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Abstract

We address the task of automatically detecting and counting seabirds in

unmanned aerial vehicle (UAV) imagery using deep convolutional neural net-

works (CNNs). Our study area, the coast of West Africa, harbours significant

breeding colonies of terns and gulls, which as top predators in the food web

function as important bioindicators for the health of the marine ecosystem.

Surveys to estimate breeding numbers have hitherto been carried out on foot,

which is tedious, imprecise and causes disturbance. By using UAVs and CNNs

that allow localizing tens of thousands of birds automatically, we show that all

three limitations can be addressed elegantly. As we employ a lightweight CNN

architecture and incorporate prior knowledge about the spatial distribution of

birds within the colonies, we were able to reduce the number of bird annota-

tions required for CNN training to just 200 examples per class. Our model

obtains good accuracy for the most abundant species of royal terns (90%

precision at 90% recall), but is less accurate for the rarer Caspian terns and gull

species (60% precision at 68% recall, respectively 20% precision at 88% recall),

which amounts to around 7% of all individuals present. In sum, our results

show that we can detect and classify the majority of 21 000 birds in just 4.5 h,

start to finish, as opposed to about 3 weeks of tediously identifying and label-

ling all birds by hand.

Introduction

Preservation of biodiversity is of great importance for the

maintenance of healthy ecosystems and for human well-

being (Cardinale et al., 2012; UN sustainable development

goals1). The implementation of effective conservation

strategies is particularly pressing given the accelerating

rates of decline of global biodiversity (Butchart et al.,

2010) and is tied to means of measuring biodiversity

through indicators, in particular to identify possible

threats and for taking effective conservation measures.

One such indicator is the abundance and distribution of

seabirds, which has the potential to provide a comprehen-

sive measure for ecosystem health, including the lower

levels of the food chain (Gregory et al., 2003; Parsons

et al., 2008). Many seabird species breed in large colonies

that require expansive efforts to count manually, resulting

in highly uncertain census estimations. To cope with

these issues, recent technological advances are increasingly

explored to accelerate and improve the accuracy of moni-

toring (Andrew & Shephard, 2017; Edney & Wood, 2020;

Terletzky & Ramsey, 2016). On the one hand, these

advances include unmanned aerial vehicles (UAVs, or

‘drones’) that acquire high-resolution aerial imagery of

breeding colonies from a distant viewpoint. This forgoes

the need for entering bird colonies on foot and permits

obtaining precise geospatial coordinates of every visible

individual. On the other hand, these advances also

include automated detection through machine learning,

which offers the possibility of detecting and classifying

large numbers of birds with reduced manual efforts and1https://sustainabledevelopment.un.org/post2015/transformingour
world/publication
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time requirements. In the following two sections, we

briefly introduce coastal seabirds as our target and man-

ual census methods (Section 1.1), followed by automated

detection with machine learning (Section 1.2).

Coastal seabirds and manual counting

Coastal ecosystems are at the intersection of terrestrial

and aquatic regions and therefore feature high biodiver-

sity (Costanza et al., 1993). The coast of West Africa is

productive and biodiverse due to the nutrient-rich ocea-

nic upwelling (Camphuysen & Van der Meer, 2005) and

its large estuaries (Baran, 2000). The region is rich in sea-

birds, which play an important role in the ecosystem as

they are top predators in the marine food web. Seabirds

are good bioindicators for the health of marine ecosys-

tems but they are challenging to monitor (Einoder, 2009;

Parsons et al., 2008; Veen et al., 2018b). Moreover, moni-

toring seabirds is of importance given the threats of

coastal erosion, human disturbance, and increased com-

mercial fisheries (FAO, 2011). The number of breeding

pairs is an important basic measurement to track popula-

tion size over time and identify possible threats. Each nest

has two parents who take turns in breeding. While one of

the parents breeds, the other is foraging or resting outside

of the colony; the number of breeding pairs therefore cor-

responds directly to the number of identified individuals.

In West Africa, a seabird monitoring project has been

ongoing for over two decades (Veen et al., 2004, 2018a,

2019) in which a variety of counting methods have been

employed in the main breeding areas. Several areas con-

sist of large colonies where birds cannot realistically be

individually counted and hence need to be estimated. The

most basic method involves scanning the colony with

binoculars from a good vantage point. In a first step, the

observer estimates the number in a given segment of the

colony and subsequently uses this segment as a reference

to estimate the numbers in the rest of the colony (the

‘block method’2). This method is fast and does not

require researchers to enter the colony and thus avoids

disturbance. The disadvantage is that it is inaccurate

depending on experience and hence may lead to large

variance among observers, sometimes by almost an order

of magnitude (Frederick et al., 2003). If the colony is

small, the number of nests can be counted individually

using a group of people entering the site. Oftentimes the

colonies contain tens of thousands of breeding pairs;

manual counts thus take too long and the disturbance

can result in depredation and overheating of eggs and

chicks (Carney & Sydeman, 1999). In such cases, the

number of nests in the colony is estimated by measuring

the area of the colony by GPS and by taking estimates of

the nest density in quadrants2. This second family of

methods provides a (much) better estimate of the number

of breeding birds, but is more time consuming and

requires more people. Furthermore, it involves foot access

to the colonies and hence causes increased disturbance.

Automated seabird mapping

The recent emergence of UAVs provided the opportunity

to obtain high resolution images of the breeding colonies,

which reduce the disturbance, time and number of people

needed in comparison to the traditional survey methods

(Ivošević et al., 2015; Linchant et al., 2015). Detecting

and counting individuals in aerial images also potentially

increases accuracy by orders of magnitude (Hodgson

et al., 2016). However, the stage of photointerpretation

can be prohibitively time-consuming if done manually

(Kellenberger et al., 2018). One possible way to overcome

the need for manual annotations, at least in parts, is by

employing automated detection methods from computer

vision (CV). CV methods, in particular deep learning

models like convolutional neural networks (CNNs; Kriz-

hevsky et al., 2012; LeCun et al., 2015), have been suc-

cessfully applied to a variety of different wildlife detection

tasks (Eikelboom et al., 2019; Gray et al., 2019; Hamilton

et al., 2020; Kellenberger et al., 2018), including birds as

primary targets (Akçay et al., 2020; Borowicz et al., 2018;

Hong et al., 2019). However, the focus of these studies

has mostly been on very sparsely distributed wildlife, or

at best on areas with moderate abundances of individuals.

Dense breeding colonies comprised of multiple species

against a heterogeneous background provide a number of

challenges to CV detectors: different species nest on dif-

ferent substrates and the individual counts vary signifi-

cantly between species, with areas ranging from

containing only single birds to large and dense colonies.

These data properties are hypothesized to hamper the

usage of off-the-shelf, CNN-based object detection models

like the commonly used Faster R-CNN (Ren et al., 2015),

due to the high spatial distribution imbalance. Further-

more, the high number of free parameters in conventional

CNN architectures requires training on a large set of

annotated images, which is antagonistic to our goal of

reducing the workload of manual counting, for example,

through photointerpretation.

In this paper, we address these problems and attempt

to automate the individual detection and classification of

seabirds using CNNs. Rather than solely aiming for high

detection accuracy, we focus on reducing the manual

workload required to train the automated detection

2https://www.birdlife.org/sites/default/files/attachments/FIB-
Guide-suivi-oiseau-EN.pdf, accessed November 19, 2020
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model in the first place. We do so by combining a light-

weight CNN architecture for detection with prior knowl-

edge about the local distribution patterns of the bird

species. We demonstrate our approach on a series of

high-resolution, UAV-derived imagery acquired in coastal

marine environments in West Africa.

Methods

Study area and bird species

The upwelling of nutrient-rich waters makes the Sahelian

Upwelling Marine Ecoregion exceptionally productive and

the food abundance for seabirds high. However, the num-

ber of suitable breeding sites is limited. Along the West

African coast between Mauritania and Guinea, only a

small number of sites are suitable for breeding but they

may hold very large numbers of breeding seabirds (Veen

et al., 2004, 2018a, 2019). The main sites from north to

south are Parc National du Banc d’Arguin, Parc National

de la Langue de Barbarie, Parc National du Delta du Sal-

oum, Bijol Islands (Tanji Bird Reserve), Réserve Ornitho-

logique de Kalissaye, Bijagós Archipélago, Bantambur

(near Jeta) and Iles Alcatraz and Naufrage (Fig. 1 left).

In May 2019, we conducted a census along the West

African coast to obtain an accurate count of the number

of African royal terns (Thalasseus maximus), the species

in primary focus. We also counted co-occurring Caspian

terns (Hydroprogne caspia), slender-billed gulls (Chroico-

cephalus genei) and grey-headed gulls (Chroicocephalus cir-

rocephalus). The selection of sites was mainly based on

the presence of the African royal tern because all known

breeding sites are confined to this region. Furthermore,

because royal terns breed rather synchronously in large

colonies on a small number of sites, an accurate estimate

of the population size can be obtained during a relatively

limited amount of time in May (Veen et al., 2003).

Because Caspian terns, slender-billed gulls and grey-

headed gulls often breed in the same areas, these species

were also counted.

Image acquisition

We used a DJI Phantom 4 Pro to take photographs of

the breeding colonies, which has several characteristics

that make it very suitable to map seabird colonies. It is

quite robust to high wind speeds (up to 10 m/s) and it

provides a sufficient flight time of approximately 30 min-

utes. The camera has a high-resolution (20 Megapixels)

1" CMOS sensor and an 84° field of view lens that pro-

vides wide coverage. Its relatively small size makes it easy

to transport and it can take off and land in small spaces.

The size of the colony and time available for the survey

determines the flight altitude (lower flights cover less area

in a given time period). Flight altitude also affects the

ground resolution obtained, with higher flights providing

Figure 1. Important breeding sites for colonial seabirds along the West African coast (left) and locations of orthomosaics (right).

ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3

B. Kellenberger et al. UAV Seabird Detection with Machine Learning



less detailed imagery. We used flight altitudes varying

between 20 m and 50 m, which provided high-resolution

images allowing for clear identification of the breeding

species without causing disturbance. The UAV survey

team consisted of a pilot, who controls the UAV, and a

visual observer, who surveys the environment for poten-

tial problems (e.g. aggressive birds) and notes possible

changes in behaviour of the birds caused by the UAV.

More specifically, the visual observer monitored the beha-

viour of the birds prior to take-off and during the flight.

The birds do not appear to be disturbed by the UAV and

only in rare occasions have we observed a behavioural

response to the UAV. The flight altitude was increased in

the rare case that behavioural changes were observed.

Colonies were mapped by flying parallel transects at

speeds between 3 and 5 m/s at fixed altitude. The camera

was set to take a picture every three seconds. The selected

speeds, altitude and the distance between transects

ensured sufficient overlap between pictures needed to

produce high-quality RGB orthomosaics using pho-

togrammetry software (Agisoft Metashape3). The aerial

survey resulted in six orthomosaics with acquisition loca-

tions shown in Figure 1 (right) and numerical details in

Table 1.

Manual photointerpretation

Five orthomosaics were used for model training and one

(orthomosaic 1) was retained for testing purposes (i.e. the

final, independent evaluation of our results). The reason

for this division was due to the circumstance that ortho-

mosaic 1 was the only one that contained all bird species

in sufficiently large numbers for testing.

We annotated the five training orthomosaics (2–6) with
points for each species over patches of bird colonies using

the vector editing tool in QGIS4. To reduce labelling

efforts required, we only annotated a subset of the total

number of birds in orthomosaics 2–6 and aimed at

obtaining 200 training point annotations or more per

species. To do so, we selected a number of clearly distin-

guishable colonies for each species and annotated all birds

present in the areas covered by those colonies, but omit-

ted labelling other areas of the orthomosaics. We also

added background polygons indicating areas where no

birds were present, graded into ‘easy’ background (i.e.

with homogeneous surfaces), respectively ‘hard’ back-

grounds that also contained clutter and other bird species

(grey, respectively white polygons in Fig. 2). An example

of the training annotations for orthomosaic 3 is shown in

Figure 2.

For the test orthomosaic 1, we created a complete set

of annotations for every individual bird we could detect

(Fig. 3). To do so, we first divided the orthomosaic into

274 non-overlapping tiles of 800 × 600 pixels, organized

on a regular grid. We then created point annotations with

class labels in all image tiles using the open source soft-

ware AIDE5 (Kellenberger et al., 2020), which allows users

to annotate images through a web interface while also

recording statistics, such as the date and time an image

has been viewed and the time required to provide an

annotation. In sum, orthomosaic 1 was used to quantify

the manual workload required to annotate the birds by

hand, and also to assess the performance of our machine

learning-based bird detection model, using the provided

annotations as a ground truth.

Unfortunately, initial tests showed that our model is

not able to distinguish between grey-headed and slender-

billed gulls. The two species are also difficult to discern

for humans (see Fig. 4 for an example). We therefore

decided to merge the Grey-headed and Slender-billed

gulls into a single ‘gull’ class for all subsequent analyses.

The total number of annotations per species and for

each orthomosaic is listed in Table 2.

Table 1. Details of the six orthomosaics from the UAV survey.

Number Name

Approx. centre coordinates Dimensions

Latitude Longitude Metres Pixels

1 Point Nord 13.664 −16.661 292.48 × 305.69 27 569 × 28 814

2 Bantambur 11.972 −16.303 514.87 × 345.41 42 877 × 28 765

3 Ansoukala 13.696 −16.674 223.36 × 215.33 21 284 × 20 518

4 Arel 19.901 −16.504 93.50 × 198.25 10 194 × 21 615

5 Zira 19.870 −16.296 224.89 × 438.74 18 837 × 36 749

6 Ilot aux Pelicans 20.712 −16.683 138.69 × 110.77 10 521 × 8403

5https://github.com/microsoft/aerial_wildlife_detection
5https://github.com/microsoft/aerial_wildlife_detection 5https://github.com/microsoft/aerial_wildlife_detection
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Automated detections

Model details

For automation of the birds’ detection, we employed a

deep CNN, as shown in Figure 5. CNNs perform

sequences of operations, called layers, with each layer pro-

cessing the output of the previous one. The most com-

mon operation in a CNN, the convolution operator,

slides filters of predefined size (the first ‘Conv’ layer in

the model, e.g. employs 64 filters, each one of size 7 × 7)

over the image and calculates the dot product at each

location, thereby outputting a spatial map of correlation

values between the input and the filters, also called activa-

tions. The filter values are free parameters that are learned

by the model by means of backpropagation (Rumelhart

et al., 1995). To control the size of the outputs, the con-

volution operator can be applied not at every location in

an input, but, for example at every second to produce an

output of half the width and height of the input; the

parameter that controls the frequency in width and height

of operation is denoted as the ‘stride’. An alternative

operator used to perform spatial downsampling is ‘max

pooling’, which returns the maximum value within the

scanning window centred at each location (‘Max pool’).

In addition to spatial downsampling, max pooling

Figure 2. Orthomosaic 3 as an example for annotations used to train

the detection model. Dark green points: royal terns; light green

points: Caspian terns; blue points: grey-headed and slender-billed

gulls. Polygons encompass areas without birds, classified into ‘easy’

(grey) and ‘hard’ (white) backgrounds.

Figure 3. Test set orthomosaic 1 with manually annotated individuals

per bird species. In total, 21 066 individuals were labelled in this

scene.

Figure 4. Species of the grey-headed gull (left) and slender-billed gull (right) are easily confused, and were therefore merged into a single class.

Table 2. Number of manually annotated points per species for each

of the six orthomosaics.

Number Name/set Royal Tern Caspian Tern gulls

1 Point Nord 19 683 442 941

2 Bantambur 450 3 499

3 Ansoukala 382 169 338

4 Arel 295 12 0

5 Zira 0 0 628

6 Ilot aux Pelicans 367 472 0

2,3,4 training 1127 184 837

5,6 validation 367 472 628

1 test 19 683 442 941

ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5

B. Kellenberger et al. UAV Seabird Detection with Machine Learning



provides invariance of the model to translations (i.e. the

precise location of a bird can vary in space to some extent

and it still can be recognized by the model). Besides con-

volutions and pooling, we employed instance normaliza-

tion (Ulyanov et al., 2016) and rectified linear unit

(ReLU) operations after each convolution layer. For an

in-depth explanation of the working mode of the different

operators, we kindly refer the reader to Goodfellow et al.

(2016); for a more remote sensing-based introduction, see

Volpi and Tuia (2017).

Our particular model, sketched in Figure 5, is based on

the ResNet-18 architecture (He et al., 2016). ResNet is

widely used in computer vision tasks and has shown high

performance in image classification, partially due to the

organization of intermediate layers into ‘residual blocks’

(each residual block is represented by a different colour in

Fig. 5) and skip connections (dashed lines). By default,

ResNet-18 only predicts a single label per image, which it

does by averaging the output of the last residual block in

width and height, followed by a fully connected layer,

which linearly maps the 512 output channels into the

desired number of classes. Contrary to this classical

approach, we require spatial predictions rather than single

classification scores for the entire patch. Therefore, we

removed the average pooling and fully connected layers

and replaced them with two 1 × 1 convolution layers,

which retain the spatial output size of 50 × 38, but map

from the 512 channels of the last residual block to an

intermediate 1024 dimensions, and then to 3 for the three

bird species. To further adapt the prediction resolution to

our needs, we also halved the stride of the very first convo-

lution layer to one, which doubles the predicted size. With

that, the full model yields a probability grid with a moder-

ately reduced resolution, where one grid cell approximately

corresponds to 16 × 16 cm. We found this to be suffi-

ciently fine for detecting birds in our images. Prior to

training the CNN, the weights were initialized with those

of a model pre-trained on the ImageNet classification chal-

lenge (Russakovsky et al., 2015). This is a common means

of warm-starting the model with parameters that are opti-

mized to image recognition tasks. Although ImageNet does

not contain overhead images, initializing the model this

way has shown to accelerate model training and to lead to

improved results, despite the gap between tasks and data

sets (Huh et al., 2016). The final output of the model is

passed through a sigmoid activation function, which scales

every class value per grid cell between zero and one. This

way, we can include the ‘background’ class implicitly by

encouraging the model to predict all bird class outputs as

zeros when there is no bird; to do so, during prediction

we threshold the probability scores and consider all predic-

tions below the threshold as background.

Model training

For training, we selected a subset of patches from the five

orthomosaics in random order and made sure that the

total number of training point annotations reached 200

per species – in other words, we selected training patches

at random so that each bird species was represented by

more or less 200 points. This required users to annotate a

total of 600 points for the three species, which can be

done in a reasonable amount of time. We set a deliber-

ately low target of 200 points per species to assess the fea-

sibility of training a high-capacity CNN with scarce

amounts of training data, but in favour of greatly reduced

annotation expenses. We also experimented with fewer

points, but found model training to be unstable (see

Appendix below). For an assessment of the training sta-

bility, we used three different random seeds for the patch

order permutation and trained three models accordingly.

Since we split the training images into tiles on a regular

grid, these generally do not coincide with how the birds

would be labelled. Particularly, in this way, a training

patch may cut through a colony of birds. Moreover, this

means that an image tile may not be fully annotated, but

instead only, for example contains a few labels of a ‘cut’

bird colony at the border of the tile. Hence, we cannot

automatically assign non-annotated pixels as ‘back-

ground’, as we risk assigning unlabelled birds to back-

ground. To address this problem, we implemented three

modifications as described below.

Figure 5. Simplified flow chart of the CNN architecture used in this work. The model is based on ResNet-18, which consists of four residual

blocks (colour-coded) that contain skip connections (dashed lines). We modify the standard ResNet architecture and replace the last two layers

with custom, 1 × 1 convolution operations (dotted rectangles) that map to 1024 channels and then to the three classes respectively. All other

layers are initially pre-trained on ImageNet. Normalization and activation functions are omitted for clarity. Sizes of (intermediate) outputs are given

in (Width × Height × Channels).

6 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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1 We included background polygons (grey areas in

Fig. 2) into the training process to teach the model

what background clutter looks like. Background poly-

gons are rasterized and rescaled to the same dimen-

sions as the CNN predictions of 50 × 38 grid cells. We

empirically found the model to be highly sensitive to

the amount and complexity of background areas;

exposing the model to all background polygons from

the start generally resulted in a significant drop in bird

recall. To mitigate this effect, we resorted to curriculum

learning (Bengio et al., 2009), which has been shown to

be beneficial for aerial wildlife detection tasks with

deep learning (Kellenberger et al., 2018). In detail, we

added all images containing the ‘easy’ background

patches to the training set and trained the model for

10 epochs (i.e. 10 passes over all images). Afterwards,

we also added the ‘hard’ background patches and

trained the model for a total of 75 epochs. This

ensured that the model can learn bird species appear-

ances before potentially getting overwhelmed with the

large background polygons and high complexity of

them.

2 For our second strategy, we exploited the observation

that the immediate surroundings of birds often belong

to background. To do so, we assigned the eight neigh-

bouring grid cells of a bird to the background class,

similar to Kellenberger et al. (2018).

3 Finally, we leveraged the circumstance that our ground

truth was annotated on a per-colony basis. Although

the image tiles are not labelled completely, the colonies

are, which allowed us to assign all grid cells between

birds within a colony as background. To do so, we cal-

culated the Euclidean distances between all birds of the

same species in an image tile, and created convex hulls

between all points whose linear distance amounted to

at most eight grid cells. All grid cells within the union

of these convex hulls that were unassigned could then

be dedicated to background. Figure 6 shows a concep-

tualized example of this heuristic.

Figure 7 shows a flow chart with examples. The ground

truth grid (right) contains grid cells with birds

(coloured), background (grey), and un-annotated cells

(white). Note that for the example shown, the back-

ground class is composed of both a polygon at the bot-

tom of the map (cf. point 1 above), the eight neighbours

around individual points in the middle and bottom left

(cf. point 2), and the convex hulls around the remaining

birds (point 3).

Finally, we employed a grid cell-wise regression loss as

follows:

LðŶ,YÞ¼∑
i

∑
j

∑
c

ŷijc� yijc

� �2

, (1)

which sums the squared difference between prediction ŷ

and ground truth label y over all classes c, width i and

height j positions of the prediction grid Ŷ and ground

truth grid Y respectively. This loss encourages the model

to predict a confidence value of 1 for one of the three

bird species, if present in the ground truth, or 0 other-

wise. Grid cells with neither bird nor background annota-

tions are ignored during training (the loss values are set

to zero for these locations). We trained the model for 75

epochs with a batch size of one image using stochastic

gradient descent with momentum of 0.9, weight decay of

10−4, and a learning rate of 10−5 that gets divided by ten

at epoch 50. Due to the large class imbalance, we found

the model to often be overwhelmed by the most abun-

dant species (royal tern), or else the background. To

reduce this effect, we assigned class weights as follows: 1.0

for royal terns, 10.0 for Caspian terns, 20.0 for gulls and

0.01 for the background class. The model is implemented

in PyTorch6 and was trained on a Linux workstation with

an NVIDIA Titan V graphics card.

(1) (2) (3) (4)

Figure 6. Conceptualized example of our convex hull heuristic. Our ground truth points are mapped to a grid the size of the CNN output. We

iterate through all points one by one (yellow solid), and locate all other ground truth points (yellow dashed) that fall within a range of eight grid

cells distance around the current one. We then draw a convex hull around those selected points and dilate it with a square, 3 × 3 filter. Finally,

we assign all empty grid cells within the union of all convex hulls to background (grey). This process is repeated for all species separately.

6https://pytorch.org
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Model evaluation

We tested the performance of our model based on preci-

sion-recall curves, with precision and recall being calcu-

lated as follows:

precision¼ TP

TPþFP
;recall¼ TP

TPþFN
(2)

where TP, FP and FN are the number of true positive,

false positive and false negative predictions in the entire

test orthomosaic. A point predicted by the CNN is treated

as a true positive if (and only if) it lies within a distance

of 50 cm to the nearest ground truth annotation and has

been predicted with the correct class. In practice, we can

set a threshold for the minimum predicted probability

(e.g. 0.1) for every predicted location; higher thresholds

(towards the maximum of 1.0) usually result in higher

precision, but lower recall, whereas lower thresholds (to-

wards the minimum of 0.0) have the opposite effect. An

optimum threshold depends on the requirements of the

application and the desired trade-off between precision

and recall. As is common, we calculated per-species preci-

sion-recall curves by varying the minimum confidence

threshold from 0 to 1 in 50 steps (see, e.g. Fig. 9).

Model inference

For model evaluation, we split the test orthomosaic into

patches of size 800 × 600 pixels on a grid with 50% over-

lap between the patches. This increases prediction time,

but we found it to be worthwhile to eliminate drops in

recall towards the borders of the patches. We note that

the false positives are primarily found in the neighbour-

hood of actual birds. To improve precision, we therefore

applied non-maximum suppression (NMS), which only

retains predictions that are not within distance of other

predictions whose maximum bird confidence value is

greater. To this end, we exploited the prior knowledge

about the expected size and distance of individuals per

species: for example, we found that royal terns are gener-

ally smaller and breed closer together than Caspian terns,

as visible in Figure 2. We therefore estimated the expected

distance between individuals per species and used those

values to perform class-specific NMS to discard multiple

predictions of the same individual. We selected five sam-

ple pairs of individuals per species closely together and

measured the distances between the birds’ centres.

Although the expected distance between individuals could

also be estimated from the training annotations, we found

that the effects on the NMS result of doing so are negligi-

ble. We obtained and used 22 cm for royal terns, and

30.5 cm for Caspian terns and gulls. Eventually, this

means that whenever the model predicts, for example,

two royal terns that are less than 22 cm apart from each

other, the prediction with lower confidence value gets dis-

carded.

Markov random field for post-processing

When looking at the model predictions in more detail

(Fig. 8 left), we can notice that the model misclassifies a

number of birds in the middle of flocks. Those flocks,

however, actually only consist of one species most of the

time (royal terns in the figure). We therefore decided to

use this prior knowledge and post-processed the predic-

tions with a Markov random field (MRF; Schindler, 2012;

Tuia et al., 2018). MRFs post-process the predictions by

means of a graph, where the graph’s vertices (ν) are the

predicted bird points in our case, and its edges (ϵ) are

constructed between vertices that, for example are suffi-

ciently close to each other. Both the vertices and edges

have attributed a certain notion of cost, respectively

energy, which is high if the prediction goes against the

prior knowledge (i.e. the points’ labels are different from

Image Model Prediction Ground TruthLoss

Royal tern Caspian tern Gulls Background

Figure 7. Overview of the model training. For each image (left), the CNN predicts a down-sized grid (middle) containing probabilities for each

species in each grid cell. For training, images contain a number of bird locations as well as background polygons that get mapped to the

prediction grid (legend at the bottom). Grid cells that are undefined (white) are ignored during training.

8 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

UAV Seabird Detection with Machine Learning B. Kellenberger et al.



the neighbours), and low otherwise. MRFs then try to

minimize the global energy across all graph vertices and

edges, which is given by:

E¼ ∑
p∼V

ðUpÞþ λ ∑
pq∈ɛ

Ppqðlp, lqÞ (3)

where

Up ¼�log ϕ Xð Þð Þ; Ppq ¼klp� lqk2 (4)

Here, Up is the ‘unary’ term, which is the negative log

of the probabilities per bird species as predicted by the

CNN on image X for each point (graph vertex) p. In

other words, the unary term is the likelihood that a given

detection belongs to one of the three classes, as predicted

by the CNN (Up only depends on the CNN). Ppq is the

pairwise term that applies between predicted graph ver-

tices p and q, which in our case is the spatial (Euclidean)

distance between the two predicted points’ locations lp
and lq. The pairwise term represents our prior knowledge

of co-occurrence of species, which in our case is the

implication that bird colonies are usually only composed

of one species. λ is a trade-off constant, which we set to

0.5 to reduce the effect of the pairwise term (i.e. we

weight the CNN predictions as more important). Effec-

tively, this formulation compares CNN predictions for

each point with all of neighbouring points, to which it is

connected by graph vertices. If the model predicts that a

point is a Caspian tern, but all connected neighbours

have a prediction of ‘royal tern’, then this point’s label

will likewise become ‘royal tern’, unless the model gave it

a particularly high confidence in Up. In practice, this is

done by calculating energies according to Equation (3)

for every label class and selecting the label with the mini-

mum value for each point.

As a neighbourhood around each point, we included

all other predicted points within a square of 11 grid cells

(around 1.76 m) around the point. We applied the MRF

over model predictions in each 800 × 600 patch, prior to

NMS. We used the Iterated Conditional Modes (ICM)

solver (Besag, 1986), which iterates over all predicted

vertices and assigns labels according to the minimum

energy, until no labels change anymore. We report results

for both the original, NMSed predictions and those with

NMS and MRF post-processing in Section 3.2 below.

Results and Discussion

Manual annotation statistics

We divided the manual annotation task across five anno-

tators, who labelled all 274 patches concurrently. This

resulted in 21 066 point annotations (Fig. 3; Table 2). We

monitored the annotation time using the AIDE platform,

and obtained a total running time of the manual annota-

tion task of roughly 20 days and 16 h, including breaks.

The effective annotation time for all patches, summed

over all annotators’ contributions, was 3 h and 2 min. On

average, annotators required 1.19 s per annotation. After

the annotation session, the provided points were visually

inspected by one of the authors for correctness.

Automated detection results

Figure 9 shows per-species precision-recall curves for the

models, with the maximum and minimum values across

all three random seeds reported as shaded polygons, and

the average precision-recall curves as dashed lines. The

left figures show results obtained when only using NMS,

the right side shows results with MRF-post-processing

and NMS. From these results, we can see a sustained high

precision and small value range for royal terns in all

models (dark green). Recalls reach up to 88%. For Cas-

pian terns (light green), the variation in precision across

random seeds is only marginally larger, but precision is

significantly lower. In turn, the gulls (blue) show the low-

est consistency across seeds, with variations in precision

at highest recall from around 32% to 60% without MRF

(left), and 52% to 70% with (right).

The limited precision for the Caspian terns can be

traced to two reasons. The first reason is a confusion of

Figure 8. The bare, non-maximum suppressed bird predictions of the model (left) often contained spurious misclassifications, such as the gulls

(blue) misclassified inside the area of royal terns (dark green). Post-processing the predictions with an MRF corrected most misclassifications

(right).
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royal terns and Caspian terns, especially when ever indi-

viduals were more loosely distributed in the area. The

majority of royal tern flocks were densely packed with

barely any distance between birds. Through the receptive

field, the CNN likely learned and associated the spatial

pattern of high-density flocks with the royal tern class.

However, the test orthomosaic nonetheless contains a

number of royal terns that are distributed in larger dis-

tances compared to dense colonies, such as most of the

individuals in Figure 10 (left). However, due to the afore-

mentioned trait, the model ended up mispredicting those

individuals as the visually most similar species, which is

the Caspian tern.

A second reason for false positives is due to other bird

species that had not been labelled, an example of which

can be seen in the right panel of Figure 10. Our labelling

scheme involved creating dedicated background polygons,

and these additional species were included in the ‘hard’

background polygons. However, due to the reduced

background weight, it seems that the learning signal from

these extra species was dampened to a too large extent,

causing the model to falsely predict those species as well.

This may be addressable by an additional class for all

other bird species. For the current predictions, the other

bird species luckily appear in separate flocks and can

quickly be removed in a manual post-processing step.

In the case of the gulls, the limitations are of different

nature – the species shows the highest uncertainty across

model states, as well as the overall lowest recall. Both

effects presumably originate from the large variation in

background composition: unlike royal terns and Caspian

terns that concentrate on sand, gulls are most frequently

found in vegetated patches that cause partial occlusion

effects due to grass and other weeds, and further contain

debris like rocks. These caused both precision and recall

to get reduced. Upon visual inspection, we noticed that

the model seemed to particularly struggle over the more

heterogeneous parts of the weedy patches, which further

Figure 9. Precision-recall curves per species on the test set, showing the total variation of the models trained on three sets of training patches

(shaded) and the average performance (dashed). The left figure shows results with just NMS, and the right with NMS and a pairwise MRF on the

predicted points.

Figure 10. Examples of classification errors made by the model. In the left figure, many of the Caspian tern individuals (light green) are predicted

twice, possibly due to their slightly larger size compared to, for example royal terns (dark green). The right figure shows individuals of Great

cormorant (Phalacrocorax carbo), which were not considered in this study and erroneously predicted as Caspian terns.
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corroborates this assumption. In sum, the problems with

the gulls are not spatially concentrated; instead, the false

positives and missed individuals are scattered across the

entire orthomosaic. This unfortunately means that man-

ual post-processing is more tedious than in the case of,

for example, falsely assigned background species discussed

above.

When looking at the results after NMS and the MRF

(Fig. 9, right), the effect of the MRF seems to be strongest

in the case of the gulls, raising the averaged precision at

maximum recall from around 48% to 60%. Similar to the

confusion between Caspian terns and royal terns, the

model seemed to occasionally predict royal terns as gulls

(cf. Fig. 8). This seems rather surprising, given the differ-

ences between royal terns and gulls in terms of their

appearances and background composition. The MRF pri-

marily resolves confusions in these dense flocks of royal

terns by exploiting the proximity patterns and the high

homogeneity of species within colonies. For areas where

birds are spaced apart further, the neighbouring effect

diminishes. Since the falsely predicted gulls get reverted

to royal terns, the MRF also has a positive effect on the

latter, producing more homogeneous flocks of royal terns.

However, this effect is not visible in Figure 9, due to the

sheer number of royal tern individuals contained in the

test orthomosaic.

Figure 11 shows all predictions by the model with con-

fidence of 0.1 or greater, NMS and MRF post-processing,

over the test orthomosaic. Compared to the ground truth

(Fig. 3), it can be seen that the CNN located the large

patches of royal terns (green) and the general area of the

gulls (blue) very well indeed. The total number of pre-

dicted birds (between 17 485 and 23 288, depending on

the random seed) also matches the number of individuals

in the ground truth (21 066) reasonably well and further

corresponds to estimations we obtained during on-site

censuses with binocular scans from two observers (18 000

and 24 500). Hence, prediction results of our CNN are

on-par with manual surveys. However, the model clearly

struggled identifying the more rare species, such as the

gulls, and occasionally misclassified background clutter as

birds. In part, this can be attributed to the exceptionally

low amount of training data – 200 samples per species is

unusually little for deep learning models having millions

of free parameters, and we empirically found it to be the

lower limit to obtain a reasonably stable prediction (see

also experiments with fewer points in Appendix). How-

ever, the focus species of the survey and most abundant

class, the royal tern, is recognized and mapped with an

exceptionally high accuracy. The other two species occur

in greatly reduced numbers and any mispredictions can

be rectified with low amounts of human intervention.

Furthermore, since the royal tern is the key species indi-

cating major breeding sites along the West African coast

and primary target of our study, additional prediction of

the other species is primarily a surplus and implications

of lower accuracy are not as severe. With this in mind,

we argue that a model like the proposed one may at least

serve as a useful pre-detector, alleviating researchers from

the tedium of annotating tens of thousands of birds.

Furthermore, a model as proposed helps reducing total

analysis time by a large margin. Obtaining a result as

shown in Figure 11 required labelling 600 points and a

few polygons (about 30 min for creating all training

annotations ), training the model for 75 epochs (3:58 h

with our unoptimized code), and predicting individuals

(3:14 min; 3:34 with MRF), resulting in about 4.5 h of

total time required. This is in stark contrast to the multi-

ple days that were required by the manual photointerpre-

tation survey (Section 2.3), especially considering that the

amount of manual intervention can be reduced to half an

hour. Crucially, model running time is low, and the

model can be employed to also predict birds in the

remaining orthmosaics (about 20 min of additional time

required). In total, all six orthomosaics are estimated to

contain about 70 000 birds; as a result, the time gain of

employing our CNN as opposed to manual counting

scales exponentially with the number of images involved.

The training time may further be reduced in practice

through early stopping (we deliberately trained the model

for more epochs than needed to ensure convergence).

Hence, we argue that using machine learning is a viable

way to obtain spatial, high-density bird census estima-

tions in a faster and significantly less tedious manner

compared to traditional surveys and manual photo-inter-

pretation efforts.
Figure 11. Predictions by the CNN on the test orthomosaic with class

confidence 0.1 or greater, post-processed with NMS and the MRF.
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Limitations and Future Perspectives

Although our results indicate that CNNs can be used to

obtain comparably reliable detections with a promising

decrease in manual labour effort required, the proposed

pipeline has a number of limiting factors. First, the appear-

ance similarity of the two gull species and low abundance

of one of them required merging the species together; our

trials to predict them separately resulted in one of the two

being almost completely ignored. It is questionable whether

more training points could help the model overcome this

issue, due to the visual similarity of the species.

Second, despite a satisfactory recall, our model strug-

gled in predicting Caspian terns and gulls with satisfying

precision. In other words, this means that most Caspian

terns in the test image were correctly detected (high

recall), but that many false positives were also predicted

for this class (low precision). Visual inspection of the pre-

dicted maps, as in Figure 11, confirms these findings: the

model identified various different background objects as

Caspian terns, including weeds, rocks and sand forma-

tions, debris, and other bird species (cf. Fig. 10).

Although the model still yielded a moderate to very high

recall (68% for gulls, 88% for Caspian terns), these false

positives have the effect of reducing precision down to

60% for gulls and 20% for Caspian terns, as shown in

Figure 9. Our annotated ‘hard’ background polygons (see

Section 2.4.2) include such more heterogeneous back-

ground formations and hence partially reduced the num-

ber of false positives, but were not sufficient to do so to a

satisfactory degree. Increasing the number of labelled

birds (up to 600 per class; see Appendix) did not solve

this problem. Future works may address this by adding

more background polygons and introducing dedicated

classes for other bird species and types of clutter.

Furthermore, polygons have the potential to facilitate

the labelling process of birds in the first place. For anno-

tators, it is faster and more intuitive to simply draw free-

hand polygons around colonies of birds, instead of

labelling every individual with points. If the effort is low-

ered on the users’ side, there is also less information at

hand for the model, which can complicate training.

Studying the effectiveness of this kind of weakly super-

vised learning logic (Kellenberger et al., 2019) in this high

point density scenario is a future direction of our work.

Furthermore, we noticed during training that the

model requires particularly careful tuning of hyperparam-

eters, such as class weights, in order to predict the species

in the right amounts. While this effect is common to all

supervised machine learning models, it gets amplified in

our case due to the large imbalance and low abundance

of annotations for training. With periodic checks during

training, a stable model state can be achieved, but further

work may attempt to improve model stability by, for

example adding regularizers, or incorporating more

advanced weighting schemes (Madhyastha & Jain, 2019).

Finally, predictions could be improved by incorporat-

ing more advanced priors. In our work we post-processed

the predictions by means of an MRF that respects positive

spatial autocorrelation, that is neighbouring similarities. A

next possible option could be to instead estimate the

average bird density per species and reason on a flock

level about the distribution, and the species class that fits

best. This could potentially also be incorporated by means

of random fields, but we leave this idea to future studies.

Conclusion

We developed a CNN that can detect terns and gulls in

UAV-derived imagery over dense colonies against a

heterogeneous background. This task is by itself challeng-

ing due to the high and variable colony density, and we

set a further requirement to minimize the amount of

manual work required to get the CNN to work properly.

To this end, we used our recently proposed annotation

platform AIDE, which is open source and readily deploy-

able. As a result, where normally a large effort is needed

to annotate training data sets for complex imagery, our

CNN performed well for the most abundant class, the

royal tern, with annotations that required as little as

30 min to create. Our model struggled with less abundant

classes (Caspian terns and gulls), predicting large numbers

of false positives. However, given those classes only con-

stitute less than 7% of the total 21 066 individuals, we

believe our approach can still greatly facilitate the moni-

toring of West African colonies by reducing the analysis

time and improving the accuracy of the estimates. It fur-

thermore allows for the extraction of additional data

beyond ground-based field surveys, such as the location

of the detected birds, which can provide insights of small

changes in breeding location. Further work may focus on

two aspects: first, the improvement of the precision of the

model by introducing dedicated prediction classes for

other bird species present; and second the investigation of

the transferability to other ecosystems and scenarios. The

latter may require more training images from more

diverse ecosystems beyond the six islands and/or from

acquisitions in different seasons to make the model more

robust to data variations, but could pave the way for the

widespread adoption of (semi-) automated bird identifi-

cation with CNNs across censuses.

Author Contributions

The authors Benjamin Kellenberger, Thor Veen, Eelke Fol-

mer and Devis Tuia declare that they have all seen and

12 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

UAV Seabird Detection with Machine Learning B. Kellenberger et al.



approved the version of the manuscript submitted to Remote

Sensing in Ecology and Conservation. They also confirm that

the manuscript has not been submitted, or published, else-

where, in any way, and that it also is not in press or under

consideration for publication in another journal.

Acknowledgements

We thank Hanneke Dallmeijer, Jan Veen and Wim Mullié
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V.S., Lohmann, K.J. et al. (2019) A convolutional neural

network for detecting sea turtles in drone imagery. Methods

in Ecology and Evolution, 10(3), 345–355.
Gregory, R.D., Noble, D., Field, R., Marchant, J., Raven, M. &

Gibbons, D. (2003) Using birds as indicators of biodiversity.

Ornis Hungarica, 12(13), 11–24.
Hamilton, G., Corcoran, E., Denman, S., Hennekam, M.E. &

Koh, L.P. (2020) When you can’t see the koalas for the

trees: using drones and machine learning in complex

environments. Biological Conservation, 247, 108598.

He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual

learning for image recognition. In: Bajcsy, R., Li, F.-F. and

Tuytelaars, T., (Eds.) Computer vision and pattern

recognition. New York, NY: IEEE, pp. 770–778.

ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 13

B. Kellenberger et al. UAV Seabird Detection with Machine Learning

http://www.fao.org/3/i2389e/i2389e.pdf
http://www.fao.org/3/i2389e/i2389e.pdf


Hodgson, J.C., Baylis, S.M., Mott, R., Herrod, A. & Clarke,

R.H. (2016) Precision wildlife monitoring using unmanned

aerial vehicles. Scientific reports, 6(1), 1–7.
Hong, S.-J., Han, Y., Kim, S.-Y., Lee, A.-Y. & Kim, G. (2019)

Application of deep-learning methods to bird detection

using unmanned aerial vehicle imagery. Sensors, 19(7), 1651.

Huh, M., Agrawal, P. & Efros, A.A. (2016) What makes

ImageNet good for transfer learning? arXiv preprint

arXiv:1608.08614.
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