contain unique lineage-specific chromosomes
that are necessary for infecting a particular host (Armitage et al.
2018; Ma et al. 2010; van Dam et al. 2017). Also, in Verticillium
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dahliae, lineage-specific regions, embedded within core chromo-
somes, have been shown to be important for pathogenicity and host
specificity (Chen et al. 2018; de Jonge et al. 2013; Faino et al. 2016).
An attempt was made to resolve the host specificity of Botrytis
species infecting Allium by using comparative genomics. Genomes
of sixAllium-infectingBotrytis specieswere sequenced, assembled,
and annotated (Table 2) and compared with those of sister species
nonpathogenic on Allium to unravel the unique features of Botrytis
species pathogenic on Allium (Valero-Jiménez et al., unpublished
data). Genomes of Botrytis species appeared to be highly syntenic
and similar, but indications for host specificity determinants were
not identified from the genomic features (Valero-Jiménez et al.,
unpublished data). This study contributed to a deeper understand-
ing of themolecular evolution ofBotrytis species by obtaining high-
quality genomes and increased the number of sequenced Botrytis
species to 16 (Valero-Jiménez et al. 2019; van Kan et al. 2017).

Differences in the biology of onion-infecting Botrytis species.
Four Botrytis species are known that have specialized on infecting
onions. However, there are large differences between them in terms
of biology and infection strategy, especially between the leaf blight
pathogen B. squamosa and the group of neck rot fungi comprising
B. aclada,B. allii, andB. byssoidea.B. squamosa behaves like a true
necrotroph that kills onion leaf cells, which eventually leads to
blighting, whereas the neck rot fungi proliferate latently and
eventually manifest in bulb tissue. Specialization into different

niches within the same host plant can be illustrated by the different
sporulation patterns that have adjusted to their infection strategy.

Under laboratory conditions, spore formation of B. squamosa
is difficult and requires conditions that mimic favorable field
conditions. Optimal conditions for induction of B. squamosa
conidia formation in vitro are temperatures between 15 and 23�C
and amoist environment (Alderman and Lacy 1984; Bergquist et al.
1972). In addition, nutrient-rich substrates are needed for
sporulation, and best results are obtained when B. squamosa is
grown in onion leaves (Presly 1985a). Furthermore, light is needed
for induction of sporulation, specifically light in the near ultraviolet
(UV-A) spectrumand a photoperiod between 12 and 16 h (Bergquist
et al. 1972). By contrast, B. allii produces conidia freely in the dark
on a synthetic medium (Presly 1985a), reflecting the natural habitat
of B. alliiwithin the watery scales of onion bulbs. Furthermore, the
conidia of B. squamosa have a volume £30 times larger than the
conidia ofB. aclada,B. allii, andB. byssoidea (Chilvers and du Toit
2006). Altogether, the different sporulation needs and conidial
dimensions illustrate the specialization into different niches within
the same host plant, resulting in a different infection biology.

Understanding the switch from latent to visible infection.
Despite the progress made in detection of neck rot fungi, prediction
of yield losses and mitigation of damage remain difficult because
the initial infection is latent. Information on how neck rot fungi
infect and grow asymptomatically to reach the neck of the bulb is

TABLE 2
Genome assembly and gene prediction information of Botrytis spp. pathogenic on Allium

Species Contigs
Assembly

size
Largest
contig

Predicted
genes

Secretome
size

Predicted
effectors

Predicted cell wall
degrading enzymes

B. aclada 16 48.31 Mb 4,155 Kb 11,870 867 137 120

B. byssoidea 59 42.98 Mb 2,599 Kb 12,212 898 152 119

B. globosa 27 45.68 Mb 4,093 Kb 12,073 864 142 116

B. porri 31 46.78 Mb 4,253 Kb 12,088 888 151 122

B. sinoallii 47 61.28 Mb 6,466 Kb 12,281 885 138 117

B. squamosa 29 54.60 Mb 4,659 Kb 11,963 897 132 132

FIGURE 2

Botrytis aclada–green fluorescent protein hyphae inoculated on the

surface of an onion leaf.
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lacking. B. aclada, B. allii, and B. byssoidea are not the only
Botrytis species that display asymptomatic behavior. B. deweyae is
an endophyte on daylily that can switch to necrotrophy (Grant-Downton
et al. 2014). Also, B. cinerea has been reported to grow latently in
primula (Barnes and Shaw2003), lettuce (Sowley et al. 2010), grape
(Keller et al. 2003), strawberry (Bristow et al. 1986), and roses (Elad
1988). The switch fromendophytic, asymptomatic growth to visible
damage and sporulation often occurs when colonized plant tissue
becomes stressed, matures, or senesces (Shaw et al. 2016). In the
case of neck rot, this switch might be induced when bulbs go into
storage, leading to an altered bulb physiology and metabolism
(Chope et al. 2012).

For a better understanding of the latent infection and endophytic
growth of neck rot,B. acladawas recently transformedwith a green
fluorescent protein label that can be used in fluorescence micros-
copy (Fig. 2) (M. B. F. Steentjes, unpublished data). Visualizing the
fungal entry into the host tissue and tracing its latent growth toward
the bulbwill help in elucidating the infection biology of neck rot and
might contribute to more accurate predictions of yield losses and
development of control strategies.

Molecular aspects of Botrytis–onion interactions. Necrotro-
phic fungi such as Botrytis spp. kill cells of their host plants in order
to obtain nutrients and colonize dead plant tissue. To do so, they
secrete effector proteins and secondary metabolites that actively
induce host cell death (Veloso and van Kan 2018). Effector proteins
of several necrotrophic pathogens, such as ofB. cinerea, Sclerotinia
sclerotiorum, and Parastagonospora nodorum, have been studied
(Heard et al. 2015;Mousavi-Derazmahalleh et al. 2019; Syme et al.
2018). In the case of necrotrophic fungi, susceptibility of host plants
is the result of recognition of one or more necrotrophic effector
proteins by receptors of the host (following a so-called inverse gene-
for-genemodel) (Shi et al. 2015). Studying themolecular aspects of
Botrytis–onion interactions might provide tools that can be used in
breeding programs to breed for partially resistant onion cultivars. If
effector proteins of Botrytis spp. are identified that specifically
trigger programmed cell death in onion, such proteins can be used
for selecting onion genotypes lacking the receptor that recognizes
the effector protein. In the case of the P. nodorum–wheat interac-
tion, stacking insensitivities to effector proteins led to reduced
susceptibility to the pathogen secreting the effector proteins
(Friesen and Faris 2010; Shi et al. 2016).

All Botrytis species, including B. squamosa, have a repertoire of
about 125 predicted effector genes. Culture filtrates of B. squamosa
induce an onion-specific programmed cell death upon leaf
infiltration (M. B. F. Steentjes, unpublished data), suggesting that
some of the secreted effectors probably possess cell death–inducing
activity. Furthermore, B. squamosa possesses a large array of
secreted enzymes that degrade plant cell wall carbohydrates into
consumable saccharides. Neither the effector repertoire nor the
secreted enzymes revealed obvious key determinants that distin-
guish the host specificity of B. squamosa from that of its sister
species B. elliptica and B. deweyae, which are host specific on lily
and daylily, respectively (Valero-Jiménez et al. 2020). It is expected
that the search for and characterization of secreted virulence
factors in B. squamosa will be greatly facilitated by the ability to
transform B. squamosa by using the CRISPR-Cas9 protocol
recently developed for B. cinerea (M. B. F. Steentjes, unpublished
data; Leisen et al. 2020).

Another fundamental concept of plant–pathogen interactions
regards the study of antimicrobial compounds that inhibit fungal
growth. Plants possess preventive defense mechanisms against
invaders, such as antimicrobial compounds. However, plant
pathogens have evolved mechanisms that confer tolerance to such
compounds, which allows them to be pathogenic. In the cereal
pathogenGaeumannomyces graminis, which infects oat and wheat,
detoxification of antimicrobial compounds was observed that
determines pathogen host range. Isolates of G. graminis that infect

oat produce an enzyme called avenacinase that detoxifies the
antimicrobial secondary metabolite avenacin, whereas isolates that
infect wheat are unable to detoxify avenacin and thus cannot infect
oat. Both isolates are able to infect wheat, which does not produce
avenacin. Avenacinase knockout mutants of the oat-infecting
isolate became nonpathogenic on oat, and introduction of
avenacinase into wheat-infecting isolates rendered pathogenicity
on oat (Bowyer et al. 1995). Likewise, tomato produces the
antifungal compound a-tomatine, which can be enzymatically
degraded by the broad host range pathogenB. cinerea via a secreted
tomatinase. However, one B. cinerea isolate collected from
grapevine could not degrade a-tomatine and consequently was
not aggressive on tomato (Quidde et al. 1998). By analogy, it seems
logical to propose that pathogens of onion leaves, bulbs, and flowers
must be tolerant to antifungal compounds in these tissues. In onion
different antimicrobial compounds have been identified, such as
saponins called ceposides and allicin, an antimicrobial compound
found in garlic and other Allium species (Lanzotti et al. 2012;
Marchese et al. 2016; Vu et al. 2012). Unraveling mechanisms that
Botrytis spp. use to detoxify these compounds will enhance our
understanding of the infection biology of Botrytis spp. pathogenic
on onion. New molecular, cellular, and biochemical insights in the
Botrytis–onion interaction might reveal leads for resistance
breeding in onion as a durable solution against leaf blight, neck
rot, and flower blight in onion cultivation.

LITERATURE CITED

Alderman, S., and Lacy, M. 1983. Influence of dew period and temperature on
infection of onion leaves. Phytopathology 73:1020-1023.

Alderman, S., and Lacy, M. 1984. Influence of temperature and moisture
on growth and sporulation of Botrytis squamosa. Can. J. Bot. 62:2793-
2797.

Alderman, S., Lacy, M., and Everts, K. 1985. Influence of interruptions of dew
period on numbers of lesions produced on onion by Botrytis squamosa.
Phytopathology 75:808-810.

Ali, A., and El Shabrawy, A. 1979. Effect of some cultural practices and some
chemicals on the control of neck rot disease caused by Botrytis allii during
storage and in the field for seed onion production in ARE. Agric. Res Rev.
57:103-114.

Araújo, E. R., Alves, D. P., and Higashikawa, F. S. 2018. Cultivar resistance
and chemical, biological and fertilizer treatments for controling Botrytis
leaf blight of onion. Trop. Plant Pathol. 43:160-164.

Armitage, A. D., Taylor, A., Sobczyk, M. K., Baxter, L., Greenfield, B. P.,
Bates, H. J., Wilson, F., Jackson, A. C., Ott, S., and Harrison, R. J. 2018.
Characterisation of pathogen-specific regions and novel effector candidates
in Fusarium oxysporum f. sp. cepae. Sci. Rep. 8:13530.

Barnes, S., and Shaw, M. 2003. Infection of commercial hybrid primula seed
by Botrytis cinerea and latent disease spread through the plants. Phytopa-
thology 93:573-578.

Bergquist, R., Horst, R., and Lorbeer, J. 1972. Influence of polychromatic
light, carbohydrate source, and pH on conidiation of Botryotinia squamosa.
Phytopathology 62:889-895.

Bergquist, R., and Lorbeer, J. 1971. Reaction of Allium spp. and Allium cepa
to Botryotinia (Botrytis) squamosa. Plant Dis. Rep. 55:394-398.

Bergquist, R., and Lorbeer, J. 1972. Apothecial production, compatibility and
sex in Botryotinia squamosa. Mycologia 64:1270-1281.

Blodgett, E. 1946. Observations on blasting of onion seed heads in Idaho.
Plant Dis. Rep. 30:77-81.

Bowyer, P., Clarke, B., Lunness, P., Daniels, M., and Osbourn, A. 1995. Host
range of a plant pathogenic fungus determined by a saponin detoxifying
enzyme. Science 267:371-374.

Bristow, P., McNicol, R., and Williamson, B. 1986. Infection of strawberry
flowers by Botrytis cinerea and its relevance to grey mould development.
Ann. Appl. Biol. 109:545-554.

Carisse, O., Levasseur, A., and Van der Heyden, H. 2012. A new risk indicator
for Botrytis leaf blight of onion caused by Botrytis squamosa based on
infection efficiency of airborne inoculum. Plant Pathol. 61:1154-1164.

Carisse, O., McCartney, H., Gagnon, J., and Brodeur, L. 2005. Quantification
of airborne inoculum as an aid in the management of leaf blight of onion
caused by Botrytis squamosa. Plant Dis. 89:726-733.

Carisse, O., Savary, S., and Willocquet, L. 2008. Spatiotemporal relationships
between disease development and airborne inoculum in unmanaged and
managed Botrytis leaf blight epidemics. Phytopathology 98:38-44.

470 PHYTOPATHOLOGY®



Carisse, O., and Tremblay, D. 2007. Incidence and significance of iprodione-
insensitive isolates of Botrytis squamosa. Plant Dis. 91:41-46.

Carisse, O., Tremblay, D.-M., McDonald, M. R., Brodeur, L., and McRoberts,
N. 2011. Management of Botrytis leaf blight of onion: The Québec expe-
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