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Abstract
Background: Scientific literature carries a wealth of information crucial for research, but only a fraction of it is present
as structured information in databases and therefore can be analyzed using traditional data analysis tools. Natural
language processing (NLP) is often and successfully employed to support humans by distilling relevant information
from large corpora of free text and structuring it in a way that lends itself to further computational analyses. For this
pilot, we developed a pipeline that uses NLP on biological literature to produce knowledge networks. We focused on
the flesh color of potato, a well-studied trait with known associations, and we investigated whether these knowledge
networks can assist us in formulating new hypotheses on the underlying biological processes.

Results: We trained an NLP model based on a manually annotated corpus of 34 full-text potato articles, to recognize
relevant biological entities and relationships between them in text (genes, proteins, metabolites and traits). This
model detected the number of biological entities with a precision of 97.65% and a recall of 88.91% on the training set.
We conducted a time series analysis on 4023 PubMed abstract of plant genetics-based articles which focus on 4 major
Solanaceous crops (tomato, potato, eggplant and capsicum), to determine that the networks contained both
previously known and contemporaneously unknown leads to subsequently discovered biological phenomena relating
to flesh color. A novel time-based analysis of these networks indicates a connection between our trait and a candidate
gene (zeaxanthin epoxidase) already two years prior to explicit statements of that connection in the literature.

Conclusions: Our time-based analysis indicates that network-assisted hypothesis generation shows promise for
knowledge discovery, data integration and hypothesis generation in scientific research.
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Background
Scientific publications accumulate knowledge and
developments in any field of research. One of the most
important tasks in a researcher’s work and career is keep-
ing up to date with the ever-increasing volume of scientific
literature, placing new outputs into context, and
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investigating the implications in their field. However, as
the number of scientific publications is growing at an
exponential rate, there is a need to use artificial intelli-
gence to enable a machine to read, extract, and analyze
the information in textual sources.
Potato (Solanum tuberosum L.) is one of the most

important staple crops for human nutrition. In addition
to its culinary versatility, potato is a cost-effective prod-
uct and plays a major role in meeting the ever-increasing
food demands of the world. Its tubers are a good source of
starch, proteins, and vitamins [1]. Different potato geno-
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types produce tubers of different properties, like shape,
size, color, starch content, and nutritional value.
One of the most extensively studied traits in potato is

tuber flesh color. Potato tubers can have a wide range
of colors, from orange to white and purple. Carotenoids
are considered to be the primary determinant of tuber
flesh color [2]. Carotenoids play essential roles in photo-
synthesis, while in non-photosynthetic tissues, they exert
a broad range of functions acting as pigments, antioxi-
dants, and precursors of signaling molecules, including
volatiles [3]. Previous studies have shown that zeaxanthin
and its precursor beta-carotene are major determinants
of tuber flesh color [4, 5]. In recent years, several candi-
date genes like beta-carotene hydroxylase (BCH/CHY2)
and zeaxanthin epoxidase (ZEP) have been found to relate
to tuber flesh color. BCH/CHY2 are the genes related
to the production of beta-carotene while ZEP is consid-
ered responsible for the accumulation of zeaxanthin [6].
Although high levels of beta-carotene accumulating in
transgenic tubes are not observed in tetraploid potato cul-
tivars [5], alleles contributing to orange flesh have been
observed at a low allele frequency in the potato cultivars
[4]. This suggests that breeding has selected for the light
colored alleles.
Scientific evidence for the association of tuber flesh

color with genetic and molecular entities is found in the
scientific literature or biological databases. For example,
Acharjee et al. previously published networks of experi-
mentally found biological entities that relate to tuber flesh
color in the years 2011 and 2016 [6, 7]. In this research, we
automate the process of extracting knowledge of molec-
ular entities (genes/proteins/metabolites) that influence
changes in tuber flesh color from scientific publications.
Compared to structured information (as in databases),

textual information is huge, noisy, and redundant. Arti-
ficial intelligence can help automate the processing of
textual information and the discovery of new knowledge.
Natural Language Processing (NLP) is a field of artificial
intelligence that focuses on enabling machines to under-
stand and analyze (unstructured) data in the form of text
[8]. Despite the availability of various data repositories for
plant research, a wealth of information currently remains
buried within the scientific literature. Hence, information
extraction via NLP is of growing interest and importance.
NLP can render scientific texts computationally accessi-
ble, support information extraction, knowledge network
(KN) construction and hypothesis generation.
In the past years, many NLP based research studies

have been conducted on the literature from molecular
biology [9, 10]. These focused primarily on rule-based
named entity recognition (NER) i.e. identifying and anno-
tating biological entities such as genes or proteins [11, 12],
metabolites [13, 14], traits [15], QTLs [16], diseases [17],

and drugs [18] in literature. A few NLP studies paid atten-
tion to extracting associations (relationships and events)
between these biological entities, using NER systems
under the hood [12, 19, 20]. Automated approaches to
mining knowledge concerning the association of an entity
to its phenotypes are required to further advance the
field of precision breeding [21]. Rule-based NLP is more
widely used in mining knowledge from biological con-
text than machine learning-based NLP [22, 23]. However,
construction and formalization of rules is a complex task
in rule-based NLP. Often the rule-based NLP user tends
to overfit the rules to the training set, which affects per-
formance in the test set. Dictionaries and ontologies are
used as building blocks in rule-based NLP. In supervised
machine learning-based NLP, on the other hand, a domain
specialist annotates the training set of documents man-
ually. These manually annotated documents, supported
by dictionaries and ontologies, are used by an algorithm
to produce context-specific rules. Finally, these rules are
used to perform NLP on the unannotated test set.
In this research, we investigated whether the latent

knowledge in scientific literature can be harnessed with
NLP, and if new leads for gene-trait associations can be
highlighted for hypothesis generation in a timely man-
ner. However, our contribution is not in the domain of
NLP, but rather in uncovering its potential. We chose to
focus on the flesh color of potato tubers, an agronomically
important trait with known associations. This enabled us
to compare the relationships that we distilled from the lit-
erature with established facts, serving as a metric for the
performance of our pipeline. It was necessary to validate
more secondary hypotheses before we could focus on the
time dimension of this question, namely 1) whether the
NLP model is able to extract the expected relationships
from the free text in literature; and 2) whether abstracts
alone can act as high-certainty, information-dense proxies
for their corresponding articles.
Our pipeline started with the NLP model, which was

customized based on domain-relevant literature to find
biological entities (genes, proteins, metabolites, and traits)
and general relationships between them. We chose to use
the commercial IBM (International Business Machines
Corporation) Watson software suite, as it has been previ-
ously used to successfully mine knowledge from large cor-
pora of texts available online [24, 25]. Watson Knowledge
Studio is a proprietary cloud-based application to train an
NLP model based on the context and linguistic nuances
of a specific literature domain. In addition to annotating
entities of interest in a given text (named entity recogni-
tion), Watson also performs relationship extraction; that
is, labeling the connections between the detected entities
of interest. The relationships extracted by Watson were
used to build KNs. After a normalization step, we were
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able to integrate these, and produce visualizations of the
distilled knowledge from a set of texts.
We composed a primary corpus of 34 selected articles,

mainly concerning potato flesh color, which we used to
train our NLP model. Later we deployed it on a subset of
these 34 (abstracts only) and a broader-spectrum corpus
comprising 4023 PubMed abstracts, published from 2000
to 2016. For the former, we compared the nodes and the
edges of the networks to test our secondary hypotheses.
For the latter, we also performed a time-based analysis,
tracking the closeness of our trait of interest to other
relevant entities, marking the time points where signif-
icant developments occurred, to evaluate whether this
approach is indeed helpful for research. This time analysis
and the results derived from it is our major contribution.
This proof of concept (although limited in size) is

an example of how literature mining can help plant
scientists obtain a clearer “big picture” about specific
areas in their field of expertise. Elusive findings in
the expanding body of literature could come to light,
be automatically organized into KNs, and ultimately
help accelerate research in a process with little human
intervention.

Results
First, to confirm that our domain-specific NLPmodel per-
formed as intended and extracted knowledge networks
(KNs) with the focus on tuber flesh color from scientific
literature, we deployed it on 2 different corpora, i.e. the
training set with full-text articles and the test set with
PubMed abstracts only. This was followed by a time anal-
ysis on the test set, to investigate whether the knowledge
in these KNs could really be used in the way we envision,
to generate new hypotheses.

Case 1: analysis of training corpus (full-text articles)
We built a KN on the training set of 34 articles, with a
total of 293 nodes and 551 unique edges. Out of these
293 nodes, there are a total of 159 genes/proteins, 112
metabolites and 22 traits (Fig. 1). Carotenoids (an entity
of the type metabolites) was the primary centroid of this
network having 76 first-order neighbors. To evaluate the
nodes and connections of this KN, we analyzed the over-
all structure based on the currently known experimental
knowledge of tuber flesh color. Our KN contains scientifi-
cally credible links between nodes and the trait of interest,
tuber flesh color. Most genes/proteins and metabolite
entries in this network are part of the carotenoid biosyn-
thesis pathway, which includes beta-carotene biosynthe-
sis, xanthophyll cycle, abscisic acid biosynthesis, lutein
biosynthesis, etc.
The trait under study, tuber flesh color, has 38 first-

order neighbors, comprising 11 genes/proteins and 27
metabolites (the Cytoscape network can be found at [26]).

These genes/proteins and metabolites are also listed in
Table 1. Previously conducted research studies have found
that ZEP and BCH/CHY are associated with white, yellow
and orange flesh color. AN1, a gene responsible for the
production of anthocyanin, is associated with purple flesh
color. All these genes occur as direct neighbors of tuber
flesh color in our network.
Our NLP model retrieved the entities in the training

set with a precision of 97.65%, a recall of 88.91% and an
F1 score of 93.07%. Supplementary File 1 presents a con-
fusion matrix showing the total number of entities per
document, number of true positives (TP), number of false
negatives (FN) and number of false positives (FP). Preci-
sion and recall were calculated as TP / (TP + FP) and TP /
(TP + FN) respectively.
Additionally, to compare the difference in volume and

quality of information extracted from abstracts vs. full-
text versions of articles, our NLP model was applied
separately on only the abstracts of the training corpus.
This highlighted a quantitative difference between these

two representations of a scientific article. We hypoth-
esized that the abstract would concretely and con-
cisely present the core outputs of a publication, whereas
the “Introduction” section would mainly recapitulate
established theories and relevant biological connections
but without contributing new knowledge. Finally, the
“Results” and “Discussion” sections would combine, in
greater detail, the significant contributions of the article,
and make further suggestions for future experimenta-
tion. We found supporting evidence for this hypothe-
sis, as the abstract-only network still includes the enti-
ties experimentally shown to be most important for
tuber flesh color. In Sets A and B, Table 1 lists the
direct neighbors of tuber flesh color node in the KNs
of full text representation (Fig. 1) and abstracts only
(Fig. 2).
The difference between these two sets (Table 1; Set A

- Set B) is also shown. These 20 entities occur as direct
neighbors of flesh color in the full-text KN, but not in
the abstract-only KN. Of these 20 entities, 6 (AN1, lutein,
lutein-5,6-epoxide, polyphenol, phytoene synthase, vio-
laxanthin) are still present in the KN of abstracts (Fig. 2),
even though they are not direct neighbors, but rather
second-order neighbors of tuber flesh color and first-
order neighbors of carotenoids, BCH, or ZEP. Further-
more, recessive ZEP is also represented in the abstract-
only KN. Since the recessive allelic variant of ZEP is
similar to the dominant one, these nodes are not rep-
resented as separate entities. The same applies to other
aspects of gene/protein characteristics, such as chemical
isomers and trait measures, which we grouped together
with the main entity to reduce fragmentation in our KNs.
The remaining 12 entities (nonepoxide, peonidin, antho-
cyanidin, petunidin, pelargonidin, cyanidin, pf, malvidin,
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Fig. 1 A KN representing knowledge triples found in the training set of 34 full articles. Yellow nodes refer to a trait entity, red nodes refer to
gene/protein entities, and green nodes represent the metabolite entities. The centroid of this network is tuber flesh color. Nodes with bold outlines
indicate that these entities have an experimentally proved association with tuber flesh color (trait of interest). This experimental evidence of these
entities with tuber flesh color is reported in the articles [6, 7]. The color of edges reflects the document frequency (weight) of a relationship. Grey
edges appear only in one document, whereas black edges appear in more than one. The nodes are organized in circles around the trait of interest.
The nodes in the innermost circle (circle 1) and the 2nd innermost circle (circle 2) are 1st order neighbours of the flesh color node; the nodes in
circles 3, 4 and 5 are 2nd order neighbours of it; the nodes in circle 6 are 3rd order neighbours; nodes in circle 7 (the outermost one) are higher
order neighbours of the flesh color node, or not connected to it at all

epoxides, glycosides) are not represented in the abstract-
only KN. These entities are associated with key metabo-
lites causing changes in flesh color. However, they do not
influence the trait directly. Hence, our results illustrate
that the most important nodes in the full-text network are
still present in the reduced abstract-only network.

Case 2: analysis of testing corpus (PubMed abstracts)
To assess how our NLP model performed on an unknown
corpus, we deployed it on a testing corpus of 4023
abstracts from PubMed articles. Watson retrieved a KN
with a total of 681 nodes and 976 unique edges (Fig. 3a),
more than in Case 1 (293 resp. 551), which means our
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Table 1 Sets representing first order (direct) neighbors of flesh color nodes. Set A represents first-order neighbors of tuber flesh color
nodes found in full-text articles. Set B represents first-order neighbors of tuber flesh color nodes found in abstracts of articles of the
training set. The difference between these sets (SET A - SET B) represents all entities that are first-order neighbors of tuber flesh color in
full-text articles, but not in abstracts alone

Set A Set B Set A - Set B

AN1 anthocyanin AN1

anthocyanidin ascorbic acid anthocyanidin

anthocyanin b-carotene carotene hydroxylase

ascorbic acid b-carotene hydroxylase cyanidin

b-carotene bHLH epoxides

b-carotene hydroxylase caffeic acid essential amino acids

bHLH carotenoid glycosides

caffeic acid CCD lutein

carotene hydroxylase chlorogenic acid lutein-5,6-epoxide

carotenoid CHY malvidin

CCD Or nonepoxide

chlorogenic acid phenolic pelargonidin

CHY TP peonidin

cyanidin tuberigen activation complex petunidin

epoxides xanthophyll Pf

essential amino acids zeaxanthin phenolic acid

glycosides zeaxanthin epoxidase phytoene synthase

lutein polyphenol

lutein-5,6-epoxide recessiveZEP

malvidin violaxanthin

nonepoxide violaxanthin-like carotenoid

Or

pelargonidin

peonidin

petunidin

Pf

phenolic

phenolic acid

phytoene synthase

polyphenol

recessiveZEP

TP

tuberigen activation complex

violaxanthin

violaxanthin-like carotenoid

xanthophyll

zeaxanthin

zeaxanthin epoxidase

model was able to identify new nodes and edges in this
corpus. Carotenoid was again the primary centroid of
this network, with 107 first-order neighbors. Our trait

under study, tuber flesh color, has 21 first-order neigh-
bors, comprising 9 genes / proteins and 12 metabolites
(see Cytoscape network at [26]).
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Fig. 2 A KN representing knowledge triples found in the training set of 34 articles, abstracts only. Yellow nodes refer to a trait entity, red nodes refer
to gene/protein entities, and green nodes represent the metabolite entities. The centroid of this network is tuber flesh color. Nodes with bold
outlines indicate that these entities have an experimentally proved association with tuber flesh color (trait of interest). This experimental evidence of
these entities with tuber flesh color is reported in the articles [6, 7]. The color of edges reflects the document frequency (weight) of a relationship.
Grey edges appear only in one document, whereas black edges appear in more than one. The nodes are organized in circles around the trait of
interest. The nodes in the innermost circle (circle 1) are 1st order neighbours of the flesh color node; the nodes in circle 2 are 2nd order neighbours
of it; the nodes in circle 3 (the outermost one) are 3rd (or higher) order neighbours of the flesh color node, or not connected to it at all

While our model is tailored toward potato tuber flesh
color (ranging between white and orange), additional
traits and their respective biological associations were
detected as well. For example, the KN from the test set also
detected genes/proteins and metabolites which influence
other traits, such as enzymatic discoloration, tuber initia-
tion, tuber development, tuber maturation, cooking types,
stolon swelling, flower development etc. (Fig. 3b). This
illustrates that the information content extends beyond
the specific use case. Moreover, our NLP model can
extract information related to tuber flesh color in a wider
context than the use case only, without requiring further
specific training.

Identifying emerging candidates with time analysis
To assess the accumulation of knowledge over time, the
abstracts of the test set were organized in subsets ordered
chronologically (i.e. by the date of their publication). Start-
ing from the year 2000 and incrementing yearly (i.e. all

publications up to 2000, all publications up to 2001, . . .,
all publications up to 2016), subsets were formed. Each
of these subsets was used to construct a separate KN.
A network of a given year is always a subset of a KN
from the following years and a superset of the previous
years.
To study the development of entity connections with

regard to our trait of interest (tuber flesh color), we
worked backwards. The most recent collection was the
most complete, so the nodes widely concerning tuber flesh
color were chosen (color, flesh, flesh color, flesh trait,
orange flesh color, tuber color, tuber flesh, tuber flesh
color, white flesh color, yellow-orange flesh color) and are
henceforth referred to as flesh color nodes. We focused
our attention on the nodes that eventually ended up
directly connected to a flesh color node. Then, we tracked
the distance of these selected nodes to each individual
flesh color node, and the changes over time. Supplemen-
tary File 2 shows an example of such a table for changes
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Fig. 3 A KN representing knowledge triples found in the test set of 4023 PubMed articles. Yellow nodes refer to a trait entity, red nodes refer to gene
entities, and green nodes represent the metabolite entities. a complete zoomed-out knowledge network b zoomed-in snapshot of the knowledge
network focusing on tuber flesh color and additional traits with their respective biological associations. The color of edges reflects the document
frequency (weight) of a relationship. Grey edges appear only in one document, whereas black edges appear in more than one. The nodes are
organized in circles around traits of interest. Each of those traits has its 1st order neighbours in a circle around it (circle 1). The remaining nodes are
organised with respect to the main trait of interest (flesh color nodes). The nodes in circles 2, 3 and 4 (counting from the center) are 2nd order
neighbours of the flesh color node; the nodes in circles 5 and 6 are 3rd order neighbours of it; the nodes in circle 7, 8 (the outermost ones) are 4th
(or higher) order neighbours of the flesh color node, or not connected to it at all
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occurring between 2009 and 2010. Scripts were finally
written to parse the collections for all years in the cor-
pus. Based on these year-by-year summaries, a master
summary table was made (Table 2).
Table 2 shows that the literature already contained sig-

nificant indications as to the relevance of specific genes
that were found to be important for potato flesh color [6].
Most prominently, both beta-carotene hydroxylase (BCH)
and zeaxanthin epoxidase (ZEP) were in close proximity
(2nd order neighbors) from 2007 onwards and made the
transition to direct neighbors of flesh color nodes in 2010.
While investigating the sentence that contributes to the
transitions of ZEP in the time ranges from 2006 to 2010,
we found that this gene was hypothesized to be associated
with flesh color [4, 27] before experimental evidence was
published in 2011. The details about the literature (pub-
lication and exact sentences) providing these connections
can be found in Supplementary File 3.
Similarly, false positives such as lycopene, a metabolite

not found in potato tubers, arise in the KN as first-order
neighbors. While for most domain experts it is clear that
lycopene is the compound responsible for flesh color in
tomato, and therefore trivial to eliminate from the knowl-
edge network as a significant player, it does reinforce the
requirement for domain specialists to apply their knowl-
edge to these results.

Discussion
This work served as a pilot to study the benefits of using
NLP platforms, such as Watson, for performing knowl-
edge discovery in plant science literature. With the expo-
nential increase in the number of scholarly publications
and the sheer volume of available biological literature,
researchers are finding it increasingly difficult to keep
up-to-date with all information relevant to their field.
Assembling knowledge from available literature in a sin-
gle network is useful to generate new hypotheses or aid
researchers in assembling a better overall picture of the
components surrounding their area of interest. However,
unlike for a human research expert, it is more challeng-
ing for a machine to comprehend biological insights from
complex sentences and text structures of scientific litera-
ture.
The choices made in assembling our training corpus,

and particularly the thematic as well as the technical pre-
selection of articles, may have biased our model. Each
NLP model has a limited scope of research questions
it can address, and this particular bias functioned well
enough as shown by our statistical scores. The developed
type system of our NLP model cannot capture and reflect
all biological complexities in knowledge networks (KNs).
However, our developed NLP model is intended to only
mine genotypic-phenotypic information and the under-

lying mechanisms from scientific literature into KNs, so
that this knowledge can be structured data, easily read-
able by both machines and humans. The model had to
learn to recognise gene, protein, metabolite and trait asso-
ciations in very particular contexts precisely because of
our corpus selection. Other crops, genes, proteins and
traits with radically different functions and contexts may
be described with different language patterns which were
not present in our document set. For example, a trait like
flowering time is usually described in a much different
way than tissue color, and therefore to successfully capture
details about, different training should be provided to the
model.
Further, only generic relationships (“is related to”) of

association between these entities were captured. The
degree of association between two entities (positive, neg-
ative, inexplicit) was ignored in our model. The perfor-
mance of our model, nevertheless, is satisfactory for the
pilot study and addresses the above stated research objec-
tive. In order to optimize the efficiency of the process of
manual annotation of the training set, we restricted our-
selves to a limited training corpus of 34 full-text articles.
Although training was thus limited, it was still sufficient
to enable our model to extract similar knowledge from the
test set, a collection of documents referring to different
crops, traits and processes.
While making the testing corpus for our NLP model,

we included literature from other Solanaceae crop species
(tomato, capsicum, eggplant) as well. Mining and assem-
bling information from all of these different literature
resources into a single KN was somewhat controversial.
Many genes and metabolites are involved in a similar bio-
mechanism across these crop species. However, in some
cases literature on other species may introduce noise,
whereas in other cases it may be a source of ideas. There
is a certain tradeoff to be observed here: the wider the
scope of the processed documents, the higher the mar-
gin for noise, but also the potential. The premise for this
trial, after all, was that newly published research in a
broad domain of science would indiscriminately be fun-
neled into an NLP model, to produce networks that can
assist humans.
The weight function we have applied according to the

number of documents that a relationship appears in can
provide further insights. It is clear that, in all networks,
most relationships appear only once (grey edges). How-
ever, we observe differences in the distribution of the
relationships that appear more often (black edges). In
Fig. 1 (full training set), there are no black edges extending
outside the 5th circle region (up to 2nd order neighbours),
whereas in the Fig. 3 (test set), there are black edges
spanning the entire KN (region including 4th order neigh-
bours and higher). We can hypothesise that this effect is
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a result of the thematic diversity of the test set, which
focuses on the entire Solanaceae family rather than just
potato. Some relationships may appear as better estab-
lished because certain interactions may be investigated
more in one species and not at all in another. How-
ever, there is potential in transferable knowledge between
species and its visualisation in KNs in such a way. We can
therefore further hypothesise that an additional extension
of our scope to genera other than the Solanaceae (e.g.
Arabidopsis) would yield more insights.
Although integrating more than one genus into the KNs

could offer a number of benefits, as described above, we
chose to refrain from doing so in this use case. Our goal
was to conduct a pilot study to determine the poten-
tial of such methods and given that, it was necessary
for our interpretation to select a limited domain that
is relatively well-mapped. This way we can disentangle
the different relationships and collect information for or
research question, without a multitude of species compli-
cating our investigation. Expert knowledge has confirmed
that the limited-scope KNs distill free text into real con-
nections between entities, and supported that the broader
multi-species networks also hold promise for hypothesis
generation.
A balance exists when it comes to the parts of doc-

uments that are used for text analysis. Abstracts are
an easily accessible and summarized form of significant
information from an article. However, different journals
prescribe different formats for their abstracts and other
sections of scientific articles they publish. Therefore, the
quality of minable information mentioned in an abstract
depends on the journal as well as the type of article.
Abstracts of articles such as reviews, scientific methods,
or articles that cover a wide range of topics, might not pro-
vide comprehensive minable scientific leads. For example,
in the journal Nature, contributions may not always for-
mally describe all scientific leads in their abstract, and
results are more frequently mentioned in the main text.
It is worth mentioning that there were instances where

the NLP approach failed to meet expectations. In cases
where biological entities were abbreviated, or associations
between two entities were mentioned in more than one
sentences, our NLP model could not predict these entities
and relationships. Watson’s type system includes facilities
to co-refer abbreviated entries or pronouns to their orig-
inal forms. However, due to the relatively small number
of instances in our training corpus, Watson’s NLP model
was not able to capture these entities and relations. How-
ever, Watson is not unique in this respect. In fact, most
NLP tools suffer from the same flaw. Biological abbrevi-
ations are haphazard. Frequently, two biological concepts
have the same abbreviation. For example, an abbreviation
MIC might mean Minimal Inhibitory Concentration, or

refer to a Major Histocompatibility Complex (MHC) class
I chain related (MIC) gene. Training on a larger corpus
might increase accuracy in predicting the correct entities.
Overall, our work produced a model that powered the

construction and time analysis of meaningful KNs under
restricted-effort conditions. We conclude that having the
information we describe above available can provide key
indications of scientifically relevant links, before such
links are experimentally substantiated or published. The
main factor that would encourage and facilitate hypoth-
esis generation is the integration of knowledge into net-
works, where nodes that are not directly connected can
nevertheless be close (e.g. 2nd or 3rd order neighbours).
The integration perspective is also important for accu-
mulating knowledge from multiple species into the same
network, though this approach has inherent risks. All
in all, we believe that a more intensive effort, for both
training set size and type system definitions, would yield
improved results and could play an important role in
bringing together diverse information from large litera-
ture corpora and in hypothesis generation. The edges in
our KNs are weighed based on the number of documents
that each of them appears in.
In the future, we would like to experiment with further

weight attribution methods, perhaps based on experi-
mentally significant information from curated databases,
or the number of times a particular relationship occurs
in text. Cross-referencing with curated resources would
serve these networks well, as experimentally verified
relationships could be indicated to help filter out less
reliable (negative or circumstantial) relationships in the
text. As a result, text mining could be used more pro-
ductively to compare established and emerging knowl-
edge in different ways. This approach stands in contrast
to others where databases establish links between their
records and publications supporting them, as is the case
in pubmed2ensembl BioMart [11]. Another way that our
NLP model could be applied is in literature annotation on
online journal articles. It could detect gene-trait associa-
tions and highlight ones that have been previously seen,
and even include indications about the frequency of their
occurrence. This could aid readers in understanding and
appreciating the novelty of the claims presented.

Conclusions
Our work strongly indicates that the computer-assisted
extraction of knowledge from plant science literature can
facilitate research. The results of our time analysis suggest
that the individual components necessary for the formu-
lation of new hypotheses may be published but remain
unassociated for longer periods. Therefore, integrating
these components into comprehensive knowledge net-
works can accelerate the generation of new hypotheses.
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Methods
Experimental corpora
To make a supervised NLP model, we assembled scien-
tific articles into 2 corpora, comprising a training set and
a test set. The training set consisted of open source full-
text articles, while the test set was built from PubMed
abstracts.
The training corpus is a collection of 34 full-text sci-

entific articles (see Supplementary File 4) which focus
on tuber flesh color and known biological entities like
metabolites and proteins involved in the carotenoid path-
way, for example, beta-carotene hydroxylase and zeaxan-
thin epoxidase [7]. This corpus was the result of a search
on various scholarly platforms, where we scrutinised not
only the content, but also the way it was presented. The
training set was manually annotated with Watson Knowl-
edge Studio (WKS). As WKS has a limitation in detecting
entity relationships only within a sentence, we elimi-
nated articles that had no or few examples of relationship
mentions in the same sentence. WKS uses these man-
ual annotations to generate a supervised NLP model that
can capture phenotypic tuber traits and the associated
genes, proteins and metabolites. Later, we assessed the
capabilities of this supervised NLP model to construct a
knowledge network (KN) on this training set as well as on
a larger test set.
The test set consists of 4023 abstracts from PubMed

from the years 2000 to 2016 (which can be found at [28]).
These abstracts are plant genetics-based articles which
focus on 4 major Solanaceous crops (tomato, potato,
eggplant and capsicum). To limit the scope of the NLP
model to find direct genomic associations related to tuber
flesh color, no pathogen related articles were included
in the test set. Our developed NLP model is capable
of extracting KNs for the tuber flesh color trait. How-
ever, the articles in the test sets deal with a variety
of different topics in plant genetics and are not lim-
ited only to the tuber flesh color trait. This test set
challenges the NLP model to a more real-world applica-
tion, as opposed to a restricted use case in our training
set.
In addition, to analyze the difference between informa-

tion contained in abstracts and full text representations
of an article, we divided the training set into section-
based subsets.We also divided the test set of abstracts into
subsets based on their year of publication, to study the
evolution of knowledge over time.

Watson knowledge studio andWatson explorer
IBM’s Watson Knowledge Studio (WKS) is a proprietary
text mining solution. It can be used to build machine
learning models that perform named entity recognition
(NER) and relationship extraction, using state of the art
methods [29–32]. The models can be tailored to differ-

ent kinds of text (e.g. marketing, legal, scientific), and
customized as to the type of annotations they produce.
To build a machine learning annotator in WKS, users

must first define a type system to establish the “entities”
(i.e. categories/classes of things that they wish for it to
capture) and the “relations” between them. With the type
system in place, they mark all occurrences (“mentions”) of
these entities and relations in collections of representative
texts, producing a ground truth. Part of these collections,
the training set, is then analyzed by WKS for linguistic
structures, patterns and nuances specific to the domain,
to produce the machine learning model. The other part,
the test set, is only used to quantify the performance of the
model (precision, recall). The type system and the annota-
tions can be changed iteratively until the model performs
satisfactorily.
We used WKS to train a NLP model, which we then

deployed on the same training set and a further test set.
The final type system of our model comprised three enti-
ties (Gene/Protein, Metabolite, Trait) and seven relations
between them, as seen in Fig. 4. We attained the best
results with relations of a simple and all-encompassing
nature, which is whymany of the relations are only labeled
as “related to”. The exceptions (“encodes”, “part of”) were
included since the high number of instances in the corpus
allowed WKS to produce models that could successfully
identify them in the text.
Each entity can be supported by an entity-specific dic-

tionary. Dictionaries are used in a pre-annotation step of
NER, before the corpus is annotated manually. To min-
imize noise (undesirable annotation of entities and rela-
tions), all dictionaries were made small and are limited to
molecular entities known to be associated with tuber flesh
color or with the carotenoid pathway.We selected our pre-
ferred labels from known molecular databases or ontolo-
gies. The Gene/Protein and the Metabolite dictionaries
contain 183 genes/proteins and 85 metabolites, respec-
tively. 56 potato-related traits taken from the Solanaceae
Phenotype Ontology [33] comprise the Trait dictionary.
Watson Explorer (WEx) can use the model to annotate

new documents. A schematic of its pipeline can be seen
in Supplementary File 5. Its outputs are text documents
in XML/CAS (eXtensible Markup Language/content and
structure) files, containing annotations of the entities and
their relations that have been extracted, and their docu-
ments (and document position) of origin. We use these
XML/CAS files to build our KNs.

Modeling decisions
To train our NLPmodel to capture KNs of only genotypic-
phenotypic entities and their relationships, the type sys-
tem underwent a number of major changes and revisions
in an iterative process. With trial-and-error optimization,
entities and relationships were introduced as well as dis-
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Fig. 4Watson Knowledge Studio (WKS) configurations of the type system for a customized NLP annotator. a 3 types of entities in the type system. b
7 types of relationships defined in the type system of an annotator

carded, based on how well the knowledge is captured and
presented in the KN. In our analysis, a knowledge triple is
defined as a data structure consisting of two entities and a
label for their underlying relationship.
Some modeling decisions important to be mentioned

are presented below.

• Biological entities that were tested but not included
in the final model:

– biochemical processes
– metabolic pathways
– trait values
– organism names, species names and genotypes

While these biological entities occur in text and
contain sources of knowledge to understand the
biological mechanisms involved in the phenotypes,
the numbers of mentions in the text were insufficient
for WKS to adequately train a model. We therefore
chose not to include these entities in the type system
of our NLP model. Furthermore, including these
entities in our model would have shifted the focus
away from the research question of mining
genotypic-phenotypic relationships in text.

• Combination of genes and proteins to a single entity:
Initially, we kept genes and proteins as two separate
entities. However, during manual annotation,
difficulties were encountered in distinguishing
between the two, as they are frequently used
interchangeably in the text. Furthermore, for subject
matter experts, there is little information lost by

combining them, and separating them introduced
many misclassifications. Hence, in our type system
genes and proteins are a single entity.

• Annotation rule for metabolites (specific metabolite
mentions vs generic mentions):
Metabolites are included in scientific literature in
different forms. Mentions may consist of specific
composite terms (e.g.
petunidin-3-p-coumaroyl-rutinoside-5-glucoside) or
more generic ones (e.g. carotenoids). According to
our type system, we annotated all forms of metabolite
mentions as in this way we can capture both
knowledge triples with specific entities and
knowledge triples with generic entities.

• Annotation rules for genes:
As is the case with metabolites, genes may be
introduced in different formats. Sometimes the full
name is presented (zeaxanthin epoxidase), sometimes
the short form (ZEP), and other times there is a
species indicator as a prefix (LeZEP [Lycopersicon
esculentum ZEP]). We chose to annotate all these
cases to train the model.

Building and visualization of knowledge networks
For the construction of a KN, only entities with rela-
tionships were used. The mention of an entity by itself,
with no connections, was not included in the KN. With
help of Python scripts, we filtered out data of entities
and relationships data from XML/CAS files [34]. This
script captured relationships as knowledge triples in easily
parsable CSV (comma-separated values) files containing
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the relationship ID, relationship type, original mention of
each entity, entity label, entity type, document in which
this sentence occurred, sentence position and position of
the source and target nodes.
As various entities appear in a variety of spellings in

the corpus (e.g. β-carotene, b-carotene, beta-carotene),
we also included a normalization step, attributing an
additional preferred label to each entity. This was done
manually on the list of individual entities that had
been extracted. In the normalization process we first
converted all spellings of entities and relationships to
American English uppercase characters. Additionally,
prefixes relating to species were removed from gene
names. For example, the term StAN1, referring to antho-
cyanin 1 in Solanum tuberosum (potato), was converted
to AN1. Similarly, suffixes indicating individual mem-
bers of gene families were also removed, for example
BCH1 and BCH2 (both referring to forms of beta-
carotene hydroxylase), were converted to beta-carotene
hydroxylase.
For metabolites, EC number references were converted

to full names of enzymes. Further, apostrophes and #
notations were removed, e.g. flavonoid-3’,5’-hydroxylase
becomes flavonoid-3,5-hydroxylase, 9#-cis-neoxanthin
becomes 9-cis-neoxanthin. Lastly, all abbreviations were
expanded to the long form, for example, NCED2 into 9-
cis-epoxycarotenoid dioxygenase. These preferred labels
were based on Uniprot [35] for genes/proteins, KEGG
[36] for metabolites, and the Solanaceae Phenotype Trait
Ontology [37] for traits.
While the above steps reduce the specificity of a partic-

ular entity (for example we labeled BCH1 and BCH2 as
BCH), as is always the case with tokenization, this sim-
plification boosts network connectivity, despite the loss of
information.
Finally, Cytoscape version 3.7.1 was used to visu-

alize these KNs [38]. Cytoscape can plot KNs using
CSV files as input. These networks also contain a
weight function based on the number of documents
that each edge appears in. We chose to indicate this
document frequency with two colors: grey, when an
edge appears only once, and black when it appears
more times. This differentiation allows us to distinguish
between potentially novel and more broadly investigated
associations.
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