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A B S T R A C T   

Wind erosion potential can be assessed using the Threshold Friction Velocity (TFV) of the soil, which is not 
always easy to measure, especially on regional and global scales. To overcome this difficulty, the spectroscopy 
technique can provide a useful approach in estimating the TFV as an alternative for time-consuming wind tunnel 
studies in the field. In this study, we evaluated the potential of Vis-NIR spectroscopy in predicting the TFV and 
some TFV-related soil properties using Partial Least Square Regression (PLSR) and the Support Vector Regression 
(SVR). We also developed a Point Spectrotransfer Function (PSTF) using Multiple Linear Regression (MLR) to 
predict the TFV based on diagnostic wavelengths and compared it to the derived Pedotransfer Function (PTF). 
For this purpose, 300 in-situ wind tunnel tests were performed in the Fars Province, Iran and the spectral 
reflectance of soil samples were analysed using a spectrophotometer apparatus. The 10 best key wavelengths 
resulting from the correlation analysis between the TFV and the spectral reflectance were 750, 1342, 1446, 1578, 
1746, 1939, 2072, 2162, 2217, and 2338 nm which were mostly located in the short-wavelength infrared (SWIR) 
area. The derived PSTF performed better than the PTF for the TFV estimation (R2 = 0.94, RMSE = 0.71). Results 
of the predictive models revealed that machine learning using the SVR had a significantly (P < 0.01) higher 
prediction accuracy for the TFV estimation (R2 = 0.85, RMSE = 0.45, RPD = 2.50, and RPIQ = 4.06) than the 
PLSR (R2 = 0.68, RMSE = 1.01, RPD = 1.72, and RPIQ = 2.64). The same results were obtained for the soil 
moisture, clay and CaCO3 content. This study proved that reflectance spectroscopy coupled with the machine 
learning algorithm is a promising technique for large-scale assessment of wind erosion.   

1. Introduction 

Wind erosion is one of the main factors contributing to land degra-
dation in arid and semi-arid regions (Pierre et al., 2014; Chappell et al., 
2018) and it is a serious problem worldwide (Pásztor et al., 2016). Wind 
erosion occurs when both strong winds and soil erodible surfaces exist 
simultaneously (Chappell et al., 2018). Wind velocity must be large 
enough to carry soil particles; this is called the threshold friction velocity 
(TFV). TFV is considered to be a key parameter in specifying soil sus-
ceptibility in many wind erosion studies (de Oro and Buschiazzo, 2009; 
Li et al., 2015; Kouchami-Sardoo et al., 2019). Soil properties can in-
fluence TFV (Morshedi Nodej and Rezazadeh, 2018) and the severity of 
the wind erosion (Visser et al., 2004). The distribution of primary 
(textural) (Pásztor et al., 2016; Van Pelt et al., 2017; Kheirabadi et al., 
2018) and secondary (aggregate) particles (Zamani and Mahmoodabadi, 

2013), surface roughness (Yan et al., 2015), calcium carbonate content 
(Zobeck and Van Pelt, 2014, Kheirabadi et al., 2018, Kouchami-Sardoo 
et al., 2020), gypsum content (Tatarko, 2001, Ekhtesasi et al., 2003), 
and soil moisture (Zobeck and Fryrear, 1986; Ravi et al., 2006; Sirjani 
et al., 2019) are among the most important soil erodibility factors. 

A fundamental challenge in controlling wind erosion is to accurately 
measure or predict TFV in arid and semi-arid areas (Okin, 2005). Over 
the last several decades, portable wind tunnels have been used to 
measure wind erosion in natural conditions for various purposes 
(Zobeck and Van Pelt, 2014). However, due to the time-consuming and 
difficulty of measuring TFV in the field, it would be advantageous if it 
could be estimated indirectly. This is especially important when dealing 
with large areas of wind erosion and aeolian sediment transport. 
Moreover, the spatial heterogeneity of TFV is difficult to estimate using a 
wind tunnel (Li et al., 2015). This is because a large number of wind 
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tunnel experiments are needed to cover the existing variability in soil 
surface conditions within an area of interest especially on large scale. 
Besides, the working section of the wind tunnel is not big enough to 
cover all these heterogeneities. 

Visible-near infrared spectroscopy (Vis-NIR) is one of the most 
promising alternative techniques for routine soil analysis for total or 
partial replacement of traditional methods (Janik et al., 2009; de San-
tana et al., 2018). With the help of this technology, it is possible to es-
timate multiple soil properties simultaneously with a single 
measurement in the field or in the laboratory (Kim et al., 2014). In this 
regard, selection of the calibration method and its performance in 
modelling reflectance spectra is one of the main factors for calibration 
success (Mouazen et al., 2010). In most studies, linear multivariate 
calibration is used based on partial least square regression (PLSR). Using 
this method, we can determine the significant wavelengths associated 
with the desired variables from the measured wavelengths of each 
spectral curve. However, due to the complexity of the relationship be-
tween the spectra and wind erosion-related soil properties, PLSR may be 
insufficient thus other chemometric approaches mainly based on non- 
linear procedures should be considered. Machine learning algorithms 
are powerful methodologies for data modelling especially for complex 
non-linear systems (Nawar et al., 2016; de Santana et al., 2018). Once 
the diagnostic spectral bands are extracted, they can be used to estimate 
soil properties and then new functions, namely point spectrotransfer 
functions (PSTF), can be developed. 

There has been only one study, conducted by Li et al. in 2015, that 
investigated the relationship between the TFV and the near and infrared 
spectral reflectance (350–2500 nm). They employed the PLSR method 
for TFV estimation due to the small number of samples (31 samples) (R2 

= 0.76, RMSE = 0.12). Their results identified the visible area (400–700 
nm) and near infrared range (1100–2500 nm) as diagnostic wavelengths 
for estimating TFV. Ostovari et al. (2018) showed a good prediction (R2 

= 0.56) for estimating soil erodibility (K) in water erosion using the 
PLSR method in 40 samples. Apart from the direct relationship between 
soil erosion and soil spectra, there are some studies that have employed 
soil reflectance spectra to predict soil erosion-related properties. Wang 
et al. (2016) determined the factors governing soil erodibility using 
hyperspectral visible and near-infrared reflectance spectroscopy. These 

factors included water-stable aggregates (WSA), soil organic matter, and 
geometric mean diameter. They proved that a spectral analytical 
approach can be applied to complex datasets and provide new insights 
into emerging dynamic variations with erodibility estimations. Soil 
aggregate stability and aggregate size distribution were used as in-
dicators of soil resistance to external erosive forces and were predicted 
using the Vis-NIR spectroscopic method (Shi et al., 2020). Soil organic 
matter (SOM) content was also used as a key indicator for determining 
water-induced soil erosion zones in Italy (Conforti et al., 2013) and in 
the Czech Republic (Žížala et al., 2017). Researchers employed the PLSR 
method as their calibration model and combined geostatistical 
approachs to map spatial patterns of the SOM. In another study, the 
shortwave infrared proximal sensing approach was used to quantify soil 
structure and aggregate stability as factors of soil resistance to water 
erosion (Gholoubi et al. 2018). Researchers found a strong correlation (r 
= 0.90) between the SWIR-derived reflectance index and the stability 
ratio of the soil. Schmid et al., (2012) used spectral characterization of 
land surface to determine soil erosion in Spain. In fact, they identified 
soil eroded areas based on a spectral characterization of morphological, 
physical and chemical features as a result of soil loss. In addition, 
spectral reflectance analysis was used in many studies to determine 
routine soil properties including the clay content (Peng et al., 2014), 
calcium carbonate equivalent (Bilgili et al., 2010; Summers et al., 2011; 
Khayamim et al., 2015a), organic carbon (Nawar et al., 2016; Sharififar 
et al., 2019), and cation exchange capacity (de Santana et al., 2018; Ng 
et al., 2019). 

To the best of our knowledge, there has been no study on the 
application of Vis-NIR spectroscopy coupled with a machine learning 
algorithm to predict wind erosion. Such studies are needed for wind 
erosion controls and soil conservation efforts in large areas prone to 
wind erosion and dust emission like Iran. The results from this study can 
enhance the use of remote sensing in wind erosion studies on local and 
global scales. Therefore, the purpose of this study was 1) to evaluate the 
potential of the reflectance spectroscopy technique in estimating TFV, 2) 
to develop a point spectrotransfer function (PSTF) for TFV prediction, 
and 3) to compare PLSR and Support Vector Regression (SVR) models 
for optimal estimation of TFV using spectral reflectance. 

Fig. 1. Map of the Fars province in Iran with the geographical locations of the sampling sites (UTM, zone 39). DEM: Digital elevation model.  
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2. Material and methods 

2.1. Study area 

The study area was Fars province which is located in the south 
central region of Iran (27◦2′ to 31◦42′ N and 50◦42′ to 55◦36′ E, covering 
an area of 133,299 km2). Based on the De Marten aridity index, all parts 
of Fars province are classified as arid and semi- arid (Nafarzadegan et al., 
2012). Due to the climate conditions of Fars province, wind erosion 
occurs in most areas. There are several critical wind erosion regions in 
this province (Rezaei, et al., 2016) and the three main dust-generating 
centres of the province are located in Abadeh (31◦ 11′ N and 52◦ 40′

E), Eghlid (30◦ 54′ N and 52◦ 38′ E), and Shiraz (29◦ 32′ N and 52◦ 36′ E). 
In this study, 100 sites in different geographical locations of Fars prov-
ince were selected, providing a variety of soils with different physi-
ochemical properties and thus different potential for wind erosion. Fig. 1 
shows the geographical map of the sampling sites. 

The maximum wind speeds vary between 7 and 30 m s− 1 (at 10 m 
height) at Abadeh and Shiraz stations and between 7 and 45 m s− 1 at 
Eghlid station. These high wind speeds are associated with west to 
southwest directions at Shiraz, southwest but also west and north di-
rections at Abadeh, and southwest directions at Eghlid (Sirjani et al., 
2019). A severe dust storm occurred in the province on May 13, 2018 
(Aerosol optical depth value of 1.6). There were also several other 
events, for example on 17 July 1998, 13 August 2001, 24 April 2008, 28 
February 2009, and 28 August 2013 with recorded wind speeds (at 10 m 
height) between 16 m s− 1 and 20 m s− 1 (Mazidi et al., 2015). The 
average annual rainfall in this province varies between 100 mm in the 
south and about 400 mm in the north. 

The study area included seasonal and abandoned agricultural lands, 

rangelands, plains, and dried riverbeds and lakes. The slope of all the 
study areas was <1% and there was poor vegetation cover in all regions. 
General views of some of the study areas along with the view of the wind 
tunnel set up in the field are presented in Fig. 2. 

2.2. Soil sampling and soil analysis 

Soil samples were collected from the first 3 cm of topsoil at 100 study 
sites in the summer of 2019. Random soil samples were taken in tripli-
cate from the places nearest to each of the wind tunnel runs. The 
collected samples were transferred to the laboratory and air-dried. In 
addition, one soil sample was weighed at each site using a scale and the 
sample was used for the initial soil moisture content. Soil texture was 
measured using the hydrometer method (Page et al., 1992). Soil 
chemical properties including CaCO3 and CaSO4 were measured using 
the back-titration and the acetone methods, respectively (Nelson, 1982). 

2.3. Wind tunnel experiments 

Information obtained from wind tunnel experiments forms a major 
part of wind erosion research (Shao, 2008). A detailed description of the 
wind tunnel used in this study can be found in Rezaei et al. (2019). 
Extensive in-situ wind tunnel experiments were performed at 100 
selected study sites. Three distinctive places were identified for wind 
tunnel experiments at each study site. In total, 300 wind tunnel exper-
iments were carried out for this study. All three replications (mean STD 
= 0.26) were done on the same surface type as close to each other as 
possible, but not overlapped with footprints of previous wind tunnel 
tests, as the wind tunnel test would cause disturbance to the soil surface. 
At each site, wind tunnel experiments were carried out on flat areas of 

Fig. 2. General views of some study areas with the view of the wind tunnel set up in the field. a) 29◦ 47′ N and 53◦ 30′ E, b) 30◦ 30′ N and 53◦ 07′ E, c) 28◦ 13′ N and 
53◦ 25′ E, d) 28◦ 11′ N and 52◦ 23′ E, e) 31◦ 01′ N and 52◦ 11′ E, and f) 28◦ 35′ N and 52◦ 23′ E. 
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land with little to no vegetation, rocks or rubble and without any surface 
disturbance. After determining the appropriate test points, the wind 
tunnel was positioned on intact soil in the direction of the prevailing 
wind. Threshold wind erosion velocity was measured using the obser-
vational method by gradually increasing the velocity of wind in the wind 
tunnel until the forward movement of the soil particles was observed 
(Belnap et al., 2007; Rezaei at al., 2019). It might be worth to mention 
that each wind tunnel experiment took at least 90 min including the 
replicates at each study site. The whole field work of the study was 
carried out in 25 days. 

2.4. Spectral reflectance measurement 

The spectral reflectance of the soil samples was collected using a 
spectrophotometer apparatus (Metrohm, NIRS XDS, RapidContent 
Analyzer) in Vis-NIR range (400–2500 nm) with 0.5 nm data point in-
terval (4200 wavelengths), <0.05 nm wavelength accuracy and 8.75 nm 
bandpass. The spectrophotometer measures the reflectance using two 
detectors (Si detector and PbS detector) which caused a splice in the 
wavelengths of 1099–1100 nm. Therefore, a splice correction was 
employed on the spectral reflectance. Soil samples were air-dried and 
sieved through a ≤2 mm sieve. Soil material (~25 g) was then placed in 
a container and thoroughly mixed before analysis. Twenty scans were 
considered for each soil sample in order to get an average reflectance 
spectrum. The spectral regions of 400–449 nm and 2451–2500 nm were 
removed in order to eliminate the influence of noise. In other words, the 
reflectance spectra after noise reduction were in the range of 450–2450 
nm. In order to eliminate turbulence and to increase the quality of the 
spectral data, pre-processing methods were performed. Kuśnierek 
(2011) reported a 30% increase in accuracy by using different pre- 
processing methods compared to non-pre-processing conditions. 
Therefore, the Savitzky-Golay filter (SG) (Savitzky and Golay, 1964) was 
used on all spectral data with a zero-order filter, polynomial of 2nd order 
and 15 smoothing points. Then, the standard normal variate (SNV) 
method for each parameter was carried out as a spectral pre-processing 
algorithm. The Unscrambler X v. 10.4 software (Camo Software AS, 
Oslo, Norway) was used for spectral data processing. Fig. 3 provides the 
raw (a) and pre-processed (b) spectral reflectance of the 100 soil 
samples. 

2.5. Development of pedotransfer function (PTF) and point 
spectrotransfer function (PSTF) to predict TFV 

PTF and PSTF were developed by considering the correlation be-
tween the soil properties or initial spectral wavelengths and TFV. The 
multiple linear regression (MLR) analysis was used for PTF and PSTF 
development. MLR is a regression method in which two or more inde-
pendent variables are used to analyse a dependent variable. In this 
research, clay, sand, silt, Gravimetric Soil Moisture (GSM), CaSO4, and 
CaCO3 were included in the regression model. Given that the most 
important principle in modelling is to provide a simple model with a low 

number of input variables and high efficiency, stepwise regression was 
used to select the best combination of independent variables as model 
inputs. Moreover, high levels of multicollinearity between variables 
could lead to over-fitting of the model. Therefore, the Variance Inflation 
Factor (VIF) was used and variables with a VIF value >5 were removed 
from the model (Ostovari et al., 2019). The F test was used to test the 
significance of the regression model at the probability level of 5%. If the 
regression model was significant, its coefficients were analysed using the 
t-test. 

Likewise, the effective spectra for the development of PSTF were 
selected and the stepwise multiple linear regression (MLR) was 
employed to derive PSTF and predict TFV. 

For MLR, the samples were randomly divided into calibration and 
validation datasets. The calibration dataset (70%) was used for model 
development and the validation dataset (30%) was used for evaluating 
the developed function. Statistical analyses were run by SPSS 16 soft-
ware. Performance of PTF and PSTF were analysed based on the coef-
ficient of determination (R2), the root mean squared error (RMSE), and 
standard deviation (STD) of the measured data. Any RMSE values less 
than half the standard deviation of the actual data were considered good 
(Singh et al., 2005; Moriasi et al., 2007). 

2.6. Statistical analysis and predictive models 

One of the problems in processing spectral data is due to the collision 
effect of different factors in each wavelength and repeated information 
in adjacent wavelengths. When predictive variables are greater than the 
measured samples (i.e., 400–2500 spectral wavelengths versus 100 soil 
samples in the present study), the degree of overlapping will increase 
and it will cause overfitting. For such data, a multivariate analysis 
should be conducted to determine the most important variables (Abbasi 
et al., 2011; Hong et al., 2018). To predict TFV based on the spectra, a 
multivariate regression and a machine learning algorithm were imple-
mented, including partial least squares regression (PLSR) (Haaland and 
Thomas, 1988) and support vector regression (SVR) (Vapnik, 1995). 
PLSR is based on linear least squares regression that performs with new 
components instead of the original input data. The predictors are 
reduced to principal components, as are the dependents (Abbasi et al., 
2009). In PLSR, the compression and regression steps are integrated and 
the new latent variables (LV) by reducing dimensional space and noise 
of spectral variables are determined (Wan et al., 2019). LVs (range 1–15) 
which were used to optimize the covariance between soil properties and 
spectra in PLSR, were determined after the minimum RMSE was ob-
tained using holdout cross-validation. Then the extracted LVs were used 
as the linear combination of the predictor variables. 

SVR, on the other hand, has special features for dealing with complex 
multidimensional data. SVR forms a supervised learning model with 
machine learning algorithms that analyses the data used for regression 
analysis. In this study, the kernel and type of SVR were set as linear 
function and epsilon-SVR, respectively. The penalty parameter (C) 
(range 1e-3-1e3) that controls the distance from epsilon was acquired 

Fig. 3. The a) raw and b) pre-processed spectral reflectance data of the soils (n = 100) in the study area.  
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using a systematic grid search technique, and the optimal parameters 
were determined after the minimum RMSE was obtained using holdout 
cross-validation. 

PLSR and SVR models were performed to establish the relationship 
between soil parameters and spectral data matrix using the PLS Toolbox 
version 8.02 (Eigenvector Research, Inc., Wenatchee, WA, USA) and 
LIBSVM (Chang and Lin, 2011), in MATLAB2019b programming 
environment. 

2.7. Model evaluation and comparison 

Calibration models were developed based on the spectral range 
450–2450 nm using PLSR and SVR regression. In this study, 100 samples 
were randomly divided into calibration (70%) and validation datasets 
(30%). The Student’s t-test was used to examine the mean difference 
between calibration and validation datasets for spectral analysis. The 
efficiencies of the predictive models were then evaluated using the co-
efficient of determination (R2), root mean squared error (RMSE), the 
ratio of predicted deviation (RPD), and ratio of performance to the 
interquartile range (RPIQ). 

The estimations were classified as: very poor with RPD < 1, weak 
with RPD = 1–1.4, moderate with RPD = 1.4–1.8, good with RPD =
1.8–2, very good with RPD = 2–2.5, and excellent with RPD > 2.5 
(Lacerda et al., 2016). The same classification was applied for the RPIQ 
analysis. 

In order to compare the model performances statistically, we used 
the randomization t-test (van der Voet, 1994) for RMSE values resulting 
from 100 model simulations. These simulations were run (with different 

random calibration and validation datasets) for each of the parameters 
and each of the two predictive models separately and were used for the 
significance tests. The hypotheses evaluated were: 

H0) Null hypothesis: RMSEA = RMSEB (the predictive accuracy of 
model A and model B are equal); H1) Alternative hypothesis: RMSEA ∕=

RMSEB (the predictive accuracy of model A and model B are not equal). 
Statistical analysis and modelling were performed using the Machine 

Learning Toolbox in MATLAB 2019b. 

3. Results and discussion 

3.1. Soil properties 

Soil textural distributions of all the study areas are presented in 
Fig. 4. With eight different soil texture classes, we studied a large panel 
of different soil types that can be found in southern Iran, confirming a 
variety of soils with different potential for wind erosion. The statistical 
summary for some important soil properties and TFV is shown in 
Table 1. The clay, silt, and sand contents varied with a coefficient of 
variation very close to each other (30%, 39%, and 43%, respectively). 
Furthermore, gravimetric soil moisture contents were low with an 
average of 1.11%. This soil moisture was below the highest soil moisture 
allowed to guarantee wind erosion (Nourzadeh et al., 2013, Bento et al., 
2017). The CaCO3 content showed the lowest coefficient of variations 
(15%) among all soil properties, indicating a low variation (0–15% ac-
cording to Wilding, 1985) in the study area which is related to the 
calcareous parent materials in Iran. Moreover, the variation of gypsum 

Fig. 4. The USDA textural distribution of the soils at the study sites.  

Table 1 
Statistical analysis of the soil properties and TFV.  

Soil property Min. Q1 Median Mean Q3 Max. STD CV (%) 

Clay (%) 3.72  12.60  23.7  22.1  26.6  38.9  6.74 30 
Silt (%) 4.64  31.10  37.5  35.8  45.8  60.7  13.89 39 
Sand (%) 10.6  28.72  37.1  41.9  50.7  89.5  17.95 43 
GSM (%) 0.00  0.75  1.07  1.11  1.37  2.48  0.65 58 
CaSO4 (%) 0  0.67  0.71  0.92  0.82  3.98  0.69 75 
CaCO3 (%) 35.9  47.77  52.2  57.7  61.3  83.5  9.02 15 
TFV (m s− 1) 1.50  6.00  7.50  7.21  8.00  12.5  1.98 28 

GSM – Gravimetric Soil Moisture, TFV – Threshold Friction Velocity, Q1 – First quartile, Q3 – Third quartile, STD – Standard Deviation, CV – Coefficient of Variation, 
where < 15% = low variability, 15–35% = moderate variability, >35% = high variability (Wilding, 1985). 

Fig. 5. Pearson correlogram of soil physiochemical properties and TFV. GSM – 
Gravimetric Soil Moisture, TFV – Threshold Friction Velocity. Superscripts * 
and ** represent p < 0.05 and p < 0.01, respectively. 

M. Mina et al.                                                                                                                                                                                                                                   



Geoderma 401 (2021) 115163

6

content was very large with the highest CV of 75%. Average TFV ranged 
from 1.50 to 12.5 m s− 1, showing a very different potential for wind 
erosion across the study area. 

The Pearson’s correlation coefficient (P < 0.05) between the 
measured soil physiochemical properties and the TFV is shown in Fig. 5. 
The TFV had the highest correlation (r = 0.77) with soil moisture. TFV is 
very sensitive to soil moisture (Shao and Lu, 2000) as soil moisture 
strengthens the adhesion forces between the soil particles and increases 
the resistance of soil particles to wind erosion (Wiggs et al., 2004). In 
fact, the capillary force between the particles is the main factor for 
increasing the TFV with increasing moisture (Berg et al., 2007). 

Among soil texture components, the percentage of clay had the 
highest correlation (r = 0.69) with TFV. According to Bonilla and 
Johnson (2012), clay components are less susceptible to erosion and 
more resistant to deterioration by the eroding agent due to their small 
size as well as the adhesion force between particles. Thus, an increase in 
the clay content of the soil can increase soil resistance against erosive 
forces (Carrick et al., 2010). 

Moreover, TFV showed a relatively high negative correlation with 
CaCO3. Chepil (1954) also showed that an increase in calcium carbonate 
caused a substantial disintegration of soil cloddiness and a decrease in 
the stability of clods in soils of arid areas other than sands and loamy 
sands. Considering that the study area is located in a dry region with a 
high amount of lime, the negative correlation between CaCO3 and TFV is 
described. 

3.2. Characteristics of spectra 

Representative soil spectra showed three specific absorption bands at 
1414, 1915, and 2212 nm (Fig. 6). These absorption characteristics also 
demonstrate free and hygroscopic water at 1414 nm, hydroxyl groups at 
1915 nm, clay mineral networks, the bonding of hydroxides with iron, 
magnesium and aluminium metals at 2212 nm (Clark et al., 1990). The 
absorption peaks around 2341 nm are related to CO3 groups in car-
bonate minerals (Gomez et al., 2008, Lagacherie et al., 2008). In addi-
tion, spectral curves have a peak at wavelengths of 500 to 700 nm which 
can be attributed to goethite and hematite in the soil (de Santana et al., 
2018). 

Fig. 6 shows the variation in the spectral reflection value in the 
presence of eight different soil texture classes including sand, loamy 
sand, sandy loam, loam, silty loam, clay loam, sandy clay loam, and silty 
clay loam. Clay loam and sandy clay loam classes have the least 

reflectance. In fact, as the clay content increases, the spectral reflectance 
decreases (Wang et al., 2017). This reduction in the reflectance is due to 
the presence of clay and phyllosilicates. The smaller the size of the soil 
particles, the higher the surface and the presence of clay minerals and 
iron, manganese, and aluminium oxides (Yan et al., 2016). On the other 
hand, silt loam class shows the highest reflection due to the presence of 
bright minerals such as calcites and carbonates. Iron oxides affect the 
reflection in the visible region, whereas organic carbon and clay affect 
the amount of reflection in the infrared region (Babaeian et al., 2015). 
Regarding the effect of soil texture on spectral reflectance, it can be 
stated that sandy soils have higher light scattering than clayey soils and 
thus they have higher reflection compared to fine-textured soils (Stevens 
et al., 2013). 

3.3. Correlation analysis between TFV and spectral reflectance 

The Pearson correlation coefficient between the spectral reflectance 
and TFV in the range of 400–2500 nm is illustrated in Fig. 7. It can be 
used to identify the most important bands and, later, to develop PSTF for 
predicting TFV. As can be seen in Fig. 7, there is a relatively high cor-
relation between the measured values of TFV and the soil spectral 
reflectance. In general, the relationship between spectra and TFV 
appeared in diagnostic bands of around 1400, 1900, and 2200 nm. These 
results are consistent with experimental studies that show the relation-
ship between TFV and soil properties (Kouchami-Sardoo et al., 2019). 

The TFV showed the highest significant correlation (P < 0.05) with 
spectral bands at 750, 1342, 1446, 1578, 1746, 1939, 2072, 2162, 2217 
and 2338 nm. Li et al. (2015) reported a significant correlation (P <
0.05) for wavelengths of 517–543, 1347–1354, 1898–1911, 1936–1943, 
1969–2092, 2273–2293 with TFV which were proportional to the fine 
soil content and consistent with our results. It can be concluded that the 
SWIR area has a promising role in wind erosion studies. 

Considering the high correlation between soil moisture content and 
TFV (r = 77%, see Fig. 5), the significant correlation between TFV and 
bands of 1342, 1446, 1939, and 2217 nm can be described accordingly. 
There are three spectrally active forms of water in the soil; free water, 
adsorbed water, and hydration water (Ben-Dor, 2002). Diagnostic water 
adsorption features are centred around 1440, 1930, and 2200 nm 
(Knadel et al., 2014). These wavelenghts are associated with free water 
OH features at 1400 and 1900 nm and clay lattice OH features at 1400 
and 2200 nm (Vicente and de Souza Filho, 2011). Adsorbed water (a 
thin layer on the surfaces of clay minerals) has an absorption band 
around 2200 nm. Hydration water is incorporated into the mineral lat-
tice with two strong OH absorption features near 1440 and 1930 nm 
(Knadel et al., 2014). The wavelengths of 1360 and 1940 nm were also 
used for the Normalized Soil Moisture Index (NSMI) as a proxy of soil 
moisture (Hong et al., 2018). It would be interesting to note that the 
correlation between TFV and spectral reflectance at wavelength of 1900 
nm was negative, while such correlation was positive at around 1400 nm 
(see Fig. 7). These wavelengths are associated with both free and hy-
dration water. As our soil samples were air-dried, the effect of free water 
can be neglected. Therefore, such correlation can be related to hydration 

Fig. 6. Changes in spectral reflectance for soil textural classes.  

Fig. 7. Pearson’s correlation coefficient (r) between spectral reflectance values 
across the Vis-NIR range and threshold friction velocities (TFVs). 
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water that is incorporated into mineral lattice and is related to the clay 
mineralogy of the soil samples. For instance, the 1900 nm is more pro-
nounced in expandable clay minerals (Vicente and de Souza Filho, 
2011). 

Likewise, based on the correlation between clay and TFV (r = 69%, 
see Fig. 5), a high correlation was observed between TFV and bands of 
1578, 2072, 2217, and 2338 nm. An increase in clay content results in a 
more pronounced adsorption feature at 2200 nm (Nawar et al., 2016). 
Babaiean et al. (2015) also introduced the wavelengths of 1827 and 
about 2300 nm in a model to estimate the clay content. Wavelengths 
around 2340 nm can also represent illite or mixtures of muscovite 
minerals (Post and Noble, 1993). Wavelengths of around 1600, 2000, 
and 2100 nm were also introduced for clay content estimation by Vis-
carra Rossel and McBratney (1998). 

As is clearly shown in Fig. 7, maximum correlation between TFV and 
spectral reflectance is related to the wavelength of 2338 nm which can 
be described by the presence of calcium carbonate equivalent in the soil. 
The negative correlation between calcium carbonate equivalent and TFV 
(see Fig. 5) is indicative of this point. A wavelength at around 2340 nm 
was reported as a diagnostic absorption spectrum in many studies which 

is related to the vibration of the CO3 group of soil (Rossel et al., 2006; 
Khayamim et al, 2015a; Kumar & Yarrakula, 2019). The correlation of 
TFV with the wavelength of 1578 nm can be attributed to the amount of 
gypsum (Khayamim et al., 2015b). 

3.4. PTF and PSTF development for predicting TFV 

The stepwise multiple regression analysis showed that soil moisture 
(P = 0.00, VIF = 1.86), clay content (P = 0.001, VIF = 1.86), and 
gypsum content (P = 0.00, VIF = 1.00) were strongly related to TFV 
values. The VIF for these parameters was lower than 5, indicating a 
discrepancy between the input variables. Although from the Pearson 
correlation we did not find a strong relationship between TFV and CaSO4 
(r = − 0.21), CaSO4 was significant in MLR analysis. This is statistically 
meaningful as a suppressive variable which increases the predictive 
validity of another variable by its inclusion in a regression equation. The 
underlying relationship between TFV and soil properties is as follows. 

TFV = 4.04+ 1.47(GSM) − 0.74(CaSO4)+ 0.09(Clay)+ 1.13 (1)  

where TFV is threshold friction velocity (m s− 1), GSM (%) is the 

Fig. 8. Performances of pedotransfer function (PTF) and point spectrotransfer function (PSTF) for Threshold Friction Velocity (TFV) for the calibration dataset (top) 
and validation dataset (bottom). 

TFV = 5.74 + 19.51R750 − 112.35R1342 − 58.30R1446 + 227.61R1578 − 38.22R1746 − 32.77R1939
− 118.54R2072 + 89.38R2162 − 55.04R2217 + 86.45R2338 + 0.48 (2)   
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gravimetric soil moisture, CaSO4 is gypsum content (%), and Clay shows 
clay content (%). 

Likewise, we selected the effective spectra for the development of 
PSTF based on the correlation between wavelengths (400–2500 nm) and 
TFV using Fig. 7. The selected spectra were significant at the 5% level of 
confidence and had the highest correlation with TFV. Eq. (2) provides 
the created PSTF for estimating TFV based on spectral reflectance.   

In this equation, Rx is the initial spectral reflectance at a specified 
wavelength (x). At these wavelengths, moisture, clay, and CaCO3 diag-
nostic bands are detectable. Considering the positive and negative sig-
nificant correlation between TFV and these soil properties, the 
employment of these spectra is reasonable. In other words, these spec-
tral bands are consistent with those of the known variables that have a 
significant impact on TFV. Fig. 8 shows the values of measured versus 
predicted TFV using PTF (Eq. (1)) and PSTF (Eq. (2)) for the calibration 
and validation datasets. This figure indicates that the predicted and 

Table 2 
Prediction results for clay, Gravimetric Soil Moisture (GSM), carbonate content 
(CaCO3), and Threshold Friction Velocity (TFV) using partial least squares 
regression (PLSR) and support vector machine (SVR) algorithms.  

Model Soil Properties Calibration Validation 

R2 RMSE R2 RMSE RPD RPIQ 

PLSR Clay (%)  0.68  0.11  0.54  0.21  1.46  1.84 
GSM (%)  0.81  0.37  0.64  0.32  1.61  2.46 
CaCO3 (%)  0.84  4.58  0.72  5.32  1.86  2.96 
TFV (m s− 1)  0.88  0.70  0.68  1.01  1.72  2.64 

SVR Clay (%)  0.82  0.07  0.74  0.04  1.75  2.35 
GSM (%)  0.92  0.10  0.78  0.14  2.10  3.04 
CaCO3 (%)  0.97  1.84  0.82  2.09  2.13  3.37 
TFV (m s− 1)  0.94  0.45  0.85  0.45  2.50  4.06 

R2 – Coefficient of determination, RMSE – Root Mean Squared Error, RPD – Ratio 
of Predicted Deviation, and RPIQ – Ratio of Performance to the Interquartile 
Range. 

Fig. 9. Scatter plots of predicted versus measured log clay, gravimetric soil moisture (GSM), carbonate content (CaCO3), and threshold friction velocity (TFV) by 
partial least squares regression (PLSR) and support vector machine (SVR) models. 
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measured TFVs are largely consistent. 
As is clearly shown in Fig. 8, in both calibration and validation data 

sets, PSTF (R2 = 0.98, RMSE = 0.28 for calibration and R2 = 0.89, RMSE 
= 0.71 for validation data sets) showed higher performance than PTF. 
The low values of RMSE obtained for the calibration (RMSE = 0.28) and 
validation (RMSE = 0.71) data for PSTF and comparing them with the 
standard deviation of the measured data (STD = 1.93 for calibration and 
STD = 2.01 for validation data) reveals the acceptability of these spec-
tral functions for the prediction of TFV based on key wavelengths (Singh 
et al., 2005; Moriasi et al., 2007). Considering the cost and time involved 
in soil sampling and experimental measurements of soil properties such 
as gypsum content and the promising accuracy of the derived PSTF, the 
application of PSTF for wind erosion studies on the local as well as the 
global scale has been proved. 

3.5. Prediction of clay, GSM, CaCO3, and TFV 

Results of all models for clay, GSM, CaCO3, and TFV prediction using 
spectral reflectance are summarized in Table 2. Fig. 9 also presents the 
scatter plots illustrating predicted versus measured clay, GSM, CaCO3, 
and TFV using PLSR and SVR approaches. The concentration of all pa-
rameters are distributed along the adjusted regression line in the vali-
dation group. The results indicate the acceptability of the estimate, since 
the predicted and measured values are largely consistent. Overestimated 
and underestimated predicted values with respect to RMSE and RPD 
were not seen to the extent that the regression model was invalidated. 

Model performances were assessed using datasets that were not 
included in the calibration as the external validation set. Comparing the 
two models for TFV, the SVR model showed the largest R2 (0.85) and the 
lowest RMSE (0.45), with RPD of 2.50 and RPIQ equal to 4.06 proving 
an excellent prediction compared to the PLSR model (R2 = 0.68, RPD =
1.72). For clay, GSM, and CaCO3, the same trend in the accuracy of 
models was observed with SVR being the most accurate model. It 
showed R2 = 0.74 (RPD = 1.75), R2 = 0.78 (RPD = 2.10), and R2 = 0.82 
(RPD = 2.13) for clay, GSM, and CaCO3, respectively. 

The performance of PLSR in the prediction of TFV was estimated (R2 

= 0.76, RMSE = 0.12) in a study by Li et al. (2015). The difference in the 
accuracy factors can be related to the lower number of samples (31) 
compared to ours (100 samples). 

The results of our study for clay was consistent with previous studies 
showing the superior performance of the SVR model compared to PLSR 
(Kovačević et al., 2010; Rossel and Behrens, 2010, Terra et al., 2015; 
Dotto et al., 2017; Campbell et al., 2018; Raj et al., 2018). The results of 

our study indicate that the data mining techniques (SVR) outperform the 
PLSR method because of their ability to include nonlinear interactions 
and relationships as was reported in other studies (Brown et al., 2006; 
Mouazen et al., 2010; Rossel and Behrens, 2010; Vohland et al., 2011; 
Raj et al., 2018). The superior performance of the machine learning 
model compared to PLSR to quantify clay content was also reported by 
de Santana et al. (2018) who related this to the lower number of outliers 
excluded in calibration and validation sets as compared to PLSR. For 
CaCO3, a similar R2 (0.71) and RPD (1.6) were reported using PLSR by 
Ostovari et al. (2018). 

Although the initial results showed that SVR is the best model for 
TFV prediction (Table 2), it is statistically important to test whether the 
difference between R2 or RMSE values of the two models are significant. 
Thus, the p-values from randomization t-test of the two models were 
compared for TFV and related soil properties estimation. Fig. 10 pre-
sents the boxplots of RMSE values for the two models with 100 repli-
cated simulations. The difference between the PLSR and the SVR models 
for prediction of TFV, GSM, and CaCO3 were significant (P < 0.01). This 
proves that the SVR model has a higher predictive accuracy and is a 
superior model to quantify TFV. SVR has better performance in model-
ling and better establishment in nonlinear relationships between soil 
properties and reflectance spectra (Stenberg et al., 2010). 

Thus, better performance of SVR compared to PLSR may be related to 
the soil complexity and nonlinear behaviour of the soil variables (Xu 
et al., 2018). 

Generally, by increasing the numbers and the variability of samples, 
predictive capabilities of models tend to become more complex. Ma-
chine learning calibration models can increase the accuracy of predic-
tion in such circumstances. In general, for a soil property like TFV that 
has no well-identified spectral feature, the machine learning algorithms 
can have better performance. It would be worth to mention that SVR has 
no inherent capacity to perform feature ranking and does not reveal 
functional relationships between the target and the predictor variables 
(Taghizadeh-Mehrjardi et al., 2016; Xu et al., 2018). These limitations in 
comprehension and interpretation are the reasons SVR is considered as 
the “black box” approach (Rossel and Behrens, 2010). Therefore, this 
uninterpretable characteristic should be taken into account when using 
machine learning algorithms. 

The results of the predictive models confirm that the use of spec-
troscopy is very useful for estimating soil properties, especially soil 
erosion related parameters. More importantly, reflectance spectroscopy 
provides a quick, non-invasive and non-destructive method for collect-
ing information about soil, a technique that can be a valuable tool for 

Fig. 10. Boxplots of RMSE resulting from 100 replicated simulations using partial least squares regression (PLSR) and support vector machine (SVR) models for each 
parameter together with their significance statistics (P < 0.01). Models followed by different letters are significantly different. 
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estimating TFV. Fieldwork in vast areas with dry and hot conditions but 
also prone to wind erosion (like Fars province) is very costly and time- 
consuming which can limit the researches done in this field. It is note-
worthy that due to the heterogeneity of the soil, more efforts are still 
needed to develop calibration models. 

4. Conclusion 

In this study, we explored the ability of reflection spectroscopy to 
estimate TFV in wind erosion studies. Generally, the results showed that 
there is a significant correlation between the TFV and soil spectral 
reflectance. Wavelengths of 1400, 1900, 2200, and 2338 nm were pre-
sented as the key spectral bands for TFV prediction. In addition, using 
MLR analysis, a new PSTF was proposed which showed a higher accu-
racy than the developed PTF. Among the two predictive models, the 
machine learning algorithm performed better compared to the common 
PLSR method. SVR was introduced as the best algorithm for TFV and 
three TFV-related properties (clay, CaCO3, and soil moisture) estima-
tions. Our results proved that spectral reflectance is a promising tool for 
efficiently assessing large areas prone to wind erosion and dust emission. 

It should be noted that this study gives the first look at the role of 
spectroscopy coupled with a machine learning algorithm in wind 
erosion. These spectra can be recorded from other platforms such as 
remote sensing. Therefore, to get a better understanding of its applica-
tion, a further study extending the developed PSTF using satellite im-
ageries for spatial distribution of TFV is recommended. The encouraging 
point is that upcoming satellite hyperspectral imagers will provide high- 
resolution Vis-NIR spectral data across large spatiotemporal scales (Shi 
et al., 2020). In addition, we recommend using a portable spectropho-
tometer in the field for future studies in order to increase the accuracy of 
the spectral data obtained from intact soil. 
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