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• Synergies and trade-offs emerge over 
time due to the complex adaptive nature 
of food systems. 

• Focus on intensification leads to a "bet
ter before worse" pattern; post 2035 
trade-offs emerge, positive trends 
reverse. 

• The food system structure and purpose 
should change to mitigate climatic and 
other risks. 

• The application of system tools and 
climate-smart agriculture can transform 
food systems.  
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A B S T R A C T   

CONTEXT: Food systems face multiple challenges simultaneously: provision to a growing population, adaptation 
to more extreme and frequent climate change risks, and reduction of their considerable greenhouse gas (GHG) 
emissions. Food system interventions and policies give rise to synergies and trade-offs that emerge over time due 
to the dynamic nature and interconnections of system elements. Analysis of an entire food system is necessary to 
identify synergies that bring simultaneous benefits and mitigate trade-offs, both short- and long-term. 
OBJECTIVE: Our study aims to inform the sustainable transformation of food systems by identifying short- and 
long-term synergies and trade-offs in the climate-smart village (CSV) Lawra-Jirapa in northern Ghana under the 
current practices, technologies, policies, and trends of population growth, extreme events, and climate change 
impacts. 
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METHODS: We develop a system dynamics model to simulate the food system in the CSV between 2011 and 
2060. We apply the climate-smart agriculture (CSA) approach as a diagnostic tool to the CSV system to reveal the 
short- and long-term trade-offs and synergies between the CSA goals. 
RESULTS AND CONCLUSIONS: The simulation results reveal short-term progress towards the goal of increased 
productivity and income, with trade-offs in the goals of GHG removal, climate adaptation, and resilience. In the 
long term, post-2035, current agriculture practices, technologies, and policies inside and outside the CSV 
boundaries result in trade-offs across all three CSA goals, and progress made towards these goals is reversed. The 
CSV system behaviour, thus, exhibits a “better before worse” pattern. 
SIGNIFICANCE: The analysis demonstrates an approach, which considers simultaneously all three CSA goals, to 
identify synergies and mitigate trade-offs in an entire food system. The findings suggest that understanding the 
dynamics of food systems is a precursor to their sustainable transformation. This transformation will entail 
changes to the food system’s goals and structure with equal attention to short- and long-term outcomes.   

1. Introduction 

The Food and Agriculture Organisation estimates that by 2050, our 
food systems will have to produce 50% more food to feed a rapidly 
growing population (FAO, 2017a, 2017b). This increase in food pro
duction will present socio-economic challenges and increase greenhouse 
gas (GHG) emissions and land-use changes with an impact on the natural 
environment and biodiversity (Mbow et al., 2019; Herrero and Aziz, 
2019). There is an urgent need to minimize the yield gap and the 
environmental stresses induced by increased agricultural production, 
and simultaneously adapt and build agricultural system resilience to 
climate change risks (Pradhan et al., 2015). 

In light of these multiple challenges to sustainable food security and 
ecosystem health, integrated approaches are sought to enable and 
facilitate synergies between low-carbon and climate-resilient pathways 
(Mbow et al., 2019). Climate-smart agriculture (CSA) is such an inte
grated approach that introduces context-specific technologies and 
practices into food systems. CSA aims to meet the triple goals of sus
tainable agricultural intensification, climate change (CC) adaptation, 
and GHG mitigation to support food security under CC’s new realities 
(Lipper et al., 2018). However, the interconnections and dynamics be
tween food system elements give rise to synergies and trade-offs that 
emerge over time within and between the CSA goals (Steenwerth et al., 
2014; Aggarwal et al., 2018). Synergies emerge when a desirable change 
in one goal also contributes directly or indirectly towards other goals. 
Trade-offs emerge when efforts to reach one goal undermine or limit the 
potential of reaching another goal in the short- or long-term (Pradhan 
et al., 2017; Fader et al., 2018). 

While CSA aims to meet the triple goals simultaneously, their order 
and priority vary in practice and often depend on the local context 
(Totin et al., 2018). Consequently, considerable attention should be 
given to goal priority in CSA application, the implementation of prac
tices in a given context, and their short- and long-term impacts (Partey 
et al., 2018). For instance, in developing African countries, food inse
curity is prevalent, vulnerability and exposure to climate change risks 
are high, and agriculture’s contribution to GHG emissions increase 
rapidly (Tongwane and Moeletsi, 2018). In this context, sustainable 
intensification and adaptation goals are the priority, and CSA in
terventions should involve mitigating the trade-offs between the triple 
goals and weighing the costs and benefits of different options (Lipper 
et al., 2018; Thornton et al., 2018). 

However, prioritizing some goals over others raises the question as to 
whether interventions could truly be considered climate-smart (Neufeldt 
et al., 2013; Hochman et al., 2017; Thornton et al., 2018). This is 
because a CSA that focuses more on some goals often lacks evidence on 
the trade-offs and synergies between the triple goals (Saj et al., 2017). 
The lack of evidence limits opportunities to learn and mitigate trade-offs 
and may lead to maladaptation and establishment of unsustainable food 
system practices in the short- or long-term (Aggarwal et al., 2018; 
Martinez-Baron et al., 2018). Thus, it is necessary to persistently 
consider the triple goals equally in CSA-related research and 

development projects (Saj et al., 2017). The synergies and trade-offs 
between the triple goals of CSA are especially important in light of the 
need for sustainable transformation of our food systems (FAO, 2019). 

The CSA approach can be applied to the increasing number of 
climate-smart villages (CSV) established worldwide to understand their 
system-wide impact and inform the scaling-up of sustainable food sys
tems. To do so, it is necessary to identify and understand the in
terdependencies of context-specific socio-economic and environmental 
elements of food systems and their dynamics (Steenwerth et al., 2014; 
Aggarwal et al., 2018). This task requires the use of systems tools and 
approaches because sector-specific approaches that focus on a specific 
part of the food system ignore its multidisciplinary nature, while linear 
approaches fail to capture the complexity and the range of interactions 
and dynamic feedback loops within food systems (Monasterolo and 
Mollona, 2015; Monasterolo et al., 2016). Analysis of a food system can 
identify and address synergies and trade-offs and result in integrated 
adaptation and mitigation interventions (Rosenzweig et al., 2020). 
Moreover, it can contribute towards the UN Sustainable Development 
Goals (SDG) of zero hunger (SDG2), poverty elimination (SDG1), gender 
equality (SDG5), climate action (SDG13), and life on land (SDG15) 
(FAO, 2019) and move the global system into the safe and just operating 
space (Pradhan et al., 2017). 

An interdisciplinary simulation approach is necessary to understand 
food system dynamics over time and inform the scaling-up of sustainable 
food systems through the CSA approach (Jagustović et al., 2019). The 
use of system dynamics (SD) to investigate the impact of CSA in
terventions was proposed (Muetzelfeldt, 2010), yet there is no follow up 
work in this direction. To fill this gap, we develop a system dynamics 
model to simulate short- and long-term dynamics in the climate-smart 
village (CSV) site in northern Ghana, under the current practices, 
technologies, policies, and trends of population growth, extreme events, 
and climate change impacts. We demonstrate that the CSA approach as a 
diagnostic tool can be combined effectively with the SD method to 
capture, explore, and simulate the complex feedback relationships be
tween the food system elements in the Lawra-Jirapa CSV site. Simulation 
results reveal the short-term and long-term trade-offs and synergies 
within and between the CSA goals at the household and landscape 
levels. 

2. Materials and methods 

2.1. The system dynamics methodology 

We conduct an exploratory, interdisciplinary study and apply SD to 
investigate and analyse a complex food system and explore the outcomes 
of current policies and practices. SD is a computer-based simulation 
method used to model, simulate, and analyse dynamic complex systems. 
SD and agent-based modelling are used widely in sustainability transi
tion research (Papachristos, 2011; Holtz et al., 2015; Papachristos and 
Adamides, 2016; Köhler et al., 2018; Kotir et al., 2016; Papachristos, 
2014, 2018, 2019; Papachristos and Struben, 2019; Karlsen et al., 2019). 
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Grounded in the theory of information feedback control and systems 
thinking (Forrester, 1961), the approach was developed to characterize 
complex, non-linear systems by capturing causal relationships, feedback 
loops, and delays between system components (Sterman, 2000; Langs
dale et al., 2009). SD starts from the premise that system structure drives 
its behaviour (Richardson, 2011; Bala et al., 2017; Elsawah et al., 2017). 

Our SD model development includes qualitative and quantitative 
modelling stages, and they are seen as interdependent and comple
mentary to aid system-wide analysis of key processes in the food system 
at the Lawra-Jirapa CSV site. The model development process draws on 
lessons and SD best practices (Rahmandad and Sterman, 2012; Elsawah 
et al., 2017). The iterative modelling process implemented in this paper 
has four steps: (i) identification of system drivers and processes, (ii) 
qualitative modelling of the causal processes operating in the system, 
leading to a basic model structure, (iii) development of stock-and-flow 
diagrams (SFD) and a simulation model, and (iv) model validation and 
simulation to analyse the dynamics of the entire food system. Data on 
the conditions in the Lawra-Jirapa CSV site supported the conceptuali
zation, operationalisation, and validation of the SD model. We provide 
an overview of the modelling context in section 2.2, and we demonstrate 
the implementation of each modelling step in section 2.3. 

2.2. Modelling context: Lawra-Jirapa climate-smart village 

The Lawra-Jirapa CSV of the case study is a cluster of seven villages 
situated in the Upper West Region (UWR) of northern Ghana in the 
Guinea Savana agro-ecological zone. The CSV site was established in 
2011 as part of the CGIAR global research programme on Climate 
Change, Agriculture and Food Security (CCAFS), and in collaboration 
with local communities, practitioners, and scientists. CSVs are research 
and development sites used to design CSA models and to investigate and 
document lessons for policymakers, agricultural development practi
tioners, and investors (Westermann et al., 2015; Aggarwal et al., 2018). 
The aim is to conduct transformative agricultural investigation consid
ering socio-economic dynamics, climate variability, and climate change. 

The UWR has a unimodal rainy season from May to September and 
seven to eight months of dry season with a mean annual rainfall of 1035 
mm (Lacombe and McCartney, 2012). The CSV site is characterized by 
temporal climate variability and dry spells during the rainy season 
lasting between three days and four weeks (Kranjac-Berisavljevic et al., 
2014). Analyses of historical climate data on rainfall and temperature 
for the last (24–36 years) is consistent with the perception of climate 
variability among smallholders in the CSV site (Ndamani and Watanabe, 
2016; Nyantakyi-Frimpong and Kerr, 2015; Dakurah, 2018). Both note a 
shift in planting season from mid-February and mid-March to mid-April 
and mid-May (Lacombe and McCartney, 2012) and a decreasing rainfall 
trend from 1980 to 2015 (Asare-Nuamah and Botchway, 2019). The 
mean annual temperature (from 1982 to 2012) was 33.7 ◦C, an increase 
of 1.0 ◦C since 1960 (McSweeney et al., 2008). The CCAFS research 
programme documented the socio-economic and environmental condi
tions in the site, and identified technologies and practices guided by the 
CSA approach and informed by climate change projections. The midline 
survey in 2017 assessed changes since 2011 and whether they helped 
villages adapt to and mitigate climate change (Ouedraogo et al., 2019). 

The midline survey reports an increase in household size and de
mand for land and a decrease in technology adoption related to soil 
fertility and tree/agroforestry. The number of households that adopt 
tree management and soil management practices reduced, with 30% 
fewer households involved in tree management and 15% fewer in soil 
management. The midline survey reported continuous pressure on the 
tree population in the absence of alternative sources of income and 
energy, showing no changes in fuel demand for domestic and commer
cial use. In 2017, the population continued to perceive deforestation, 
soil degradation/erosion, population growth, and rainfall changes as the 
main drivers of change. 

The agricultural product diversity index declined, and only 14% of 

households were producing 9 or more products (high diversity) by 2017, 
compared to 46% in 2011, while 31.4% of households were producing 
1–4 products (low diversity) by 2017, compared to 1% in 2011. Other 
studies confirmed maize dominance in the farming system with more 
land for growing maize than other crops (Nyantakyi-Frimpong and Kerr, 
2015). This is because maize has replaced sorghum and millet, and it is 
the preferred cereal grown for household consumption, with over 80% 
of respondents in the CSV site consuming maize for breakfast, lunch, and 
dinner (Dakurah, 2018). 

The CCAFS midline survey recorded an increase in the use of inputs, 
including pesticides, fertilizer, and improved maize seeds, with 81% of 
households reporting use of inputs in 2017, compared to 31% of 
households in 2011. This was expected, as the UWR is the major target 
region of Ghana’s Fertilizer Subsidy Program (GFSP). Access to inputs is 
growing due to an increase in the subsidy rate from 12.5% to 50% in 
2017, and a more flexible payment plan (Nimako, 2019). At the same 
time, access to subsidies for maize production has also reduced the va
riety of food production and consumption at the household level (Ker
mah, 2020). 

Despite the increased use of inputs, both baseline and midline CCAFS 
surveys report low agricultural productivity and frequent crop failures 
due to poor soil quality and unreliable rainfall. A 2018 survey in the CSV 
site recorded a maize yield of up to 573 kg/ha using minimal inputs that 
doubled with intense fertilizer use provided through subsidies (Nimako, 
2019). Bua et al. (2020) confirm that the range of maize yield in the 
UWR is 0–500 kg/ha, and yield response to recommended fertilizer will 
increase between 500 and 1200 kg/ha from the current yield level. 
Maize yield losses occur frequently in UWR due to extreme events (i.e., 
drought, dry spells, floods, and pests) (Ndamani and Watanabe, 2016). 
For example, the appearance and infestation of fall armyworm in 
2017–2018 resulted in 17–21% yield loss (Koffi et al., 2020). The 
vulnerability of maize yield to drought is high because of low adaptive 
capacity and rain-fed agriculture (Antwi-Agyei et al., 2012), with a 
significant impact on food security (Kermah, 2020). 

The CCAFS midline survey furthermore reports a minimal improve
ment in food security, with 46.2% households being food insecure for 
3–4 months in 2017 as compared to 42% in 2011, and 33.3% of 
households being food insecure 5–6 months in 2017 as compared to 38% 
in 2011. Other studies report that only 37% of households in the UWR 
could survive on their food production for six months of the year 

Table 1 
Key variables of interest.  

FAO indicators for monitoring 
and evaluating CSA 

Variable in the Lawra-Jirapa CSV 
model 

Unit 

Sustainably increasing agricultural productivity and incomes 
Yield per hectare Maize yield per hectare kg/ha 
Income Maize gross profit per household GHC/hh 
Percentage of the population 

that is food insecure 
Months of household food 
availability 

Month/hh 

Agricultural production Maize production in Lawra-Jirapa 
CSV 

kg 

Changes in biophysical 
characteristics 

Biomass availability t/ha 

Changes in land-use area Land for maize, land for other crops, 
abandoned land, arable land 

ha  

Adapting and building resilience to climate change 
Number of soil and water 

conservation works 
Number of households adopting 
CSA 

No of hh 

Area of farmland under CSA 
technologies 

Hectares of land under CSA 
practices 

ha/year  

Removing GHG emissions 
Reduced GHG emissions Estimated GHG balance tCO2e/ha/ 

year 
Number of soil and water 

conservation works 
Number of households mitigating No of hh 

Changes in land-use area Land for maize, land for other crops, 
abandoned land, arable land 

ha  
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(Kermah, 2020) and that 60% of households in Jirapa and 55% in Lawra 
face severe food insecurity (Atuoye et al., 2017). 

With regard to climate change projections, the mean annual tem
perature in Ghana is expected to increase by 1.0◦ to 3.0 ◦C by the 2060s, 
with widespread drought and warming most rapid in the north of Ghana 
(McSweeney et al., 2008; Masih et al., 2014; Klutse et al., 2020). Models 
project an increase in daily rainfall intensity (Weber et al., 2018), a 
delay in the onset of rainfall, and a reduction in the rainy season’s 
overall length. Maize yield losses are projected at 22% by mid-century; 
however, the aggregate results hide enormous variability between re
gions (Jones and Thornton, 2003). Under drought management condi
tions, a decline in maize yield of 20% for 1 ◦C warming is expected 
(Lobell et al., 2011). Average maize yield losses in Ghana are expected to 
be between 20% and 40%, and the area suitable for growing maize will 
reduce by 25–50% by 2050 [RCP8.5 or + 2 ◦C above preindustrial 
temperature] (Ramirez-Villegas and Thornton, 2015). Under current 
agricultural practices, maize yield in semi-arid regions in the CSV zone is 
expected to reduce by 9% and 23% under RCP 4.5 and between 19% and 
39% under RCP 8.5 by 2069 with significant inter-farm variations in 
grain yield (Freduah et al., 2019). 

2.3. The development of the Lawra-Jirapa CSV-SD model 

The model development for Lawra-Jirapa CSV was informed by 
research members who spent more than two months in the CSV site, 
conducted systems thinking sessions with farmers and interviews with 
key informants, and observed CSA practices, farming activities, and 
wood harvesting. The model was developed using Vensim PRO software 
© (Ventana Systems Inc.). 

2.3.1. Problem definition, model boundaries and key variables of interest 
This step involves the identification of the key variables of interest 

and application of the CSA approach as a diagnostic tool to analyse the 

food system and identify trade-offs and synergies. The key variables of 
interest in the model (Table 1) are selected from the suggested indicators 
(FAO, 2017a, 2017b) to monitor progress towards the triple goals of 
CSA, and they are also present in the merged Causal Loop Diagram 
(Fig. 1.) in section 2.3.2. 

The goal of a sustainable increase in agricultural productivity and 
income to meet the food security needs of present and future generations 
while considering the environment and gender equity was assessed by 
observing changes in maize yield, maize production in CSV site, maize 
gross profit, household food availability, and biomass availability. The 
focus is on maize, which is the most important crop cultivated in the CSV 
site because it is promoted through government subsidies, it replaced 
millet and sorghum, and thus has the most significant impact on food 
security (Dakurah, 2018). 

The goal of adapting and building resilience to climate change as
sumes the introduction of context-specific, short- and long-term climate- 
resilient practices at household/farm and landscape scales, considering 
the present and future biophysical and socio-economic conditions and 
climate change risks. Progress is assessed by observing dynamics over 
time for the number of households adopting CSA soil and land man
agement practices and hectares of land under such practices. Finally, the 
mitigation goal assumes that agricultural practices will reduce and 
remove GHG emissions throughout the food system. Progress is assessed 
through GHG sequestration, GHG emissions, and GHG balance at the 
Lawra-Jirapa CSV over time. Land-use dynamics at the CSV level indi
cate progress towards sustainable intensification and mitigation goals. 

2.3.2. Conceptualizing the Lawra-Jirapa CSV food system 
In the model conceptualisation stage, the mental models of actors in 

the CSV are elicited (Ford and Sterman, 1998) by engaging female and 
male farmers and CCAFS scientists. The CSV system is mapped in Causal 
Loop Diagrams (CLDs) developed in four systems thinking sessions held 
in the Doggoh-Jirapa village, one of the villages constituting the Lawra- 
Jirapa CSV. Separate systems thinking sessions were facilitated with 
female and male farmers, and an additional half-day session was held 
with CCAFS West Africa scientists. The methodological approach to 
conceptualize the Lawra-Jirapa food system is documented in Jagu
stović et al. (2019) and builds on the Systems Thinking in Practice (STiP) 
heuristic (Reynolds, 2011, 2016) and the Distinction, System, Rela
tionship, Perspective (DSRP) (Cabrera and Colosi, 2008; Cabrera et al., 
2015) framework. 

Three corresponding CLDs that represent the distinct mental models 
of female farmers, male farmers, and CCAFS scientists were developed 
and validated (Langsdale et al., 2009). The authors analysed and merged 
the CLDs to the one shown in Fig. 1, consistent with the model purpose 
and boundary. It should be noted that the merged CLD simplifies many 
elements of the CSV and the food system. Nevertheless, it consolidates 
the important elements, interactions, and causal processes thought to 
operate in the system. The process of merging the mental models has the 
following steps (Inam et al., 2015):  

(i) The female farmers’ CLD serves as the basis to ensure that key 
variables and dynamics important for women are included. This 
is because, in this part of Ghana, women are responsible for most 
agricultural labour. Then, variables from other CLDs are inte
grated into this CLD.  

(ii) The terminology used by different groups is aggregated and 
standardized, i.e., food security, food insecurity, and food gap 
used by different groups read “months of food availability” in the 
final CLD.  

(iii) The merged CLD includes variables identified in at least two 
CLDs. A variable not included in the final CLD but mentioned in 
the CLD conceptualized by CCAFS scientists was included if it is 

Fig. 1. The final CLD representing the merged mental models of CSV female 
and male farmers and CCAFS scientists. The arrows show the causality, and 
plus/minus signs at the arrowhead show the polarity of the relationships be
tween variables. For example, when the variable “agricultural inputs use” in
creases (decreases), “household income” decreases (increases). This is indicated 
with a (− ) sign at the arrowhead. Similarly, when “household income” increases 
(decreases), “seasonal migration” decreases (increases). Conversely, when 
“months of food availability” increases (decreases), then “household income” in
creases (decreases). Double lines (//) on the arrow lines indicate a time delay in 
response to the stimuli. 
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considered as critical in the CCAFS baseline studies (2011) or 
other participatory site-specific relevant studies.  

(iv) Interconnections between variables and/or feedback loops are 
included if they are identified in two CLDs or considered signif
icant in the CCAFS baseline or other regional studies pertinent to 
the model purpose.  

(v) Finally, to improve the alignment between model purpose and its 
boundaries, we iterated and added or removed variables, in
terconnections, and feedback loops in the merged CLD based on 
triangulation with data available through CCAFS baseline and 
midline studies and regional data. 

2.3.3. Stock and flow modelling and dynamic simulation 
In the system dynamics model, main variables are either represented 

by stocks or levels, which is an accumulation of quantities or historical 
actions measured at any point of time (e.g., human population); or they 
are represented by flows, the rates by which the stock variables change 
(Sterman, 2000; Elsawah et al., 2017) (e.g., population birth and death 
rates). There are also auxiliary variables operationalized in the model to 
increase transparency, and constant parameters operationalized with 

numeric values drawn from the available data. 
Thus, in this stage, the CLD in Fig. 1 is converted to a stock and flow 

diagram (SFD) (see Figs. 2–7) that serves as the basis for simulation 
modelling (Richardson, 1996; Sterman, 2000). The model purpose, 
boundaries, and available data informed decisions on how much detail 
to include in the SFDs and how to handle uncertainties (Sterman, 2000). 
To facilitate specification of the interactions within the system boundary 
(Bala et al., 2017), the model was built one sub-system at a time (Figs. 2- 
7). Subsequently, the sub-systems were merged and simulated as one 
consistent model. It has six interlinked sub-models: population dy
namics, biomass demand and production, land-use changes, maize 
production and CSA practices and technologies, maize gross profit, and 
GHG emissions. Significant interdependencies exist between these sub- 
models. The details of each sub-model are described in the following 
sections and in Figs. 2–7. 

Population sub-system: The population depends on birth and death 
rates (Fig. 2). Seasonal migration occurs every year when at least one 
member of the household migrates. The number of household members 
who migrate annually increases when maize yield is low, and food is 
available for less than nine months per year). If the population increases, 
then more land is converted to agricultural land to meet the increased 
demand for maize. 

Biomass demand and production sub-system: The Biomass stock 
depends on the biomass demand for income-generation, total consumption 
for cooking, and biomass production (Fig. 3). Biomass demand increases 
due to the absence of alternative energy sources for cooking for the rural 
and urban population, demand from urban centres, population growth, 
and the lack of mechanisms to regulate biomass use. Biomass production 
depends on the land for biomass harvesting that decreases with conversion 
to agricultural land through burning, and annual woody biomass produc
tion. The sales of wood and charcoal increase in years of environmental 
shock to cover the costs of purchasing food. The decline in biomass 
availability over time leads to an increase in the land degradation rate 
observed through increased erosion, with a decrease in maize yield, 
annual maize production, and months of food availability, and an increase 
in seasonal migration. 

Land-use changes sub-system: Arable Communal Land is converted to 
land for maize as demand increases due to population increase and the 
rise in demand for maize as it becomes the preferred cereal (Fig. 4). The 
conversion of abandoned land to land for maize is facilitated through 

Fig. 3. The biomass availability, demand and production sub-system.  

Fig. 2. The population sub-system in Lawra-Jirapa CSV.  
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agricultural inputs, i.e., improved maize seeds, fertilizer, and pesticides 
available at a reduced price through government subsidies for inputs. If the 
preference for maize consumption continues to grow, and agricultural 
inputs for growing maize are available at subsidized prices, then the 
incentive to grow other crops declines, and the land for other crops does 
not increase. Wood is harvested from Abandoned Land and Arable 
Communal Land, and due to the increase in wood demand for cooking 
and sale, the stock of Degraded Land also increases. 

Maize production, CSA practices and technologies sub-system: The 
adoption of CSA practices depends on the availability of agricultural 
inputs, government subsidies, and the perceived impact of practices and 
inputs on maize yield (Fig. 5). Together, climate change and extreme 
events (i.e., drought, floods, dry spells, pests), landscape degradation, CSA 
practices (i.e., tie ridges, crop rotation, earth bunding, reforestation, 
agroforestry, zai pits, drought-tolerant varieties), and agricultural inputs 
impact directly maize production and maize yield and impact indirectly 

months of household food availability. If agricultural inputs are available 
at a subsidized price, then their use will increase, and lead to an im
mediate increase in maize yield and costs of production. This causes a 
decrease in the adoption of soil and land management (SLM) adaptation 
and mitigation practices because farmers perceive such practices as taking 
a long time to impact yield and require more labour than the application 
of inputs. The frequency, intensity and impact of extreme events and the 
impact of climate change on maize yield increase over time with a 
detrimental effect on maize yield and Maize Production. 

Maize gross profit sub-model: The percentage of households that 
use agricultural inputs, increases due to government subsidies and has 
an immediate impact on yield in years with good rainfall. The maize 
gross profit depends on the cost of hired labour, the cost of household 
inputs for maize, maize yield, and market maize price (Fig. 6). The 
household inputs costs for maize are affected by the cost of hired labour 
and the cost of inputs. As the use of inputs and costs of hired labour 
increase over time, the overall cost of maize production increases. The 
maize market price increases due to demand for maize, and the price 
increases further in years of extreme events when the yield is low. 

GHG balance sub-system: The GHG net emissions balance depends 

Fig. 5. The sub-system of maize production, CSA practices and inputs, and climate change and extreme events.  

Fig. 6. The sub-system of maize gross profit.  

Fig. 4. The land use changes sub-system.  
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on the GHG reduction and GHG emissions (Fig. 7). GHG reduction de
pends on the available arable communal land, land under CSA practices, 
and on abandoned land. GHG emissions increase due to land-use 
changes and wood and agricultural input use. As land is converted to 
agricultural land through clearing and burning, land for maize and 
degraded land increase and arable land decreases; these land conversion 
dynamics contribute to GHG emissions. In addition, as input use in
creases due to government subsidies, GHG emissions increase as well. 

2.3.4. Data sources and model parameterization 
The stock and flow diagrams described above were developed and 

parameterised with data from diverse sources, including information 
from secondary sources such as CCAFS baseline and midline surveys, 
government documents, journal publications (Naab et al., 2011; Nyan
takyi-Frimpong and Kerr, 2015; Ndamani and Watanabe, 2016; Atuoye 
et al., 2017; Freduah et al., 2019; Kugbe et al., 2019; Kermah, 2020), and 
personal communications with farmers, CCAFS West Africa scientists, 
and local experts. The model was parameterised and simulated, 
assuming that historical agricultural, socio-economic and climatic 
trends will continue in the future. The model simulates the Lawra-Jirapa 
site for 50 years, starting from 2011 when the CCAFS research project 
portfolio of CSA interventions was introduced. Further information 
about the input data, sources, and model equations are provided in 
Appendix 1 and Appendix 2: Supplementary material. 

2.4. Model testing and validation 

Model testing and validation are crucial to establish the validity of 
the model structure and build confidence in model results (Sterman, 

2000; Bardi, 2011; Bala et al., 2017; Amadei, 2019). Structural validity 
and behavioural validity tests were conducted to test and validate the 
model (Forrester and Senge, 1980; Barlas, 1994; Sterman, 2000). The 
structural validity test ascertains whether the structure of the model 
reasonably captures the actual relationships that exist in the system 
being modelled. The behavioural validity test evaluates the model’s 
ability to replicate the dynamic patterns of the real system. These model 
tests were continuous during the modelling process. 

2.4.1. Structure validity tests 
A boundary adequacy test was carried out to ascertain whether the 

model includes the major variables, processes, and relationships 
necessary to explain the behaviour of the system. The authors conducted 
the test in consultation with expert stakeholders within the system. This 
resulted in adding government subsidies and urban demand for biomass to 
the model structure. 

Dimensional consistency was conducted in the model through the 
built-in “units check” and “model check” Vensim functions, and the 
model is found to be error-free. The integration error test assessed 
whether the results are sensitive to the choice of the simulation time 
step. The time step of the model was reduced progressively from 1 to 
0.0625 years until its value made no significant numerical change to the 
simulation results. Extreme condition tests were performed to evaluate 
the robustness of the model and uncover structural flaws through 
observing model behaviour under extreme conditions. 

The direct structure test assessed the model structure against the real 
system and, thus, the usefulness of the model with regard to its intended 
purpose and use (Sterman, 2000): to understand the food system 
behaviour in the CSV and identify and understand how synergies and 

Fig. 7. The GHG balance sub-system.  

Fig. 8. Historical data and simulated results for maize market price and maize yield.  
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trade-offs unfold temporally at the household and landscape scale. 
Furthermore, the adjustment of the model scope and variables 
throughout the modelling process and engagement with farmers and 
CCAFS scientists ensured that model output depicts the real situation. In 
addition, the model structure was also assessed with respect to the 
conceptualization stage, the CLDs and the available knowledge and 
data. We analysed assumptions and causal relationships, considered the 
model purpose and boundaries, and revised the model structure 
accordingly. A further test was presenting the final model results to the 
CSA and food security experts to verify whether the results correspond to 
the expert’s intuitive understanding of the system. 

2.4.2. Tests of model behaviour 
The behaviour validation tests looked at the degree to which the 

model reproduces the past and present dynamic patterns (i.e., fre
quency, trends, lags) observed in the Lawra-Jirapa CSV, rather than on 
exact point-in-time prediction. The authors used available historical 
time series data to assess the model’s ability to reproduce the observed 
patterns. The initial results produced by the model for 2011 were veri
fied through the CCAFS baseline studies, and 2017 model behaviour was 
verified through CCAFS midline studies. Other available studies and 
secondary data were consulted to compare model behaviour with data 
available for specific points in time for the same variable. Fig. 8. com
pares the observed and simulated trends of some key variables of the 
model for which historical data was available over the calibration 
period. The results show that the model can reproduce system 
behaviour. 

A workshop with CCAFS scientists and experts in SD and food sys
tems was conducted to review the output behaviour for the key variables 
of interest and evaluate whether the model produces the pattern of 
behaviour observed in the site and documented in the studies for the 
right reasons. 

A series of sensitivity analyses were performed to examine the 
impact of variations in parameter values on model behaviour and pro
vide a measure of the reliability and validity of the model and its out
puts. This was performed by setting the sensitivity simulation set-up tool 
at 400 runs, and the random variable distribution. The first sensitivity 
test was performed separately on the following parameters: 

Fig. 9. Population trend and impacts of climate change and extreme events on 
maize production (2011–2061). 

Fig. 10. Simulation results for 2011–2061: months of household food availability (top), maize production costs and gross profit of maize production (bottom).  
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(i) The birth rate parameter value was set at 30.2 births/1000 per
sons. For the sensitivity test, the minimum birth rate parameter 
value was set at 10 births/1000 persons and the maximum at 40/ 
1000 person.  

(ii) The parameter % of households selling charcoal was set at 55%. For 
the sensitivity test, it was given values of 0% - 90% maximum, 
indicating a decline or increase in the urban demand for biomass. 

The sensitivity output parameters were Biomass Availability, Degraded 
Land, Production in CSV, and Land for Maize. The results of the tests led to 
structural changes and a review of equations and functions to address 
the unexpected behaviour. The second sensitivity test was performed on 
the variables suspected to have markedly different or uncertain evidence 
bases (Chapman and Darby, 2016) to investigate the potential to 
confound the overall confidence in the model results.  

(i) For the parameter climate change impact slope, the impact on 
maize yield was set to increase 0.04 per year (amounting to 25% 
reduction in maize yield by 2061). As climate change models 
predict an impact of up to 55% decrease in maize yield, the 
minimum parameter value was set at 0 and the maximum at 0.05 
(i.e., 55% reduction in maize yield by 2061).  

(ii) The parameter maize yield 2011 set at 300 kg/ha, was set at 200 
kg/ha minimum and 1200 kg/ha maximum value (Fig. 9. top). 
The studies consulted to operationalize and validate the model 
report the lowest maize yield on smallholder farms in the UWR as 
compared to the rest of Ghana, ranging from 280 kg/ha in 2011 
to 525 kg/ha 2019 (Kermah, 2020) and 500–1200 kg/ha with 
recommended fertilizer application (Bua et al., 2020). 

The sensitivity output parameters were maize yield, maize gross profit, 
and months of household food availability. Repeated sensitivity tests on 
the same parameters generated behaviour that corresponded to the ex
pected sensitivity of the real system. 

3. Results 

The following sections present simulation results for the key vari
ables of interest. The population in Lawra-Jirapa CSV (Fig. 9., red line) 
will continue to grow based on the current birth rate of 3% per year and 
will increase from an estimated 3000 people in 2011 to 8450 by 2061. 
The expected decrease in rainfed maize yield in Ghana is between 25% 
(under A1B scenario; CNRM-CM3 GCM, CSIRO-MK3 GC, ECHAM5 
GCM) and 40% by 2050 [RCP8.5] (Ramirez-Villegas and Thornton, 
2015). We implement a gradual reduction of 25% by 2061 in the model. 
The frequency of extreme events, i.e., drought, dry spells, floods, or pests 
in the CSV site was modelled based on historical data (2011 to 2020) and 
post-2020, with one event every three years. The impact of extreme 
events on maize production in the CSV site (Fig. 9, blue line) is modelled 
to increase in intensity, i.e., 15% yield reduction in 2011, increasing to 
35% by 2061. Climate change will result in an estimated loss of 2500 kg/ 
year in 2011 to 167,000 kg/year by 2061 (Fig. 9, green line). The 
frequent fluctuations in the maize production loss in the CSV are 
attributed to extreme events, and increased losses in years of shocks 
from 25,000 kg/year in 2011 to over 257,000 kg/year by 2061. This 
increase is attributed to a rise in land for growing maize that increases 
maize production and due to extreme events and climate change that 
increase in intensity. Similar results to these are reported in studies 
conducted in northern Ghana (McSweeney et al., 2008; Antwi-Agyei 

Fig. 11. Simulation results for 2011–2061: maize yield and production (top), and biomass availability, production, and demand (bottom).  
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et al., 2012; Challinor et al., 2014; Deryng et al., 2011; Sultan and 
Gaetani, 2016; Freduah et al., 2019). These studies look at the impact of 
climate change, adaptation, and intensification and conclude that there 
is little evidence for the potential to avoid maize yield loss. 

3.1. Sustainable increase of agricultural productivity and income 

Progress towards increasing production and income is assessed 
through changes in maize yield, maize production in the CSV site, maize 
gross profit, household food availability, and biomass availability (Figs. 10 
and 11). The model results show an increasing trend in household food 
availability from just six months in 2011 to 12 months in 2019, with a 
reduction in food availability in years of extreme events. The CCAFS 
baseline and midline survey report similar results for household food 
availability. 46.2% of households reported being food insecure for 3–4 
months by 2017 compared to 42% in 2011, while 33.3% of households 
reported being food insecure 5–6 months by 2017 compared to 38% in 
2011 (Naab et al., 2011; Ouedraogo et al., 2019; Kermah, 2020). Months 
of household food availability will continue to increase (Fig. 10, top), so 
that household food availability needs will be met by 2020 and will peak 
by 2030, when households are expected to produce a surplus of 5–13 
months of maize on average. Post-2035, maize surpluses will reduce 
from 24 months to 12 months by 2061 in years without extreme events. 
In years when extreme events occur, household food availability will 
reduce from 18 months in 2035 to only 8 months by 2061. The gross 
profit of maize production (Fig. 10, bottom, red line) was calculated 
based on total household maize production, costs of maize production 
considering agricultural input costs (Fig. 10, bottom, blue line), and 
maize market price. The model shows an increase in maize production 
cost due to an increase in the use of inputs and an increase in the average 
maize gross profit from 270 GHS per household in 2019 to above 1300 
GHS by 2030 due to an increase in maize yield and subsidized input 
prices. However, an extreme and frequent reduction in maize gross 
profit due to extreme events shocks is observed post-2030, and that gross 
profit is expected to decline to below 361 GHS by 2061. 

The model shows an increasing trend in annual maize production at 
CSV level from 2011 to 2030, when it stagnates at an estimated 892 ton, 
characterized by a frequent reduction in production (Fig. 11, top, blue 
line). The average maize yield will increase by 2023 from 0.380 ton/ha 
in 2011 to over 0.8 ton/ha due to increased use of agricultural inputs 
(Fig. 11, top, red line). The impact of fertilizer on maize yield will be 
minimal compared to other agro-ecological zones, due to poor soil 
quality and reduction in the adoption of CSA adaptation and mitigation 
practices. The increasing trend is characterized by frequent variability 
and reduction in maize yield in years of extreme events. From 2035, a 
downward trend with frequent variability is observed due to extreme 
events and climate change impact, and by 2061 the average maize yield 
is expected to fall to 0.53 ton/ha and in years when extreme events occur 
to 0.36 ton/ha, which is far below the national target of 4.5 ton/ha. A 
decreasing trend in biomass availability (Fig. 11, bottom, blue line) is 
observed due to the growing demand for woody biomass from urban 
centres and rural households and a reduction in biomass production due 
to overharvesting and converting more arable communal land to land 
for agriculture. Demand for woody biomass continues to increase due to 
a lack of alternative sources of energy for increasing rural and urban 
populations. The downward trend in biomass demand post-2027 is 
observed due to a decline in biomass availability for income-generation. 
The demand for biomass will exceed availability by 2030 provided that 
no alternative energy source is available for rural and urban households. 

3.2. Adaptation and resilience to climate change 

The number of households that adopt labour-intensive CSA adapta
tion practices declines over time from an estimated 260 households to 
about 160 households by 2025 (Fig. 12, blue line). The number of 
households using agricultural inputs grows exponentially due to 

government subsidies and the perceived immediate impact of inputs on 
maize yield (Fig. 12, red line). There is also stagnation in the land under 
labour-intensive CSA adaptation practices offering simultaneous adap
tation and mitigation benefits, due to government subsidies with 
perceived higher impact on yield (Fig. 12, green line). Land for maize 
using agricultural inputs increases exponentially due to government 
subsidies and an increase in conversion of land for growing maize 
(Fig. 12, grey line). 

3.3. GHG emissions reduction 

GHG reduction in Lawra-Jirapa CSV has a declining trend (Fig. 13, 
top, green line) due to a reduction in the number of households adopting 
mitigation practices (Fig. 13, bottom, blue line), an increase in the 
conversion of land to agricultural land through slash and burn practices, 
and the demand for land for maize that results in a reduced number of 
years land is left fallow to sequester GHG. The number of households 
that adopt mitigation practices and land under mitigation exhibits a 
downward trend. GHG emissions show an upward trend (Fig. 13, top, 
red line) due to an increase in biomass use, an increase in conversion of 
arable land (i.e., Guinea Savanna agro-ecological zone) to agricultural 
land, and an increase in agricultural inputs use. GHG emissions reduce in 
years when households produce enough maize and thus sell less wood 
and charcoal to meet food security needs. The estimated GHG balance in 
Lawra-Jirapa shows an increasing trend from − 117,000 tCO2e/year in 
2011 to 49,000 tCO2e/year by 2061. By 2038, the GHG emissions will 
exceed GHG reduction potential and result in a positive GHG balance in 
Lawra-Jirapa. This is consistent with Leitner et al. (2020), who find that 
increasing maize yield in sub-Saharan Africa through increasing N fer
tilizer application rates is expected to triple current maize yield while 
increasing soil N2O emission by almost sevenfold. 

Land-use changes (Fig. 14) have an impact on removing GHG 
emissions, climate adaptation, resilience, and sustainable intensification 
goals. The land for growing maize (grey line) increases due to increased 
demand from the growing population and government input subsidies. 
The land increase for maize leads to an increase in production and an 
increase in GHG emissions from agricultural activity. Land for growing 
other crops (black line) decreases from 650 ha to an estimated 370 ha by 
2061, indicating a reduction in crop diversity with an impact on climate 
adaptation and resilience goals. Similar results for agricultural product 
diversity for 2011 and 2019 are reported by CCAFS baseline and midline 
survey showing that the agricultural product diversity index declined, 
and, by 2019, only 14% of households were producing 9 or more 
products (high diversity) as compared to 46% in 2011, while 31.4% of 
households were producing 1–4 products (low diversity) as compared to 
1% in 2011 (Naab et al., 2011; Ouedraogo et al., 2019). The increasing 
trend in degraded land (green line) and conversion to land for growing 
maize (grey line) result in a decrease in available arable land (red line), 
leading to a reduction in GHG sequestration and an increase in GHG 
emissions. 

Fig. 12. Adaptation and resilience to climate change 2011–2061: land under 
adaptation CSA practices and using inputs, and number of households adopting 
CSA practices and using inputs. 
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4. Discussion 

The model results reveal the trade-offs and synergies across the 
entire food system within each CSA goal and between CSA goals. The 
key variables of interest indicate how the system evolves over time. 

4.1. Synergies and trade-offs within CSA goals 

The results indicate progress towards a sustainable increase in pro
duction and income and improvement in household food availability. 

Synergies between maize yield and agricultural productivity are 
observed in years with no extreme events. Biomass harvesting declines 
in years when food is available. However, the long-term upward trend in 
biomass demand eventually exceeds the carrying capacity and leads to 
land degradation. The synergies between the variables conducive to the 
goal of sustainable increase in production and income will dominate 
until 2035, when trade-offs emerge and result eventually in less than ten 
months of household food availability by 2055 (Fig. 10, top). The land- 
use change dynamics indicate the short-and long-term trade-offs that 
arise in sustainable production (Fig. 14). In the short term, the conver
sion of arable land to land for maize increases due to low yield and 
demand for maize. In the long-term, degraded land increases due to 
biomass harvesting for cooking and sale. An increase in the CSV’s 
degraded land results in erosion and poor soil quality at the farm level, 
with a delayed impact on reducing maize yield (Fig. 11, top). This causes 
an increase in the conversion of abandoned and arable land to agricul
tural land. Other studies report the same dynamics in the region, 
observed through an increase in agricultural and degraded land (Kanton 
et al., 2016) and yield losses as high as 39.56 kg/ha/year in maize crops, 
equivalent to 2.6% of the current yield level (Diao and Sarpong, 2007). 

Post-2017, the increase in the use of agricultural inputs (Fig. 12) 
leads to an increase in maize yield and production. At the same time, the 
increase in input use leads to an increase in maize production costs 
(Fig. 10, bottom). However, the cost of maize production and the loss of 
maize yield in years with extreme events lead to variable maize gross 

Fig. 13. Removal of greenhouse gas emissions 2011–2061: GHG emissions, reduction, and balance (top), and households practicing mitigation, and land under 
mitigation practices (bottom). 

Fig. 14. Land-use changes in CSV Lawra-Jirapa in 2011–2061.  
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profit. The increase in maize production is not a sustainable path to long- 
term income increase and poverty reduction in northern Ghana, as it 
depends on maize input subsidies. The synergies between key indicators 
of sustainable increases in agricultural productivity and income are 
observed in the short term in years with no extreme events. Post-2035, 
frequent extreme events and climate change will reduce maize yield and 
household food availability and compromise long-term food security 
from maize production (Figs. 10, top and 11, top). A focus on intensi
fication and expansion of agricultural land productivity through high- 
input labour-saving technologies results in only marginal maize yield 
increase (see Houssou et al., 2016). Furthermore, maize production with 
chemical fertilizer application in the UWR region is not always profit
able and sustainable considering soil conditions and climate variability 
(Vondolia et al., 2012; Baba et al., 2013; AGRA, 2017; Buah et al., 2017; 
Ragasa et al., 2018; Kankam-Boadu et al., 2018; Scheiterle et al., 2019; 
Bua et al., 2020). The implication is that other measures, such as soil and 
water conservation, should be practised simultaneously. 

Key variables of interest to monitor progress towards the goals of 
adaptation and resilience to climate change reveal trade-offs observed in 
the decreased number of households adopting CSA adaptation and 
mitigation practices that require labour. The results show short- and 
long-term trade-offs in relation to the goal of emissions reduction due to 
land conversion to agriculture and increased use of biomass and agri
cultural inputs. Inputs use leads to trade-offs as farmers expect an im
mediate impact on yield and therefore are less motivated to adopt 
mitigation practices that have delayed impact on yield increase and 
contribute to GHG reduction and sequestration. 

4.2. Synergies and trade-offs between CSA goals 

The model results indicate that the dynamics between the elements 
within and outside the CSV site lead to short-term progress towards the 
productivity and income goal, trade-offs in GHG emissions reduction, 
and the achievement of the climate adaptation and resilience goal in the 
long term. GHG emissions increase because of increased land conversion 
to agriculture, biomass use, and agricultural inputs use that produce 
GHG emissions exceeding sequestration rates by 2028 in the CSV. The 
variability and downward trend post-2035 of maize yield, maize pro
duction, and maize gross profit indicate trade-offs related to the goal of 
climate adaptation and resilience. Increased use of inputs through the 
government subsidies programme leads to a short-term growth in maize 
yield but only in years with no extreme events. The increase in climate 
risks and extreme events reduces the effectiveness of inputs, indicating 
that adaptation practices and maize promotion technologies will not 
effectively address these risks in the long term. A recent review of the 
input subsidy programmes in seven countries, including Ghana, reports 
results similar to our model and concludes that chemical fertilizers 
quickly raise national food production, household grain yields, and 
production levels, at least in the short term (Jayne et al., 2018; Theriault 
et al., 2018; Vercillo et al., 2020). These studies and our model call for 
caution when developing national-scale policies, as crop response to 
fertilizer is lower than expected on smallholder managed fields and 
short- and long-term crop responses to fertilizer vary across agro- 
ecological regions. 

The goal of increased production is prioritised in the Lawra-Jirapa 
CSV due to the national subsidization programme. Hence, as an 
element outside the CSV boundary, the national subsidy programme 
impacts dynamics and causes trade-offs and synergies at the CSV level. 
Our model and empirical studies show that the increase in the avail
ability of fertilizer, improved maize seeds and pesticides, all at a sub
sidized price, and increase demand and preference for maize 
consumption (Dakurah, 2018) result in a shift towards maize production 
and a reduction in crop and dietary diversity (Ouedraogo et al., 2019). 
These effects compromise long-term synergies with the climate adap
tation and resilience goal. Our model and other studies (Nyantakyi- 
Frimpong and Kerr, 2015; Hengsdijk et al., 2015; Mangnus and Westen, 

2018; Vercillo et al., 2020) show that a focus on maize production— 
after an immediate increase in yield and income—will not bring long- 
term food security, and that dependence on the crop will increase CSV 
vulnerability. 

The trade-offs and synergies within and between goals point to the 
“fixes that fail” archetype (Kim and Anderson, 1998; Clancy, 2018). 
Solutions or “fixes” implemented to alleviate the symptoms of climate 
change vulnerability (i.e., low maize yield, low maize productivity, 
frequent loss of yield, poverty) result in short-term synergies that alle
viate the symptoms (e.g., improved yield, production, household food 
availability). However, over time, the solutions produce unintended 
consequences, observed as trade-offs, (e.g., biomass overharvesting, 
increase in agricultural land and GHG emissions, short-term adaptation 
and resilience outcomes). Post-2035, reductions in yield and food 
availability cause the original problem symptoms to return to their 
initial levels or become worse. Continuous application of the same or 
similar “fixes” leads to a “better before worse” situation, as our results 
show. The results highlight that: (i) the current food system in the CSV is 
not resilient to future climate change, extreme events, and socio- 
economic changes, and (ii) any short-term” fix” should be imple
mented in conjunction with efforts to redefine the purpose and structure 
of the food system and bring about a paradigm shift resulting in trans
formational changes. 

A shift in farmers’ shared ideas, tacit assumptions, and beliefs about 
the food system in Lawra-Jirapa could result in a paradigm shift and 
create opportunities to revisit the food system goals and its structure. 
Systems thinking tools can facilitate a paradigm shift by showing 
stakeholders a different long-term perspective of the system and enable 
them to see the system as a whole. The goals of the Lawra-Jirapa food 
system reflect the current household food availability and income needs 
that rest on agriculture dominated by maize production. The current 
driving forces in the food system emerge from reinforcing feedback 
loops that increase productivity and income in the short term, pushing 
the system behaviour in one direction. 

At the same time, the long-term survival of the system, considering 
maize performance post-2035, potentially rests on environmental health 
and livelihood diversification, which could be a critical balancing loop 
to reduce future risks to extreme shocks. Weakening the short-term, 
dominant reinforcing feedback loops would reinforce and strengthen 
the long-term balance feedback loop, and potentially lead to climate- 
smart livelihoods diversification and a halt to environmental degrada
tion. For example, this could be done by removing subsidies for inputs or 
by a combination of tying input access to compulsory sustainable land 
management practices while removing urban demand for biomass. 
These are some possible interventions from the study and observed 
trade-offs and synergies that could be tested through the model. 

4.3. Future model applications 

This SD model can be used to analyse, monitor, and evaluate in
terventions in complex food systems. In this study, the Lawra-Jirapa SD 
model is used as an exploration tool to identify trade-offs and synergies 
and inform the identification of policies and practices to be tested. The 
model is ready to be used, with minor structural and parameter changes, 
to investigate the food systems in CSVs in other African countries and 
identify trade-offs and synergies that could inform these systems’ sus
tainable transformation. In the future, the model will be used to test 
alternative scenarios, management actions, and ideal leverage points to 
achieve the triple goals of CSA across food systems in the short- and 
long-term. Regarding designing CSVs and monitoring progress towards 
the triple goals, the model will be employed to support the development 
of a dynamic theory of change for CSA and to address gaps in the use of 
systems tools to monitor and evaluate the performance of complex food 
systems. 

The future model applications and SD modelling efforts in other CSV 
sites should also consider the challenges of SD modelling, particularly 
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concerning the qualitative and quantitative stages of the modelling 
process. For instance, the systems thinking sessions in the conceptuali
zation stage uncovered the CSV mental models of farmers and CCAFS 
scientists. However, the complete merger of different mental models 
into the final CLD diagram is a challenge. While CSA experts reviewed 
our final model to gain confidence that it represents the structure and 
observed behaviour of the situation in the CSV, farmers were not 
involved in the review of the final merged model. Engaging farmers in 
the review of the merged CLD could lead to the identification of other 
potentially essential interconnections that would offer additional insight 
into the system dynamics, including resistance to change the current 
food system and resistance to adoption of CSA practices. 

In addition, transferring the CLD into the stock and flow diagram 
called for various modelling decisions to be made by the authors about 
the operationalisation of “soft” variables, the behaviour of key variables, 
and the availability of input data. The model formulation stage included 
a review of published studies, reports, and scientific papers that were 
sometimes limited and conflicting (e.g., maize yield at the national level 
and as reported by independent studies focusing on smallholder maize 
yield in UWR or the CSV site). This called for an extensive literature 
review to support the model development and validate its structure. The 
authors had to decide which data to use or ignore based on the observed 
dynamics for key variables in Lawra-Jirapa. Data challenges could 
potentially be avoided by employing a systems perspective to the design 
of the CSA baseline studies for CSV sites that would support the use of 
systems tools to understand dynamics between elements of the food 
system. Considering the above potential limitations, the view of system 
dynamics experts and the authors in the study is that the model should 
be assessed not based on its accuracy, but on its “usefulness with respect 
to the purpose” (Sterman, 2000; Elsawah et al., 2017). 

5. Conclusion 

The transformation of food systems through the CSA approach can 
help attain multiple SDGs, provided that the trade-offs from the intro
duced practices, policies, and technologies are mitigated and their 
synergies are promoted. In practice, site-specific conditions, CSA goal 
prioritisation, and the complex adaptive nature of food systems pose 
challenges to the identification of synergies and trade-offs. In this study, 
we develop an SD model to investigate the behaviour over time of key 
variables that track progress towards the triple CSA goals across the 
entire food system. The simulation of food system dynamics under the 
current CSA practices and technologies, population growth, extreme 
events and climate change impacts, and government policies reveals 
short-term progress towards the goals of increased productivity and 
income, with trade-offs in the goals of GHG mitigation and climate 
adaptation and resilience. 

However, post-2035, trade-offs are observed in all three goals. The 
emergent system behaviour exhibits a “better before worse” pattern with 
short-term synergies that points to the underlying “fixes that fail” 
archetype. As a result, the short-term progress towards the goals is 
reversed, and trade-offs emerge due to unintended consequences and 
delays, causing the original problem symptoms to return to their pre
vious level of intensity or worse. Thus, to sustainably transform food 
systems, the CSA approach should simultaneously consider progress 
towards all three goals across the food system and identify and mitigate 
trade-offs in the short and long terms. In view of the present and future 
dynamics in the Lawra-Jirapa CSV site, establishing a sustainable food 
system calls for transformational changes that alter the current food 
system’s purpose and structure. 
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