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Abstract
Aim: Light Detection And Ranging (LiDAR) is a promising remote sensing technique 
for ecological applications because it can quantify vegetation structure at high reso-
lution over broad spatial extents. Using country-wide airborne laser scanning (ALS) 
data, we test to what extent fine-scale LiDAR metrics capturing low vegetation, 
medium-to-high vegetation and landscape-scale habitat structures can explain the 
habitat preferences of threatened butterflies at a national extent.
Location: The Netherlands.
Methods: We applied a machine-learning (random forest) algorithm to build spe-
cies distribution models (SDMs) for grassland and woodland butterflies in wet and 
dry habitats using various LiDAR metrics and butterfly presence–absence data col-
lected by a national butterfly monitoring scheme. The LiDAR metrics captured ver-
tical vegetation complexity (e.g., height and vegetation density of different strata) 
and horizontal heterogeneity (e.g., vegetation roughness, microtopography, vegeta-
tion openness and woodland edge extent). We assessed the relative variable impor-
tance and interpreted response curves of each LiDAR metric for explaining butterfly 
occurrences.
Results: All SDMs showed a good to excellent fit, with woodland butterfly SDMs 
performing slightly better than those of grassland butterflies. Grassland butterfly 
occurrences were best explained by landscape-scale habitat structures (e.g., open 
patches, microtopography) and vegetation height. Woodland butterfly occurrences 
were mainly determined by vegetation density of medium-to-high vegetation, open 
patches and woodland edge extent. The importance of metrics generally differed 
between wet and dry habitats for both grassland and woodland species.
Main conclusions: Vertical variability and horizontal heterogeneity of vegetation 
structure are key determinants of butterfly species distributions, even in low-stature 
habitats such as grasslands, dunes and heathlands. The information content of low 
vegetation LiDAR metrics could further be improved with country-wide leaf-on ALS 
data or surveys from drones and terrestrial laser scanners at specific sites. LiDAR 
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1  | INTRODUC TION

Butterflies and other invertebrates have declined severely in recent 
decades, especially in parts of Europe where structured monitoring 
schemes have revealed long-term population declines (Hallmann 
et al., 2017; van Swaay et al., 2006). The specialized niches of many 
butterflies in terms of habitat and food plant requirements make 
them vulnerable to ongoing habitat modification and other global 
change drivers (Thomas et al., 2004). Butterflies are generally a well-
studied organism group; they are diverse and often bound to spe-
cific habitats and hence a very good indicator and umbrella taxon for 
invertebrate conservation (van Swaay et al., 2006; Thomas, 2005). 
Comprehensive survey efforts have especially revealed severe pop-
ulation declines and extinctions of specialist species, for example in 
the Netherlands (Bos et al., 2006; van Strien et al., 2019), Flanders 
(Maes & Van Dyck,  2001), Denmark (Eskildsen et  al.,  2015) and 
Great Britain (Fox et al., 2015). In the Netherlands, butterflies have 
declined by 50% since 1992 and over 80% since 1890 (van Strien 
et al., 2019). The major causes of these declines have been the in-
tensification of human land use, the modification of heterogeneous 
(semi-)natural landscapes and an increase in habitat fragmenta-
tion (e.g., Aguirre-Gutiérrez et  al.,  2017; Thomas et  al.,  2004; van 
Strien et al., 2019; van Swaay et al., 2006). Although a reduction of 
landscape conversion and an increase in conservation efforts have 
slowed down butterfly declines since 1990 (Carvalheiro et al., 2013; 
van Strien et al., 2016), a large part of the Dutch butterfly species 
remain highly vulnerable and are still declining (van Swaay, 2019; van 
Strien et  al.,  2019). This shows the urgent need of sustaining and 
increasing efforts to preserve butterflies and their habitats.

The preservation of habitats is of critical importance to prevent 
further losses and declines of butterflies and other invertebrates 
(van Swaay et al., 2006; van Strien et al., 2019). As most invertebrates 
depend on specific habitat elements that provide food resources, 
nesting sites and shelter, understanding how the fine-scale structure 
and distribution of habitats determine species distributions is cru-
cial for biodiversity science and conservation (Dennis et al., 2003, 
2006; Thomas, 1995). Habitat structure has also many indirect ef-
fects on invertebrates, for example by influencing microclimate, light 
availability and floristic composition (Aguirre-Gutiérrez et al., 2017; 
Davies & Asner,  2014; Müller et  al.,  2014). The fine-scale habitat 
suitability of invertebrates is typically driven by various aspects of 
vegetation structure, including vertical vegetation complexity (e.g., 
the density of specific strata), horizontal heterogeneity (e.g., canopy 
roughness) or the horizontal structure of vegetation at the landscape 
scale (e.g., the extent of edges and open spaces; Bakx et al., 2019; 

Davies & Asner,  2014; Glad et  al.,  2020; Simonson et  al.,  2014). 
Despite many local field studies on butterfly–habitat relationships, 
the generality of these relationships remains unclear because quan-
tifying vegetation structure across broad spatial extents has often 
been limited by the difficulty to obtain detailed, high-resolution data 
in a standardized, comparable and spatially contiguous way (Davies 
& Asner, 2014; Kissling et al., 2017; Valbuena et al., 2020). Moreover, 
the development of standardized and spatial contiguous variables 
and datasets of ecosystem height, cover and vegetation structural 
complexity covering broad spatial extents is only recently becoming 
an important focus of biodiversity science and monitoring, for exam-
ple in the context of essential biodiversity variables (EBVs; Valbuena 
et al., 2020).

Active remote sensing techniques such as Light Detection And 
Ranging (LiDAR) can produce standardized 3D measurements of 
vegetation structure (e.g., “ecosystem structure EBVs”) at high res-
olution and over broad spatial extents, with relatively low costs 
(Davies & Asner, 2014; Kissling et al., 2017; Valbuena et al., 2020). 
LiDAR data derived from country-wide airborne laser scanning 
(ALS) are also increasingly becoming available from free and open 
sources (Valbuena et al., 2020). LiDAR uses short-range laser pulses 
to measure the x,y,z-coordinates of reflective objects, often from 
aircrafts. As the exact timing and position of the sensor on the air-
plane are known, the distance to each point can be calculated and 
a 3D point cloud with high precision can be derived, from which a 
large number of vegetation structure parameters can be calculated 
(Bakx et al., 2019; Davies & Asner, 2014). These parameters—often 
referred to as LiDAR metrics—are statistical properties of the point 
cloud describing the mean, variability or proportions of returns for 
vertical strata. They can capture information on vegetation struc-
ture at a local scale (e.g., for a high-resolution grid cell or a radius 
around a focal observation point) or at the landscape scale (e.g., 
measuring habitat patches and edges based on grid cells that capture 
LiDAR-derived vegetation height; Bakx et al., 2019). LiDAR metrics 
can thus directly be used to quantify ecological niches and habitat 
requirements of species, for example tree lines and other linear veg-
etation elements in open landscapes (Lucas et al., 2019) or climatic 
and other environmental gradients controlled by microtopography 
and vegetation structure (Zellweger et al., 2019). This makes LiDAR 
a transformative resource for ecological studies, enabling a detailed 
understanding of the specific and scale-dependent habitat prefer-
ences of species across broad spatial extents, and with direct insights 
for management, policy and conservation (Davies & Asner,  2014; 
Moeslund et al., 2019; Müller & Brandl, 2009; Simonson et al., 2014; 
Valbuena et al., 2020).

thus offers great potential for predictive habitat distribution modelling and other 
studies on ecological niches and invertebrate–habitat relationships.

K E Y W O R D S

active remote sensing, ecological niche, ecosystem structure, environmental heterogeneity, 
essential biodiversity variables, habitat suitability, insects, landscape ecology, microhabitat
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Few LiDAR studies have so far focussed on invertebrates 
(Davies & Asner,  2014). Such studies often show that species 
diversity increases with an increase in vegetation structural di-
versity and landscape heterogeneity (Davies & Asner,  2014). 
Moreover, they also show that individual taxa respond differ-
ently to specific habitat characteristics and that the performance 
of habitat models can increase when LiDAR metrics are included 
(Davies & Asner, 2014; Hess et al., 2013; Vierling et al., 2011). As 
most LiDAR studies have focussed on forests and woody habitats 
(Bakx et al., 2019; Davies & Asner, 2014), it remains open to what 
extent LiDAR can capture vegetation structure of low-stature 
habitats such as grasslands, dunes and wetlands. Some previous 
studies show promising results for measuring 3D vegetation struc-
ture in grasslands and wetlands (e.g., Alexander et al., 2015; Koma 
et al., 2020; Zlinszky et al., 2014). However, country-wide LiDAR 
surveys are often conducted in the leaf-off season to optimize 
terrain mapping (Reutebuch et al., 2005). As a consequence, such 
LiDAR data may contain little information for quantifying the verti-
cal structure of vegetation within low-stature habitats (Alexander 
et al., 2015). On the other hand, measuring vegetation structure 
with leaf-on data in woodlands can also be challenging because 
laser returns might predominantly be recorded from the can-
opy, especially with discrete return data (Anderson et al., 2016). 
Comparing the explanatory power and information content of a 
suite of LiDAR metrics in open and woody habitats is thus import-
ant to better understand the potential of LiDAR data for ecological 
research and nature management (Davies & Asner, 2014).

Here, we analyse to what extent specific LiDAR metrics derived 
from country-wide ALS data can explain the fine-scale habitat pref-
erences of threatened butterflies in the Netherlands. We focus on 
four species that are all of conservation concern (van Swaay, 2019) 
and which are bound to specific habitats, representing grassland and 
woodland habitats in wet or dry conditions (Table 1). We build spe-
cies distribution models (SDMs) with LiDAR metrics that capture the 
vertical complexity and horizontal heterogeneity of vegetation, and 
use species presence–absence data derived from a national butterfly 
monitoring scheme (van Swaay et  al.,  2008) as the response vari-
able. We expect that (H1) LiDAR metrics reflecting low vegetation 
(e.g., forest understorey or grasses and herbs in open habitats) show 
little importance in explaining habitat preferences of butterflies be-
cause of the limitations of LiDAR data in dense forests (due to the 
low penetrability of the canopy) or in grasslands (due to the leaf-off 
acquisition of LiDAR data), (H2) metrics reflecting medium-to-high 
vegetation (e.g., the density or heterogeneity of shrub and tree lay-
ers) are especially important to explain habitat preferences of wood-
land butterflies, and (H3) metrics reflecting landscape-scale habitat 
structures (e.g., microtopography, woodland edges and vegetation 
openness) are important to explain habitat preferences of both 
grassland and woodland butterflies. Our analyses gain new insights 
into the generality of habitat preferences of butterflies at a national 
extent, and how LiDAR metrics capturing 3D vegetation structure at 
local and landscape scales can improve our yet limited knowledge on 
invertebrate–habitat relationships.TA
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2  | METHODS

2.1 | Butterfly data

We focus on four threatened butterfly species with different habitat 
preferences (Table 1): (1) the small pearl-bordered fritillary (Boloria 
selene), a specialist of wet grasslands with a low and flower-rich veg-
etation (Bergman et al., 2008; Bos et al., 2006; Cozzi et al., 2008; 
van Swaay,  2019); (2) the grayling (Hipparchia semele), a species 
inhabiting dry open habitats with a heterogeneous cover of bare 
sand, low grasses, nectar plants and scattered woody vegetation 
(Bos et al., 2006; van Swaay, 2019; Vanreusel et al., 2007); (3) the 
white admiral (Limenitis camilla), a butterfly of moist woodlands 
with open patches providing sunlight throughfall (Bos et al., 2006; 
van Swaay, 2019); and (4) the heath fritillary (Melitaea athalia), a dry 
woodland species which is mostly found on sheltered open spaces 
with a flower-rich herb vegetation near woodland edges (Bergman 
et  al.,  2008; Bos et  al.,  2006; van Swaay,  2019; Warren, 1987a, 
1987b). Details on their specific habitat preferences as derived from 
(mostly local) ecological field studies are summarized in Table S1. All 
four species have a localized distribution in the Netherlands and have 
strongly declined over the last century (van Swaay, 2019; van Strien 
et al., 2019). Two species (L. camilla and M. athalia) are confined to 
regions in the east and centre of the Netherlands, whereas the other 

two (B. selene and H. semele) occur on both inland and coastal (dune) 
locations (Figure 1).

Presence–absence data of all four species were derived from the 
Dutch butterfly monitoring scheme, which systematically collects 
butterfly occurrence data by conducting weekly surveys along fixed 
transect routes throughout the flight season (April to September; 
van Swaay et al., 2008). Each transect route is about 1 km long and 
consists of smaller (50 m long) sections, each placed in a homoge-
neous habitat type. The fieldworkers record all butterflies 2.5 m to 
their right, 2.5 m to their left, 5 m ahead of them and 5 m above 
them. We used the nation-wide butterfly monitoring data from 2014 
to 2018, in correspondence with the LiDAR data collection period 
(winter 2014—winter 2019). This comprised a total of >10,000 tran-
sect sections across the Netherlands, from which the focal species 
were recorded in 371 (B. selene), 807 (H. semele), 369 (L. camilla) and 
119 (M. athalia) sections, respectively. The recorded presence and 
absence of each species was assigned to the centre point of each 
50-m-long transect section and later used as the response variable 
in the SDMs (see below).

As the number of individuals of all monitored butterfly species is 
also recorded per transect section, we used this information not only 
to identify absences but also incidental records. Presence points for 
which only one individual was observed during all 2014–2018 surveys 
were excluded, as these records could represent misidentifications or 

F I G U R E  1   Spatial distribution of presence and absence points of four grassland and woodland butterflies in the Netherlands. (a) Two 
grassland species, namely the small pearl-bordered fritillary (Boloria selene; green) and the grayling (Hipparchia semele; orange). (b) Two 
woodland species, namely the white admiral (Limenitis camilla; yellow) and the heath fritillary (Melitaea athalia; blue). Presences are given in 
bold colours, absences in light colours. Distributional overlap does not occur between the two woodland species but occasionally between 
the two grassland species, for example on the island of Terschelling (northwest cluster of B. selene), where H. semele also occurs. Photo 
credits: (a) top: Boloria selene (Michiel F. WallisDeVries), bottom: Hipparchia semele (Chris A. van Swaay), (b) top: Limenitis camilla (Chris A. van 
Swaay), bottom: Melitaea athalia (Chris A. van Swaay)
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wandering individuals. For the analyses, we only included absences 
in a 10  km buffer around presence points to account for the lim-
ited mobility of the species (Essens et al., 2017). This selection was 
done using QGIS 3.4 (QGIS Development Team, 2009). We further 
identified the soil type of each transect section—a key determinant 
of vegetation and thus an indirect driver of butterfly distributions—
using a national soil classification (Wösten et al., 1988). This soil clas-
sification distinguishes 21 soil types and additionally includes three 
classes that contain either information on land cover (“water” and 
“urban”) or no information (“zero,” i.e., information not available). We 
used the geospatial layer of this national soil classification (provided 
by Wösten et al., 2013) and included, for each butterfly species, ab-
sence points from those soil types that also hosted presence points 
(Table S2). We further excluded the land cover classes “water” and 
“urban” as well as undefined grid cells (“zero”) because they do not 
represent specific soil types or key habitats of the focal species. 
Selecting absence points that are in principle reachable for the focal 
species (10 km radius) and potentially suitable given the abiotic en-
vironment (soil conditions), but yet remain unoccupied, enables to 
identify the effect of vegetation structure on the presence–absence 
of the species (Zellweger et al., 2013). We note, however, that veg-
etation and soils might not be the only drivers of species absence, 
especially for rare species (e.g., M. athalia) where a low population 
size may not allow individuals to occupy all suitable habitats.

To reduce the spatial clustering of data points induced by the 
transect sampling design, we discarded presence and absence points 
that were located within 100-m distance from their nearest neigh-
bour (compare Zielewska-Büttner et al., 2018). A 100-metre distance 
was chosen because it roughly represents the home range of the 
focal species (Bos et al., 2006; Essens et al., 2017). We used the thin-
ning optimization algorithm “spThin” (Aiello-Lammens et al., 2015) in 
R 3.5.3 (R Core Team, 2019) with 1,000 repetitions per species to 
derive the maximum number of data points given the 100 m distance 
criterion. This resulted in a final sample size of 248 presence and 610 
absence points for H. semele, 106 presence and 384 absence points 
for L. camilla, 92 presence and 151 absence points for B. selene and 
45 presence and 101 absence points for M. athalia (Figure 1).

2.2 | LiDAR data

We used LiDAR data from the third country-wide ALS campaign 
(AHN3) in the Netherlands (see https://ahn.arcgi​sonli​ne.nl/ahnvi​
ewer), conducted in the years 2014–2019 in leaf-off conditions 
(Northern Hemisphere winter, December–March). The data have 
an average point density of 6–10 points per m2, an overall point 
cloud accuracy of 10 cm and a vertical standard deviation of 5 cm 
(https://ahn.nl/kwali​teits​besch​rijving). Further details—including 
the scanner type, pulse repetition frequency, flight lines and flight 
elevations—are not provided with the published dataset. Information 
on uncalibrated intensity and the number of returns is provided, but 
as the intensity data are not radiometrically corrected, their use is 
limited because of the potential influence of the flight pattern and 

laser scanner type. Ground points, buildings and water are pre-
classified, which enables (1) vegetation points to be distinguished 
from ground points and (2) to exclude infrastructure and water 
as non-vegetation elements. We downloaded the LiDAR data in a 
1,000 m radius around each transect, corresponding to 483 LiDAR 
tiles, from which point clouds of a 100 m radius around the transect 
section centroids were extracted.

From the LiDAR point clouds, we derived 12 LiDAR metrics that 
captured the vertical complexity and horizontal heterogeneity of 
the vegetation (Table 2). This was done using the R package “lidR” 
(Roussel & Auty, 2019). Each metric was chosen to reflect vegetation 
structure-related habitat preferences of the focal species as reported 
in the ecological literature, either from field or from LiDAR studies 
(see Table 2). A total of six LiDAR metrics reflected the vertical com-
plexity of vegetation. Those were directly derived from the LiDAR 
point cloud using a 25 m radius around each centroid (Table 2). This 
scale matches the length of a transect section (2 × 25 m = 50 m) and 
was chosen to describe the local habitat conditions which mobile in-
vertebrates such as butterflies are exposed to. We deliberately chose 
not to extract LiDAR metrics for polygons of the 5 m × 50 m transect 
sections because the transect routes for the two woodland species 
often run along forest edges (but in the open habitat). Extracting 
LiDAR metrics for 5 m × 50 m polygons would thus neglect (or at 
least underestimate) the importance of adjacent woodland habitat 
(e.g., the need for trees as shelter or the availability of climbing host 
plants such as Lonicera sp.). In addition to the six vertical complex-
ity metrics (25 m radius), we further extracted six metrics reflecting 
the horizontal heterogeneity of vegetation in either 25 m (vegetation 
roughness) or 100 m (landscape-scale microtopography or vegeta-
tion structure) around each section centroid. The 100-m scale re-
flects the home range scale of the butterflies (Bos et al., 2006; Maes 
et al., 2006; Warren, 1987b). Vegetation roughness and landscape-
scale vegetation structure metrics were derived from the variability 
of a digital surface model (DSM), based on LiDAR-derived vegeta-
tion height (90th percentile of z) within 1-m resolution grid cells, 
using the R package “landscapemetrics” (Hesselbarth et  al.,  2019). 
Microtopography was quantified by calculating the mean slope of 
the terrain with a 1 m resolution digital terrain model (DTM) based 
on the minimum height of ground points in each cell. To test whether 
the vertical accuracy of the LiDAR data (±5 cm) may introduce bias 
when separating vegetation returns from ground returns, we re-
calculated all LiDAR metrics by additionally excluding all non-ground 
returns <5 cm above ground. This sensitivity analysis showed that 
LiDAR metrics excluding points <5 cm above ground were highly cor-
related (r ≥ 0.99) with LiDAR metrics including all vegetation points 
(Figure S1). We therefore used the LiDAR metrics including all vege-
tation points in all statistical analyses below.

2.3 | Statistical analysis

We build species distribution models (SDMs) to analyse whether and 
how specific LiDAR metrics (Table 2) can explain the presence–absence 

https://ahn.arcgisonline.nl/ahnviewer
https://ahn.arcgisonline.nl/ahnviewer
https://ahn.nl/kwaliteitsbeschrijving
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of the four butterfly species. We used the ODMAP protocol (Zurell 
et  al.,  2020) to document the modelling objectives and decisions 
(Supporting Information ODMAP protocol). We carefully explored 
multicollinearity among the LiDAR metrics with Spearman rank cor-
relations (Figure  S2). Metrics that showed high pairwise Spearman 
rank correlations (r  >  |0.70|) were discarded in the SDMs by first 
removing the metric with the largest variance inflation factor (VIF) 
using the function vifcor in the R package “usdm” (Naimi et al., 2014). 
For conceptually related metrics that were highly collinear with each 
other or other metrics (e.g., open area, open patches and edge ex-
tent), we kept the metric that best reflected the ecology and habitat 
preferences of a specific species (compare Table S1). All metrics in the 
final SDMs were not strongly correlated (r < |0.70|) and had VIF < 3, 
as suggested for model implementation (Naimi et al., 2014).

We initially tested three different SDM algorithms for model-
ling butterfly species distributions and habitat suitability: Random 
Forest (RF), generalized linear models (GLM) and maximum entropy 
(Maxent; Breiman, 2001; Naimi & Araújo, 2016; Phillips et al., 2006). 
To implement the SDMs, we used the R package “sdm” (Naimi & 
Araújo, 2016) which depends on the R package “stats” for GLMs, the 
R package “randomForest” for RF and the Java software for Maxent 
(“”maxent.jar”). Model accuracy (mean ± SD across 100 model runs) 
was examined with the area under curve (AUC; Brotons et al., 2004; 
Pearce & Ferrier,  2000) and the true skill statistic (TSS; Allouche 
et al., 2006) and visualized using receiver operating characteristics 
(ROC) curves (Pearce & Ferrier,  2000). As RF outperformed the 
other two SDM algorithms for all species in terms of AUC and TSS 
(see results below, and Table S3), we mainly focus on the results of 
the RF. The RF algorithm is a machine-learning method which im-
plicitly deals with nonlinear relationships. We build RF models using 
500 decision trees and default settings (e.g., maxnodes = 20). Model 
calibration was performed on 100 random bootstrap subsets of 70% 
of the data, and predictive performance was then validated with the 
remaining 30% of the data in each run. Deviance D was calculated 
with a loss function (for binomial data) that represents the loss in 
predictive performance due to a suboptimal model, as implemented 
in the R package “sdm” (Naimi & Araújo, 2016). In addition to the RF 
results, we also present in the appendix the ROC curves for all SDM 
algorithms (Figure S3–S5) and the response curves averaged across 
the three SDM algorithms (Figure S6–S8). The latter was done using 
the “rcurve” function in the R package “sdm” which calculates the 
mean and confidence interval over the individual responses from the 
three fitted models (RF, GLM, Maxent).

To test our three hypotheses, we assessed whether and to 
what extent specific LiDAR metrics reflecting low vegetation (H1), 
medium-to-high vegetation (H2) and landscape-scale habitat struc-
ture (H3) can explain the presence–absence of the four butterfly 
species (Table 2). Specifically, we used the relative variable impor-
tance and the response curves of each metric as implemented in the 
R package “sdm” (mean ± SD over 100 model runs for each species) 
to interpret the role of LiDAR metrics in explaining butterfly hab-
itat preferences. Relative variable importance—measured by AUC 
improvements of model performance due to inclusion of the focal 

variable—was obtained using the function “getVarImp” (Naimi & 
Araújo, 2016). Response curves for the RF algorithm were visualized 
using the function “getResponseCurve” (Naimi & Araújo, 2016). The 
response curves show the species-specific responses (i.e., proba-
bility of occurrence) along the gradient of vegetation structure (i.e., 
a specific LiDAR metric) while keeping all other predictor variables 
in the model at their mean (following the method described in Elith 
et  al.,  2005). As the two grassland species occur in both coastal 
(dune) and inland habitats, we additionally implemented separate RF 
models for coastal and inland populations to explore whether hab-
itat relationships differ between these habitats. For inland popula-
tions, this included 71 and 137 (B. selene) and 122 and 181 (H. semele) 
presence and absence points, respectively. For coastal populations, 
sample size was only sufficient for H. semele (126 presence and 429 
absence points, respectively) whereas records for B. selene were too 
limited (21 presence and 14 absence points, respectively).

3  | RESULTS

3.1 | Metrics selection

Spearman rank correlations were high (r = 0.7–0.9) between several 
LiDAR metric pairs (Figure S2). For instance, total vegetation rough-
ness and low vegetation roughness and most density metrics of 
adjacent strata were discarded from the models based on the VIF. 
Vegetation height and the 5–20 m vegetation density were highly cor-
related with each other but also with landscape-scale habitat struc-
ture metrics (particularly open area). Vegetation height was selected 
for both grassland species as it best reflects the ecological condi-
tions in grasslands (e.g., shelter), whereas the 5–20 m density was se-
lected for both woodland species to capture forest cover and woody 
vegetation. Microtopography (i.e., slope) was only weakly correlated 
with other metrics and thus kept in all models. Landscape-scale veg-
etation structure metrics were highly correlated with each other. 
Open area and edge extent were selected for B. selene, reflecting 
shelter and open vegetation in wet grasslands. The number of open 
patches was selected for H. semele reflecting whether patches of low 
vegetation in dry habitats (i.e., grasslands and heathlands) are sepa-
rated by high vegetation or not. Open patches and edge extent were 
selected for L. camilla, reflecting canopy gaps in moist woodlands. 
Edge extent was selected for M. athalia to reflect edges of woody 
vegetation along patches of open vegetation in dry woodlands. The 
final selection of LiDAR metrics partly differed among species due to 
their specific habitat preferences and comprised seven (B. selene, H. 
semele and L. camilla) and six (M. athalia) LiDAR metrics, respectively 
(Table 2), overall avoiding high correlations (all r < 0.7 and VIF < 3).

3.2 | Model performance

The RF algorithm outperformed the GLMs and Maxent models for 
all species in terms of AUC, TSS and D (Table S3). The ROC curves of 
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the RF models (Figure S3) revealed a good fit of the test data for B. 
selene, H. semele and M. athalia (AUC = 0.88–0.90; TSS = 0.67–0.70) 
and an excellent fit for L. camilla (AUC = 0.96, TSS = 0.84; Table S3). 
The deviance D between RF model repetitions was acceptable for 
B. selene, H. semele and M. athalia (D  =  0.79, 0.74 and 0.78) and 
low for L. camilla (D = 0.41). This provided a robust basis for inter-
preting the contributions of predictor variables in the RF models. 
Moreover, the response curves of the RF model (see below) were 
generally consistent with the averaged response curves across the 
three SDM algorithms (Figure S6–S8). For the grassland species B. 
selene, model performance was better when its inland distribution 
was modelled separately from the coastal population (AUC = 0.91, 
TSS  =  0.73, D  =  0.75). For the other grassland species, H. semele, 

model performance in coastal habitats was higher than model per-
formance in inland habitats (Table S3).

3.3 | Effects of low vegetation

Low vegetation metrics were of minor importance in most SDMs 
(green coloured bars and lines in Figures 2 and 3). B. selene showed 
a weak response to the density <0.2 m in wet grasslands. The prob-
ability of occurrence of H. semele increased with the density of low 
vegetation (<0.2 m density; green coloured line in Figure 2c), that 
is with higher vegetation biomass (captured by non-ground LiDAR 
returns) in low vegetation strata of dry open habitats. This effect 

F I G U R E  2   Associations of two grassland butterflies with LiDAR metrics. (a) Typical habitats of the small pearl-bordered fritillary (Boloria 
selene; a wet grassland species, left) and the grayling (Hipparchia semele; a dry grassland species, right). (b) Relative variable importance, 
showing the contribution of each LiDAR metric to explain butterfly distributions by the mean and standard deviation of 100 random forest 
(RF) model runs (empty rows are metrics discarded from the RF). (c) Response curves of included LiDAR metrics, showing how they are 
associated with the species’ probability of occurrence by the mean and confidence interval of 100 RF model runs. In (b) and (c), colours 
indicate LiDAR metrics related to low vegetation (green), medium-to-high vegetation (orange) and landscape-scale habitat structure (purple). 
Photo credits: J. P. Reinier de Vries
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was particularly pronounced in inland populations, but not in coastal 
habitats (Figure S9). The response of H. semele to vegetation density 
between 0.2 and 1 m (reflecting tall herbs and low shrubs) was gen-
erally weak (green coloured bars in Figures 2b and S9). For woodland 
butterflies, vegetation density <0.2 m in moist woodlands was unim-
portant for L. camilla (green coloured bar in Figure 3b), but important 
for M. athalia in dry woodlands (green coloured bar in Figure 3b).

3.4 | Medium-to-high vegetation

Medium-to-high vegetation metrics were of major importance for both 
woodland species (orange coloured bars and lines in Figure 3b,c) and 

for the wet grassland species B. selene (orange coloured bars and lines 
in Figure 2b,c). L. camilla was associated with a high density of >20 m 
tall trees whereas M. athalia was most strongly associated with a high 
5–20 m vegetation density (orange coloured lines in Figure 3c). For the 
wet grassland species B. selene, vegetation height <10 m strongly in-
creased its probability of occurrence (orange coloured line in Figure 2c). 
The dry grassland species H. semele was only weakly associated with 
medium-to-high vegetation metrics (orange coloured bars and lines 
in Figure 2b,c), but the importance of vegetation height increased in 
coastal habitats (Figure S9). The density of 1–5 m shrubs was unimpor-
tant in all SDMs and weakly associated with the species’ probability of 
occurrence, but M. athalia and H. semele in inland habitats responded 
positively to a low density of 1–5 m tall vegetation (Figures 3 and S9).

F I G U R E  3   Associations of two woodland butterflies with LiDAR metrics. (a) Typical habitats of the white admiral (Limenitis camilla; 
a moist woodland species, left) and the heath fritillary (Melitaea athalia; a dry woodland species, right). (b) Relative variable importance, 
showing the contribution of each LiDAR metric to explain butterfly distributions by the mean and standard deviation of 100 random forest 
(RF) model runs (empty rows are metrics discarded from the RF). (c) Response curves of included LiDAR metrics, showing how they are 
associated with the species’ probability of occurrence by the mean and confidence interval of 100 RF model runs. In (b) and (c), colours 
indicate LiDAR metrics related to low vegetation (green), medium-to-high vegetation (orange) and landscape-scale habitat structure (purple). 
Photo credits: J. P. Reinier de Vries
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3.5 | Landscape-scale habitat structure

Metrics related to landscape-scale habitat structure were of key im-
portance in all SDMs, but the specific metrics partly differed among 
species (purple coloured bars and lines in Figures 2b,c and 3b,c). B. 
selene, H. semele and M. athalia mainly occurred in flat terrain (mean 
slope <10°), and this effect was particularly pronounced in inland 
populations of B. selene and H. semele (Figure S9). In addition to mi-
crotopography (i.e., slope), H. semele was strongly associated with a 
low number of open patches in dry habitats (purple coloured line in 
Figure 2c), reflecting wide open landscapes with large patches of low 
vegetation. L. camilla was most strongly associated with a high num-
ber of open vegetation patches in moist woodlands (purple coloured 
bar and line in Figure 3b,c). Both, B. selene (in wet grasslands) and L. 
camilla (in moist woodlands) responded positively to a high edge ex-
tent (purple coloured bars and lines in Figures 2b,c and 3b,c, respec-
tively), and M. athalia (in dry woodlands) showed a strong preference 
for high edge extents (purple coloured line in Figure 3c).

4  | DISCUSSION

Our LiDAR-based analysis of four threatened butterfly species 
in the Netherlands provides detailed insights into how vegetation 
structure shapes invertebrate–habitat relationships at a national ex-
tent and thus generalizes beyond local and landscape-scale studies 
that only analyse invertebrate habitat use at a particular study site. 
Using high-quality butterfly presence–absence data derived from a 
national monitoring scheme, we show that landscape-level habitat 
structures are especially important for both grassland and woodland 
species and that medium-to-high vegetation structures (and to some 
extent low vegetation density) are crucial for woodland species. 
LiDAR metrics capturing low vegetation structure were generally of 
minor importance across all four species.

The weak association of low vegetation LiDAR metrics with 
grassland butterflies confirms our hypothesis (H1) that low veg-
etation elements are difficult to capture with leaf-off ALS data. 
Ecological field studies show the critical importance of such low veg-
etation elements for butterflies in grassland habitats, for example 
in terms of food plants for both adults and larvae (Bos et al., 2006; 
van Swaay, 2019). This indicates that the leaf-off conditions in which 
many airborne LiDAR data are captured are not well suited to capture 
the seasonal structure of annual herbs and grasses in grassland habi-
tats. Leaf-on ALS surveys at national extents or LiDAR data captured 
from unmanned aerial vehicles (UAV) and terrestrial laser scanners 
(TLS) at specific study sites could improve the information content 
of metrics capturing bare ground and low vegetation, especially 
<0.2 m. Low vegetation structure was especially difficult to measure 
in wet grassland habitats of B. selene, which are nearly all mown in 
winter (van Swaay, 2019). In dry open habitats of H. semele, struc-
tures of low vegetation height such as low grasses and bare ground 
were difficult to quantify with leaf-off ALS data, but perennial dwarf 
shrubs (i.e., short woody plants) such as heather (Calluna vulgaris) are 

mostly well captured because they maintain their woody material in 
winter. This was reflected in the metric of vegetation density <0.2 m 
which played an important role to explain the presence–absence 
of H. semele in dry open habitats, especially in inland populations 
(Figure S9). Heather is abundant and an important nectar source in 
these habitats (mainly heathlands), and a patchy cover is preferred 
over monotonous heather fields (Bos et al., 2006; van Swaay, 2019; 
Vanreusel et al., 2007). The response curves of the SDM indicated 
that a vegetation density <0.2 m between 10% and 30% promotes 
the occurrence of H. semele. The density of perennial dwarf shrubs 
probably also drives the strong response of M. athalia to the <0.2 m 
vegetation density, reflecting its dependence on open patches with 
low vegetation in dry woodlands (Bos et al., 2006; van Swaay, 2019). 
Heather and other perennial dwarf shrubs (e.g., Vaccinium) are typ-
ically abundant in these places. The weak responses of L. camilla to 
understorey vegetation strata (both <0.2 and 1–5 m) may reflect the 
difficulty to capture understorey vegetation structure from discrete 
return LiDAR data in dense, moist woodlands, as initially expected 
(H1). In contrast, the dry woodlands of M. athalia are relatively open, 
providing a high potential of discrete return LiDAR data to capture 
low vegetation structure. While L. camilla mainly flies in high vege-
tation strata, understorey vegetation such as bramble (Rubus sp.) is 
important as a nectar source (Bos et al., 2006).

We expected that LiDAR metrics reflecting medium-to-high veg-
etation (e.g., density or heterogeneity of shrub and tree layers) are 
especially important to explain habitat preferences of woodland but-
terflies (H2). This may be particularly important in woodland habitats 
if species differ in their vertical habitat niches and use of different 
vegetation strata. As a moist woodland species, the white admiral 
(Limenitis camilla) is thought to primarily use the forest canopy layer 
(Bos et al., 2006), for example as gathering places of territorial males 
or as resting places (Lederer, 1960). Our analysis supports the impor-
tance of the forest canopy for this species by showing that sites with 
>20% density of tall (>20  m high) trees are preferred, while sites 
where trees of this height are absent are avoided. In contrast, the 
heath fritillary (Melitaea athalia), a dry woodland species, flies low to 
the ground and needs trees to provide sheltered conditions and to 
support its main host plant, the parasitic cow-wheat (Melampyrum; 
Bos et al., 2006; Warren, 1987a). This association is reflected by a 
strong preference for sites with a high vegetation density of 5–20 m 
tall shrubs and trees as derived from LiDAR. Dense scrub vegetation 
is unfavourable for M. athalia and may even act as a barrier to its dis-
persal (Warren, 1987b), reflected in its preference of a low vegeta-
tion density within 1–5 m height. Both grassland butterflies (B. selene 
and H. semele) use open habitats with preferably few tall vegetation 
elements (Bos et al., 2006; van Swaay, 2019). This is reflected in our 
results by a preference for low vegetation height in B. selene and by a 
low number of open patches in H. semele, capturing large open areas 
in dry open habitats.

Our results confirmed that LiDAR metrics reflecting landscape-
scale habitat structures (e.g., microtopography, woodland edges and 
vegetation openness) are particularly important for explaining the 
habitat preferences of both grassland and woodland butterflies (H3). 
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The structural heterogeneity at the landscape scale can be captured 
with LiDAR metrics that quantify microtopography, or the extent 
and patchiness of open vegetation (defined by vegetation height) or 
the length of woodland edges (Table 2). The most important effect of 
microtopography (i.e., slope) was found for B. selene, which prefers 
flat terrain, especially on inland locations that have marshy habitat 
conditions. Both B. selene and H. semele occur on steeper terrain in 
dune habitats, in which microtopography is also positively correlated 
with the roughness of low vegetation (Figure S2). For H. semele, this 
might reflect the amount of bare sand patches in these habitats 
(Maes et al., 2006; van Swaay, 2019). Another important landscape-
scale LiDAR metric was the number of open patches which showed 
a contrasting response for H. semele and L. camilla, reflecting their 
different habitats (dry grasslands vs. moist woodlands). Whereas H. 
semele was associated with low-stature landscapes that have only 
few open patches (i.e., large areas with vegetation height <1 m), L. 
camilla prefers woodlands with many small patches of open vegeta-
tion (roughly >70 patches of >2 m2/ha) where sunlight can penetrate 
through the woodland canopy (Bos et al., 2006; van Swaay, 2019). 
This shows that the same LiDAR metric can capture different char-
acteristics of the landscape depending on which species or habitat is 
considered. The extent of woodland edges was especially important 
for the dry woodland species M. athalia which reflects its association 
with woodland edges, where it finds shelter and host plant habitats 
(van Swaay, 2019; Warren, 1978a, 1978b). Woodland edges can also 
provide suitable habitat features for L. camilla (e.g., sunny conditions 
within woodland) and shelter for inland populations of B. selene 
(Bos et  al.,  2006; van Swaay, 2019), but effects were only weakly 
reflected in the SDMs.

Most SDMs use macroclimate, land cover and topography to map 
species distributions over broad spatial extents (Guisan et al., 2017). 
However, our study shows that vertical complexity (e.g., vegetation 
density, cover and height) and horizontal heterogeneity (e.g., vege-
tation openness and woodland edge extent) are key determinants 
of species distributions that need to be taken into account when 
predicting the probability of invertebrate occurrences at fine res-
olution over broad spatial extents. This has important implications 
for assessing organismal responses to climate change because mi-
croclimates are often shaped by fine-scale topography and vegeta-
tion structure and may allow organisms to persist despite shifts in 
macroclimates, for example through local temperature buffering or 
microrefugia (Zellweger et al., 2019). Our derived set of LiDAR met-
rics shows that microtopography (i.e., slope) is associated with the 
variability of vegetation height <1  m in grasslands (i.e., roughness 
of low vegetation) and with landscape-scale habitat structure (i.e., 
amount of open area, number of patches and edge extent) in wood-
land habitats (Figure  S2). Such habitat structures may allow these 
butterflies (or their larval host plants) to persist, despite general 
predictions of strong northward range shifts based on macroclimate 
(Settele et  al.,  2008). Country-wide or regional ALS datasets de-
rived from massive LiDAR point clouds (Meijer et al., 2020) will thus 
provide valuable information for modelling and mapping species 
distributions under climate change because they provide spatially 

contiguous, fine-scale information to quantify microtopography, 
vegetation structure and microclimate (Zellweger et al., 2019).

The SDMs of woodland species achieved higher performances 
than those of grassland species. This probably reflects the fact that 
LiDAR data obtained under leaf-off conditions are better suited to 
capture the physical structure of tall woody vegetation compared 
to low-stature vegetation in open habitats such as grasslands. This 
means that several structural habitat characteristics that are poten-
tially preferred by grassland butterflies may be insufficiently cap-
tured by country-wide airborne LiDAR data that are captured in 
the leaf-off season. Nevertheless, further developments in LiDAR 
technology (e.g., full-waveform data instead of discrete echoes, pro-
visioning of high-density point clouds, information for calibrating 
intensity data, complementary data from UAV or TLS) and LiDAR 
flight campaigns during leaf-on conditions could improve ecolog-
ical analyses of vegetation structure in open, low-stature habitats 
such as grasslands and wetlands (Alexander et  al.,  2015; Zlinszky 
et al., 2014). Additionally, full-waveform LiDAR could also improve 
the ability to quantify understorey vegetation in forests and woody 
habitats (Anderson et al., 2016). The availability of such LiDAR data 
over broad spatial extents would greatly enhance analyses of spe-
cies distributions, ecological niches and habitat preferences of in-
vertebrates and other taxa. Moreover, synergies with other remote 
sensing data such as spectral imagery or information obtained from 
synthetic aperture radar (SAR) could improve the quantification of 
habitat aspects in grasslands that are not captured by LiDAR, for 
example the identification of specific grasses or host plant species 
(Marcinkowska-Ochtyra et al., 2018), the quantification of seasonal 
growth dynamics in grasslands (Metz et al., 2014) or the extent of 
bare ground patches. Furthermore, SDMs of host plant species could 
be used to improve butterfly SDMs through an assessment of host 
plant distribution and availability, a crucial habitat factor for most 
butterfly species.

5  | CONCLUSIONS

Our study shows how the distribution of grassland and wood-
land butterflies depends on different aspects of vegetation 
structure, including the vertical variability of vegetation and the 
horizontal heterogeneity of vegetation and microtopography 
at the landscape scale. As vegetation structure is a key habitat 
determinant for many invertebrate species and their host plants 
(Dennis et al., 2003, 2006), the ability of LiDAR to quantify veg-
etation structure offers promising new ways to gain insights 
into invertebrate–habitat relationships (Davies & Asner,  2014; 
Moeslund et  al.,  2019; Zellweger et  al.,  2013). Such information 
can be beneficial for improving the management and conservation 
of threatened species by identifying and quantifying habitat pref-
erences and specific habitat thresholds. Our study demonstrates 
that LiDAR metrics are not only informative for species inhabiting 
woody habitats, but also for invertebrates occurring in low-stature 
habitats. The efficient, scalable and distributed processing of large, 



12  |     VRIES et al.

multi-terabyte LiDAR datasets and the development of dedicated 
algorithms and software will facilitate and enhance applications of 
ALS data in ecology and biodiversity science (Meijer et al., 2020; 
Roussel et al., 2020). This offers ample new opportunities for de-
veloping ecosystem structure EBVs (Valbuena et  al.,  2020) and 
for applying LiDAR-based habitat analyses to invertebrates, not 
only in grasslands but also in dunes, heathlands and wetlands, and 
other non-forest habitats that are threatened throughout Europe 
and other parts of the world.
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