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Abstract

The high-altitude Indus basin is one of the most complex and inadequately

explored mountain terrains in the World, where reliable observations of pre-

cipitation are highly lacking. Therefore, spatially distributed precipitation

products developed at global/regional scale are often used in several scientific

disciplines. However, large uncertainties in precipitation estimates of such pre-

cipitation data sets often lead to suboptimal outcomes. In this study, perfor-

mance of 27 widely used gridded precipitation products belonging to three

different categories of gauge-based, reanalysis and merged products is evalu-

ated with respect to high-quality reference climatologies of mean monthly pre-

cipitation. Widely used statistical measures and quantitative analysis

techniques are used to analyse the spatial patterns and quantitative distribu-

tion of mean monthly, seasonal and annual precipitation at sub-regional scale.

Mean annual precipitation estimates of the gridded data sets are cross validated

with the corresponding adjusted streamflows using Turc-Budyko non-

dimensional analysis. Results reveal poor to moderately good performance of

the gridded data sets. Marked differences in spatiotemporal and quantitative

distribution of precipitation are found among the data sets. All data sets are

consistent in their patterns showing negative or dry bias in wet areas and
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positive or wet bias in dry areas, although considerable differences in the mag-

nitudes of the biases are noticed at sub-regional scale. None of the data sets is

equally good for all sub-regions due to very high spatiotemporal variability in

their performance at sub-regional scale. Gauge-based and merged products

performed better in dry regions and during monsoon season, while reanalysis

products provided better estimates in wet areas and during winter months.

GPCC V8, ERA5 and MSWEP2.2 are found better than their counter-grouped

data sets. Overall, ERA5 is found most acceptable for all sub-regions, particu-

larly at higher-altitudes, in wet areas and during winter months.
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1 | INTRODUCTION

Precipitation is the principal source of freshwater sup-
plies that plays a crucial role in socioeconomic develop-
ments, environmental integrity and sustaining life on
earth. Naturally, precipitation is discontinuous in space
and time, has intricate characteristics, can occur in sev-
eral forms, and its causal mechanisms can influence pre-
cipitation from cloud to cyclone scales. Errors in
precipitation data can have significant implications for
climate and water balance studies. It is therefore essential
to accurately measure/estimate precipitation at higher
spatiotemporal resolutions. This is particularly important
in orographically influenced high-mountain terrains
where precipitation often changes abruptly over short
distances (Anders et al., 2006) and majority of it falls as
snow. A high-quality, dense and adequately representa-
tive network of observations is essential to precisely mea-
sure occurrence, quantity and type of precipitation.

The high-altitude Indus basin is one of the most com-
plex and largely underexplored regions in the World. Its
climate and precipitation are largely modulated by a cou-
ple of synoptic-scale atmospheric circulation systems: the
Indian summer monsoon and the winter westerlies
(Wang and Lin, 2002; Ding and Chan, 2005; Yao
et al., 2012; Pang et al., 2014). The Indian summer mon-
soon advects moisture through several trajectories origi-
nating from the Bay of Bengal, Indian Ocean and
Arabian Sea due to the differential heating between land
and sea (Böhner, 2006; Hodges, 2006; Bolch et al., 2012;
Yao et al., 2012; Pang et al., 2014). It causes heavy rainfall
in south-eastern areas during June–September and moves
north-westward along the Himalayan Arc with decreas-
ing strength. The winter westerlies transport large masses
of moist air from the Caspian, Black and Mediterranean
seas and North Atlantic Ocean throughout the year and

are the dominant source of precipitation in the Hin-
dukush, Karakoram and to a lesser extent in the W-
Himalayan regions during December–April months
(Böhner, 2006; Syed et al., 2006; Treydte et al., 2006;
Filippi et al., 2014; Mayer et al., 2014; Pal et al., 2014).
Moreover, significant amount of moisture in the air is
added to the atmosphere by evapotranspiration from the
vast irrigated plains and forestlands (de Kok et al., 2018;
Harding et al., 2013; Wei et al., 2013; Tuinenburg
et al., 2012). Heavy precipitation events are encountered
whenever these systems coincide and interact with each
other (SUPARCO and FAO, 2010; WMO, 2010;
Zaidi, 2014).

Precipitation distribution in the high-altitude Indus
basin is extremely variable due to varying influence and
interplay of the prevailing synoptic-scale atmospheric cir-
culation systems with the local climate and topographic
features. Highly sparse and directionally biased network
of existing in situ observations insufficiently represents
the entire range of a diverse climate in the study area
(Fowler and Archer, 2006; Reggiani and Rientjes, 2015;
Immerzeel et al., 2015a; Dahri et al., 2016; Dahri
et al., 2018). Hence, our understanding of the prevailing
hydro-meteorological processes in this region is seriously
uncertain (Andermann et al., 2011; Lutz et al., 2014).

Reliance on gridded data sets has been increased due
to inadequate in situ observations and increasing demand
for precipitation data in spatially distributed format.
Therefore, a number of gridded precipitation products
have been developed over the recent decades. Available
data sets can broadly be categorized into four groups:
gauge-based, reanalysis, satellite-derived and merged
products. The gauge-based data sets are derived from the
on-field direct measurements and provide relatively pre-
cise occurrences, amounts and types of precipitation at
the measuring points. These point measurements are
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often used for calibration, validation and bias correction
of reanalysis and satellite estimates. However, the gauge-
based precipitation data sets are also prone to observa-
tional uncertainties resulting from measurement errors,
insufficient spatial and temporal coverage, uneven distri-
bution and directional biases of the gauges, difficulties in
snowfall measurements in windy conditions, and the
applied interpolation methods. The magnitude of these
uncertainties can be significant in orographically
influenced mountain terrains (Lundquist et al., 2010;
Boers et al., 2016; Prein and Gobiet, 2017; Dahri
et al., 2018).

Alternatively, several precipitation estimates mod-
elled through Retrospective weather forecast model anal-
ysis (Reanalysis) or derived from satellite data provide
gauge-independent estimates. These data sets offer viable
substitutes for homogeneous, consistent, near-real-time
and fairly reliable estimates of a wide range of climatic
variables at global scale (Ghodichore et al., 2018). A typi-
cal reanalysis system objectively integrates observations,
a global forecast model, and an assimilation scheme to
generate synthesized estimates of the past atmospheric
states at global scale (Fujiwara et al., 2017). Conversely,
precipitation products derived from satellite data have
gone through gradual improvements since their inception
and currently incorporate data from several instruments
and satellites (e.g., Huffman et al., 2007; Joseph
et al., 2009; Ushio et al., 2009; Xie et al., 2017; Ciabatta
et al., 2018; Huffman et al., 2018). Yet these products are
poor in precisely capturing the solid precipitation
(Rasmussen et al., 2012; Putkonen, 2004). The satellite-
based precipitation products vary considerably in terms
of their source and processing algorithms as several sen-
sors aboard geostationary earth orbiting (GEO) and low-
earth orbiting (LEO) satellites observe precipitation pas-
sively or actively. A few studies observed that satellite-
based products are better at estimating convective precip-
itation, whereas frontal system precipitation is better
characterized by reanalysis (e.g., Ebert et al., 2007; Ruane
and Roads, 2007; Sapiano and Arkin, 2009; Tian
et al., 2009; Vila et al., 2010). This indicates that
reanalysis and satellite-derived data sets are complemen-
tary, particularly for the areas where validations are inad-
equate or impossible due to lack or absence of in situ
observations (Peña-Arancibia et al., 2013; Beck
et al., 2017).

Owing to the underlying issues in the available data
sets to precisely estimate extreme heterogeneity of precip-
itation, several attempts have been made to take full
advantage of the complementary nature and comparative
advantages of the gauge-based observations, satellite data
and reanalysis products. Numerous merged precipitation
products have been developed over the recent time

(e.g., Xie and Arkin, 1997; Janowiak and Xie, 1999;
Huffman et al., 2007; Weedon et al., 2014; Ashouri
et al., 2015; Funk et al., 2015a, 2015b; Karger et al., 2017;
Xie et al., 2017; Beck et al., 2019). These data sets mostly
rely on merging algorithms to limit the shortcomings of
the source data sets and aim to produce higher quality
end products.

Although, gridded data sets provide better informa-
tion in terms of spatiotemporal consistency, their inade-
quacy to precisely estimate occurrence, quantity and type
of precipitation is still a major concern. Recent innova-
tions in weather forecasting models, satellite sensors and
retrieval methods, and multi-source merging techniques
coupled with high-quality observations have significantly
improved the quality of resultant precipitation products.
Yet, their spatiotemporal accuracy at basin/catchment
scales particularly in orographically influenced and topo-
graphically diversified mountain terrains is highly vari-
able (Maggioni et al., 2016; Beck et al., 2017; Henn
et al., 2018; Sun et al., 2018; Beck et al., 2019). There are
also seasonal biases and difficulties in capturing the low
intensity and snowfall events. Many existing precipitation
products exhibit differences that are often larger than can
be explained by observational or methodological
uncertainties (Aghakouchak et al., 2012; Yin et al., 2015).
Several evaluation studies have been undertaken at vary-
ing spatial scales using a variety of approaches,
performance metrics and statistical indices (see reviews
by Sun et al., 2018; Maggioni et al., 2016; and
Gebremichael, 2010). However, inconsistency in terms of
reference data set against which the accuracy is to be
evaluated is an important issue. Many studies relied on
spatially inconsistent point observations to assess the
accuracy of gridded data sets; while others re-used many
gauge observations already incorporated in development
or validation of precipitation data sets, thereby preclud-
ing independent validation (Beck et al., 2019). Even
though it is well-recognized that the gauge observations
are prone to significant measurement errors (Sevruk and
Hamon, 1984; Legates and Willmott, 1990; Goodison
et al., 1998), these point-based gauge observations are
often used without addressing uncertainties. Such refer-
ence point observations generally lack the required den-
sity to accurately represent the spatial heterogeneity of
precipitation. Hydrological modelling is also used to eval-
uate quality of precipitation data by comparing observed
and simulated flows obtained through varying precipita-
tion inputs. However, the uncertainties associated with
the modelling structure and other input data are the
major drawbacks of this approach.

Performance of gridded precipitation products may
often be satisfactory at global/continental scale, but they
generally lack the accuracy and precision required at
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sub-regional and catchment scale studies, especially over
regions of high spatio-temporal heterogeneity (Gampe
and Ludwig, 2017; Ghodichore et al., 2018). The Indus
river basin traversing through the high mountain ranges
of the Tibetan Plateau (TP) and Hindukush-Karakoram-
Himalaya (HKH) regions is experiencing significant
transformations in its hydrometeorology (Lutz
et al., 2016) and is recognized as climate change hotspot
(De Souza et al., 2015; Lutz et al., 2018; Krishnan
et al., 2019). There is no comprehensive study that evalu-
ated performance of gridded data sets in this area. Few
studies evaluated the performance of some gridded pre-
cipitation products against a limited number of point
observations (e.g., Krakauer et al., 2019; Ullah
et al., 2019; Ahmed et al., 2019; Khan et al., 2018; Iqbal
et al., 2018; Hussain et al., 2017; Ali et al., 2012) or
against spatially distributed fields of mean annual precip-
itation derived from a limited number of point observa-
tions (e.g., Ghulami et al., 2017; Anjum et al., 2018).
Dahri et al. (2016) integrated precipitation data from
diverse sources to derive better estimates of spatially dis-
tributed precipitation and corroborated the underlying
issues related to four important gridded precipitation
products in this region. Others (e.g., Palazzi et al., 2013;
Reggiani and Rientjes, 2015) have relied on inter-
comparison of a few data sets in the absence of reference
data set.

This study therefore comprehensively and rigor-
ously evaluates the applicability, robustness and limi-
tations of 27 widely used precipitation products for the
high-altitude Indus basin. The study is unique in that
it assesses the performance and reliability of a wide
range of products over a finer spatial scale. Quantita-
tive and spatial variability of precipitation products is
investigated at monthly, seasonal and annual scales
against high-quality reference data set developed by
Dahri et al. (2018). In addition, it cross validates the
precipitation estimates of all gridded products using
adjusted river flows through Turc-Budyko non-
dimensional analysis. The study will provide useful
inputs and guidelines for development, bias correction
and improvement of gridded data sets. It will also serve
as the basis for selection and use of appropriate data
sets for hydrological and water assessment studies in
the study area.

2 | DATA AND METHODS

2.1 | Reference data set

The accuracy of a product is usually assessed against a
high-quality reference benchmark. Here we used a high-

resolution (≈ 1 km) data set of mean monthly precipita-
tion recently developed by Dahri et al. (2018). This data
set was derived by integration of several observational-
based precipitation data sources with indirect estimates
of precipitation from snow accumulations measured at
the major glacier zones to cover the observational gaps.
The precipitation observations were adjusted for mea-
surement errors, net snow accumulations for the ablation
losses, and observed river flows for the contribution of
net glacier mass balance. Precipitation estimates at sub-
basin scale were cross-validated by the corresponding
adjusted specific runoff. The details on input data sets
and techniques used in the development and cross-
validation of the reference precipitation data set are com-
prehensively described in Dahri et al. (2018). Accuracy of
the selected gridded precipitation products in this study
is evaluated for each common grid cell with respect to
this novel and high-resolution reference data set of mean
monthly precipitation at basin and sub-regional scale.

2.2 | Gridded precipitation products

The selection of gridded data sets for this evaluation
study is primarily based on availability of long-term
(�20 years) records, which must coincide with the period
of the reference data set (1999–2011). The three types of
data evaluated in this study include gauge-based,
reanalysis and merged precipitation products. We
excluded the satellite-derived products due to their short-
term records, which do not coincide with the reference
period and their large uncertainty to estimate solid pre-
cipitation (Rasmussen et al., 2012; Putkonen, 2004),
which is dominant in the study area. The objective is to
include all the important data sets. Therefore, an ensem-
ble of 27 gridded precipitation products available for the
historical periods is selected to evaluate their accuracy in
the study area. The major characteristics of the selected
data sets are summarized in Table 1. In a couple of cases,
multiple versions are included to examine if the revision
has actually improved the quality of newer version. For
details on the input data sets and techniques used in their
development, the corresponding references and con-
cerned websites are suggested.

The data sets available at finer temporal resolutions
were aggregated to monthly scale. Mean monthly precipi-
tation climatologies for the reference period (1999–2011)
for each gridded data set were then regridded to 30 arc-
seconds (≈ 1 km at the equator) to precisely match the
boundaries at sub-basin scale and spatial resolution of
the reference data set using the conservative regridding
method to preserve the original estimates of each gridded
precipitation product. Extended winter (Oct–May) and
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monsoon (Jun–Sep) seasons are regarded keeping in view
the onset and continuity of precipitation during the two
major circulation systems (winter westerlies and summer
monsoon) prevailing in the study area.

2.3 | River flows

Dahri et al. (2018) collected river flow data for all major
sub-basins in the study area and accounted for the diver-
sions upstream of each river gauge. These observed river
flows were adjusted for the contributions of net mass bal-
ances using mass balance estimates provided by Kääb
et al. (2015, Kääb et al., 2012) and glacier areas estimated
by Randolf Glacier Inventory (RGI) version 5.0 (Arendt
et al., 2015). These adjusted river flows are used in this
study for cross validation of the precipitation from the
selected products through Turc-Budyko non-dimensional
analysis.

2.4 | Potential evapotranspiration

There is no observational-based independent data set of
potential evapotranspiration (PET) for the study area.
Therefore, previous studies have relied on global-scale

gridded data sets using PET data from a single product
(e.g., Dahri et al., 2018) or ensemble mean of several data
sets (e.g., Immerzeel et al., 2015b). Importantly, PET does
not have critical use in this study. It is only required to
estimate aridity index (P/PET) in Turc-Budyko non-
dimensional analysis. Recently, a fifth generation
reanalysis (ERA5) data set with numerous atmospheric
variables at global scale has been released. The evalua-
tion of precipitation products undertaken in this study
reveals that precipitation estimates of ERA5 are better
than the rest of data sets for the study area. Therefore, as
a complementary climate variable, PET from ERA5
reanalysis is selected for this study.

2.5 | Evaluation approach

The study area is stretched over vast mountain and sub-
mountain ranges of extremely variable topographic fea-
tures in the Indus basin. The confluence of Hindukush-
Karakoram-Himalayan mountain ranges adds significant
complexities in characterizing the connection between
precipitation and topographic features (Palazzi
et al., 2013). These three mountain ranges are influenced
differently by the underlying atmospheric circulation sys-
tems and possess unique hydrometeorological and

TABLE 1 Summary of the basic characteristics of the selected gridded precipitation products for this study
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geomorphological characteristics. Therefore, in order to
have a better idea of the quality of spatial distribution
depicted by various gridded precipitation products and
based on the availability of observed streamflows for ulti-
mate evaluation and cross validation; the study area is
divided into five sub-regions (Figure 1), which possess
unique differences in their precipitation patterns and
magnitudes, and landscape morphologies.

Widely used statistical measures and quantitative
analysis techniques are used to evaluate performance of
the selected gridded precipitation products. All analyses
are performed on the common grids for the reference
period of 1999–2011. Mean annual precipitation for the
reference period over the study area is plotted for each
gridded data set to visually examine their spatial distribu-
tion. The biases between mean annual precipitation of
each gridded data set and the corresponding grid of the
reference data set are plotted to show the spatial distribu-
tion of their residuals over the study area. The biases
between mean monthly precipitation of each gridded
data set and reference data set at each corresponding grid
are analysed through Box-Whisker charts for extended
winter (Oct–May) and monsoon (Jun–Sep) seasons,
which are further extended at annual scale for the
study area as well as its five sub-regions to examine
their median, distribution and spread at first and third
quarters and extremes. This is followed by computation
of mean absolute error (MAE) in mean monthly precip-
itation of all gridded data sets against the reference
data set. The MAE computes the magnitude of the
mean differences between two data sets without con-
sidering the direction of the error and is given by Equa-
tion (1). The MAE is generally a preferred metric over
widely used root mean square error (RMSE) when the
errors are unlikely to follow a normal distribution
(Chai and Draxler, 2014; Beck et al., 2017; Willmott
et al., 2017).

Modified Kling-Gupta Efficiency (KGE) scores are
computed using Equation (2) (Gupta et al., 2009; Kling
et al., 2012) at monthly and annual scale for the study
area and at annual scale for the five sub-regions to exam-
ine how closely the spatio-temporal precipitation esti-
mates of the gridded data sets are statistically matched
with those of the reference data set. Any value of KGE
gives the lower limit of its three components, meaning
that the worst component is ≥ to that value. The KGE
has primarily been used for evaluating the quality of cli-
mate or hydrological models' outputs against the
observed data. However, it can also be used to evaluate
the performance of gridded precipitation products against
the corresponding reference data (Beck et al., 2019). The
mathematical expressions of the employed performance
evaluation metrics are given by:

MAE=
1
n
+
Xn

i=1
Gi−Rij j ð1Þ

KGE=1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þ2+ β−1ð Þ2+ γ−1ð Þ2

q
ð2Þ

r=
Pn

i=1 Gi− �Gð Þ Ri− �Rð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1 Gi− �Gð Þ2Pn

i=1 Ri− �Rð Þ2
q ð3Þ

β=
μgrd
μref

ð4Þ

γ=
σgrd=μgrd
σref =μref

ð5Þ

Where: Gi and Ri represent the gridded and reference
data sets at ith grid and n denotes number of grid cells,
r in Equation (2) is Pearson's correlation coefficient to
measure the degree of linear relation between two data
sets, β is bias computed by the ratio of gridded and refer-
ence means (μ), γ is variability ratio given by the ratio of
the gridded and reference data set's coefficients of varia-
tion (σ/μ), σ is standard deviation, and subscripts grd and

ref indicate gridded and reference data sets respectively.
The optimum values of KGE, r, β and γ are at unity.

For robust quantitative assessment, the study further
evaluated the annual cycle of area-weighted mean
monthly precipitation of each gridded data set for the ref-
erence period against that of the reference data set. This
comparison evaluates how well the gridded data sets fol-
low the mean monthly and seasonal cycle of precipitation
during the reference period in the study area and in each
sub-region. The goodness-of-fit of these monthly cycles is
ascertained through coefficient of determination (R2)
and MAE.

Isolated measures of performance evaluation are
often associated with their specific uncertainties and lim-
itations resulting in contrasting inferences. Therefore,
instead of relying on a single measure, the outcomes of
the above-described performance metrics are integrated
through a simple ranking system to evaluate the perfor-
mance of the gridded data sets in a better and more con-
sistent manner. For this purpose, the originally estimated
values of these performance metrics for each gridded data
set are normalized and rescaled between 0 and 1. How-
ever, in contrast to KGE and R2, lower values of MAE
infer better performance. Therefore, the normalized
values of MAE are subtracted from one to synchronize
them with KGE and R2. The integrated skill scores are
obtained by sum of the normalized values of KGE and R2

and subtracted normalized values of MAE for each data
set. The larger values infer higher rankings. This simple
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ranking system greatly reduces the contradictions and
complexities in interpretation of the evaluation results.
Furthermore, the wet and dry areas are defined by com-
bining the sub-regions where annual mean precipitation
is more and less than 600 mm, respectively. Hence, the
wet area adds the skill scores of W-Himalaya, Karakoram
and NE-Hindukush, while dry area combines Kharmong
and SW-Hindukush sub-regions. Similarly, the rankings
and skill scores are also calculated for Indus basin
upstream of Tarbela dam (Figure S1 and Table S3).

Finally, the mean annual precipitation estimates of
all data sets are cross-validated by the corresponding
adjusted streamflows (specific runoff) using Turc-
Budyko non-dimensional analysis (Turc, 1954;
Budyko, 1974; Valéry et al., 2010; Andréassian and
Perrin, 2012). Adjusted river flows determined in Dahri
et al., 2018, potential evapotranspiration (PET) from
ERA5 reanalysis product and precipitation estimates of
gridded data sets for the whole study area and five sub-
regions are used to compute run-off ratio (Q/P) and
aridity index (P/PET). The Turc-Budyko non-
dimensional analysis approach was originally intro-
duced by Turc (1954) and Budyko (1974) to represent
the relationships between actual and potential evapo-
transpiration (AET/PET) and between precipitation and
potential evapotranspiration (P/PET). However, actual
evapotranspiration is difficult to measure and spatially
distributed data are very rare and often highly biased.
Therefore, it was later on modified and further elabo-
rated by an equivalent and alternative representation

between Q/P and P/PET and introducing water and
energy limits (e.g., Valéry et al., 2010; Andréassian and
Perrin, 2012; Coron et al., 2015). Since then, the
approach has been extensively applied in hydrometeoro-
logical and water balance assessments in several regions.
The rankings and integrated skill scores of the data sets
for each region are recognized only if a particular data
set falls within the theoretically feasible domain of Q/P
ratio in Turc-Budyko representation. The order of the
ranking is updated accordingly after exclusion of the
underperforming data sets in this criterion.

3 | RESULTS

3.1 | Spatial distribution of mean annual
precipitation and residual errors

Spatial distribution of mean annual precipitation esti-
mates from various gridded data sets presented in
Figure 2a and area-weighted seasonal and annual pre-
cipitation totals provided in Table 2 reveal significant
variability of mean annual precipitation. Compared to
annual mean precipitation of 697 mm of the reference
data set, the minimum estimates of 374 mm (−46%)
are depicted by CPC Unified and maximum estimates
of 976 mm (+40%) by ERAI data sets. However, the
magnitudes vary considerably at sub-regional and sea-
sonal scale. None of the selected gridded precipitation
products could accurately distinguish and capture the

FIGURE 1 Study area and location of five regions analysed in this study [Colour figure can be viewed at wileyonlinelibrary.com]
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zone of second precipitation maxima present in the
central Karakoram. All gridded data sets also failed to
detect the drier areas under the influence of rain
shadows. However, significant consistency in terms of
spatial patterns showing negative or dry bias in wet
areas and positive or wet bias in dry areas with consid-
erable difference in the magnitude of biases is noticed.
Most prominent are the two swaths/paths of negative
bias: first from upper Chitral basin and passing
through Gilgit, Hunza, Shigar and Shyok basins; and
second along the western Himalayan foothills from

Beas across Chitral sub-basin. A large spread of resid-
ual errors (ranging from −2,600 to 3,000 mm) with
respect to the reference data set (Figure 2b) is also
evident.

The gauge-based and merged products show strong
tendency of underestimation; while all reanalysis prod-
ucts, except ERA20C, tend to overestimate precipitation
in most parts of the study area, with considerable differ-
ences at sub-regional level. This overestimation by the
reanalysis products is more pronounced in the drier areas
(e.g., Kharmong and SW-Hindukush). With the exception

FIGURE 2 Spatial distribution of (a) mean annual precipitation illustrated by various gridded data sets, and (b) absolute bias

(difference) between mean annual precipitation of these gridded products with respect to the reference data set (Figure 3m in Dahri

et al., 2018). In both (a) and (b) pannels, left column shows gauge-based products, middle column shows reanalyses and right column shows

the merged products [Colour figure can be viewed at wileyonlinelibrary.com]
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of a few reanalysis products (e.g., ERA5, CFSR, JRA-55,
MERRA-2 and 20CR), the largest underestimates of
gridded data sets are observed in the Karakoram region.
Interestingly, DOE R2 provides the best quantitative esti-
mate at basin scale but its quantitative estimates, correla-
tions and KGE scores at sub-regional scale are below par.
The inter-regional variations are offset when aggregated
for the whole study area. This underlines the importance
of consistency in accuracy of precipitation estimates at
varying spatial scales.

3.2 | Residual errors

Residual errors in mean monthly precipitation of the
gridded data sets summarized in Figure 3 suggest large
deviations from the reference mean. However, the
errors vary considerably among the data sets at sea-
sonal scale and over the sub-regions. The largest
spreads of residual errors are found in W-Himalayan
region for all products, partly due to highest precipita-
tion. The gauge-based and merged products perform
relatively better during monsoon season and reanalysis
products during the winter months. Generally,
reanalysis products show larger variability and wider

spread of residuals than gauge-based and merged prod-
ucts, which is understandable and attributed to their
independence from direct measurements of precipita-
tion, use of varying type and number of assimilated
observations, and use of different atmospheric models
and assimilation schemes. The gauge-based and mer-
ged products significantly underestimate precipitation
in relatively wet regions of W-Himalaya, NE-
Hindukush and Karakoram. None of the selected prod-
ucts could be singled out as the best product for all
regions as their accuracy varies considerably from one
region to another. However, ERA5, GPCC V8 and
MSWEP2.2 provide better estimates among their coun-
terpart grouped products.

Mean absolute error (MAE) magnitudes of the
gridded data sets (Figure 4) depict almost similar patterns
of the errors as in Figure 3. The largest MAEs are
observed in W-Himalayan region and during monsoon
season. Gauge-based products show relatively small abso-
lute errors except higher-altitude Karakoram region,
where reanalysis products perform much better. How-
ever, reanalysis products show larger errors during mon-
soon season, probably due to the convective nature of
monsoon precipitation and high uncertainties in deep
convection parameterization schemes applied in the

TABLE 2 Area-weighted seasonal and annual precipitation estimates by the reference data set and percent difference in the

precipitation estimates of various gridded data sets

Note: The graduated colour scheme highlights the changes as per grid cell values.
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reanalysis models, which is in line with the findings of
Beck et al. (2019). ERA5 is found best during winter and
pre-monsoon (Oct–May) months and in higher-altitude
Karakoram region, while GPCC V8 provides the least
MAE values in W-Himalaya and Kharmong, WFDEI-
CRU in NE-Hindukush, and CHIRPS V2.0 in SW-
Hindukush regions.

3.3 | KGE scores

Very low to moderately high KGE scores ranging from
−0.76 to 0.80 for various months (Figure 5a) and from
−2.91 to 0.86 for various regions (Figure 5b) indicate very
poor to moderately good performance of gridded data sets
to match the precipitation pattern and magnitudes of the
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reference data set. Negative KGE values reflect negative
correlation and/or large deviation of bias and variability
ratio from their optimum values. Except for ERA5, CFSR,
JRA-55, MERRA-2 and ERAI; all other data sets provide
lowest KGE scores during winter (Oct-Mar) months. ERA5
outperforms all data sets during Feb–May, while MERRA2
better performs during Oct-Jan. The gauge-based and few
merged products depict better KGE scores during monsoon
season (Jun–Sep). In case of extended monthly data at
annual scale for the whole study area (Figure 5b), GPCC V8
produces the highest KGE score of 0.674 followed by GPCC
V7 (0.673), MSWEP2.2 (0.634), UDEL5.01 (0.633), TMPA
3B42V7 (0.630), APHRODITE V1801R1 (0.617), APHRO-
DITE V1101 (0.613) and ERA5 (0.590). However, KGE
scores vary considerably at sub-regional level. GPCC V8
outperforms all the data sets in W-Himalaya and

Kharmong, MERRA-2 in Karakoram, MSWEP2.2 in NE-
Hindukush, and CHIRPS V2.0 in SW-Hindukush regions.
Details of monthly scale KGE scores, correlations, biases
and variability ratios for the study area are provided in
Table S1, while Table S2 presents the same metrics for
extended time scale for study area and five sub-regions. The
low KGE scores in Karakoram region can be attributed to
greater topographical variability and larger spatio-temporal
heterogeneity of precipitation in this high-mountain region.

3.4 | Annual cycle of monthly means

The observational-based reference climatologies of area-
weighted mean monthly precipitation exhibit a strong
seasonality with biomodal pattern clearly reflecting the
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influence of winter westerlies and summer monsoon, but
many gridded data sets have difficulties in efficiently rep-
roducing this seasonality and biomodal pattern as shown
in Figure 6. Few data sets show very weak seasonality,
and CMORPH even displays a ‘negative’ correlation. The
strength of gridded products to reproduce the annual
cycle of area-weighted mean monthly precipitation of the
reference data set is ascertained by R2 and MAE

(Table 3). Correlation coefficient and R2 primarily indi-
cate patterns and linear trend between two data but lack
in quantifying the margin of errors, which is determined
by MAE. None of the data set is equally best for all sub-
regions due to a large variability in R2 and MAE values.

All gauge-based products underestimate precipitation
during Oct–May in all sub-regions except relatively dry
sub-region of SW-Hindukus. They show mix trends

FIGURE 5 KGE scores based on mean monthly precipitation totals at monthly scale for the study area (a), and extended at annual scale

for the study area and five regions (b). The red, blue and orange colours represent KGE scores for gauge-based, reanalyses and merged data

sets, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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during monsoon season with PREC Land, UDEL V5.01
and two versions of GPCC slightly overestimating precip-
itation in W-Himalaya, Kharmong and SW-Hindukush
regions. However, in the higher-altitude regions of

Karakoram and NE-Hindukush, the gauge-based prod-
ucts significantly underestimate precipitation throughout
the year. An important discrepancy in attainment of the
lowest and highest peaks is also evident. Almost all
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gauge-based data sets show the lowest and highest peaks
during May and July respectively against June and
August depicted by the reference data set in most parts
except NE-Hindukush and SW-Hindukush, where
highest peak is achieved during February and April
respectively. The reanalysis products better reflect the
wintertime precipitation but exhibit relatively large vari-
ability among them and in different regions. They record
higher correlations and lower MAEs than the gauge-
based and merged products particularly in higher altitude
and wetter regions. Nevertheless, they consistently over-
estimate precipitation in drier regions of Kharmong and
SW-Hindukush throughout the year but more signifi-
cantly during monsoon season. The merged products
largely follow the same patterns as gauge-based products,
which is understandable due to the reason that these
products are derived by taking input from the gauge
observations. However, the merged products exhibit
larger variability as compared to gauge-based products.

They also show larger spread of error margins among
themselves. CMAP and MSWEP2.2 provided higher R2

and lower MAE as compared to their counterpart
grouped data sets, except in SW-Hindukush where
CHIRPS V2.0 proved to be the best in terms of both these
performance metrics. The lowest MAE values in
Karakoram, W-Himalaya and NE-Hindukush regions are
obtained by ERA5, while CHIRPS V2.0 in SW-
Hindukush and GPCC V8 in Kharmong outperform all
other data sets with the lowest MAE and highest R2

values.

3.5 | Comparison and cross validation
against adjusted streamflow

Mean annual precipitation of all gridded data sets is
cross validated by the Turk-Budyko non-dimensional
analysis, which is based on the factual logic that

TABLE 3 Coefficient of determination (R2) and MAE (mm) values based on area-weighted monthly means presented in Figure

14 DAHRI ET AL.



R

213
4

5

6

7
8

9

1
2

3

4

56

7

98

1

2
3

4

5

6

7

8

9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 1.0 2.0 3.0 4.0 5.0

Q
 / 

P

P / PET

R

2122 311
4411

5

622

7
8

1
22

3

44

565

7

98

11

2
3

4

66

777
1

9

Energy Limit: Q = P - PET

Moisture Limit: Q = P

(a) Study Area

R

1 2

3

4

5

6

7

8

9

1

23

4

56

7

8

9

1

2

3

4

5
6

7

8

9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 1.0 2.0 3.0 4.0 5.0

Q
 / 

P

P / PET

R

1 2

3

41 622

1RR

26
322

56
8
1

28

Energy Limit: Q = P - PET

Moisture Limit: Q = P

(b) W-Himalaya

R

1
2
3

4

5

6

7

8

9

1
2 3

4

5

67

8

9

12

3

45

6

7

9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 1.0 2.0 3.0 4.0 5.0

Q
 / 

P

P / PET

R1
2 3333333333333333

5

6776

99
7

Theoretically Feasible Domain for Q/P Ratio

Energy Limit: Q = P - PET

Moisture Limit: Q = P

(c) Karakoram

R

12

3

456

7

8

9

1

2
3

4

5

6

7

8

9

1

2

3

4
5

6
7

8

9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 1.0 2.0 3.0 4.0 5.0

Q
 / 

P

P / PET

R

1

2
3

5

6

855

122

Energy Limit: Q = P - PET

Moisture Limit: Q = P

(d) NE-Hindukush

R
12

3
45

6

7

8
9

1

2

3

4

5

6

7

8

9

1

2
3
4 5

6

78

9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0 4.0 5.0

Q
 / 

P

P / PET

R
1211

3RR

422511
6

7

8RR3RR66
99

177

233

3711777

4

533

6

7555

88

9

1

22
3
4 5RR

66

7RR22
833

44 55
77

99

Energy Limit: Q = P - PET

Moisture Limit: Q = P(e) SW-Hindukush

R
1 2

3
4

5

6
7

8

9

1

2 3
45
6

7
8

9

1
2

3

4

5

6

7

8

9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0 4.0 5.0

Q
 / 

P

P / PET

R
1 22

3
4

5

6
7

8811

2 3
45
633

7
88888888888

9

1
2

3

44

55

6

7

955

Energy Limit: Q = P - PET

Moisture Limit: Q = P(f) Kharmong
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orange coloured numbers reflect the respective names of gauge-based, reanalysis and merged data sets summarized in Table 1. The green

coloured capital R represents the reference data set [Colour figure can be viewed at wileyonlinelibrary.com]

DAHRI ET AL. 15

http://wileyonlinelibrary.com


streamflow can never be greater than precipitation pro-
vided there is no contribution from the negative mass
balance (glaciers) and groundwater. This study used the
net streamflow adjusted for the contribution of negative
mass balance determined by Dahri et al. (2018), so there
is no question of glacier mass balance contributions. For
long-term analysis, groundwater contribution to river
flows is negligible in the study area. Therefore, the logic
of lower streamflow than the precipitation is absolutely
valid.

The Turc-Budyko diagrams presented in Figure 7
indicate that precipitation estimates by most of the
gridded data sets, particularly gauge-based and merged
products in higher altitude regions, are less than the
corresponding streamflow, which is quite unrealistic
and counterintuitive. It is also evident that most of the
data sets are within the acceptable limits for the drier
regions of Kharmong and SW-Hindukush. However, in
higher-altitude Karakoram and NE-Hindukush regions,
all gauge-based and merged products (except CMAP in
Karakoram and MSWEP2.2 in NE-Hindukush) fail to

fall within the feasible domain of the Budyko curve due
to their unrealistically lower precipitation than the
corresponding streamflows. Similarly, for the monsoon
dominated and relatively wetter region of W-Himalaya,
half of the data sets show unacceptable Q/P ratios.
However, such inter-regional variations offset each
other when aggregated for the whole study area and
except CPC-Unified, CHIRPS V2.0 and CAMSOPI all
data sets provide acceptable representation. Only ERA5,
CFSR, JRA-55, MERRA-2 and ERAI are proved to be
physically realistic for all regions. The other data sets
fail due to underestimated precipitation in one or
another region.

3.6 | Skill scores and rankings

Interestingly, a considerable inconsistency in the out-
come of the applied performance metrics is noticed using
the same data at the selected spatiotemporal scales. For
example, AHPRODITE V1101 is found to be the best data

TABLE 4 Final rankings (R) and skill scores (SS) of gridded data sets derived through integration of performance metrics for study area

and its various regions

Note: Red, blue and orange colours represent gauge-based, reanalysis and merged products, respectively.
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set in terms of MAE for the whole study area at annual
scale (Figure 4c), whereas GPCC outperformed all data
sets in terms of KGE score (Figure 5m). Similarly, MAE
and R2 obtained for the annual cycle of mean monthly
precipitation (Table 3) suggest DOE R2 as the best data
set. However, the integrated skill scores and rankings
derived from the normalized values of the selected statis-
tical indices suggest considerably different inferences
than presented in the results of the individual metrics.
For the whole study area, UDEL V5.01 provided the best
skill score of 3.629 followed by GPCC V8 (3.579), GPCC
V (3.55) and ERA5 (3.443). However, there is consider-
able variation in the skill scores at sub-regional scale.
GPCC V8 outperforms all data sets in W-Himalaya and
Kharmong, ERA5 in Karakoram, MSWEP2.2 in NE-
Hindukush and CHIRPS V2.0 in SW-Hindukush regions.
For the combined wet and dry areas, ERA5 and UDEL
V5.01 provided the highest skill scores respectively. The
20CR V2C and CMORPH V1.0 proved to be the worst
performers in almost all regions. Overall, reanalysis data
sets perform better in wet areas while gauge-based and
merged products provided higher skill scores in dry areas.
Similarly, reanalysis products outperformed other data
sets in higher altitudes and gauge-based data sets pro-
vided better estimates in plain areas.

The ultimate rankings presented in Table 4 reveal
that none of the gauge-based products could fall within
the Budyko curve for the Karakoram and NE-Hindukush
regions mainly due to their lower precipitation estimates
than the corresponding streamflows. Out of merged prod-
ucts, only MSWEP2.2 in NE-Hindukush and CMAP in
Karakoram show acceptable Q/P ratios, while majority of
reanalyses retain their rankings with ERA5 performing
the best. The drier regions of SW-Himalaya and
Kharmong are trivially affected as most of the data sets
show acceptable Q/P ratios and are laid within the
Budyko curve. Similarly, about half of the data sets are
excluded in the monsoon dominated W-Himalaya due to
higher Q/P ratios, with GPCP V8 retaining the top rank-
ing. However, for the whole study area, the shortcomings
exhibited at regional scale are offset and only CPC Uni-
fied, CHIRPS V2.0 and CMORPH V1.0 are excluded. The
Turc-Budyko non-dimensional analysis is found an effec-
tive performance indicator to evaluate performance of
gridded data sets. However, runoff ratio proved to be
more robust indicator as compared with aridity index.

4 | DISCUSSION

This study provides a comprehensive evaluation and
accuracy assessment of 27 global scale gridded precipita-
tion products for a transboundary high-mountain Indus

basin. Widely used performance metrics are applied to
evaluate and quantify the accuracy in sub-regional scale
precipitation estimates of the gridded data sets with
respect to a high-quality reference data set at monthly,
seasonal and annual timescales. The results revealed sig-
nificant errors and uncertainties in the precipitation esti-
mates of the selected gridded precipitation data sets. The
uncertainty range of the gridded data sets at annual scale
ranges from −46% to +40%. Most of the gridded data sets
provided reasonably good patterns of seasonal precipita-
tion distribution but displayed large differences in their
precipitation magnitudes at monthly, seasonal and
annual timescales in the study area. These differences are
inconsistent and more pronounced at sub-regional scale
(Figure 3). Overall, a large uncertainty in quantitative
and spatio-temporal distribution of precipitation is evi-
dent in all gridded data sets. The results are in line with
the findings of Sun et al. (2018), who reviewed and
intercompared an ensemble of 30 global scale precipita-
tion data sets. The most important attributions for such
large differences and uncertainties in gridded precipita-
tion products are their different structural characteris-
tics, diverse input data and observational densities,
variable quality control measures and gauge under-
catch corrections, spatiotemporal resolution, and use of
different interpolation schemes. The landscape hetero-
geneities further add to the uncertainties. Generally,
precipitation differences among gridded data sets and
their biases with respect to the reference data can be
explained by the uncertainties in the ways and means
by which these data sets are produced. The similarities
in precipitation estimates of two or more data sets can
often be attributed to the similar input data and
methods. However, if the dissimilar data sets depict con-
sistencies then it is very likely that such signal is present
in the actual situations.

The study area is highly deficient in precipitation
observations and even worse is the fact that less than
one-third of the observed data are actually used by the
existing gridded precipitation data sets due to strict data
sharing policies of the national meteorological agencies.
The situation is further worsened by the coarser spatial
resolution of many gridded data sets, which limits the
representation of precipitation in the high-mountain
areas due to smoothing leading to underestimated peaks.
Quality of the reference and gridded data sets can be
improved by measuring and sharing precipitation data of
the higher-altitude ranges and robust integration of mass
balance data at corresponding timescales. Gauge-based
data sets generally underestimate precipitation in the
study area except relatively dry regions of Kharmong and
SW-Hindukush during monsoon season. This is obvious
because higher altitude regions of Karakoram and NE-
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Hindukush are highly deficient in ground-based observa-
tions. Therefore, the gauge-based data sets are derived
from lower-altitude stations located in the dry valleys.
The underestimated precipitation in the W-Himalaya
region during winter months can be explained by lack of
stations at the higher altitudes and significant under-
catch of solid precipitation by the existing gauges (Dahri
et al., 2018). APHRODITE data set uses the largest num-
ber of station observations in the study area. Whereas,
the evaluation results reveal that both of its versions sig-
nificantly underestimate precipitation in most parts of
the study area. GPCC and UDEL V5.01 use about half of
the station observations compared to APHRODITE but
provide better estimates, probably due to their efficient
interpolation schemes and 5–10% correction factors
applied to account for measurement errors in GPCC data
(Schneider et al., 2014). However, the study conducted by
Dahri et al., (2018) revealed that the corrections factors
applied in GPCC are still on the lower side for the high-
mountain Indus basin where under-catch of individual
precipitation gauges varied between 2 and 182% with
greater under-catches at higher altitudes and during win-
ter months. GPCP V2.3 also applied bulk correction factors
for monthly climatological conditions but its precipitation
estimates are even lower than APHRODITE due to very
coarse grid size, use of different data and interpolation
techniques, and possibly lower correction factors. PREC
Land, CRU TS4.02 and CPC-Unified use the station data
shared with WMOs Global Telecommunication System
(GTS), which is about half of the stations used by GPCC in
the study area and employ different interpolation schemes.
The gauge-based products exhibited almost similar spatial
patterns but with significant differences in their precipita-
tion magnitudes. Generally, lack of observed data at
higher elevations, biased distribution of the existing sta-
tions, and measurement errors seriously limit the accuracy
of gauge-based precipitation products.

Unlike gauge-based precipitation data sets, reanalysis
products are significantly different from each other,
because each reanalysis uses its own atmospheric model,
modelling technique and data assimilation scheme
(Fujiwara et al., 2017; Ghodichore et al., 2018). The type
and number of assimilated observations also varies from
one model to another. Reanalysis products mostly suffer
from uncertainties in the assimilated observations, physi-
cal aspects of the reanalysis system and the model param-
eterizations used for weather forecast (Bosilovich
et al., 2008). As such, reanalysis products exhibit larger
variability and wider spread of residual errors than the
gauge-based and merged products. Nevertheless, winter
months and higher altitude Karakoram and NE-
Hindukush regions are better covered by the reanalysis
products, which is in line with the findings of Beck

et al. (2019) and general characteristics of reanalysis pro-
viding better estimates for the frontal system precipita-
tion during cooler seasons. The largest errors are
observed during monsoon season, which is probably due
to the convective nature of monsoon precipitation and
high uncertainties in deep convection parameterization
schemes applied in the reanalysis models. They also bet-
ter follow the peaks. Annual cycle of area-weighted mean
monthly precipitation is also better reflected in wet areas.
Yet, precipitation in dry areas is largely overestimated by
reanalysis products.

The development of merged precipitation products
aims to exploit the complementary nature and compara-
tive advantages of ground-based observations, reanalysis
and/or satellite data leading to higher quality end prod-
ucts. However, the merged products inherit the limita-
tions of their source data and are also affected by the
uncertainties in the merging algorithms. Most of the
gauge-observations used to calibrate satellite products
and develop merged products are extracted from GTS
network with poor spatial coverage in the HKH region
(Yatagai et al., 2012). This could explain the under-
estimated precipitation by the resultant products at
higher altitudes. Since, the merged products take inputs
from the ground observations, they are closer to the
gauge-based products. Yet, they exhibit a larger variabil-
ity and error spreads among themselves due to differ-
ences in other data sources. Surprisingly, the
performance of merged products in most parts of the
study area is worse than many gauge-based and
reanalysis products. This can partly be attributed to use
of different and/or less observations. However, the major
reason might be the problem in merging techniques,
which are unable to preserve the comparative advantages
of the gauge, reanalysis and satellite data. The quality of
any merged products should be better than its parent
input data sets, which might be true in data rich regions,
but it is not the case in a data scarce high-altitude Indus
basin.

Generally, errors or uncertainties in terms of over-
and/or under-estimation of precipitation are ascertained
in relative terms against a reference data set. However, if
the reference data differ in their precipitation patterns
and magnitudes, the performance of the gridded data sets
may change accordingly. The reference data set used in
this study is unique and has never been used before for
evaluation purpose. Therefore, the patterns and magni-
tudes of errors in precipitation estimates of the gridded
data sets deduced in this study are also unique and may
not be compared precisely with earlier studies, which
used different benchmarks. Although, the quality of pre-
cipitation distributions in the reference data set was
found consistent with the corresponding river inflows
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(Dahri et al., 2018), the authors also described the associ-
ated uncertainties, minimization of which will result in
higher quality reference data set. These uncertainties are
mainly attributed to amount, quality and distribution of
precipitation observations; uncertainties in error-
adjustment regression models due to their imprecision;
and uncertainties in spatial interpolation of the point
observations. It is also pertinent to note that the reference
data set used in this study includes monthly means of the
error-adjusted precipitation observations for the period of
1999–2011, the best evaluation results can be achieved at
similar temporal resolution and scale. The data beyond
this temporal scale are assumed to follow similar trends
in the biases and are liable to some degree of uncertainty.
It would be advisable to extend the evaluation using long
term daily and monthly time series once the high-quality
reference data set at such temporal scales is made avail-
able. The evaluation at daily timestep would be useful to
select the better data sets for assessing precipitation
extremes and subsequent droughts or floods. Moreover,
the Turc-Budyko non-dimensional analysis largely
depends on the Q/P ratio, which is subject to uncer-
tainties in the quality of river flows data. Study conducted
by IRSA (2015) indicated an overall uncertainty of 3–8%
in the river/canal discharge measurement protocols
adopted in the Indus river system. Moreover, any
improvement in the estimates of glacier mass balance
and glacier area used by the reference data set for adjust-
ment of river inflows may slightly affect the cross-
validation of the reference data set but would have insig-
nificant effect on the end results of this study.

The global/continental scale precipitation products are
developed from different sources using the techniques,
which are more suitable at larger spatial scales but are rel-
atively inefficient at smaller (country or catchment) scale.
While the underlying efforts to develop merged data sets
have been focusing on merging/combining data from dif-
ferent sources, another alternative may be to first develop
regional/national/basin scale data sets using optimum
data and techniques and then merge/mosaic these prod-
ucts to form a high-quality product at global scale.

5 | CONCLUSIONS

This study highlighted and corroborated the underlying
issues and uncertainties associated with a wide range of
gridded precipitation products in the high-mountain
Indus basin. The results clearly indicate that all gridded
data sets evaluated in this study contain significant errors
in their precipitation estimates and cannot be used
directly without careful bias correction. The following
major conclusions are drawn.

1. All gridded data sets tend to underestimate precipita-
tion in wet areas and overestimate precipitation in dry
areas, implying considerable implications for hydro-
logical extremes of floods and droughts. GPCC V8,
ERA5 and MSWEP2.2 provided better estimates than
their counter-groups of gauge-based, reanalysis and
merged data sets. ERA5 and UDEL V5.01 provided
the highest skill scores for wet and dry areas,
respectively.

2. None of the data set is equally best for all sub-
regions of the study area. A particular data set per-
forming very well in one sub-region is found worse
in the other sub-region. Nevertheless, ERA5 is
found most acceptable for all sub-regions. This
study therefore would provide useful guidance for
selection and use of the best data set for a particular
sub-region or sub-basin for hydrometeorological
assessments.

3. Due to large uncertainties in the gauge-based precipi-
tation products in the higher-altitude Karakoram and
NE-Hindukush regions, a general perception is that
precipitation from uncalibrated reanalysis products
might be closer to the actual precipitation. This study,
however, revealed that reanalysis data sets provide rel-
atively better estimates for the higher-altitude areas
where observations are generally scarce. However, not
all reanalysis products can serve the purpose due to
large differences in their precipitation patterns and
magnitudes. Therefore, a careful selection is deemed
essential.

4. Relatively poor performance of the merged data sets
in the study region highlights their weaknesses and
inability to accurately estimate precipitation and
underlines the need to develop more advanced and
accurate merging techniques, which can preserve the
comparative advantages of their input data sets and
are equally accurate at catchment scales.

5. In Turc-Budyko non-dimensional analysis, runoff
ratio proved to be the dominant/decisive indicator to
single out the data sets that underestimate precipita-
tion, while aridity index appears to be a softer indica-
tor to distinguish the overestimating data sets, as none
of the evaluated data set could be rejected or chosen
on the basis of aridity index.
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