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Given the current trends in climate change, extreme weather events are expected
to increase in strength and frequency. Such events can impact species survival and
species interactions. One of the most ubiquitous symbioses on earth is the nutrient
exchange partnership between arbuscular mycorrhizal fungi and their host plants.
While past work has shown that mycorrhizal fungi can help alleviate stress, it is
unknown how phosphorus uptake by plants to fungi is affected by extreme weather
events, such as flooding and heat waves. To test this response, we grew Medicago
truncatula host plants with or without mycorrhizal fungi and then exposed them to
extreme weather treatments: increasing soil temperature by 12◦C, or by flooding the
plant roots for 7 days. We measured plant and fungal performance, and quantified
phosphorus (P) uptake before and after extreme weather treatments using a technique
in which we tagged apatite, a form of rock phosphorus, with fluorescing quantum-
dots (QDs) nanoparticles. We then measured fluorescence in root and shoot tissue
at harvest. We found that plants and arbuscular mycorrhizal fungi were affected by
soil flooding, with plant survival, fungal colonization and QD-apatite uptake decreasing
under flooded conditions. We did not see these negative effects in the heat treatment.
While the presence of arbuscular mycorrhizal fungi affected plant biomass allocation,
leading to an increase in shoot biomass, the symbiosis did not increase plant survival,
total biomass or QD uptake in either treatment. More generally, we found host tissue
contained roughly 80% more QD-apatite from the pre-treatment compared to the
post-treatment nutrient injection. Future studies should focus on various plant-fungal
combinations to create databases on which predictive models to extreme weather
events can be constructed.
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INTRODUCTION

As the climate continues to warm, global ecosystems are
experiencing an increase in the frequency and intensity of
extreme weather events, such as sudden heat waves, droughts,
torrential rains, and floods (IPCC, 2014; Allen et al., 2018).
Extreme weather events can have dramatic impacts on the
survival, abundance and distribution of species, and can even
lead to the local extinction of species (Tinsley et al., 2015; Ray
et al., 2016; Zylstra et al., 2019). While progress is being made
in our ability to predict the effects of extreme weather events on
single species, it is less understood how these events affect the
interactions among species, such as in mutualism and parasitism
(Harrison, 2000; Edwards and Richardson, 2004; Bronstein, 2015;
Millar and Bennett, 2016; Gardner et al., 2017). Sequential
extreme weather events can drive symbiotic interactions between
species to break down (Rosenzweig et al., 2015), for example by
disrupting partner services (Zhou et al., 2013). Likewise, partner
abundance can affect the stability of mutualisms with mutualism
losses occurring where symbionts are scarce (Chomicki and
Renner, 2017). Changes in these species interactions can, in
turn, affect species richness and ecosystem resilience, but this
is not well understood (Chomicki et al., 2019). A key goal of
global change research is to understand how changes in species
interactions can be magnified at the ecosystem level (Dakos and
Bascompte, 2014; Jordano, 2016).

One of the most ubiquitous species interactions on earth is
the symbiosis formed between ∼70% of all terrestrial plants
and arbuscular mycorrhizal fungi of the Glomeromycotina,
a subphylum of the Mucoromycota (Spatafora et al., 2016;
Brundrett and Tedersoo, 2018; Tedersoo et al., 2020). Arbuscular
mycorrhizal fungi play a key role in nutrient cycling by forming
an underground link between plants roots and soil bound
nutrients. The fungi forage the soil for mineral nutrients and
exchange these nutrients with host plants for sugars and fatty
acids (Smith et al., 2011; Berruti et al., 2016; Jiang et al., 2017;
Keymer et al., 2017; Luginbuehl et al., 2017). In addition to this
role in nutrient provisioning, there is a growing body of research
demonstrating how arbuscular mycorrhizal fungi can protect
host plants from biotic and abiotic stress (Mohan et al., 2014;
Wu, 2017), including increased pathogen resistance (Martinez-
Medina et al., 2016; Chialva et al., 2018), chemical tolerance
(Meier et al., 2015), heavy metal protection (Husna et al., 2016),
and mediation of salinity (Wu et al., 2010).

Given this important role in stress protection, a major
question in the field is whether arbuscular mycorrhizal fungi can
help mitigate the effects of extreme weather events, or if extreme
weather events could drive a breakdown of the interaction.
Our aim was to mimic a heat wave and a flooding event in
mycorrhizal and non-mycorrhizal plants and to determine the
effect of extreme weather events on the phosphorus (P) uptake,
plant growth, and fungal success (as measured by copy number).
To mimic a flood, we submerged replicates of the model species
Medicago truncatula with water levels rising 0.5–1.0 cm above
the soil for 7 days. To mimic a heat wave, we increased soil
temperature from 28 to 40◦C for 7 days using heating mats
regulated with a digital thermostat.

We employed a new technique to study nutrient transfer
in both mycorrhizal and non-mycorrhizal plants in which we
tagged apatite, a natural form of rock P, with highly fluorescent
quantum-dots (QDs) to create fluorescing QD-apatite (Whiteside
et al., 2019; van’t Padje et al., 2020a). QDs are nanoparticles that
fluoresce in bright and pure colors when excited with UV light.
We used a class of QDs in which a carboxyl polymer creates
a protective coat to prevent organisms from being exposed to
the toxicity of the heavy metal core, and allows us to conjugate
the apatite to QDs. Past work has demonstrated that QD-apatite
can be taken up by the fungal networks of in vitro root organ
cultures, and transferred to host roots (Figure 1; Whiteside
et al., 2019; van’t Padje et al., 2020a,b). Similarly, QD-apatite can
be taken up by the roots of whole-plants, but colonization by
mycorrhizal fungi seem to increase this uptake (Whiteside et al.,
2019). The exact uptake mechanism of QD-apatite by the fungus
is still not known. However, various controls performed in past
experiments have confirmed that fungi show no uptake affinity
for unbound (i.e., unconjugated) QDs or for bare metal QD cores
(i.e., “naked quantum dots”), meaning that the fungus will not
take up QDs if they are not conjugated to a nutrient source like
apatite (Whiteside et al., 2019). Further validations have shown
that there are no differences in uptake and transfer affinity among
different colors of QD-apatite, and that whole plants grown on
QD-apatite show no signs of toxicity compared to plants growing
on apatite lacking QD-cores (i.e., not conjugated to any QDs)
(Whiteside et al., 2019).

Here, we injected sterile sand with QD-apatite of two distinct
colors, adding one color to the sand as a pre-treatment (red,
λ = 663 nm) and one color as a post-treatment (yellow,
λ = 572 nm). This allowed us to determine QD-apatite uptake
of plants before and after an extreme weather event. We expected
that the QD-apatite uptake would decrease in plants exposed to
extreme weather treatments, but that this effect would be reduced
in plants colonized by arbuscular mycorrhizal fungi.

MATERIALS AND METHODS

Germination, Fungal Inoculation and
Growing Conditions
We sterilized and scarified seeds of M. truncatula (Institut
National de la Recherche Agronomique, Montpellier, France)
by submerging the seeds in 95% H2SO4 for 6.5 min. We
removed the acid by rinsing the seeds with dH2O six times.
We stored the seeds at 4◦C in the dark for 4 days (Garcia
et al., 2006). After 4 days, we placed four germination seeds
per pot (75 mL; d = 6 cm), containing autoclaved RHP
Agra-vermiculite (M3). We watered them with 25 mL of
an 50% P modified Hoagland’s solution (6.5 mM KNO3,
3.25 mM K2SO4, 4 mM Ca(NO3)2·4H2O), 4 mM CaCl2·2H2O,
4 mM CaSO4·2H2O, 0.5 mM NH4NO3, 1 mM NH4H2PO4,
1 mM KH2PO4, 1 mM MgSO4·6H2O, 50 µM KCl, 35 µM
H3BO3, 25 µM, 2 µM MnSO4·4H2O, 2 µM ZnSO4·7H2O,
0.5 µM CuSO4·5H2O, 5 µM (NH4)6Mo7O24·4H2O, 20 mM
Fe(Na)EDTA (C10H12N2O8FeNa) (Hoagland and Arnon, 1950;
Werner et al., 2018). We placed the pots in a climate room, under
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FIGURE 1 | QD-apatite uptake by arbuscular mycorrhizal fungus Rhizophagus irregularis. (A) Image of a fungal hypha from an in vitro culture with QD-apatite in its
vacuoles. (B) Image of the arbuscular mycorrhiza fungus Rhizophagus irregularis near a patch of QD-apatite. Courtesy of M. D. Whiteside.

a light intensity of 170 µmol·m−2
·s−1. We covered the seeds for

the first 3 days and then shaded the seedlings for the following
7 days. After 10 days, we selected healthy seedlings, rinsed the
roots with dH2O and transferred them to plastic pots (320 mL)
containing∼270 g of quartz sand (>99.5% SiO2).

We prepared fungal inoculum by homogenizing mature
in vitro root organ cultures of the arbuscular mycorrhizal fungus
Rhizophagus irregularis (strain A5 Sanders Lab) grown on Ri
T-DNA L-transformed carrot roots (Daucus carota) (Declerck
et al., 2005). We inoculated half of the seedlings with 1.70 mL
inoculum (∼1000 spores), and the other half with 1.70 mL dH2O.
We then fertilized all seedlings with 5 mL 50% P modified
Hoagland’s solution. We covered the sand with autoclaved white
plastic beads, and placed each pot in a transparent plastic
beaker (550 mL) to allow for flooding. We grew plants in a
controlled climate room with a day-night cycle of 16–8 h, a
day temperature of 22◦C and a night temperature of 17◦C.
We kept the humidity at 75% and provided the plants with
full spectrum day-light gas-discharge lamps with an intensity
of 550 µmol·m−2

·s−1 at plant height (Barker et al., 2006). We
watered plants twice a week with sterile dH2O (Barker et al.,
2006) to maintain a soil water content of 18% by weighting
until 6 weeks, after which we increased the soil water content
to 24% of the water holding capacity. Once per 2 weeks, we
fertilized plants with 25 mL 50% P modified Hoagland’s solution
per pot. Mycorrhizal and non-mycorrhizal plants were randomly
distributed in the climate room, and assigned to one of the

three treatments: control, flooding, or heat. We grew a total
of 72 plants, with 12 replicates per mycorrhizal × extreme
weather treatment.

Nutrient Injections and Extreme Weather
Treatments
We prepared two solutions of red (λ = 663 nm) and yellow
(λ = 572 nm) QD-apatite to determine pre- and post-treatment
nutrient uptake. To conjugate the QDs with hydroxyapatite, we
added 150 mg Carboxyl CdSeS/ZnS Nanocrystals (CrystalPlex,
Pittsburgh, PA, United States) of each color to 1 L 50% modified
simulated body fluid–50% simulated body fluid solution (11.992 g
NaCl; 1.966 g NaHCO3; 0.447 g KCl; 0.457 g MgCl2·6H20; 0.261 g
K2HPO4; 0.416 g CaCl2; 0.106 g Na2SO4) (Tang et al., 2010;
Kawashita et al., 2012) and performed two separate reactions
in the dark at 37◦C. In the first reaction, small (∼8 nm) QD
crystals were formed during 24 h. In the second reaction, the
smaller crystals conjugated to bigger crystals (∼200 nm) during
an exposure for 60 h, creating 15.64 g apatite per L (Kawashita
et al., 2012), closely mimicking natural apatite (Sun et al., 2014).
In between crystal formation, we placed the solutions on a shaker
(100 oscillations/minute) for 24 h at room temperature. We
replaced 80% of the supernatant with nanopure H2O twice to
remove unbound reagents, shaking the solutions by hand to re-
precipitate between the washing steps. Our past analyses suggest
that each nmol of QD-apatite contains ∼700 nmols of P (nmol
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P:QD = 708:1)–for a complete description of the hydroxyapatite
conjugation steps and validation tests, see Whiteside et al. (2019).

Five weeks after seedling transfer, we injected 5.7 mL red QD-
apatite in the soil (0.33 g apatite/1000 g soil) for pre-treatment.
This injection allowed us to determine baseline nutrient transfer
before the plants were exposed to the treatments. After injection,
we reduced fertilization to 12.5 mL 50% P modified Hoagland’s
solution per pot once per 2 weeks to stimulate QD-apatite
uptake. We then allow plants to grow for 4 weeks before we
started the treatments.

Treatments were initiated on adult plants, 9 weeks after
seedling transfer. To mimic a flood, we submerged individual
plants by adding dH2O into the transparent beakers of 12
mycorrhizal and 12 non-mycorrhizal plants. We submerged
the plants with water level rising 0.5–1 cm above the soil for
7 days. To mimic a heat wave, we placed 12 mycorrhizal and
12 non-mycorrhizal plants randomly on two heating mats (Bio
Green GmbH & Co. KG, Bischoffen-Oberweidbach, Germany).
The heating mats were regulated by a digital thermostat, which
measured the soil temperature in the pot. We increased soil
temperature from 28◦C until 40◦C for 7 days, keeping the original
watering regime. After 1 week of the extreme weather treatments,
we removed the water from the beakers of the flooded plants and
placed the heat-treated plants randomly in the climate chamber.
12 mycorrhizal and 12 non-mycorrhizal plants were randomly
assigned to a control treatment in which no extreme weather
event was initiated. These controls plants were exposed to the
same nutrient and green house conditions as the extreme weather
plants, but were not exposed to flooding or heat treatments.
Directly (same day) after the extreme weather treatments (or no-
treatment in the case of the controls), we injected 2.5 mL yellow
QD-apatite per pot (0.166 mg apatite/1000 g soil) to study if and
how the nutrient transfer was influenced by the treatments as
measure by the post-treatment QD-apatite injection.

Harvest
We harvested plants 11 weeks after seedling transfer, 7 days after
the post-treatment QD-apatite injection. We washed roots in
dH2O and separated the root and shoot at the rosette. We placed
plant material in paper bags to dry at 50◦C for 48 h. We measured
the dry mass of roots and shoot on an analytical balance,
and subsampled root material for qPCR analysis of intraradical
fungal colonization (∼20 mg) and root and shoot material for
fluorescent analysis (∼6 mg) to determine the amount of QD-
apatite in the tissue. We pulverized subsamples of root and shoot
material using glass beads and a bead-beater speeding on 4 m/s
for 40 s (Thermo Savant FastPrep Fp120 Cell homogenizer).

DNA Isolation and Real Time qPCR
To quantify intraradical colonization, we extracted DNA from
roots, using a modified protocol of the DNeasy Plant Mini
Kit by Qiagen kit (Qiagen, Hombrechtikon, Switzerland), which
included the addition of 10 µL internal standard, a plasmid
containing cassava mosaic virus DNA (Engelmoer et al., 2014)
after the lysis step to be able to correct for extraction efficiency
(Kiers et al., 2011; Whiteside et al., 2019). We stored extracted
DNA at −20◦C for further analysis. We used Real Time qPCR

to determine intraradical colonization of the host roots (Thonar
et al., 2012). We prepared DNA samples by diluting the root
samples 100 times to dilute PCR inhibiting proteins, and added
10 µL iTaq universal SYBR Green Supermix (Bio-Rad, Hercules,
CA, United States), 0.32 µL forward primer, 0.32 µL reverse
primer, 0.080 µL probe, and 5.28 µL nanopure water to each
DNA sample of 4 µL sample (Kiers et al., 2011). We loaded
the prepared DNA samples into white welled 96-well PCR plates
(Bio-Rad, Hercules, CA, United States) and placed the samples in
a CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, United States). We measured the presence of R. irregularis
and internal standard using two separate qPCR rounds for each
sample. For the internal standard, we used the following cycle:
denaturation at 95◦C for 5 s, annealing at 50◦C for 30 s and
amplification at 72◦C for 1 s. For R. irregularis, we used a cycle
of denaturation at 95◦C for 5 s, and at 50◦C for 30 s, replicated 39
times. We exported Cq values with the CFX manager software,
and set a baseline threshold of 500 relative fluorescent units.
We converted Cq values to copy numbers (Kiers et al., 2011)
and calculated extraction efficiency by dividing the Cq values of
R. irregularis by the Cq value of the internal standard.

Fluorescent Analysis
We determined QD-apatite content of root and shoot material
by measuring emission spectrum of plant tissue. We prepared
the ground plant material by adding 150 µL 10 mM borate
buffer per mg plant material. From each sample, we pipetted
five replicates of 150 µL in a 96 wells plate with a glass bottom
(Eppendorf AG, Hamburg, Germany). To reduce edge effects, we
left the outmost wells empty. We measured the emission using
a fluorescence a BioTek Synergy MX plate reader with Gen5TM

Data Analysis Software. Emission of root and shoot material
was calculated from 450 to 800 nm, with steps of 2 nm by an
excitation of 325 nm. We then translated the emission spectra
to specific QD-apatite content in root and shoot using emission
finger printing. This allowed us to separate the emission of the
two QD colors, and the auto-fluorescence of the plant material
(Zimmermann et al., 2003), using a custom script in Matlab Code
(MathWorks, Natick, MA, United States) (Whiteside et al., 2019).
We converged fluorescence intensities into the concentration
of QD-apatite in root and shoot using calibration gradients of
QDs of each color, composed of seven concentrations: 13.1 mM,
9.83 mM, 7.37 mM, 5.53 mM, 4.15 mM, 3.11 mM, and 2.33 mM
(Whiteside et al., 2012a).

Statistical Analysis
All statistical analyses were performed in R version 3.3.4, with
each treatment compared directly to the control. We first
analyzed plant survival with a generalized linear model with a
binomial error distribution, with the treatment (control, flood, or
heat) and mycorrhizal status (mycorrhizal and non-mycorrhizal)
as independent variables. This allowed us to produce ANOVA
type III tables with a likelihood ratio as test statistic. We then
removed dead plants from the dataset for further analysis. We
analyzed the effect of the independent variables (treatment,
mycorrhizal status and the treatment × mycorrhizal status
interaction) on total biomass, root and shoot mass with an
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ANOVA and an F test. We used an ANOVA with an F test
on a generalized linear model with a gaussian error distribution
to analyze intraradical colonization per mg of root. We used
Wilcoxon rank sum tests to analyze the difference in nmol of pre-
treatment QD-apatite between mycorrhizal and non-mycorrhizal
plants per mg of root and shoot material (the difference in QD-
apatite content of the root and shoot and the difference in uptake
from the pre- and post-treatment), injection. We calculated the
logarithm of the summed QD-apatite content of shoot and root
as the total QD content and analyzed the effect of the independent
variables with an ANOVA.

RESULTS

Plant Survival
We found that both heat and flooding treatments significantly
influenced plant survival. At harvest, 11 weeks after seedling
transfer, 63% of the flooded plants (15 of 24) and 21% of
the heated plants (5 of 24) had died. In contrast, 100% (all
24) of the control plants survived. We found no evidence
that mycorrhizal status of the plants significantly influenced
overall plant survival (Table 1). Of the surviving flooded plants,
four were mycorrhizal, and five non-mycorrhizal. In the heat
treatment, eight mycorrhizal plants survived to harvest, and
eleven non-mycorrhizal plants.

Plant Growth
We determined the effect of extreme weather treatments on plant
growth by measuring plant biomass at harvest, removing the
plant replicates that had died. We first compared the control

to the heat treatment, with and without mycorrhizal fungi.
Total plant biomass was not significantly affected by the heat
treatment, the mycorrhizal status or the treatment×mycorrhizal
status interaction (Table 1). The root biomass was also not
significantly affected by the treatment, mycorrhizal status or
treatment × mycorrhizal status interaction (Table 1 and
Figure 2A). However, while shoot biomass was not significantly
affected by treatment effect, we found a significant mycorrhizal
effect, with mycorrhizal plants having bigger shoots, independent
of treatment (no significant treatment × mycorrhizal status
interaction, Table 1 and Figure 2B).

We then analyzed the effect of the flooding treatment on the
biomass by comparing the control to the flooding treatment.
Total biomass was significantly affected by the treatment, with
flooded plants having a lower total biomass. However, total
biomass was not significantly affected by mycorrhizal status
or the treatment × mycorrhizal interaction (Table 1). Root
biomass was likewise significantly lower in flooded plants,
but there was no significant effect of mycorrhizal status or
the treatment × mycorrhizal status interaction (Table 1 and
Figure 2C). The shoot mass was not significantly influenced by
treatment or mycorrhizal status, but was significantly affected by
the treatment×mycorrhizal status interaction: shoots of flooded
mycorrhizal plants were larger than shoots of non-mycorrhizal
flooded plants (Table 1 and Figure 2D).

Fungal Colonization
We examined how extreme weather treatments affected
intraradical fungal colonization on host roots. We compared
the heat-treated plants with the control plants, and found no

TABLE 1 | Analysis of variance on the biomass of plants.

Extreme weather treatment

Heat Flood

Plant survival X2 p-value X2 p-value

Extreme weather treatment 6.3506 0.0117 15.276 0.001*

Mycorrhizal status 0.000 1.000 0.000 1.000

Treatment × mycorrhizal status interaction 0.000 1.000 0.000 1.000

Total plant biomass Df res F-value p-value res F-value p-value

Extreme weather treatment 1 39 0.011 0.917 29 11.611 0.002*

Mycorrhizal status 1 39 0.427 0.517 29 0.292 0.593

Treatment × mycorrhizal status interaction 1 39 0.109 0.743 29 0.088 0.769

Root biomass Df res F-value p-value res F-value p-value

Extreme weather treatment 1 39 0.323 0.573 29 10.852 0.003*

Mycorrhizal status 1 39 0.003 0.958 29 0.073 0.789

Treatment × mycorrhizal status interaction 1 39 0.038 0.846 29 0.420 0.522

Shoot biomass Df res F-value p-value res F-value p-value

Extreme weather treatment 1 39 1.933 0.172 29 1.727 0.199

Mycorrhizal status 1 39 5.417 0.025* 29 3.792 0.061

Treatment × mycorrhizal status interaction 1 39 2.862 0.099 29 4.682 0.039*

Degrees of freedom (Df), residuals (res), and F- or X2–values and p-values are given for the effect of the variables (treatment, mycorrhizal status, and the
treatment × mycorrhizal status interaction). P-values in bold with an * have a significant effect of the variable (p-value < 0.05).
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FIGURE 2 | Boxplots representing the plant biomass per treatment for mycorrhizal (+AMF) and non-mycorrhizal plants (–AMF). (A) Root biomass was not
significantly influenced by heat treatment, mycorrhizal status or the treatment × mycorrhizal status interaction. (B) Shoot mass was not significantly influenced by the
heat treatment nor the treatment × mycorrhizal status interaction, but was affected by the mycorrhizal status, with mycorrhizal plants having higher shoot biomass.
(C) Root biomass was significantly affected by the flooding treatment, with flooded plants showing lower root biomass, but not by mycorrhizal status or
treatment × mycorrhizal interaction. (D) Shoot biomass was not significantly affected by flooding treatment or mycorrhizal status but was significantly affected by the
treatment × mycorrhizal status interaction: shoots of flooded mycorrhizal plants were significantly larger than shoots of flooded non-mycorrhizal plants.
ncontol,+AMF = 12, ncontol, -AMF = 12, nheat,+AMF = 8, nheat, -AMF = 11, nflood,+AMF = 4, nflood, -AMF = 5. Top and bottom of the box indicate the first and third quartile,
and the whiskers indicate the minimum and maximum values. Different letters indicate significant difference between the means (p-value < 0.05).

significant effect of treatment on the intraradical colonization
per mg of root, or per total root (Table 2 and Figures 3A,B). In
contrast, when we compared the flooded plants with the control
plants, we found a significant treatment effect, with flooding
associated with a 58% drop in colonization per root and 94%
drop in colonization per mg root (Table 2 and Figures 3C,D).

QD-Apatite Uptake Before Exposure to
Treatment (Pre-treatment)
We determined the QD status of plants before exposure to the
extreme weather treatments by quantifying the red λ = 666 nm
nmol QD-apatite per total root and total shoot tissue. Based
on this pre-treatment injection, we found that mycorrhizal
status did not significantly influence nmol of QD-apatite per

total root (Wilcoxon rank sum test, W = 314, p = 0.696)
or shoot (Wilcoxon rank sum test, W = 234, p = 0.062). In
terms of allocation of QD-apatite across the plant, we found
that total shoot contained on average three times more QD-
apatite (λ = 2.603, SE < 0.187 nmol/total shoot) than total root
(λ = 0.889, SE < 0.059 nmol/total root, paired Wilcoxon rank
sum test: W = 317, p ≤ 0.0001, Figures 4A,B).

QD-Apatite Uptake After Exposure to
Treatment (Post-treatment)
We then quantified the post-treatment uptake by measuring the
yellow, λ = 572 nm, QD-apatite in the host plants. We found that
plants contained, on average, 80% less post-treatment QD-apatite
compared to pre-treatment injection, independent of treatment.
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TABLE 2 | Analysis of variance on the intraradical colonization and QD-apatite content per total root and total shoot.

Extreme weather treatment

Heat Flood

Intraradical colonization per mg root Df res F-value p-value res F-value p-value

Extreme weather treatment 1 15 1.603 0.225 13 7.852 0.015*

Intraradical colonization per total root Df res F-value p-value res F-value p-value

Extreme weather treatment 1 15 1.375 0.259 13 11.502 0.005*

QD-apatite per total root Df res F-value p-value res F-value p-value

Extreme weather treatment 1 39 0.923 0.343 29 9.880 0.004*

Mycorrhizal status 1 39 0.169 0.684 29 1.704 0.202

Treatment × mycorrhizal status 1 39 1.540 0.222 29 0.024 0.879

QD-apatite per total shoot Df res F-value p-value res F-value p-value

Extreme weather treatment 1 39 0.056 0.814 29 2.046 0.163

Mycorrhizal status 1 39 0.820 0.371 29 0.194 0.663

Treatment × mycorrhizal status 1 39 0.954 0.335 29 0.559 0.461

Degrees of freedom (Df), residuals (res), F- and p-values are given for the effect of the variables (treatment, mycorrhizal status, and the treatment × mycorrhizal status
interaction). P-values in bold with an * have a significant effect of the variable (p-value < 0.05).

We tested the effect of the heat treatment and mycorrhizal
status on the nmol of QD-apatite per total root and total
shoot by comparing the control plants to the heat-treated
plants. We found that nmol of QD-apatite per total root
was not significantly affected by treatment, mycorrhizal
status or the treatment × mycorrhizal interaction (Table 2
and Figure 5A). Likewise, we found that nmol QD-
apatite per total of shoot was not significantly affected by
treatment, mycorrhizal status or the interaction (Table 2 and
Figure 5B).

We quantified the effect of the flooding treatment by
comparing the flooded plants with the control plants. We
found that the nmol QD-apatite per total root was significantly
lower in the flooded treatment, compared to control plants,
but was not significantly affected by the mycorrhizal status
or the treatment × mycorrhizal interaction (Table 2 and
Figure 5C). We found that nmol of QD-apatite per total shoot
was not significantly affected by treatment, mycorrhizal status
or the treatment × mycorrhizal status interaction (Table 2 and
Figure 5D).

DISCUSSION

Our aim was to determine how extreme weather events,
specifically soil heating and flooding, modified the P uptake of
plants and plants colonized by arbuscular mycorrhizal fungi. We
found a strong effect of the flooding treatment on plant survival,
with over 60% of the plants dying when exposed to flooding. We
found a less strong effect of the soil heating treatment, with∼20%
of the plants dying. We found no evidence that mycorrhizal
colonization of R. irregularis had an effect on the survival rates
of plants (Table 1), but this effect is known to be highly species
specific (Camprubi et al., 2012).

It is well established that flooding drives a stress response
in plants, including metabolic modifications, such as inhibition
of mitochondrial respiration and photosynthesis, leading to
dramatic decline in plant growth and development and
concurrent dysfunctions (Parent et al., 2008). We found
that flooding was linked to a decrease in plant biomass
(Figures 2C,D), intraradical colonization (Figures 3C,D), and
nutrient uptake (Figures 5C,D).

Heat is also known to disrupt many physiological and
biophysical processes, including photosynthesis and chlorophyll
synthesis (Zhu et al., 2017). However, we did not see strong
treatment effects on plant performance under our soil heating
regime (Figures 2A,B). The stronger effects of the flooding
treatment in our study could potentially be linked to the biology
of M. truncatula, a Mediterranean herb known to tolerate high
temperatures, but to be very sensitive to flooding (Küster et al.,
2006). Additionally, our heating regime was potentially less
intense than expected in nature because we only increased the
soil temperature, without decreasing the water availability. This
has the potential to reduce the stress experienced by plants and
fungi in the heating treatment.

Mycorrhizal Fungi Affect Plant Biomass
Allocation Under Extreme Weather
Events
We expected to find a positive effect of mycorrhizal colonization
on plant biomass. While mycorrhizal status had no effect on
total plant biomass, we found that mycorrhizal status influenced
the biomass allocation to above and below ground plant parts.
Mycorrhizal plants had a higher shoot biomass than non-
mycorrhizal plants (Table 1 and Figure 2). This supports
previous studies that have shown how arbuscular mycorrhizal
fungi can modify biomass allocation of their host plants,
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FIGURE 3 | Boxplots representing the intraradical colonization per mg and per total root. (A,B) The heat treatment did not significantly influence the fungal
colonization of the host roots per mg or per total root. (C,D) The flooding treatment caused a significant lower intraradical colonization of the host roots, both per mg
of root and per total root. ncontol = 12, nheat = 8, nflood = 4. Top and bottom of the box indicate the first and third quartile, and the whiskers indicate the minimum and
maximum values. Different letters indicate significant difference between the means (p-value < 0.05).

with mycorrhizal plants having higher shoot mass than non-
mycorrhizal plants (Johnson et al., 2008; Zaller et al., 2011; Zhang
et al., 2011). Non-mycorrhizal plants, similar to plants under low
water or low nutrient conditions, may allocate less biomass to
the shoot and more the roots to increase the uptake of limiting
resource (Zhang et al., 2011). Many studies have shown that
plant stressors, such as water availability, temperature, and heavy
metals can also influence the biomass allocation patterns because
these stressors alter the carbon allocation of plants [reviewed in
Andersen and Rygiewicz (1991)]. Likewise, we found the lowest
shoot mass was found in non-mycorrhizal plants exposed to the
flooded treatment (Table 1 and Figure 2).

Flooding, but Not Heat, Decreases
Mycorrhizal Colonization
We then tested the effects of the extreme weather treatments
on intraradical colonization rates as measured by qPCR. In
flooded plants, we found that arbuscular mycorrhizal fungi

showed a surprising resilience against the flooding treatment, still
colonizing roots after a 7-day exposure to flooded conditions
(Figures 3C,D). Previous research has demonstrated species-
specific effects of colonization by arbuscular mycorrhizal fungi,
with some plant-fungal combinations experiencing increased
colonization associated with flooding, while others show a
reduction, or no effect (Hartmond et al., 1987; Wu et al.,
2013). There may also be an important time component: in
rice, colonization of arbuscular mycorrhizal fungi gradually
decreases over time during flooding condition due to changed
root morphology (Vallino et al., 2014). Our study suggests that
colonization is negatively affected by the flooding treatment, but
did not lead to the total loss of mycorrhizal colonization.

In contrast to flooding, we found that the heat treatment
did not influence the fungal colonization rates significantly
(Figures 3A,B). One explanation is that our heat treatment was
neither strong, nor long enough to trigger a negative effect on the
fungal symbiont. When the soil temperature increases, the carbon
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exchange rate and the absorption of nutrients as P increases
which could negate the negative effects of increased temperatures
(Andersen and Rygiewicz, 1991). We aimed to induce only a heat
stress, however the heat-treated plants might have experienced
drought related effects as well. While the majority of work
has found positive effects of AM fungi on drought tolerance
(Bárzana et al., 2015; Quiroga et al., 2017; Li et al., 2019;
Fracasso et al., 2020), a transcriptomic analysis in sorghum
suggested that drought can negatively impact the functionality of
the symbiosis (Varoquaux et al., 2019). Similar negative effects
have been found in barley under higher AMF richness (Sendek
et al., 2019). However, the vast majority of studies suggest that
AMF can improve tolerance to temperature stress. AMF can
enhance water and nutrient uptake, and induce plant production
of ROS-scavenging anti-oxidant compounds, reduce oxidative
stress, improve photosynthesis, and increase accumulation of
osmolytes (Zhu et al., 2017). However, because these effects
differ depending on host species, fungal species/fungal diversity,
and soil type, there are many open questions as to how plant-
soil biotic interactions will respond under climate change. New
research has shown that even the presence versus absence
of intrahyphal endobacteria in AM fungi such as Gigaspora
margarita plays an important role in modulating stress (Chialva
et al., 2020). More broadly, while it is known that plants can
actively recruit microorganisms to buffer the environmental
stress of drought (Naylor and Coleman-derr, 2018; Andreo-
jimenez et al., 2019; Vigani et al., 2019; Veach et al., 2020),
it is unknown how these microorganisms interact with the
functionality of mycorrhizal roots.

Mycorrhizal Status Did Not Increase
Nutrient Transfer
The use of QD-apatite to study P transfer from fungi to
host plants is an emerging technique (Whiteside et al., 2019;

van’t Padje et al., 2020a,b), and many open questions remain.
Using emission finger printing, we were able to quantify
florescence in root and shoot tissue of QD-apatite injections of
two different colors in whole plants, representing nutrient uptake
from pre- and post-extreme weather treatments. Data on pre-
treatment uptake (i.e., red QDs, λ = 666 nm) suggested that
tagged apatite was taken up by plants, and then successfully
transferred to growing leaves: shoots contained on average three
times more QD-apatite than roots (Figure 4). This is important
because it further validates our QD-apatite method (Whiteside
et al., 2019), showing that tagged nutrients accumulated in the
growing host shoots tissues as expected.

After the pre-treatment, we next quantified QD-apatite uptake
post-extreme weather treatments. The most important result was
that plants contained, on average, 80% less QD-apatite compared
to QD-apatite from the pre-treatment injection, independent of
treatment. This suggests that either the plants were saturated with
P from the first injection, or that not enough time had passed
since the injection for the QD-apatite to be incorporated into
host tissue (7 days). We found no significant effect of mycorrhizal
status of the plants on QD uptake in the heat treatment (Table 2).
This result is not surprising given that the heat treatment did not
induce a change in plant biomass or mycorrhizal status. We did
find that there was a significant effect of the flooding treatment
on QD uptake in post-treatment QD injections: roots of flooded
plants contained significantly less nmol QD-apatite than roots
of control plants (Table 2 and Figure 5D). While research has
shown that flooding can increase the solubility of P in soils by
dissolution of P apatite (Chien, 1977), the lower root biomass and
lower colonization of fungi in roots of flooded plants suggests that
these host roots and fungal symbionts were stressed, and were not
able to take up or transfer as much QD-apatite as control plants.

Our work provides further evidence that plants and arbuscular
mycorrhizal fungi are able to take up QD-apatite, and incorporate

FIGURE 4 | Boxplots representing pre-treatment QD-apatite content per total root and total shoot for mycorrhizal (+AMF) and non-mycorrhizal plants (–AMF).
(A) The amount QD-apatite in total roots was not significantly different between mycorrhizal and non-mycorrhizal plants. (B) The amount of QD-apatite in total shoots
was also not significantly different between mycorrhizal and non-mycorrhizal plants. n+AMF = 24, n-AMF = 28. Top and bottom of the box indicate the first and third
quartile, and the whiskers indicate the minimum and maximum values. Different letters indicate significant difference between the means (p-value < 0.05).
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FIGURE 5 | Boxplots representing the post-treatment QD-apatite content per total root and total shoot for mycorrhizal (+AMF) and non-mycorrhizal plants (–AMF).
(A) The amount QD-apatite in total root was not significantly affected by heat treatment, mycorrhizal status or the treatment × mycorrhizal status interaction. (B) The
amount of QD-apatite was in total shoot was not significantly affected by the heat treatment, mycorrhizal status nor the treatment × mycorrhizal status interaction.
(C) The amount of QD-apatite in total roots was significantly affected by the flooding treatment: flooded roots contained less QD-apatite. However, QD content was
not significantly affected by mycorrhizal status or the treatment × mycorrhizal status interaction. (D) The amount of QD-apatite in shoots was not significantly
affected by the flooded treatment, mycorrhizal status or the treatment × mycorrhizal status interaction. ncontol,+AMF = 12, ncontol, -AMF = 12, nheat,+AMF = 8, nheat,

-AMF = 11, nflood,+AMF = 4, nflood, -AMF = 5. Top and bottom of the box indicate the first and third quartile, and the whiskers indicate the minimum and maximum
values. Different letters indicate significant difference between the means (p-value < 0.05).

the fluorescing QD-apatite into their tissue (Figure 1; Whiteside
et al., 2019; van’t Padje et al., 2020a), as has been shown
previously using QD-tagged amino acids (Whiteside et al.,
2009, 2012a,b). However, a major limitation in our current
approach is the inability to quantify the rate at which P is
dissociated from the QD core across different biological tissue.
Additionally, while the specific pathways of QD-apatite uptake
in plants is still unknown, there has been work describing
the mechanisms of nanoparticles by plants roots [extensively
reviewed by Schwab et al. (2016)]. Uptake of larger QD
particles is likely via endocytosis, i.e., invagination of the
cell membrane. The most common endocytosis pathway in
plant roots is clathrin dependent, enabling the uptake of

particles of ∼70 to 120 nm diameter (Šamaj, 2012), but
nanoparticles can also be taken up via clathrin-independent
endocytosis (Etxeberria et al., 2006). Once inside the plant
root cell, the nanoparticles can cross the cells simplistically
via cell wall pores. Previous studies have measured cell
wall pores diameter, and found that the diameter varies
between 5 and 20 nm (McCann et al., 1990). Transport
of nanoparticles can also occur apoplastically and via the
vascular system of the plants (reviewed in Schwab et al.,
2016). Our data confirm past research in QDs showing that
once inside the plant roots, the QD are transported to the
shoots and eventually into the mesophyll cells and chloroplasts
(Whiteside et al., 2009, 2019).
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Less is known about the fungal uptake of nutrients tagged
with nanoparticles, especially in arbuscular mycorrhizal fungi. In
yeast, QD tagged glutathione has been shown to be taken up using
ADP1-encoded transporters (Gustafsson et al., 2015). However,
for larger particles, such as apatite crystals used here, endocytosis
is the most likely mechanism. This idea is supported by recent
bright-field imaging videos of nutrient flows that showed large
vacuoles inside hyphae when the fungus was given access to
QD-tagged apatite. These large vacuoles were conspicuously
absent in flows when the fungus has no access to QD-tagged
apatite (van’t Padje et al., 2020a). Endocytosis has been found
to be important for particle uptake in filamentous fungal hyphae
(Fischer-Parton et al., 2000; Read and Kalkman, 2003). Likewise,
the budding yeasts Saccharomyces cerevisiae (Lu et al., 2016),
and Candida albicans have been shown to use clathrin mediated
endocytosis. In the case of C. albicans, endocytosis can result in
invagination of vacuoles with diameters of ∼100 nm (Epp et al.,
2013). Arbuscular mycorrhizal fungi likely rely on endocytosis
for the uptake of QD-apatite crystals, which can be as large
as ∼200 nm directly after chemical synthesis (Whiteside et al.,
2019). However, as the fungi dissolute the apatite (Pel et al., 2018),
the particle size will decrease prior to uptake (∼8–20 nm).

We did not find a significant effect of mycorrhizal status on
the nmol of QD-apatite per total root or shoot. Past work has
shown that can arbuscular mycorrhizal fungi facilitate the uptake
of apatite in plants (Pel et al., 2018), likely through dissolution
of the apatite into smaller crystals before uptake. Likewise,
Whiteside et al., 2019 found that colonization by mycorrhizal
fungi significantly increased QD-apatite in plant tissue after
∼7 weeks. Given this past evidence, we had expected to see a
positive effect of colonization on QD-apatite uptake for the host.
However, given that we also did not see a positive effect of fungal
colonization on total plant biomass, this is further evidence that
not all plant-fungal combinations result in P benefits for host
plants (Hoeksema et al., 2010) and that this is highly context
dependent (Li et al., 2008; Chialva et al., 2020).

While some progress is being made in our ability to predict
the effects of extreme weather events on single species, an open
research question is how these events affect the interactions
among species, and thus biodiversity more generally. Our work
suggests that both plants and arbuscular mycorrhizal fungi were
negatively affected by soil flooding, with plant survival, fungal

colonization and QD-apatite uptake decreasing under flooded
conditions. These effects were less severe in the heat treatment.
While we found no evidence that the plant-fungal combination
tested affected P uptake by plants exposed to extreme weather
events, future studies should develop a standardized protocol
to test these and other weather-related stress effects, with the
aim of developing databases on which predictive models can be
constructed. As we test more species combinations to extreme
weather, we can better understand how these events will shape
biodiversity through symbiosis.
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