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Propositions

1. As opposed to metadata, there is no reason to supply RDF distributions
of data files.
(this thesis)

2. Minimum information standards are not only domain-dependent.
(this thesis)

3. Scientific journals should only publish articles when the
accompanying datasets adhere to the latest metadata standards in
their respective field.

4. Scientific communication with the public should be left to
professional communicators rather than researchers.

5. A proposition database would aid aspiring PhDs.

6. Impostor syndrome is made worse by the knowledge than
individuals perceived as more competent suffer from it as well.
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1
General introduction

The notion that scientific datasets are not treated as they should be is not new. As
early as 1991, Neches et al., 1991 discussed the limited scope of “knowledge bases”,
data fragmentation and the heterogeneity of knowledge representation formats, all of
which limit data reuse. They identified the need for data integration and interoperability,
as well as the potential of composite, multi-faceted datasets, which can enable more
powerful analyses, without resources being spent on generating new data. Since then,
this need has become even more imperative: the numbers of scientific datasets are
exploding (doubling every 12 months (Szalay and J. Gray, 2006)), but scientific output
simply cannot keep up (estimated to be doubling only every 9 years (Bornmann and
Mutz, 2015)). Similarly, interest in data reuse is also growing, as reflected in the number
of yearly publications around this topic (Figure 1.1).

Figure 1.1: A bar graph reflecting the increasing number of scientific articles published
each year with data reuse as one of the core topics discussed. It has been generated
based on metrics from the Web of Science, using the query TS=(”data reus*”), i.e. the
“data reus*” pattern is searched in the “topic” fields, which include the title, abstract,
author keywords and keywords generated based on the titles of cited articles.

Researchers are also generally open to the possibility of data reuse. In a recent
study inquiring about “Data sharing, management, use, and reuse”, over 85% of the
respondents indicated that they were willing to share data or reuse data collected
by others, provided it was easily accessible (Tenopir et al., 2011). Accessibility is a
key factor undermining not only sharing but also reproducibility according to 90% of
scientists in a 2016 survey (Baker, 2016). Indeed, datasets accompanying publications
have been found to become inaccessible at a rate of as much as 17% per year (Vines
et al., 2014); a different study shows that 80% of data is lost after 20 years (Gibney
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and Van Noorden, 2013). In practice, challenges arise because datasets are not readily
discoverable and researchers have issues understanding them and judging their suitability
for a research goal (due to insufficient documentation), as well as verifying their quality
(Curty et al., 2017).

Data reusability can be improved through better documentation and metadata
practices. A case study concluded that metadata is usually not readily available because
the original data producers could not foresee who might be able and willing to reuse their
datasets and therefore did not invest in submitting them to relevant repositories (Wallis
et al., 2013). On the other end, scientists have noted that they would have increased
confidence in data generated by others if it were accompanied by a) documentation
about its collection details and quality assurance methods, b) explicitly mentioned
metadata standards, and c) provided provenance information (Tenopir et al., 2020).
This is also a manifestation of the chicken-and-egg conundrum, as researchers need to
share data for others to be able to reuse it, but reuse requires the data to be already
shared (and a supporting infrastructure) in the first place.

The data landscape in plant phenotyping

The agricultural sciences are at the forefront of research crucial to the continued survival
of our species, tackling the challenge of providing for the nutritional needs of an ever
increasing population in shifting climates (Cakmak, 2002). Plant breeders have the
task of producing cultivars that can perform well and maintain their yield stability in
the face of environmental challenges (e.g. extreme climates, pathogens) by crossing
and hybridization, using the latest innovations in breeding techniques to speed up the
process and increase the efficiency of developing new cultivars.

The presented challenges with data sharing and reuse feature prominently in plant
research. A driver for reuse is the unique insight attainable only through analyses
exploiting multiple types of ˜omics data, for which there are multiple examples within
the agricultural sciences (Sielemann et al., 2020). Some ˜omics domains even have
established standards (such as MIAME for microarray data (Brazma et al., 2001), MIxS
for sequence data (Yilmaz et al., 2011), and MIAPE for proteomics data (C. F. Taylor
et al., 2007)) and community repositories (such as GenBank for genomics (Benson
et al., 2000), ArrayExpress for functional genomics (Brazma et al., 2003), MetaboLights
for metabolomics (Haug et al., 2013), and the NCBI Taxonomy (Federhen, 2012)),
which already facilitate discoverability and integration procedures.

In the domain of plant phenotyping (or phenomics), the path to establishing
a straightforward approach to data reuse is less clear. Plant phenotyping data is
heterogeneous to the same degree that the experiments that generate it have different
goals. Depending on the original goals, the experimental setups, management practices,
methods, and studied plant/crop species, the traits measured can vary wildly. The same
is true for data collection practices among researchers, who assemble datasets using
no particular specifications with respect to file format, syntax, shape or content, and
have no central community repository to deposit their datasets. Today, the landscape
is composed of many institutional databases that are hard (if not impossible) to
meaningfully integrate, and scattered files in local storage media, all contributing to
data inaccessibility. The situation for data reuse is also rather grim as these disorganized
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data stores are rarely accessible to and interpretable by third parties — or anyone other
than the original collectors, due to lack of metadata. Consequently, scientists spend
resources on generating new datasets instead of making full use of the existing ones.

For this reason, it is necessary to take steps toward improving the landscape of
data reuse within plant phenotyping and the domains connected to it. One aspect of
this revolves around the fact that plants have to be studied in the context of their
environment, which has motivated multi-location trials aimed at disentangling the effects
of genotype and environment on plant development (Millet et al., 2019). Another factor
exerting great pressure on the phenotypic data domain is the advent of automated
high-throughput, high-resolution technologies which drives the production of more
datasets at an even greater rate. To process the higher volumes of data we often rely
on prediction models that require training, which can greatly benefit from a higher
degree of dataset integration — for example with genomic selection (Spindel and S. R.
McCouch, 2016). Improving data management practices for these datasets will pave the
way for them to be reused in more large-scale meta-analyses and continue to contribute
to our understanding (Coppens et al., 2017). The broadly acknowledged aspects of
these data management practices revolve around metadata standardization and the
establishment/promotion of community repositories to host this data (D. Brown et al.,
2020; Fahlgren et al., 2015; Furbank and Tester, 2011; Pauli et al., 2016; Shakoor et al.,
2017; W. Yang et al., 2020).

Plant phenotypes are the products of their genes and the environments in which
they developed. This implies three types of data: phenotypic, genomic/genotypic and
environmental. Among the three, genomic and genotypic data are the most structured
and centralized thanks to repositories such as the European Nucleotide Archive (Leinonen
et al., 2010), the European Variation Archive (EBI, 2020) and Ensembl-Plants (Bolser
et al., 2016). Environmental data (e.g. weather conditions) is neither centralized, nor
does it have widespread standards. However, environmental characterization is only a
subset of the data collection process undertaken for some phenotyping experiments.
The state of the domain is shown on Figure 1.2.

A representative scenario without loss of generality is the following: A meta-analysis
investigates the response of developmental and agronomic traits of potato across a
multitude of locations, by analyzing a composite dataset (i.e. obtained from the
integration of multiple datasets). This yields better results than each of its component
datasets alone (Hurtado-Lopez, 2012). Hurtado-Lopez created a collection of data for
her doctoral thesis to garner insight into the identification of quantitative trait loci (QTLs)
and their trait associations in the CxE potato population (a diploid backcross population)
(Jacobs et al., 1995). This population has frequently been studied in the WUR Plant
Breeding department (Acharjee, 2013; Anithakumari, 2011; Carreño-Quintero, 2013;
B. C. Celis-Gamboa, 2002; Eck, 1995; Getahun, 2017; Hurtado-Lopez, 2012; Jongedijk,
1991; Kloosterman, 2006; Park, 2005; Tessema, 2017; Werij, 2011; Willemsen, 2018).
She performed multi-environment analyses studying QTL by environment interactions
and observed QTLs that were stable across these environments for multiple plant traits.
To do this, she incorporated weather data into her dataset, which enabled analyses
of developmental, morphological and agronomic traits across different environments.
Figure 1.3 shows the field trials that were considered in Hurtado-Lopez’s work, with
phenotypic and environmental data provided by partner institutes from older experiments
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Figure 1.2: A representation of the state of the landscape within the plant phenotypic
data domain. Data is found in institutional databases, online and local file collections.
There is no uniform nomenclature, structure or means of searching and obtaining data.

that had been conducted semi-independently, using the recommended guidelines of
Wageningen University & Research (WUR). The data for the QTL analysis were acquired
separately. Using this data, Hurtado-Lopez was able to establish a correlation between
potato traits and the photoperiod they were exposed to, which varied according to
latitude. For all of these analyses to be possible, it was necessary to ensure that the
datasets from the different field trials were indeed compatible (with respect to e.g.
experimental designs, management practices, plant trait observations). Part of this
process revolved around maintaining traceability for the different CxE genotypes across
the experiments, so they could be compared at later stages.

Over the years, researchers in WUR Plant Breeding have produced high volumes
and different types of data (e.g. phenotypic, genotypic, molecular) for the CxE potato
population (Figure 1.4). Experiments have taken place in different locations, on the
field and in vitro, and new genetic maps have been calculated as marker technologies
improved. The original (core) population has also been extended with seeds from the
original cross, and the number of genotypes has recently been expanded to over 1600
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(for fine mapping) , but otherwise the propagation of the material over time has been
clonal - i.e. the collection needs to run through a yearly maintenance cycle (planting,
propagation, harvest, storage). Given the sheer amount of human labour involved,
mix-ups related to the plant materials at various stages of that cycle were to be expected
(i.e. tubers were accidentally assigned incorrect labels; tubes with leaf material for
genotyping were switched in the lab). Resolving mix-ups was done by re-genotyping
clones and comparing the pattern to the original data. Such analysis provides additional
insight on the trustability of a given clone, which is relevant as an additional layer of
metadata and should be included in meta-analyses of the population. As such errors
cannot be prevented, it is crucial to use this metadata to maintain the traceability of
the materials, preserve the results and the methods of analyses that uncovered the
errors in the first place and ensure reproducibility and continuity.

The FAIR data principles

The FAIR data principles state that data should be Findable, Accessible, Interoperable
and Reusable, and are a set of domain-agnostic guidelines that data should abide
by in order to be more suitable for reuse (Wilkinson et al., 2016). In essence, FAIR
data should be self-documenting and understandable to both humans and machines,
enabling software to process it with minimal human intervention. The general sentiment
behind the principles is not new, with a previous rendition of the same spirit having
appeared as recently as 2014 in the shape of “Ten simple rules for the care and feeding
of scientific data” (Goodman et al., 2014). But this more concrete, equally human-
and machine-centric manifestation has earned international praise and, unlike previous
attempts, the FAIR principles have been gaining support and widespread popularity.
Their main points are described as follows.

Figure 1.3: An overview of the locations where experiments have been conducted
using the CxE population. The different latitudes mean that the photoperiods differ,
affecting the plant traits (among other things).
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Figure 1.4: A partial overview of experiments, people involved and marker maps using
the CxE population, as found in WUR Plant Breeding (adapted from P. Hendrickx’s
illustration). Data from each field experiment has been analyzed by different people, with
Hurtado-Lopez bringing multiple datasets together for a composite analysis. Various
types of marker maps with different marker sets have been produced by different
researchers over the years. The CxE population has 3 mains sets. The traits evaluated
for each field experiment varied as well. The theses mentioned in the illustration are:
Acharjee, 2013; Anithakumari, 2011; Carreño-Quintero, 2013; B. C. Celis-Gamboa,
2002; Eck, 1995; Getahun, 2017; Hurtado-Lopez, 2012; Jongedijk, 1991; Kloosterman,
2006; Park, 2005; Tessema, 2017; Werij, 2011; Willemsen, 2018. Other relevant work
includes Eck et al., 1995; Hurtado-Lopez et al., 2015; Kloosterman et al., 2013.
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Findability is achieved with the attribution of unique, persistent identifiers to data.
With the same being done to metadata, connections can be drawn between data points
and their descriptors. These identifiers also enable unambiguous indexing in searchable
data repositories, where users can be directed to best locate datasets relevant to their
interests. Such repositories can then build federations.

Accessibility comes with the use of free, open protocols that allow (meta)data
retrieval and authentication, and the persistence of metadata even when the data is no
longer present. It is important to note that accessibility is not the same as openness, and
that FAIR specifically makes the case that some data (e.g. related to human health) can
and should remain private, or be selectively available through proper channels described
in the metadata. Ultimately this decision should be up to the data owner.

For interoperability, the (meta)data should be presented in formats dictated in
each discipline, so that humans and workflows can interact with it. Interoperability
additionally has a contextual dimension, as specific connections (with unique identifiers)
to other (meta)data not only enhance the descriptions, but can also be crucial for
outlining dependencies between datasets that are crucial for interpretation.

Finally, for reusability, the data should be accompanied by clear conditions for its
reuse (license) and adhere to domain-relevant community standards. Such standards
include descriptions of data provenance and the procedures behind data generation, to
reduce the likelihood that data will fail to meet the documentation requirements in
a given field and delineate descriptions of datasets in a way that is suitable for both
machines and humans (since one knows exactly where to look to find the value of an
attribute). Reusability without findability and accessibility is not possible since one
needs to be aware of the existence of a dataset, its location and its content in order to
reuse it. Interoperability can also be necessary from the perspective of contextualization,
but moreover it can also provide tremendous advantages as far as data integration is
concerned.

It is important to mark the differences between the FAIR data principles and
standards. As opposed to the latter, the FAIR principles have no single proposed
implementation; in fact, it lacks any kind of technical specification. It is up to each
community and data provider to determine what FAIR should translate to for their
particular case and implement it as they see fit. However, intra- and inter-community
alignment is not optional, as there should be a consensus on the metadata and the
way that it is to be communicated. Another point that commonly causes confusion is
the openness of the data, which FAIR actually makes no statement about: data can
be FAIR and not publicly available itself, though the metadata should be (as specified
under Accessibility).

Concepts behind FAIR

Some particular terms related to FAIR are central to this work and are therefore
introduced below in greater detail.

� Metadata: A set of data attributes that give information about another data
point. In a relational database, a row in a table is often about a single data
point with the key establishing its identity, and other columns either describing
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its attributes (metadata), or connecting it to other rows, in the same table or
otherwise.

Depending on one’s domain and perspective, the same piece of information could
be either data or metadata.

� Identifiers: In the context of FAIR, (meta)data identifiers have to be persistent
and globally unique. Both conditions ensure not only that references to a
(meta)data point are and remain valid but also that there is no ambiguity, as
a single identifier always represents the same thing. More familiar examples of
persistent, unique identifiers are DOIs and ORCIDs. Often, public repositories may
also assign identifiers to their resources — not to be mixed up with regular URIs,
which have no guarantee of persistence. An example of a scientific repository that
attributes persistent identifiers is UniProt, where the Beta-carotene 3-hydroxylase
1 protein in Arabidopsis thaliana is represented by the identifier https://www.
uniprot.org/uniprot/Q9SZZ8.

� Ontologies and controlled vocabularies: A controlled vocabulary is a list
of specifically selected terms, each carrying a specific meaning in its context,
that is used to resolve ambiguity, power search systems and provide machine
understanding. Ontologies can go several steps beyond controlled vocabularies to
support reasoning while requiring more formalization but, simply put, they can
also model relationships, restrictions and axioms between terms. Both ontologies
and controlled vocabularies (should) represent a consensus in a community, and
perhaps an authority governing them.

� Machine readability: The FAIR principles promote machine actionability, which
is a significant step toward automatic data discovery, interoperability and reuse
given the large numbers of datasets and data volumes that are being generated.
Machine readability is only part of that, and does not imply the existence of
any infrastructure surrounding FAIR data as, for example, an indexing/search
mechanism would for discoverability. FAIR cannot exist without the provision of
machine-readable metadata. In order for a machine to be able to meaningfully read
and “make sense” of metadata attributes, they need to adhere to expectations set
by the community. By “make sense” we mean that a machine should be able to
understand the significance of the metadata and make informed choices about the
best way to use the data. Ontologies are a means by which to support machine
readability, as the meanings defined inside are very specific, though use of an
ontology does not automatically render a dataset/metadata machine readable.
A simple example would be the definition of the steps and access protocols that
can be used to retrieve a dataset, as described by its metadata.

� Linked data: The concept of linked data is closely connected to FAIR, though
neither requires the other. Linked data refers to publishing structured data
online and connecting it to other data. Just like FAIR, linked data relies on
the use of unique persistent identifiers (URIs, more specifically) which can be
dereferenced (resolved) and thereby provide information about the entities they
have been assigned to. The (meta)data having a structure means that, unlike
natural language content which is only intended for humans, it is suitable for
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Subject Standards Databases

biology 691 1009

agriculture 70 77

omics 104 318

genetics 66 183

molecular genetics 17 52

genomics 64 249

Table 1.1: The table holds numbers retrieved from the FAIRsharing repository (Sansone
et al., 2019) indicating the number of standards and datasets in domains related to
plant breeding (retrieved on February 26, 2021).

machine consumption. The Resource Description Framework (RDF) and its
implementations are commonly used to express linked data in a structure that
resembles a graph, where different entities (referred to by their URIs) represent
the nodes, and the relationships between them, i.e. the “links” of linked data,
mark the edges (W3C, 2020b).

FAIR in plant phenotyping

Better adherence to the FAIR data principles could improve the landscape of data man-
agement in plant phenotyping and empower researchers to do more with fewer resources,
while preserving the integrity of datasets and supporting experimental reproducibility.
As mentioned, the root of most of the current issues lies with the vast heterogeneity,
decentralized data storage and ambiguous documentation practices within the field, all
of which are directly addressed by the FAIR principles. Table 1.1 presents the numbers
of standards and databases in domains related to plant breeding, as retrieved from the
FAIRsharing repository (Sansone et al., 2019). The numbers for databases range from
a few dozen to a few hundred for some domains, and the dozens of standards reported
for each of these domains indicates that integrative approaches (for querying, data
retrieval and processing) would be a demanding task in such a complicated landscape.
An non-exhaustive list of prominent databases relevant to plant breeding in general, and
to potato as a more specific example, can be seen in Table 1.2. A general overview of
the principles proposed to alleviate this situation follows, with specific contexts for the
plant phenotyping domain and the applicability of the principles in it.

� Findability: The results of phenotyping experiments are housed in institutional
databases, locally and as online files accompanying publications. All of these
would benefit from a uniform method of broadcasting the information they hold,
even if the data points themselves are not readily available. Attributes such as
identification of plant material (e.g. species, accessions, genotypes) involved and
the plant traits observed would be great starting points for introducing searchability.
As it stands, one has to navigate different access portals and be confronted with
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Database Reference Content

G
en

er
a

l

NCBI Taxonomy Federhen, 2012
organism names and
taxonomic lineages

GenBank Benson et al., 2000
publicly available DNA
sequences

Ensembl Plants Bolser et al., 2016
genome sequence, gene
models, functional annotation,
and polymorphic loci

UniProt Bairoch et al., 2005
protein sequence and
functional information

European Nucleotide
Archive (ENA)

Leinonen et al., 2010 nucleotide sequences

ArrayExpress Brazma et al., 2003 functional genomics data

European Variation
Archive (EVA)

https:

//www.ebi.ac.uk/eva/
genetic variation data

Sol Genomics Network L. A. Mueller et al., 2005
phenotypic, genotypic,
genomic data for Solanaceae
species

The Arabidopsis
Information Resource
(TAIR)

Huala et al., 2001
genetic and molecular biology
data for Arabidopsis thaliana

T-DNA Express
http://signal.salk.edu/

cgi-bin/tdnaexpress

Arabidopsis t-DNA insertion
mapping tool

Expression Atlas Papatheodorou et al., 2018
gene and protein expression
data

KEGG PATHWAY
Database

Kanehisa et al., 2004
diagrams of molecular
interactions, reactions and
relations

P
o

ta
to

-s
p

ec
ifi

c

Spud DB Hirsch et al., 2014
potato genome browser and
tools

European Cultivated
Potato Database
(ECPD)

http:

//www.europotato.org/
potato variety descriptions

Potato Variety
Database

http:

//varieties.ahdb.org.uk/
potato variety descriptions

Eastern Potato Variety
Development Database

Clough et al., 2010 potato variety descriptions

Potato Pedigree
Database

Van Berloo et al., 2007 potato pedigree data

PoMaMo Meyer et al., 2005 potato genome data

Table 1.2: The top of table lists online databases and resources that are commonly
used in the plant breeding domain. The bottom of the table list resources that, in
addition to the previous ones, are especially useful in potato breeding. Both lists are
non-exhaustive and only presented as an example of the heterogeneity in the plant
domain.
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disharmonious nomenclature to hopefully find a piece of information that may
interest them, which can be very resource and time intensive.

� Accessibility: Different plant-related databases and other file storage systems
each require a unique approach to navigate. Meanwhile scientific publications often
point to datasets that have been rendered inaccessible due to lack of maintenance,
privacy concerns, or poor interactions with the original providers. Even when
desired datasets are obtainable, many of them lack metadata definitions, which
diminishes their usefulness.

� Interoperability: The integration of data from different sources is almost always
obstructed by syntax and file format variation, but unresolvable issues can also
arise due to complexities in data modeling, i.e. lack of clarity in meaning for
machines as well as humans. Data and workflows are, as a result, impossible
to reconcile and connect. Some attributes of phenotypic datasets additionally
have close ties to other domains. For example, genotype identifiers can be used
for drawing connections to genomic/genotypic data and the locations of field
experiments can be used for the discovery of relevant environmental datasets
(weather, soil). Intra- and inter-domain interoperability require close contact
between communities, making it all the more challenging.

� Reusability: Plant phenotyping data is difficult to reconcile into a single model.
This is aggravated by general dissent in the community about acceptable ways to
manage and communicate data, depending on the specific goals and context of a
project. Development of the necessary “domain-relevant community standards”
would be a significant first step to address this.

Plant resources to support FAIR

Each domain needs to make different accommodations to promote the FAIR princi-
ples. Reusability in particular relies on “domain-relevant community standards”, and
interoperability requires “vocabularies that follow FAIR principles”.

In plant phenotyping, a number of steps have already been taken to help the
community advance toward the adoption of these principles:

� MIAPPE (1.0) aims to guide researchers in their efforts to document plant
phenotyping experiments (Krajewski et al., 2015). It has been composed as a
checklist, with each of its sections listing an aspect of an experiment and related
attributes, e.g. general metadata, environment, experimental design, observed
variables and biosource. Additionally, this checklist includes recommended on-
tologies that can be used to enrich the description of these attributes. To give
it a concrete format for better computer readability, an implementation in the
ISA-Tab format has also been proposed (Ćwiek-Kupczyńska et al., 2016).

� Ontologies: The community has been producing controlled vocabularies and
more intricate ontologies to model plant knowledge. Some of the most prominent
ones are:
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– The Crop Ontology, which spans several species-specific ontologies, with
each listing plant variables that are commonly observed in the plant in
question (R. Shrestha et al., 2012). Each variable is modeled as a triple
consisting of a trait, a method and a scale.

– The Plant Trait Ontology, which takes the opposite approach to modeling
plant variables. Instead of focusing on plants first, it places plant traits
at the top and categorizes them, independently of their species (Arnaud
et al., 2012). It proposes an alternative model where a plant phenotype is
composed of the plant trait, the plant anatomical entity that was the target
of the observation, and a value.

– The Plant Ontology, which models the morphology and anatomical struc-
ture of plants (Jaiswal et al., 2005). It presents a complex hierarchy,
interrelating terms on multiple levels and including genetic associations.

The plant community has clearly made the first steps toward standardizing aspects
of its data complexity, both terminologically and methodologically. MIAPPE
1.0 has been a great step forward, and successfully covers the aspects of an
experiment that should be documented. However, this documentation is still in
need of disambiguation, in particular with respect to its underlying data model.
Without this in place, different interpretations can be given to every MIAPPE
component and the connections drawn between them. Furthermore, even when
the ontologies that do exist already cover their particular domains well, it is
necessary to establish a means of connecting them to draw a more complete
picture — otherwise the isolated components are of limited use. Other than
MIAPPE, the individual ontologies/controlled vocabularies also need to be the
target of further community-based development, so that they may cover a broader
scope of plant traits, morphology, anatomy and experimental design elements.

The potential of FAIR plant data

If the plant community advanced in implementing the FAIR data principles there
would be benefits to research longevity and reproducibility as well as knowledge gains
from resources that would have otherwise either remained obscured or required heavy
investment to access. (Meta)data should be accessible and understandable to both
humans and machines, with the latter being crucial for the effective handling of high
volumes of data.

Currently, research published in journals targets exclusively human readers. Often, an
effort is made on the author’s part to present the process that led to their experimental
results. However, due to individual documentation practices, another effort has to be
made separately on the reader’s part to interpret it. Although traditional search engines
and journal databases can direct users to publications that may fit one or two of their
search criteria, they cannot account for the complexity inherent in the domain and
represented by differing experimental goals. Institutional databases, as structured data
sources, are individually easier to look into. However, collectively, the task also requires
significant effort, and should results be found in different databases, harmonizing them
for common reuse is as laborious as parsing publications, evaluating the materials and

21



1
General introduction

methods sections for suitability, and tracking down the actual data independently. For
humans, organized metadata would at least facilitate understandability and reduce
the number of datasets that would otherwise be deemed un-reusable due to a lack of
information or datasets incorrectly deemed suitable for reuse.

Machine readability is no substitute for human readability, but it can offer a dramatic
acceleration of every stage of data handling. Machine-readable metadata can be indexed
and referenced by central community registries. With a powerful model to support
metadata, information systems could respond to complex queries and act as a one-
stop-shop for users. Moreover, data that is easy to integrate would be much more
attractive, allowing researchers to spend more time investigating their hypotheses and
less on inspecting provider-specific data syntaxes and formats. Tracking down contacts
based on publications to simply request the data (or maybe not even acquire it) only to
discover that it is not usable, due to its shape or experimental parameters, would be an
issue of the past.

Making resources FAIR

The ideal, fully FAIR scenario for any kind of data is clearly far removed from the
current reality. It is important to note that being FAIR is not a binary state, but rather
a gradient with each step a significant improvement on the last. Across communities,
there are general steps that can be taken to make resources FAIR (Jacobsen et al.,
2020). Improving data management and metadata practices is an investment that will
only obviously start paying off after a critical mass of adopters has been reached. Until
then, the process holds more subtle, yet nevertheless important, benefits such as better
data visibility, citability and credit attribution, which could incentivize reuse (Pierce
et al., 2019).

The investment required is generally higher when it comes to historical data. This
is in part due to the generally poorer documentation practices of the past, especially
because emerging standards now require the specification of attributes that were
previously not considered important in the domain and were therefore never recorded.
The process of making an existing dataset FAIR can be a daunting task even when
it is relatively recent, as the volume of metadata annotations that have to be made
can be considerable if documentation has not been an ongoing effort. Observing good
(meta)data management practices for datasets from the conception of an experiment is
simpler, and can therefore lead to better results.

A FAIR example: the Personal Health Train

The FAIR data principles have already guided an application in the medical domain, the
Personal Health Train (PHT). It successfully demonstrates how the FAIR principles can
promote data integration and reuse (Beyan et al., 2020). While the question of data
accessibility exists in every domain of science and business, in this case confidentiality is
of particular concern given the sensitive nature of patient data and legislation surrounding
it. Because of this, medical institutes have been reluctant to share their datasets outside
their infrastructure and internally resort to duplication of the multimodal datasets they
receive. Duplication is an easier solution, since no concrete integrative modeling is

22



1

Chapter 1

required for highly heterogeneous medical data, but at the same time it limits the
linkability of records and hinders further analysis.

To overcome this issue, the PHT application has been proposed. Instead of opposing
the distributed, heterogeneous nature of the domain, it embraces it, ensuring that data
providers can assert full control over what is shared and with whom. This is achieved
by sharing not the original datasets, but the results of specified, transparently auditable
operations. This is achieved through data trains, which carry data operation requests.
They are dispatched, matched to relevant data stations, and directed there, where their
queries are audited by mechanisms defined by the data owners. The operations, if
approved, are carried out, and the results returned with no personal information (Deist
et al., 2020; Shi et al., 2019).

As far as architecture is concerned, the PHT comprises three main components:
the station, the train and the track, each displaying multiple facets of FAIR. In short,
the data provider hosts a station holding data and metadata descriptions, and ensures
it is discoverable while also providing computational resources that can be exploited
by trains. The train holds the (potentially distributed) question that an interested
party may ask and has its own unique identifier and metadata. Finally, the track is the
component that connects the other two, and restricts who is authorized to do what,
directing trains (questions) to suitable stations based on their metadata and resources,
respectively, and aggregating the results of multiple routes before transmitting them
back to the train dispatcher. This modular architecture ensures that the station owners
can control how and by whom data can be used while the track ensures that a train is
directed to all stations that can accept it so that the user (who dispatched the train)
can get a full response.

Currently, the PHT is the most prominent FAIR-based application. It is already
in use and its privacy-shielding, integration-minded infrastructure is proving useful to
researchers within the medical domain.

The Farm Data Train

Instead of duplicating efforts toward a FAIR data infrastructure, the plant community
can learn from the progress in the medical domain when it comes to data management,
specifically from the PHT. A parallel ambition is therefore the Farm Data Train (FDT)
(1) , which could connect plant data providers to facilitate better resource exploitation
(Finkers, 2018). The sets of interested stakeholders include: farmers, who want to
be informed of the best choices and options for their own enterprises; equipment
manufacturers, who provide their services for agricultural operations; and researchers
who are involved in investigations related to biology, food processes, economics and
more. The scope of data that the FDT would transport extends far beyond the domain
of plant phenotyping, and includes all types of ˜omics data) over the chain from breeder,
producer, processor, retail, to consumer. However, as phenotypic data is so central of
a data source and challenging to work with, it is the first major hindrance that needs
to be overcome for meaningful data standardization and human as well as machine
intelligibility.

The needs for data discovery and acquisition are not too different between the

(1)https://www.youtube.com/watch?v=lMZs5cb3pC8
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two contexts. For the FDT and the PHT alike, stations need to maintain records of
their metadata that can be paired with requests from incoming trains with the help of
tracks. Farmers and researchers, much like medical data providers, should be able to
inspect the data queries directed to their data stores and maintain the right to refuse
requests. The types of data integration may differ between the two cases. For example,
plant genotypes may be observed in different environments where they need to be
tracked, so the dimension of confidentiality for plant identities may be discussed in a
different light since it is a central component of integration. Plant data is also more
commonly associated with environmental information, coming in from weather stations,
soil databases, satellites and drones. Investigations around crop yield stability, for
example, call for the integration of data from multi-environment trials by necessity. This
stands in contrast to the medical domain, where data trains may gain useful insights
from analyzing the response returned from perhaps even a single station, provided that
a usable dataset has been discovered. Another difference that makes the use of the FDT
infrastructure imperative is the high number of stakeholders (e.g. farmers) that would
want to make use of such data, and therefore need a robust mechanism to achieve high
discoverability and transparency.

The needs for data processing may vary; both human and plant genomics both use
extensive datasets that require significant computer resources. However, plant genomic
datasets are often not as strictly guarded as their human counterparts, and therefore
the researcher posing the question may wish, or be forced to, undertake the computing
load in lieu of the data station. In that respect, for the FDT, it often makes less sense
to bring the processing to the station and return only the results. Overall, however, this
infrastructure can clearly aid integration and reuse in both domains.

A step toward FAIR scientific literature

Heterogeneous databases and local files generally cannot skip a data transformation
stage before they can be reused because they lack standardization. Still, utilizing such
resources is much more efficient than diving into literature to assemble a corpus of
information and determine future steps. The essential difference here is that, while all
are textual, databases and more generally data files are structured information, whereas
literature is not, as it is intended to be consumed exclusively by humans.

The intention behind the FAIR principles is to provide an answer to the high-speed,
high-volume research environments in this era of big, fragmented data. Scientific
publications should have a place in this answer as they report cutting-edge discoveries
and collectively compose a landscape that is more powerful than any of its constituents.
To combine FAIR and publications, the first step would be to make the information
obscured in unstructured text somehow available in a computer-readable format. The
steps that follow this structurization would be similar to the ones recommended for any
other type of dataset found within the domain.

Building towards FAIR plant data: Scope of this thesis

The FAIR data principles require, for each domain that follows them, conventions upon
which the respective communities agree. In plant phenotyping, the foundations have
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been laid with the establishment of the MIAPPE metadata standard, which serves as a
checklist for researchers, and ontologies. In this thesis, we build toward making plant
phenotyping data FAIR and explore the application and potential of the principles within
the domain.

This effort revolves around improving the means for data exchange between plant
databases, improving metadata standards and connecting existing resources. This marks
a step toward all aspects of the FAIR principles, thereby bringing us closer to a scenario
where phenotypic datasets can be readily discovered, acquired and integrated, even
potentially with data outside of the plant domain. Data integration can enable more
powerful meta-analyses and through reuse increase the efficiency of the scientific process
by reducing the need for new experiments and increasing reproducibility.

Chapter 2 builds upon the existing MIAPPE standard, elevating it above a flat
checklist and improving aspects with two core goals in mind: increasing the scope of
phenotyping studies that can be supported and boosting its compliance to the FAIR
principles. To ensure machine readability, we provide an ontology that specifies the
semantic model of MIAPPE and can be used to implement it, in addition to BrAPI and
the popular ISA-Tab data format.

Chapter 3 presents the plant Breeding API (BrAPI). Phenotyping data plays a
central role in breeding applications but the fragmented global landscape of databases
presents challenges when it comes to data integration. BrAPI aims to bridge the
content-, structure- and syntax-related chasm between these databases by providing a
common data exchange format.

Chapter 4 follows the process of making FAIR a phenotyping dataset that has been
used in previous studies and demonstrates its use for a simple data integration scenario.
We identify core challenges and points where MIAPPE compliance could indeed help with
both the preservation and the findability of essential metadata. The dataset in question
is part of what was used in Hurtado-Lopez’s doctoral thesis (Hurtado-Lopez, 2012), and
comprises the relevant data from five independently conducted phenotypic experiments
revolving around the CxE potato population. The data integration in this set requires a
second component, environmental data corresponding to those experiments, to draw
connections between the genotypes and their phenotypic responses to environmental
conditions. Finally, we demonstrate how standardized (meta)data can be an asset to
experimental replicability and transparency.

Chapter 5 explores scientific literature as a treasure trove of unstructured (and
therefore machine-inaccessible) information. Though literature may be accessible to
researchers, keeping up with all new publications and contextualizing recent findings is a
time-consuming task. To alleviate some of the mental load required on the researchers’
part, we explore knowledge networks from scientific articles constructed with NLP
methods, and retrospectively demonstrate that such networks can be used to reduce the
time between the publication and constructive utilization of data. This example is based
on literature around the flesh color of potato as a trait and its genetic associations.

Chapter 6 takes a look back and discusses the recent steps that have been taken
toward making plant phenotyping data FAIR and the implications for the future of the
domain and plant scientists.
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Ricardo Raḿırez-Gonzalez17, Jochen C. Reif3, Philippe Rocca-Serra18, Susanna-Assunta
Sansone18, Uwe Scholz3, François Tardieu19, Cristobal Uauy17, Björn Usadel15,20,
Richard G.F. Visser1, Stephan Weise3, Paul J. Kersey21, Célia Miguel6,11, Anne-Françoise
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6Instituto de Tecnologia Qúımica e Biológica António Xavier, Universidade Nova de
Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
7Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
8Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolo-
giepark 71, 9052 Ghent, Belgium
9VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
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Abstract

� Enabling data reuse and knowledge discovery is increasingly critical in mod-
ern science, and requires an effort towards standardising data publication
practices. This is particularly challenging in the plant phenotyping domain,
due to its complexity and heterogeneity.

� We have produced the MIAPPE 1.1 release, which enhances the existing
MIAPPE standard in coverage, to support perennial plants, in structure,
through an explicit data model, and in clarity, through definitions and
examples.

� We evaluated MIAPPE 1.1 by using it to express several heterogeneous
phenotyping experiments in a range of different formats, to demonstrate its
applicability and the interoperability between the various implementations.
Furthermore, the extended coverage is demonstrated by the fact that one of
the datasets could not have been described under MIAPPE 1.0.

� MIAPPE 1.1 marks a major step towards enabling plant phenotyping data
reusability, thanks to its extended coverage, and especially the formalisation
of its data model, which facilitates its implementation in different formats.
Community feedback has been critical to this development, and will be a
key part of ensuring adoption of the standard.
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Introduction

The volume of data being generated in the life sciences demands good data management
practices to enable reusability. While it is common practice to publish standardised
sequencing data in public repositories, other data types are often only made available
through scientific publications, and can be hard to find (Vines et al., 2014), interpret
or reuse. In a survey with over a 1000 participants, more than half agreed that lack
of access to data is a ‘major impediment to progress in science’ and ‘has restricted
their ability to answer scientific questions’, and most pointed out that data may easily
be misinterpreted due to its complexity or poor quality (Tenopir et al., 2011). In
the plant phenotyping domain, data reuse is both pressing and challenging (Ćwiek-
Kupczyńska, 2018; Spindel and S. R. McCouch, 2016; Tardieu et al., 2017). On
the one hand, the development of automated high-throughput and high-resolution
technologies has contributed to a scale-up in the number, complexity and size of
plant phenotyping datasets. This has been amplified by the increasing number of
long-term, highly multilocal phenotyping networks aiming to decipher the interaction
between genotype and environment (Millet et al., 2019). Conversely, the reuse and
meta-analyses of phenotyping data are particularly challenging due to the heterogeneity
of this domain that encompasses many types of experimental sites (field, glasshouse,
controlled environment), plants (crops, forest trees), collected data (images, physical
measurements, chemical assays, molecular biology assays), and experimental designs
(factors being tested, timing, field layouts, etc.). Furthermore, plant phenotype hinges
not only on the interaction between genotype and environment, but also developmental
stage and epigenome status (King et al., 2010), which raises the challenges of integrating
genotypic and phenotypic data (Pommier et al., 2019b).

A successful example of data reuse in this domain is the study by Hurtado-Lopez,
2012, who reused field trial datasets and integrated them with quantitative trait locus
(QTL) data to yield novel insights into genotype by environment (GxE) interactions in
potato. Because the original experimental data followed no standardisation guidelines,
the authors had to manually assemble detailed metadata during the preprocessing of the
data from descriptions in unstructured text. To facilitate such studies, so that they may
become the norm rather than the exception, it is essential that the scientific community
adopt good data management and publication practices (Zamir, 2013).

The requirements for data reuse in science have been formalised in the FAIR data
principles (Wilkinson et al., 2016). They state the criteria that scientific data must fulfil
to be findable, accessible, interoperable and reusable by both humans and machines,
which hinge on having rich, harmonised, machine-readable, high-quality metadata
describing the data as explicitly and objectively as possible.

Four key components are needed from research communities to meet these require-
ments: metadata standards which list the fields required for interpreting the data from
a given experimental domain; machine-readable (meta)data exchange formats in which
to express and share the (meta)data; ontologies or controlled vocabularies to describe
(meta)data values and ensure that they are objective, consistent and unambiguous
across datasets; and searchable data repositories with a well-established protocol for
machine access.

The need for a metadata standard was first recognised in the life sciences by
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the microarray community, who developed MIAME (Minimum Information About a
Microarray Experiment) (Brazma et al., 2001). This was soon followed by similar
standards for other domains (e.g. Field et al., 2008; Bustin et al., 2009; Lapatas
et al., 2015) as can be seen on FAIRsharing (Sansone et al., 2019). In the plant
phenotyping domain, the need for metadata to document experiments was initially
addressed independently by the developers of phenotyping databases, such as BreedBase
(BreedBase team, 2020), GnpIS (Steinbach et al., 2013), (PIPPA team, 2020) and Plant
Hybrid Information System (PHIS) (Neveu et al., 2019), which resulted in a multitude of
implicit, often database-specific standards. However, the need for an explicit consensus
to enable interoperability between these databases brought this community together to
develop MIAPPE (Minimum Information About a Plant Phenotyping Experiment), the
first and so far only community metadata standard for the plant phenotyping domain
Krajewski et al., 2015.

MIAPPE had three guiding principles: to minimise the chance of a researcher
missing important information in the documentation of an experiment; to support
the annotation of content with community-relevant vocabularies; and to promote a
data format implementation. MIAPPE marked a critical step towards the FAIRness of
plant phenotyping data, as concluded in a survey of c. 50 citations of this standard in
publications and web portals (Krajewski and Ćwiek-Kupczyńska, 2020). However, there
were aspects to improve, such as the coverage, usability and clarity of the standard. In
particular, MIAPPE lacked fields needed to capture experiments with woody plants,
as it was conceived primarily with crop plants in mind, and it lacked an explicit data
model, which left some researchers struggling to understand how to represent their
experiments.

The microarray community was again among the first to produce a machine-readable
(meta)data exchange format in the form of MAGE-Tab (MicroArray Gene Expression
tabular) (Rayner et al., 2006), a standardised format for MIAME. This gave rise to the
broader-purpose ISA-Tab (Investigation/Study/Assay tab-delimited) format (Rocca-
Serra et al., 2010; Sansone et al., 2012), which was adopted by more domains, including
plant phenotyping, with an ISA-Tab implementation of MIAPPE (Ćwiek-Kupczyńska
et al., 2016)

The use of ontologies and controlled vocabularies in the life sciences dates back to
Linnaeus’s taxonomy, but they have witnessed a more recent boom after the creation of
the Gene Ontology (The Gene Ontology Consortium, 2019), and currently number in
the several hundred, as seen on BioPortal (Noy et al., 2009). For the plant phenotyping
domain, there are a number of ontologies that cover different key aspects. The Crop
Ontology (R. Shrestha et al., 2012) models plant traits and methods for assessing them
in several species-specific ontologies. It merits special reference, in that it aims at
standardising the methods used by data producers for phenotyping and the way they
are reported, rather than only at terminological standardisation. It therefore includes an
implicit metadata standard, the trait-method-scale trio, which was incorporated into
MIAPPE. The Planteome project (Cooper et al., 2018) developed three key ontologies:
the Plant Trait Ontology (Arnaud et al., 2012) modelling species-independent plant
traits under a broader scope than the Crop Ontology and serving as a reference ontology
for multispecies analyses; the Plant Ontology (Jaiswal et al., 2005) covering plant
anatomical structures and development stages and enabling interplant comparisons;
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and the Plant Experimental Conditions Ontology (Cooper et al., 2018) describing
plant treatments. In addition to these, relevant ontologies include: the Agronomy
Ontology (Aubert et al., 2017) covering agronomic practices, techniques and variables;
the Environment Ontology (Buttigieg et al., 2013) describing natural environments;
and the Statistics Ontology (Statistics Ontology Project, 2020) devoted to statistical
methods. All these ontologies and several others are indexed in AgroPortal (Jonquet
et al., 2018) which serves as the reference repository and search service for plant-related
ontologies.

Finally, while searchable data repositories have long been the norm in the life sciences,
especially concerning gene and protein data, only in the last decade has it become
common practice to enable machine access to their data via application programming
interfaces (APIs). Currently all major databases, such as GenBank (Benson et al., 2000)
or UniProt (The UniProt Consortium, 2019), provide such access, but most smaller
databases do not. This was the case for the plant phenotyping domain up until recently,
with its numerous, independent and heterogeneous local databases. To address this
problem and enable interoperability between databases, the plant community undertook
the development of the Breeding API (BrAPI) (Selby et al., 2019), a common API
for data search and retrieval that can be implemented by plant breeding databases
irrespective of their internal data model. Like the databases it aims to connect, BrAPI
also has an implicit (meta)data model that aims to reconcile the metadata available in
existing databases, spanning organisational metadata, plant phenotypic (meta)data and
genotypic (meta)data. BrAPI was initiated independently from MIAPPE, so while there
is substantial overlap between the two resources, there are also a few key differences in
their metadata fields, as well as differences in terminology.

The way forward for enabling FAIR plant phenotyping data lies in bringing together
all of the components described above. MIAPPE would be the cornerstone of such an
architecture, specifying the metadata that is needed and connecting metadata fields
to the ontologies recommended to fill them, as well as reconciling the several implicit
metadata models of existing knowledge resources. BrAPI would serve as the means for
federating the many independent plant phenotyping databases to enable findability and
accessibility, and should enforce and validate the MIAPPE compliance of datasets. The
MIAPPE ISA-Tab implementation would support data publication and exchange. And
potentially all of the ontologies listed above would play a role in describing the data
and metadata of plant phenotyping experiments in a standardised and unambiguous
way. However, it is clear that further development effort on these resources is needed
to attain such a goal.

In this paper, we detail the efforts of an international consortium to enhance the
MIAPPE standard towards enabling FAIR plant phenotyping data. We describe the
following refinements: (i) the extension of MIAPPE to accommodate a wider range of
use cases (including those relevant to perennial and woody plants); (ii) the specification
of a data model underlying the standard, to facilitate its interpretation and usage;
(iii) the formalisation of MIAPPE in a computer-interpretable format (using the Web
Ontology Language, OWL) to enable dataset validation and computational analysis; and
(iv) the alignment of MIAPPE and BrAPI to enable the exposure of MIAPPE-compliant
datasets via BrAPI endpoints.
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Materials and Methods

Development of MIAPPE 1.1

To take on the challenge of improving MIAPPE, the community gathered both life
and computer scientists. The former drove the documentation and description of the
standard, ensuring that the terms and definitions are meaningful and not purely technical.
The latter took the initiative for the technical aspects, involving data formalisation,
organisation, integration, sharing and interoperability. This ongoing partnership ensures
that MIAPPE bridges the domains of life and data science and addresses the needs of
both communities.

The development of MIAPPE 1.1 was carried out collaboratively using simple and
efficient protocols and format (spreadsheet). Throughout the process, drafts were
presented and discussed with the international community through consultations by
emails, the MIAPPE consortium GitHub issue tracker (MIAPPE contributors, 2020a)
and during ‘bring your own data’ training sessions.

Like its predecessor, MIAPPE 1.1 is a metadata standard that formally organises the
documenting of a phenotyping dataset, including environmental aspects. It primarily
structures the metadata, imposing no constraints on the data itself (which may consist
of images, other binary data, tabular files, etc.).

In comparison with MIAPPE 1.0, MIAPPE 1.1 introduces several new concepts while
preserving most of those already present. The major change, however, is that it moved
from a simple checklist to a fully formalised data model that makes explicit mandatory
information, restrictions and expectations and thus represents a major improvement in
clarity from MIAPPE 1.0.

The key changes in MIAPPE 1.1 fall into one of three categories, which are detailed in
the following subsections: scope extension, interoperability and data model specification.
In addition to these, the MIAPPE data model has been formalised in OWL as the
Plant Phenotyping Experiment Ontology (PPEO). Note: throughout the rest of this
document, we use italics to denote MIAPPE concepts, <angle brackets> to denote
ontology concepts, and “double quotes” for MIAPPE field value examples.

Scope extension

The scope of MIAPPE 1.0, mostly restricted to field crops, was extended in MIAPPE
1.1 to encompass woody plants, mainly by enabling the identification of plant materials
by their geolocation coordinates, which are typically used to identify forest trees instead
of plant identifiers (e.g. GenBank accession numbers) used in crop research. Two
levels for plant material identification and description are available in MIAPPE 1.1: (i)
its identification within the experiment (biological material); and (ii) its identification
before the experiment (itmaterial source) , allowing for individual plants, lots or progeny
to be described and related to previously published or publicly accessible material.
Furthermore, the preprocessing field (previously called pretreatments) can describe any
type of action performed on the material source before it is used as the experimental
biological material (for instance “tree transplantation” and “grafting”).
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Interoperability

MIAPPE 1.1 incorporates several metadata standards and practices that cover parts
of its scope, in order to ensure interoperability and avoid remodelling and redefining
aspects that are already well established: the generic metadata fields (e.g. identifier,
title, version, date) in MIAPPE 1.1 are largely based on the DataCite metadata model
of Dublin Core (DataCite Metadata Working Group, 2014); the fields for biological
material identification are based on the Multi-Crop Passport Descriptors (MCPD) v.2.1
(Alercia et al., 2015); the observation unit concept and its fields were imported from
BrAPI and GnpIS-Ephesis (Pommier et al., 2019b); and the observed variable section is
largely based on the data model of the Crop Ontology.

Additionally, to further foster interoperability, MIAPPE 1.1 includes precise definitions
and examples for each of its fields, with recommendations for the use of controlled
vocabularies, ontologies and ISO norms whenever appropriate. For example, the ISO
8601 norm is recommended for dates, Crop Ontology terms are recommended in the
observed variable section, and Plant Ontology terms are recommended for characterising
samples. These definitions and recommendations clarify the intended usage of MIAPPE
1.1 in a way that is accessible to biologists and breeders, while promoting compliance
with the FAIR principles.

Data model specification

The specification of a data model was essential to clarify MIAPPE’s structure, and
improves its internal consistency. The construction of a formal model helped: (i)
ascertain the roles and relationships of the MIAPPE 1.0 checklist’s main categories and
concepts; and (ii) extend those concepts to a broader range of experiments.

Objects in the MIAPPE 1.1 data model correspond to sections in the MIAPPE 1.1
checklist. A schematic view of the data model is presented in Figure 2.1.

The MIAPPE data model is reconciled with the more generic data models underlying
the ISA-Tab exchange format (Rocca-Serra et al., 2010) through key objects such as
Investigation and Study (ISA) and specialised representations such as BrAPI (Selby
et al., 2019) with entities such as Observation unit and Observation variable (BrAPI).

Data model formalisation (PPEO)

While the specification of the MIAPPE data model addresses the concern of improving
the clarity of the standard for users, it does not address machine readability, which is
important to enable validation and facilitate implementation at scale. The need for the
latter led us to encode the MIAPPE standard in OWL as the PPEO (Pommier et al.,
2020).

In PPEO, each MIAPPE section is encoded as an ontology class, with additional
classes declared to group linked MIAPPE fields (e.g. <method> groups the linked fields
method description and method accession number). Each MIAPPE field is encoded as an
ontology data property, which specifies the type of value expected (e.g. <has collection
date> for class <sample>, which must take a date–time value). The relations between
classes are formalised through object properties (e.g. <has biological material> connects
<observation unit> to <biological material>). Cardinality restrictions imposed by the
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data model are encoded as ontology restrictions on the corresponding classes (e.g. an
<investigation> must have at least one <study>). Ontology usage recommendations
are encoded as annotations. Finally, to facilitate the implementation of MIAPPE in
various forms, PPEO includes labels expressing corresponding names of each class in
different resources (BrAPI, ISA-Tab).

Figure 2.1 represents a subset of the PPEO.

MIAPPE 1.1 overview

The MIAPPE sections, which correspond to objects in the data model, are the following:

� Investigation – the entry point of each MIAPPE dataset. It contains several
general metadata fields (e.g. title, description, submission/publication dates),
including some critical for FAIRness (unique identifier, license, MIAPPE version).
One or more publication may be associated with the investigation.

� Study – corresponds to one experiment and defines its location (which by definition
must be single per study) and duration. It lists general fields documenting the
experiment (e.g. experimental design, cultural practices, growth facility). Like
the investigation, it contains a unique identifier field. An investigation must have
one or more studies.

� Person – contains contact details for each contributor of an entire investigation
or an individual study, including the role of the person.

� Data file – references a data file of the MIAPPE dataset (e.g. a tabular file
containing the results of observations, an image file), which may be attached to
the dataset (referenced by name) or available in an online repository (referenced
by URL). A version and a description must be provided for each data file. A study
may have any number of data files.

� Biological material – identifies and describes the plant materials used in the studies.
Plant materials must be identified through a biological material ID field, which can
be institution-specific or platform-specific (e.g. seed lot number for annual plants,
clone number for perennials or an experimental plant ID), and is recommended to
follow the MCPD convention of holding institute identifier (FAO WIEWS code)
plus a unique identifier of the individual plant material provided by that institute.
They must also be identified through the organism field, which indicates the
unique taxonomic identifier of the biological material in a standard such as the
NCBI taxonomy. Optionally, they may be identified through the fields genus,
species and infraspecific name, where textual names are expected (but should
follow accepted standards). They may also be identified through geographical
coordinates (i.e. latitude, longitude, altitude, and coordinates uncertainty), as
is common for forest trees. The biological material preprocessing describes the
biological material pretreatments, applied (e.g. to the seeds, or the tree cuttings)
before the beginning of the experiment. Finally, the material source fields identify
the origin or provenance of the biological material (e.g. gene bank accession,
in situ material like an orchard, tree material provenance including forest wild
site, laboratory-specific populations). These fields include the material source
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Figure 2.1: Subset of the Plant Phenotyping Experiment Ontology representing the
MIAPPE data model. Generated using WebVOWL (http://editor.visualdataweb.org/)
and edited manually. Circles indicate classes. Object properties are shown in blue
rectangles, and data properties are shown in green rectangles. Yellow rectangles represent
literals.

ID (which follows the same recommendations as the biological material ID), the
material source DOI (for referencing material sources listed in repositories), four
geographical coordinates fields (same as for biological material), and finally a
textual description. The biological material section thus covers a minimal subset
of the MCPD standard used by gene banks, while also enabling interoperability
and data linking through the use of identifiers (namely NCBI taxonomy identifiers)
both between MIAPPE-compliant datasets and with external datasets. Moreover,
through the provision of external identifiers to resources detailing their biological
material (e.g. DOIs, accessions to gene banks or genome archives) researchers
can encompass additional information, such as extended MCPD information (e.g.
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synonyms, genealogy) and genotypic information. Last but not least, with these
additions, MIAPPE 1.1 can handle cases such as forest tree clonal trials, where the
plants identified solely through biological material coordinates in one study are
used to generate new plant material for another study, in which their identification
is done by specifying the location of the material source.

� Environment – describes a management practice parameter (e.g. sowing density,
rooting medium composition) that was kept constant throughout the study across
all observation units (to be described later). It applies to the whole study and
has only a type (parameter) and a value. There can be discrepancies between
intended environmental settings (e.g. target temperature in a glasshouse) and
actual measurements of environmental observed variables (e.g. hourly temperature
measured with four sensors). A study may have any number of environments.

� Experimental factor – describes a management practice that varied between
observation units in a study, assessing the effect of which is the object of the
study. Experimental factors can be biotic or abiotic (e.g. pest, disease interaction,
cultural practice) and are characterised by a type, a description and a list of
possible values. For instance, a “drought” experimental factor can discriminate
“rainfed” and “irrigated” blocks, and a “nitrogen input level” can identify groups
of plants under “high nitrogen input”, “low nitrogen input” and “no nitrogen
inputs”. A study may have one or more experimental factors.

� Event – describes a discrete occurrence at a specific time that affected the
whole study or one or more observation units, which can be the application of a
field/glasshouse practice (e.g. planting, fungicide application) or an unpredictable
happening (e.g. rainfall, pathogen attack). Events allow a general traceability
of the conditions/events, and have been adopted since their usefulness was
successfully demonstrated in the PHIS (Neveu et al., 2019). Events include a
type, ideally taken from an ontology such as the Crop Research Ontology (R.
Shrestha, 2020) or the Agronomy Ontology (Aubert et al., 2017), a date and a
description, but no dedicated field for categorical or numerical values. Events can
be repeated through time (e.g. to capture repeating cultural practices, such as
adding fertiliser) by duplicating the type and description while providing a new
date.

� Observation unit – is the experimentation object on which phenotypic and environ-
mental parameters are measured and to which experimental factors are applied. It
is characterised by a type or level, which can be a single “plant”, a group of plants
(“pot”, “plot”, “block”), or the whole “study”. These types are hierarchical,
meaning that we can have observation units and corresponding observations made
from the study level down to the plant level. In some cases, an observation unit
may contain no plant (e.g. raw plots after harvest or areas of a forest without
tree), but can still be the object of environmental observations. Optionally, an
observation unit can have a cross-reference to an external database, such as
BioSamples (Courtot et al., 2019). Also optionally, it can have one or more spatial
distribution key-value pairs that locate the observation unit in the experimental
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hierarchy (e.g. “block: 1”) or globally (e.g. “latitude: +43.619261”). A study
should have one or more observation units.

� Sample – represents subplant material that was physically collected from an
observation unit and was stored and processed before observations are made on it
(e.g. in molecular studies). When traceability of sample processing is not needed,
subplant observations can be assigned directly to the corresponding plant-level
observation unit without the use of a sample as an intermediary. In such cases,
the observed variable should describe that the observation is made on a plant part
(e.g. “leaf chlorophyll content”, “grain protein content”) and include additional
information on how the sampling was made in the textual description. The
sample description field contains a free text description such as organism count,
oxygenation, salinity or storage attributes. The plant anatomical entity and the
plant structure development stage give more details on the sample properties at
the time of sampling, which is specified with the field collection date. A sample
must be derived from a single observation unit, but each observation unit may
have any number of derived samples.

� Observed variable – documents a phenotypic or environment parameter that
was observed and recorded as part of the study. It follows the Crop Ontology
model of representing variables as combinations of a trait, a method and a scale.
Trait details the characteristic being observed/measured (e.g. “plant height”).
Method describes the procedure used in the observation/measurement (e.g. “with
a measuring tape, starting at ground level”). Scale indicates the unit or scale
with which observations/measurements were recorded (e.g. “cm”). Observed
variables, traits, methods and scales are each identified by name, and may have a
reference to the corresponding ontology concept (ideally from the Crop Ontology).
Observed variables also have an ID by which they are referenced in the data file.
Methods can also have a description plus an additional reference, usually from
the literature. The time scale indicates the unit of time (e.g. “date–time”, or
“growing degree days”) used to timestamp observations of this observed variable.

Note that in MIAPPE 1.1, the description of environment aspects is broken into
several sections so as to allow flexibility in capturing and representing environment
information: environment (fixed parameters throughout the study), experimental factors
(fixed set of values for the study which vary between observation units), observed
variables (measured during the study) and potentially events (discrete occurrences such
as heavy rain).

MIAPPE implementations

MIAPPE is a general specification that needs to be adopted and implemented by data
repositories and exchange tools if it is to be easily usable. The MIAPPE 1.1 update
encompasses four major implementations which are discussed in the following subsections:
(i) an ISA file archive backed by an updated ISA-Tab configuration, developed in
collaboration with the ISA Framework team; (ii) a web service implementation through
BrAPI, developed in close collaboration between the MIAPPE and BrAPI communities;
(iii) a spreadsheet template developed and used as training material to introduce
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biologists to MIAPPE, which can also be used for simple metadata exchange; and (iv)
finally, an RDF implementation based on the PPEO.

MIAPPE ISA-Tab

The ISA Framework encompasses a model and a set of serialisations (TAB, JSON and
RDF) to describe the experimental metadata with links to data files, code, articles and
other digital objects. It comes with a suite of associated tools, is extensively used in the
life sciences (The ISA Team, 2020), and among the endorsed resources of the ELIXIR
Interoperability Platform.

MIAPPE 1.0 already included an ISA-Tab implementation in the form of a configu-
ration file. This implementation has been revised in view of the changes in MIAPPE 1.1,
and the configuration file has been updated accordingly. This configuration (ISA-Tab
for plant phenotyping contributors, 2020) can be used with the ISA Creator tool, to
more easily produce MIAPPE-compliant ISA-Tab archives.

The overview of the mapping between MIAPPE 1.1 and ISA-Tab sections is shown
in Table 2.1. The Investigation and the Study express the same concepts in both
MIAPPE and ISA-Tab, and many of their fields are listed under the corresponding
sections. There are also direct correspondences for experimental factors (Study Factors),
biological material (Source), observation units (Samples) and samples (Extracts). The
remaining MIAPPE-specific fields are stored as ISA-Tab Comments. ISA Protocols
must include a protocol named “Growth” holding the MIAPPE cultural practices field
and environment parameters, one protocol for the “Phenotyping” process, plus an
optional list of protocols with Type “Event” to handle MIAPPE events, with specific
occurrences listed in an external Events file. Finally, the ISA Sampling Protocol indicates
the derivation of a MIAPPE sample from an observation unit. Each ISA-Tab Assay
represents one data file measured at one observation level. Observed variables are
listed in the trait definition file, and referenced in the data files. The data files are
formatted according to the common practices of the domain and contain references to
that Variable ID, the measured values and times plus any information which researchers
might deem useful.

Breeding API (BrAPI)

The Breeding API (BrAPI) (Selby et al., 2019) is a RESTful API developed by an inter-
national open-source community for querying plant breeding data, already implemented
by several databases, and selected by the European biological data infrastructure ELIXIR
as the cornerstone of its plant data search service. It is therefore critical that BrAPI
and MIAPPE be compatible.

The collaboration between the BrAPI and MIAPPE teams has aimed at ensuring the
compatibility of the two schemas, and the latest BrAPI (v.1.3) covers most of MIAPPE.
The main sections correspond to the same concepts and either share the same name or
have direct correspondence, such as investigation (BrAPI Trial) and biological material
(BrAPI Germplasm). Some MIAPPE sections are currently absent from BrAPI (e.g.
environment, event) but have already been proposed as additions to BrAPI and are
under consideration for the next major release. The mapping between MIAPPE and
BrAPI is overviewed in Table 2.2.
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MIAPPE section ISA-Tab section
ISA-Tab section
specification

Investigation
Investigation/

investigation publications

Study

Study/

study design descriptors/
study protocols

Person
Investigation contacts/

study contacts

Data file Study With comment fields

Biological material Source

Environment Study protocols Growth type protocol

Experimental factor Study Factors

Event Study protocols
Event type protocols and

external Events file

Observation unit Sample

Sample Extract/study protocols Sampling type protocol

Observed variable Observed variable
In external trait definition
file

Table 2.1: Mapping between MIAPPE and ISA-Tab sections. The table lists the
MIAPPE sections with the ISA-Tab sections holding their fields. MIAPPE-exclusive
fields have been added as comments in the corresponding sections. The detailed
mapping can be found in Supplementary table S2.1, and in the MIAPPE reposi-
tory (https://github.com/MIAPPE/MIAPPE/tree/master/MIAPPE Checklist-Data-
Model-v1.1/MIAPPE mapping).

Finally, BrAPI datasets can be exported as MIAPPE-compliant ISA-Tab archives
using the BrAPI2ISA tool (BrAPI2ISA contributors, 2020).

Spreadsheet template

The spreadsheet template for MIAPPE (MIAPPE contributors, 2020b) was developed
mainly for training purposes, as a simpler alternative to ISA-Tab. It is an explicit
representation of MIAPPE, where each section has been placed in a separate worksheet.
This template facilitates the understanding of the connections between documentation,
data model and actual data. For training, it is important that the data model and
one-to-many relationships (Fig. 1) be explicitly presented and comprehensively explained
to the users (e.g. biologists or data managers).
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MIAPPE BrAPI object

Investigation Trial

Study Study

Person Contact

Data file Data link

Biological material Germplasm

Environment Environment parameter

Experimental factor Treatment

Event Events

Observation unit Observation unit

Sample Samples

Observed variable Variable

Table 2.2: Mapping between MIAPPE sections and BrAPI objects. The table lists
the MIAPPE sections with the BrAPI objects holding their fields (in the current
and future versions). The detailed mapping for each field can be found on the MI-
APPE GitHub repository and in Supplementary table S2.1, and in the MIAPPE
repository (https://github.com/MIAPPE/MIAPPE/tree/master/MIAPPE Checklist-
Data-Model-v1.1/MIAPPE mapping).

RDF based on the PPEO

PPEO was conceived to enable the direct expression of MIAPPE datasets in RDF
(W3C, 2020b), by instantiating the ontology. Moreover, because PPEO explicitly maps
MIAPPE to its implementations, it should be straightforward to convert MIAPPE
datasets expressed in any of them to RDF.

MIAPPE and BrAPI are also connected through PPEO, which not only maps the
two resources, but also includes classes exclusive to BrAPI, such as the ¡observation¿
class (which is outside of the scope of MIAPPE, as it pertains to data). A proof of
concept has demonstrated the feasibility of producing linked data through BrAPI using
the JSON-LD format (W3C, 2020a), with PPEO enabling the semantic mapping (see
this dataset: Oury et al., 2020a).

Having MIAPPE datasets in RDF enables the use of a wide range of available tools
for reasoning and analysis, and facilitates data integration (by enabling data linking and
cross-referencing at the semantic level) and validation.

Results

To evaluate the applicability of the standard and the functionality of its implementations,
plant scientists were asked to describe their phenotyping experiments using MIAPPE 1.1.
The datasets were provided by: the Instituto de Biologia Experimental e Tecnológica
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(iBET), Portugal; the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK),
Germany; the Genetic and Genomic Information System (GnpIS) of the Institut National
de la Recherche Agronomique, France; and the Vlaams Instituut voor Biotechnologie
(VIB), Belgium. The datasets are summarised in Table 2.3, and described in detail
in Supplementary Notes S2.1. All of them are listed under (Papoutsoglou et al.,
2020b), and their files can be retrieved through the repositories listed there (Baute et al.,
2019a,b,c,d; Chaves et al., 2020a,b; Junker, 2020; Junker and M. Li, 2020; Michotey
et al., 2020a,b; Oury et al., 2020b,c; Pea et al., 2019a,b).

The datasets span model, crop and perennial plants in a variety of experimental
settings, as well as various MIAPPE 1.1 implementations. They demonstrate the ability
of MIAPPE to handle diverse experimental designs, including automated glasshouses
(IPK and VIB datasets), field networks for crops (GnpIS) and forest trees (iBET and
GnpIS) with multiple scales and repetitions. Perennial plant use cases feature time series
data, that is several observations across time for the same observed variable on the
same plant. Field networks (GnpIS wheat) demonstrate the use case of a multilocal and
multiannual dataset where each location represents one study over several years. Several
datasets demonstrate also the use of experimental factors such as cultural practices
(nitrogen level in GnpIS wheat) or experimental questions (covered or uncovered plants
in IPK Arabidopsis). The observed variables proved to be well suited for very diverse
destructive and nondestructive measurements adapted to agronomic (e.g. yield, grain
weight), morphological (e.g. plant height), stress (e.g. disease or game), molecular
(e.g. protein content) and physiological (e.g. photosynthetic efficiency) data. The
data types covered by the observed variables are mostly numeric or textual, but also
include images (IPK barley). These observed variables were described using references
to ontologies (Michotey and Chaves, 2020; Michotey et al., 2019; Pommier et al.,
2019a) whenever possible, but ad hoc variables were also used in specific cases not
covered by ontologies. One of the most challenging aspects addressed by MIAPPE
and successfully demonstrated by the datasets is the documentation of the biological
material. The datasets clearly demonstrate how to organise information for model plants
(IPK Arabidopsis), mutants (IPK barley), recombinant inbred line and population (VIB
maize), GenBank reference accessions (GnpIS wheat) and perennial plants including
in situ material (iBET cork oak stands) or dedicated experimental locations acting as
experimental tree fields with populations or crosses (GnpIS poplar).

While the datasets showcase the applicability of MIAPPE to diverse experimental
settings, they by no means represent the full extent of its coverage. Additional settings
that were contemplated in the conception of MIAPPE but are not covered by the
examples include: high-throughput phenotyping facilities with plants manipulated by
conveyor belts, which produce large volumes of data with respect to the positions of
plants and their development; precision agriculture field studies with drones and sensors
capturing a wealth of data both about plant development and the environment; and
cases where tracing the identity of plant materials is more complex. In the interest of
demonstrating MIAPPE’s coverage, Table 2.4 presents additional examples of settings
and details their modelling in MIAPPE.
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No. Scenario MIAPPE modelling

(1)

Heterozygous parent
genotypes are used to derive a
crossing population exhibiting
significant phenotypic
segregation.

Genotype tracing is necessary.

The cross of the parents is mentioned in the
material source. Each of the progeny is treated as a
biological material derived from the same material
source, and is attributed a unique ID.

(2)
Each tree in a field is observed
through several sensors, at the
roots and near its top.

Observation unit levels: “plant”. Each tree is a
single observation unit. Each sensor measures one
or many observed variables, (e.g. “Canopy
temperature”, “Cork thickness”, . . . )

(3)
A sensor is placed in the
middle of the field.

An observation unit is created for the sensor.
No plants have to be present for an observation unit
to be valid, as long as that observation unit is used
to produce measurements or express experimental
factor values.

(4)
Multilocal, multiyear field
phenotyping network

Observation unit levels:
“study”>“genotype”>“plot”.

The whole network is an investigation.
Each location is a study over several years.
The biological material list is shared for the whole
investigation. The list of observed variable
definitions is also shared by all studies.

The measured data and observations can be at the
“plant” or “plot” level, or as a per-genotype average
within each study.

Study-level observations can be measurements from
a meteorological station.

(5)
Time series of event or
observation.

Observation unit levels: any.

Study type: any.

Observed variables list the time scale they use.

In the data file, a single observed variable is
measured several times, each value being
timestamped in julian days, growing degree days or
any other time scale.

The same applies with events with a given event
type recorded several times at different time stamps.

Table 2.4: Modelling possibilities for complicated experiment details. The table shows
more specific scenarios that may be necessary to accommodate in MIAPPE, and the
proposed modelling for them inside the standard.
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Discussion

A global metadata standard is a key component for enabling FAIR data in any research
domain, by providing a common framework under which researchers can describe
their datasets with the necessary information for their interpretation, thus promoting
interoperability and reusability. MIAPPE aims at serving such a role for the plant
phenotyping community, and the first version of the standard took ample strides in
that direction. In this work, we summarise the steps taken to extend and improve the
usability of the standard.

The datasets presented in the Results demonstrate the broader applicability of
MIAPPE 1.1, which was one of the main goals behind the update. The datasets span
a variety of settings (e.g. woody, crop and model plants; glasshouses, single fields
and field networks; single-year and multiannual experiments) and include aspects that
could not be modelled under MIAPPE 1.0 (the most critical being the identification of
biological materials using geographical coordinates).

MIAPPE 1.1 also has improved in flexibility and usability compared to the previous
version. It has clearer definitions, examples, and when applicable, ontology recom-
mendations for all fields. It has an explicit data model available in schematic form
and encoded in OWL as PPEO. It has fewer mandatory fields, since not all of them
are applicable to all experiments. It allows different strategies for modelling aspects
such as environmental parameters: under the environment section, as events or as
observed variables. The improved biological material description and the new material
source can now handle gene banks and experimental collections with either the bare
minimum identification or very detailed information, including infraspecific description,
provenance, complex processing or identification mechanism. We received evidence for
the improved usability of MIAPPE from the community, during two open requests for
feedback and in several training sessions. The specification of the data model and the
enriched definitions and examples were highlighted as clear improvements.

While MIAPPE promotes interoperability and reusability, the other two FAIR prin-
ciples (findability and accessibility) rely mainly on BrAPI, which enables data search
and retrieval through machine access. However, for these two resources to be part of a
common scheme for enabling FAIR plant phenotyping data, it is necessary to ensure
that BrAPI calls adequately cover MIAPPE and enable searches by all key MIAPPE
fields. The process of reconciling MIAPPE and BrAPI was undertaken in parallel
with the MIAPPE 1.1 update, through a collaboration between the BrAPI team, the
ELIXIR Interoperability platform and Plant Sciences community, the EMPHASIS Plant
Phenotyping Infrastructure and the CGIAR. BrAPI will be fully MIAPPE 1.1 compliant
once its (currently beta) 2.0 release is finalised.

This reconciliation and the interoperability between the various MIAPPE 1.1 imple-
mentations is demonstrated in our Results, as most datasets are available in two different
implementations (including BrAPI), in many cases through automatic conversion. This
is critical, as MIAPPE aims to support a wide range of users and applications, from
data submission by life scientists to data exchange, validation and even reasoning by
machines. Formats supporting all these applications must not only be available but also
be interconvertible.

While, from a technical standpoint, we believe that the merits of MIAPPE 1.1 speak
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for themselves, we are well aware of the many hurdles ahead of getting any standard
widely adopted by the community it seeks to serve. Indeed, there are several dozen
standards currently deprecated in the FAIRsharing portal and surely many more have
been lost to history.

One of the main factors behind wide adoption is having community engagement
throughout the development process. Indeed, GO (The Gene Ontology Consortium,
2019) has been so successful because it emerged from the communities involved in gene
function annotation for several model organisms and has remained open to input from
the community throughout its history. The story behind MIAPPE is curiously similar, as
its development gathered several researchers involved in plant phenotyping repositories,
the process of updating it had extensive direct engagement with the community, and it
remains open to community input through its GitHub repository (MIAPPE contributors,
2020a). MIAPPE 1.1 therefore gathers as close to a community-wide consensus as is
possible to get and distil into a clear and well-organised standard, especially considering
the heterogeneity and complexity of the plant phenotyping domain, and the difficulty in
reconciling the perspectives of its different subdomains and experiment types. We will
further foster its adoption through constant efforts of outreach and dissemination, to
gather new communities and ensure the long-term usefulness of the standard.

Also critical for adoption is demand: when funders and/or publishers require com-
pliance with a standard or data publication practice – such as depositing sequencing
data in one of the public gene banks – it tends to be widely adopted. In the case of
MIAPPE, the demand consists of the increasing pressure from funding agencies towards
compliance with the FAIR data principles. Researchers working in plant phenotyping
and seeking FAIR data solutions will be pointed towards MIAPPE thanks to its presence
in the FAIRsharing portal (FAIRsharing.org: MIAPPE, 2020) and above all to the
endorsement of ELIXIR, which led the MIAPPE 1.1 update and is helping shape the
policies and lay the foundations needed for enacting the FAIR principles.

Equally critical is usability, as researchers tend to view the need for standardisation
and reusability as a burden and often do as little effort as they can get away with
when submitting a dataset, unless the process is virtually effortless. While MIAPPE’s
usability was improved with the 1.1 update, it is still missing an easy-to-use submission
interface. For this reason, we are engaging with popular data management tools such as
COPO (The COPO team, 2020) or FAIRDOM (Wolstencroft et al., 2017) to incorporate
MIAPPE and thus enable user-friendly MIAPPE-compliant dataset submission.

Last but not least, in order to persist, a standard must constantly evolve to keep
up with technical and scientific advances. In this regard, the 1.1 update demonstrates
that MIAPPE is very much a living standard, and we are already starting the next
phase of development of MIAPPE. It will concentrate on two main aspects: extending
its coverage of environmental aspects (initiated by the EMPHASIS members of the
MIAPPE community) and facilitating the recording of technical aspects of material and
data processing (e.g. sensors, cameras, software, configurations, calibrations), which
are becoming increasingly important. Within this scope, another possible improvement
could be to establish a formal complementarity with the ICASA standard, which is used
by the agronomic and modelling communities, and provides variables for agronomic
management practices, treatments, environmental conditions and measurements of
crop responses (White et al., 2013). There is overlap between these two standards –
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with MIAPPE dedicated to plant phenotyping as used by geneticists, biologists and
some agronomists and ICASA to ‘any field experiment or crop production situation’
– but the scope of each extends far beyond that of the other and there are obvious
complementarities between them. User feedback from these endeavours will steer further
developments, by revealing areas where improvement is desired by the community.
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Abstract

Motivation

Modern genomic breeding methods rely heavily on very large amounts of phenotyp-
ing and genotyping data, presenting new challenges in effective data management
and integration. Recently, the size and complexity of datasets have increased signif-
icantly, with the result that data are often stored on multiple systems. As analyses
of interest increasingly require aggregation of datasets from diverse sources, data
exchange between disparate systems becomes a challenge.

Results

To facilitate interoperability among breeding applications, we present the public
plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized
web service API specification. The development of BrAPI is a collaborative,
community-based initiative involving a growing global community of over a hundred
participants representing several dozen institutions and companies. Development
of such a standard is recognized as critical to a number of important large breeding
system initiatives as a foundational technology. The focus of the first version
of the API is on providing services for connecting systems and retrieving basic
breeding data including germplasm, study, observation, and marker data. A
number of BrAPI-enabled applications, termed BrAPPs, have been written, that
take advantage of the emerging support of BrAPI by many databases.

Availability and implementation

More information on BrAPI, including links to the specification, test suites, BrAPPs,
and sample implementations are available at https://brapi.org/. The BrAPI
specification and the developer tools are provided as free and open source.
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Introduction

Plant breeding is widely recognized as crucial to feeding a rapidly growing population,
especially in developing countries (Flavell, 2017), (http://www.fao.org/fileadmin/
templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf). To
meet this demand, it is necessary to breed new varieties that maintain high productivity
with reduced inputs and are adapted to new eco-agricultural environments resulting from
climate change. Plant breeding is a complex undertaking that necessarily integrates
many interrelated disciplines, each with their own conventions for data structure and
storage, and increasingly large, multi-faceted datasets. To address the challenges in the
size and complexity of breeding data, a number of database systems have been designed
over the years to solve specific problems. Although the power and insights that can be
gleaned from large datasets increase with a greater volume and diversity of data sources,
these separate systems make data integration difficult. Breeders need seamless access
to all relevant data, but each system tends to keep its data siloed with ad hoc formats
that hinder the ability to exchange, compare and combine data across research teams.

To meet these requirements, numerous groups have been working together to create
an Application Programming Interface (API) for breeding data (Ghouila et al., 2018).
An API specification describes the functions and services available in an application
which can be accessed in an automated way by a computer program. It describes what
services are available, what inputs are allowed, what the structure of the output data
will be, and the protocol used to pass data to a service, often on the web. In recent
years, web services have become the major paradigm for information exchange on the
web, and web service standards have also been defined and implemented successfully
by the bioinformatics community. Examples of such systems include the Distributed
Annotation System (DAS) (Dowell et al., 2001), BioMOBY (Wilkinson and Links, 2002),
and the EMBRACE (Pettifer et al., 2010) Web Service collection.

Most of the modern web service infrastructure follows the REST standards (Fielding
and R. N. Taylor, 2002). REST stands for ‘Representational State Transfer’ and defines
a stateless client/server communication architecture, built on the HyperText Transfer
Protocol (HTTP) (https://tools.ietf.org/html/rfc7231). In a RESTful API,
HTTP is the communication protocol and the available services are defined as Unified
Resource Locators (URLs). Typically, the inputs are defined by constructing a URL
with query parameters defined by the API (or HTTP request body objects for more
complex inputs), the output data are usually returned in a defined structure. For the
output, historically, XML was used, but newer APIs typically prefer the Javascript Object
Notation (JSON) format.

Data exchange requires solutions on many levels, including the semantic level and the
syntactic level (Doan et al., 2004). For breeding data, standardization of the semantic
level has made significant progress over the last few years through the definition of
ontologies for describing plant structure and development (Cooper et al., 2018), and
for describing traits in popular crops (R. Shrestha et al., 2012). However, the breeding
community still needs to standardize data at the syntax level. This can be achieved by
defining a standardized Application Program Interface.

Here, we report on the design and implementation of a standard RESTful Breeding
API (BrAPI), as a specification with a focus on common plant breeding data requirements.
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The interface was designed by members of the BrAPI consortium. A complete list of
contributors is given in the consortium description and a continuously updated list can
be found on the BrAPI website (https://brapi.org/).

Results

The Breeding API is a practical tool to help solve problems in accessing, exchanging,
and integrating data across systems and applications. Given the multidisciplinary nature
of plant breeding, there is a broad range in the particulars of the possible data operations
that could be considered. Since a complete list of BrAPI related use cases would grow
unmanageably large, we decided to focus on a small number of main use cases to design
the primary API elements with a view towards reusability in other use cases.

Use cases

These are the main use cases we considered:

Field phenotyping apps

Trials are often performed in fields that have limited internet connectivity, requiring
special solutions for collecting phenotypic data. A popular approach is to collect data
using handheld devices paired with custom mobile apps (Rife and J. A. Poland, 2014).
Information about the field, the plot and accession identifiers needs to be loaded on
the device before phenotypic data collection. After completion, collected data need
to be uploaded to the database, when internet connectivity is available. Currently
available solutions require custom files to be transferred, often involving significant user
intervention. However, a simpler method would be to use an API to retrieve and store
the data directly from the database.

Sample tracking

For both phenotyping and genotyping applications, analyses may need to be run by
service providers, such as analytical labs and genotyping centers, that use different
tracking mechanisms. The sample tracking use case describes the hand-off of the sample
information to the service provider, and the subsequent retrieval of the results. In
practice, tracking samples can be complex because the identifiers from several different
systems must be correlated.

Genome visualization and analysis

Genome-based breeding requires extensive genotyping, which can be helpful to visualize
in different ways to aid in breeding decisions. An example of such a tool is Flapjack
(Milne et al., 2010), which can display a number of genotypes and run analyses on the
data. BrAPI standardizes the interfaces for such tools, hence they can be used with
a much wider range of data sources and without the need for special adaptations for
each source.
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FAIR data portals

One of the challenges of big data is identifying datasets of interest and ensuring their long
term availability. This can be addressed by building federations of Findable, Accessible,
Interoperable and Reusable (FAIR) data repositories (Wilkinson et al., 2016). Interfaces
such as BrAPI can help such efforts by standardizing access to the data repositories,
thereby creating federations. Portals to the federated data can then be deployed to
provide general or community specific data access. This increases the visibility of all
datasets and therefore reduces the risk of losing isolated datasets over time. The portals
should implement simple searches on standard metadata, such as MCPD or MIAPPE
(Ćwiek-Kupczyńska et al., 2016; Krajewski et al., 2015; Milne et al., 2010).

Data integration and exchange

In this use case, two databases exist with overlapping data as well as specific data in each
database. Database A would like to access data in database B. For example, database
A may contain information about accessions, such as phenotypic and trial metadata,
while database B contains genotypic information. Using a BrAPI call, database A can
extract the genotyping data from database B and use that data in breeding decision
support.

API definition

The BrAPI definition is kept in the ‘API’ repository of the ‘plantbreeding’ organization
on GitHub (https://github.com/plantbreeding/API), with all changes to the
definition managed using GitHub’s ‘issues’, ‘projects’ and ‘pull requests’ facilities.

API organization

BrAPI calls are organized into categories that reflect the major domains needed for
exchanging data between plant breeding information management systems and client
applications. Some example categories include Studies, Germplasm, Traits, Trials,
MarkerProfiles and Authentication. (A full list of the categories is presented in Table
3.1.)

URL structure

All BrAPI calls follow a common URL structure. The URL starts with a domain name
(and optional base path of the implementation server) followed by ‘/brapi/’ and the
major version number. Next, the call name appears with optional object ids and other
parameters. Most calls use the HTTP request method ‘GET’, but some require ‘POST’
and ‘PUT’, as specified in the documentation. For security, the use of SSL (HTTPS) is
highly recommended for all BrAPI endpoints.

Examples:
https://example.com/brapi/v1/locations

https://example.com/brapi/v1/trials?programDbId=abc123

https://example.com/maize-db-01/brapi/v1/studies-search
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Category Comments # of calls

Calls Meta information about which BrAPI calls are available on a
server implementation.

1

Crops Provides the common names for the crops available on a
server implementation.

1

Germplasm
Provides search capabilities and details for germplasm data.

Includes MCPD, pedigree and breeding method data.
8

Germplasm Attributes
Germplasm Attributes are simply inherited characterization
descriptors that are inherent in the germplasm line but not
environment-dependent.

3

Markers Provides search capabilities and details for genetic marker
metadata.

3

Marker Profiles
Provides search capabilities and details for genomic data.

Includes allele matrices.
5

Programs Provides search capabilities and details for breeding
programs. A program may contain multiple trials.

2

Trials

Provides search capabilities and details for breeding trials.

A trial may contain multiple studies. Used also for any large
phenotyping dataset like multilocal phenotyping networks.

2

Studies

Provides search capabilities and details for genotyping and
phenotyping studies and support for observation data
gathering. Includes germplasm, observation, plot layout, and
season details related to a particular study.

17

Phenotypes Provides search capabilities for phenotyping observation data
across studies, trials, and programs.

5

Traits Provides details for trait ontology data which are available
for observation variables.

2

Observation Variables
An Observation Variable is combination of a trait, a method
and a scale. Phenotyping data are collected for observation
variables. Fully aligned to the Crop Ontology.

5

Genome Maps Provides summaries and details for stored genome maps. 4

Location Provides details of geographical locations of studies. 2

Samples Provides support for storing and retrieving plant sample
metadata.

4

Vendor Samples Provides support for sending sample metadata to an external
vendor for processing (i.e. gene sequencing).

5

Table 3.1: Categories of BrAPI calls
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Return object structure

We have defined a standard JSON formatted response structure that is common across
all calls. The standard response consists of a JSON object with a ‘metadata’ key and a
‘result’ key. The ‘metadata’ key provides the pagination information, an array of status
information, and an array of data files. If the response data contain an array of entities
which could possibly grow large, the ‘pagination’ object will be populated with the keys
‘pageSize’, ‘currentPage’, ‘totalCount’, ‘totalPages’ containing the appropriate values.
If the response is a single entity that does not require pagination, then the ‘pagination’
object still must be returned, but all data elements within it should be set to zero. All
pages are zero indexed, so the first page will always be page zero. The ‘status’ array
contains a list of objects with the keys ‘code’ and ‘message’. These status objects
should be used to provide additional status or log information about the call. If the call
was completed successfully and there are no status objects reported, an empty array
should be returned. The ‘datafiles’ array contains a list of URLs to any extra data files
generated by the call. For example, this could be images related to the data returned,
or large data extract files which contain more data than that returned in the response
payload, see Figure 3.1 for an example.

The data payload ‘result’ contains the specific model object for the given call
response. There are three basic patterns that response objects follow. The ‘master’
pattern is used for returning all the data associated with a single entity. The ‘details’
pattern is used to return an array of entities. In the ‘details’ pattern, the ‘result’ object
always contains a single array called ‘data’ and no other fields. The ‘master/details’
pattern is a combination of the ‘master’ and ‘details’ patterns. It is used to represent a
parent object which has an array of child entities. The ‘result’ object contains some
data associated with the parent as well as the ‘data’ array with all the child entities.
Whenever the ‘data’ array is present, the response is assumed to be paginated. This
means the size of the ‘data’ array is always limited by the ‘pagination’ object in the
‘metadata’.

In most cases, all the data will be contained within the JSON response. For large
‘data’ arrays, several requests might need to be made to retrieve every page of the
array. In the event that the size of the data package exceeds what could reasonably be
handled using the HTTPS protocol and the client, the service provider can place the
data in a file and provide a link in the ‘datafiles’ array, to be downloaded later.

Authentication

A user or system may have to authenticate to a server to access protected data. BrAPI is
a data communication specification, so the authentication scheme used to protect that
data is considered outside the scope of the BrAPI specification. However, authentication
and authorization are important topics to address whenever any kind of data is moved or
presented. In order to facilitate communication of data between tools in a standardized
way, the BrAPI community has developed a set of best practices using the OAuth2
architecture for implementing proper authentication with any BrAPI enabled tools and
databases. In its most basic form, the OAuth2 architecture is a sessionless, token based
architecture. OAuth2 allows users to sign in with user credentials they already have,
and provides a token. This token can then be used to authenticate that user within
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Figure 3.1: An example BrAPI response object. This object shows a generic response
with ‘metadata’, a ‘master’ result record and a set of ‘data’ records.

different tools and databases. The token should be added as a header in every BrAPI
request.

Versioning

All software projects need the ability to evolve to reflect changing requirements, to cover
new use cases, and to incorporate user feedback. A well defined and rigorous versioning
scheme is essential for BrAPI to ensure that client and server communication is well
defined and the community can keep track of the changes. In BrAPI, there are major
versions and minor versions. The major version is currently ‘v1’, which is reflected in
the URL scheme. Minor versions are incremented about every three months, reflecting
changes in the API that have been accepted by the BrAPI community and reviewed by
the BrAPI coordinator. To help maintain consistency, all changes in minor versions are
backward compatible with earlier minor versions within the same major version. The
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‘calls’ call provides meta-information about each BrAPI call available on a given server.
The response of the ‘calls’ call includes all the supported version numbers for each call,
so external clients can easily check for compatibility with that server.

Community

For a communication standard like BrAPI to be successful, there must be people and
organizations willing to contribute and use it. Early on in the development of BrAPI, we
recognized the need to foster and develop a strong community of users. This community
has grown rapidly over the past few years and it now has representatives from several
dozen different organizations from around the world.

The development of BrAPI is a community effort. Work on the API is mainly
organized around regular ‘hackathons’, where BrAPI contributors gather for a week of
discussions and API design work. BrAPI community institutions take turns organizing
and hosting the hackathons. This has proven very effective for collaborative development
and capacity building (Ghouila et al., 2018). Between the hackathons, the proposed APIs
are implemented at the different sites, and problems encountered during implementation
are fed back into the design at the following hackathon. An important role in the
community is played by the BrAPI coordinator, who helps to organize the hackathons
and workshops, reviews and coordinate proposals for new or updated calls, provides
support for implementers, and maintains the documentation and the BrAPI website.

Brapi.org

To serve the developer community, a website (https://brapi.org) was created as a
nexus of all BrAPI related tools and information. It provides the official documentation
for the API as well as information on meetings, hackathons, community news, testing
tools, development libraries, BrAPPs, and a community forum.

Server implementations

BrAPI server implementations have been created for a number of popular breeding,
genebank and plant genomics databases. A variety of languages and database systems
have been used to develop BrAPI-compliant systems. Web frameworks’ languages
include Drupal/Tripal (PHP), Catalyst (Perl), Java Spring (Java), NodeJS (JavaScript),
Django (Python) whereas databases and data query systems include Postgres, MongoDB,
Elasticsearch, HDF5, and MySQL. Many of these systems are open source, so their
code may be adapted for other systems with similar implementation parameters. A list
of current BrAPI server implementations is given in Table 3.2.
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Database
name

URLs Organization, Reference

Breeding
Management
System (BMS)

https:

//www.integratedbreeding.net

CGIAR

https://cgiar.org

Description: comprehensive breeding management system with trial design, data
collection, and analyses.

Cassavabase

Musabase
Yambase
Sweetpotatobase
Solanaceae
Genomics
Network

https://cassavabase.org

https://musabase.org

https://yambase.org

https://sweetpotatobase.org

https://solgenomics.net

Boyce Thompson Institute (BTI),

https://btiscience.org

Description: comprehensive breeding management system, including trial design
management, phenotyping sample and data collection; with a focus on genomic breeding
technologies such as Genomic Selection

B4R https://b4r.irri.org

International Rice Research
Institute (IRRI),

http://irri.org

Description: comprehensive breeding management system tailored for rice and other
grains

Germinate
https://ics.hutton.ac.uk/

get-germinate

The James Hutton Institute,

http://hutton.ac.uk

Description: breeding database and analysis tools

GOBii http://gobiiproject.org

Cornell University,

https://cornell.edu

BTI,
https://btiscience.org

Description: large scale and efficient genotyping storage system including data analysis
workflows

T3 https://triticeaetoolbox.org
USDA,

https://usda.gov

Description: comprehensive breeding management system designed for wheat
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Database
name

URLs Organization, Reference

Musa
Germplasm
Information
System
(MGIS)

https:

//www.crop-diversity.org/mgis

Bioversity International,

https://

bioversityinternational.org,

(Ruas et al., 2017)

Description: information system on banana germplasm

Gigwa http://gigwa.southgreen.fr CIRAD, IRD (South Green)

Description: Gigwa (Sempéré et al., 2016) is a web-application that aims at storing and
exposing genotypic datasets and provides a web interface for filtering them in real time. It
is able to interoperate with genome browsers and export results into several formats.

EU-SOL
Database

https://www.eu-sol.wur.nl
Wageningen University &
Research, https://wur.nl

Description: this site contains information about a collection composed of ˜7000
domesticated (S. lycopersicum) lines, along with representative wild species, collected
with the scope of the european project EU-SOL. This germplasm was generously provided
by different international genebanks and by donations from private collections. This
Integrated Project is supported by the European Commission through the 6th framework
program. Contract number: FOOD-CT-2006-016214

GnpIS
https://urgi.versailles.inra.

fr/gnpis

INRA,

https://www.inra.fr

Description: French national archive for plant phenotyping data. It provides any type of
PGR and Phenotyping data. Used for instance by Perpheclim for climate change
adaptation studies and as a data repository in the Elixir federation which is under
construction. It contains almost a thousand Phenotyping trials over thousands of woody
and annual plant varieties.

KDDart
https://kddart.diversityarrays.

com/brapi/v1/

DArT,

http://www.kddart.org

Description: genotype and phenotype database, linked to genotyping service

Crop Ontology http://www.cropontology.org/

Bioversity,

https://

bioversityinternational.org

Description: database of available trait ontologies for diverse crops in the CGIAR system

PIPPA https://pippa.psb.ugent.be
VIB

https://www.psb.ugent.be/

Description: PSB Interface for Plant Phenotype Analysis

PHIS http://www.phis.inra.fr
INRA,

https://www.inra.fr
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Database
name

URLs Organization, Reference

Description: ontology-driven Information System designed for Plant Phenomics. PHIS is
designed to store, organize and manage highly heterogeneous and multi-spatial and
temporal data from multiple sources (field, greenhouse).

GBIS/I
https:

//fair-ipk.ipk-gatersleben.de/

public/breedingapi.html

IPK-Gatersleben, https:
//www.ipk-gatersleben.de

Description: among other, FAIR-IPK offers access to IPK genbank information system
GBIS. This comprises passport data (information on the identity, history, geographical
origin and botanical classification of the material) of the 150, 780 accessions in
Gatersleben (as of 30 June 2016), including the Satellite Collections North in Gross
Lüsewitz (potatoes) and Malchow/Poel (oil and fodder crops).

TERRA REF
https://terraref.ncsa.illinois.

edu/bety
https://terraref.org

Description: an open access reference database for high throughput phenomics. Crops
include sorghum and wheat.

Table 3.2: Server implementations

Client implementations

BrAPI client code libraries have been created in several languages, such as Java (https:
//github.com/imilne/jhi-brapi), the BrAPI R package (https://github.com/
CIP-RIU/brapi), Brapi Drupal for PHP, and brapi.js for Javascript (https://github.
com/solgenomics/BrAPI-js). A non-exhaustive list of current client applications is
given in Table 3.3. It is possible for service providers to use BrAPI for the implementation
of native website features. Some of these features have been implemented as reusable
BrAPI compliant widgets, which we call BrAPI Apps or ‘BrAPPs’ for short. The
available BrAPPs are listed on the BrAPI website (https://brapi.org/brapps.php).
Figure 3.2 shows a screenshot of an example BrAPP which performs graphical filtering
of phenotypic values.

Test suites and fixtures

Comprehensive testing is very important for any software project. Testing tools are
available for both BrAPI server implementations and BrAPI enabled clients. For testing
BrAPI enabled clients, a BrAPI test server is available at the brapi.org site (https:
//test-server.brapi.org/brapi/v1). The BrAPI Test Server has a complete
implementation of the BrAPI specification and returns a consistent sample set of data.
This allows developers of clients to build tests which are appropriate for their tool, while
calling a live BrAPI server implementation. The sample data reported by the test server
are completely fabricated, and can be updated at any time upon request.
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Figure 3.2: A screenshot of an example web application that retrieves information
through BrAPI. Such applications are often referred to as ‘BrAPPs’. This application,
called ‘Graphical Filtering’, allows to filter accessions by phenotypic data, by interactively
selecting ranges of trait values for different traits in the dataset. Data from Cassavabase
(https: // cassavabase. org/ ) are shown, but BrAPPs seamlessly integrate with any
BrAPI-enabled database.

BrAPI validator (BRAVA) test tool

For testing server implementations, the BRAVA test client is available for testing
compliance with the BrAPI specification (http://webapps.ipk-gatersleben.de/
brapivalidator/). Available as a web frontend, BRAVA enables developers to check
the compliance of their BrAPI endpoints against the specification and the referential
integrity of input and output parameters of dependent endpoints. The frontend, as
shown in Figure 3.3, enables testing of BrAPI server implementations. A user can also
schedule tests and generate periodic reports of the overall status and details of BrAPI
endpoint compliance. The compliance tests and results are grouped by and aggregated
per REST resource. Using the BrAPI meta-endpoint ‘/calls’, BRAVA is able to detect
the available endpoints on the server and will only test those endpoints.

A given endpoint might be tested multiple times with different inputs or HTTP
methods. Each test checks the HTTP status code, content type, validity of response
body, and response data types. Each test will also compare the response to the expected
JSON schema which defines the structure of a JSON object and acceptable types.
Some tests check the compatibility of response data to a corresponding parameter. For
example, a test will call ‘/germplasm-search’ and will use the first ‘germplasmDbId’
from the response to make the call ‘/germplasm/germplasmDbId’. Some tests will
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Figure 3.3: BRAVA portal. (A) List of publicly available endpoints and their compliance
status according to BRAVA. An expanded report panel shows the individual test results
for the selected resource. (B) ‘Test your own’ panel where the user can test a custom
URL or (C) subscribe to get periodic reports.

compare a response value to a previously stored value. For example, an entity accessed
by calling ‘/germplasm/1’ must have a ‘germplasmDbId’ of ‘1’.

When a test run is complete, the test suite result is sent to the web client and
a report is generated. The report can be inspected in the client and has a tree-like
structure to analyse results for individual calls. The scheduled and public resource test
reports are stored for future assessment.

Discussion and Outlook

We have defined a first version of a plant breeding API that defines the key calls
needed to exchange information about germplasm, phenotypes, experiments, studies,
geographic locations, samples, and genetic markers. This opens the door to a rich set
of possibilities for building client applications that can work with any BrAPI-compliant
data provider.

Since 2015, a diverse group of data providers and client application programmers
have been building BrAPI into their software. Client applications can rely on the
standard interface to enable integration with any BrAPI data source. Building software
using standard interfaces is an efficient and sustainable coding practice which enables
the reuse of software components. As the public plant breeding software community
is relatively small, this will be essential for creating a feature-rich breeding software
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ecosystem. A good example of the efficient reuse of components can be seen in the
community developed BrAPPs, which are tools that make extensive use of BrAPI and
can be widely shared and deployed on different BrAPI enabled systems. This framework
is useful to commercial plant breeding software development efforts and we welcome
more engagement with that community.

We are continuing our efforts and have initiated work on improved versions of the
API. We recognize that the types of data relevant to plant breeding are expanding, and
BrAPI will continue to evolve in response.

One aspect of the API that we would like to enhance is the ability to handle linked
data (Xin et al., 2018). For example, linking between datasets can rely on standard
variables, vocabularies or ontologies, such as the Crop Ontology for Agricultural Data
(R. Shrestha et al., 2012). To fully enable this, current research and developments
are based on adding semantic capabilities to BrAPI, especially through the JSON-LD
standard, and some support will likely be included in the next major version of BrAPI. It
is also important to improve the clarity and understandability of the BrAPI data for both
human and machine. Future development will include documentation of the mapping
between BrAPI and other common data specifications, such as MIAPPE and MCPD.
This will provide a human friendly documentation of BrAPI formats and concepts.
Furthermore, it will also provide reference concepts and schemas necessary to integrate
BrAPI with other initiatives such as bioschemas.org.

Beyond breeding applications, BrAPI has also found a niche in gene bank applications,
such as MGIS (Ruas et al., 2017), through compatibility with the Multi-Crop Passport
Data standard (MCPD). Although the initial intent was to enable interoperability
between breeding management resources, BrAPI can also be used with other types of
databases, such as plant genetic resources databases [i.e. MGIS (Ruas et al., 2017)] and
plant genome databases (i.e. SGN, MaizeGDB, etc.). BrAPI offers a way to link genetic
resources distributed by gene banks with materials used in breeding programs. Improved
integration between gene banks and plant breeding management databases, and genomic
databases has the potential to greatly enhance the management and utilization of plant
germplasm collections (Ruas et al., 2017; Spindel and S. R. McCouch, 2016). Efficient
and smart use of genetic diversity is a key for continued progress in plant breeding
efforts to address the challenges of increased productivity and adaptation (Halewood
et al., 2018).

As the needs and technologies of our community continue to evolve, we expect
BrAPI to grow to meet those needs.

Getting involved

We invite the reader to join our community and contribute to the future of BrAPI. To
start, please visit https://brapi.org/ to learn more, contact the BrAPI coordinator
at brapicoordinatorselby@gmail.com to join the mailing list, Slack channel, and
community forum.
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Abstract

Plant phenotyping data poses a challenge for reuse, as the experiments that
produce it follow a variety of experimental parameters and settings and are often
insufficiently and heterogeneously documented. At the same time, science needs
to tackle reusability challenges to rise up to the societal needs (nutrition, crop
adaptation and stability), which can be done more efficiently by means of meta-
analyses and data integration. Although the plant phenotyping community has
recently made progress toward reusable resources with the MIAPPE metadata
standard and the Breeding API, there are currently no examples demonstrating
the establishment or use of such resources for a scientific process from beginning
to end, or evaluating the significance of such processes. In this work, we take an
existing example of non-FAIR data reuse and establish data and metadata, and
infrastructure to make it available in a FAIR way. We assume the role of a scientist
discovering a phenotypic dataset on a FAIR data point, verifying the existence of
related datasets with environmental data, acquiring both and integrating them.
We discuss the challenges and the potential for reusability and reproducibility of
FAIRifying existing datasets, that were encountered in this process.

72



4444 4

Chapter 4

Introduction

Plant phenotyping is an important process underlying breeding, where plant varieties
with improved attributes are developed as a necessity to meet the needs of our growing
population (FAO et al., 2018). Phenotyping produces data that is as intricate as the
process itself, reflecting the heterogeneity not only in experimental goals, designs and
settings and agronomic management practices, but also in human choices and data
collection and documentation procedures. Further complexity is observed because of
the many types of data it can involve, assembled by humans and/or machines.

The overall complexity of phenotypic data is a hindrance to data reuse because of the
general heterogeneity and lack of coordination and standardization in data management
practices across a myriad of existing data holder information systems, without a central
global repository. Like most domains of science, though perhaps to an even greater
extent because of the many different species involved as well as new high-throughput
technologies, plant phenotyping has undergone an explosion in the size and number
of available datasets. However useful each of them may be to the original producer,
their potential to deepen our understanding of plant biology remains unmaterialized
because meta-analyses across independently generated datasets remain epistemologically
(ambiguities, missing documentation) and logistically (undiscoverable data, different
data types) difficult (Coppens et al., 2017; Pieruschka and Schurr, 2019).

To improve the global data landscape, managing the challenges of heterogeneity and
attempting to bridge distributed resources, the FAIR (Findable, Accessible, Interoperable,
Reusable) data principles have been proposed (Wilkinson et al., 2016). Some of their
requirements are common across scientific domains, whereas others are based on
reaching a community-wide consensus. In terms of FAIRness, the plant phenotyping
community has progressed with MIAPPE, a metadata standard aiming to improve
the reusability of plant phenotyping data (Papoutsoglou et al., 2020a). MIAPPE is a
Minimum Information standard, ensuring that no “essential” descriptors are overlooked
and that metadata is readable to humans and computer tools alike. These descriptors
aid three aspects of FAIR: data findability, as attributes of experiments can be indexed
commonly by a service; interoperability, as there is a common vocabulary for the
metadata; and reusability, as the minimum information necessary for interpretation is
supplied. Accessibility needs to be tackled through concrete implementations of the
standard such as, for example, the Breeding API (Selby et al., 2019).

Without elements of FAIRness and supporting standards like MIAPPE, data reuse can
be challenging. An example of successful reuse can be found in Hurtado-Lopez’s work
(Hurtado-Lopez, 2012). The meta-analyses conducted relied on five experiments that
were conducted in four different locations across different latitudes, as the environmental
variation across those locations is known to affect developmental processes in potato.
With respect to the genotypes in those studies there were significant overlaps, as the CxE
population (a diploid backcross mapping population extensively studied at Wageningen
University & Research) (Jacobs et al., 1995) was chosen for all experiments (including
(C. Celis-Gamboa et al., 2003; Hurtado-Lopez, 2012; Zaban et al., 2006)). Although
there were differences in the specific genotype sets involved in each of them, there was a
large overlap between the experiments. These genotypes were evaluated with respect to
traits of morphological (e.g. tuber size), developmental (e.g. flowering), and agronomic
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(e.g. yield) nature. On top of the phenotypic data, this work integrated molecular
and environmental data for a multi-environment QTL analysis, laying a basis for in-
depth meta-analyses reusing primary data from a variety of domains, including genetic,
phenotypic, molecular and environmental. Among the insights in Hurtado-Lopez’s work,
which range from QTL associations and trait correlations, to better comprehension of
the effect of environmental conditions on potato, one concerns the effect of temperature
and photoperiod on agronomic traits (Chapter 5).

It is important to note that the experiments were conducted by different, uncoordi-
nated parties in different time periods (over 11 years), though there was a direct line of
communication with them to establish sufficient understanding for data reuse. In some
cases, this can be the critical difference warranting that datasets are indeed compatible,
as the omission of experimental design or other details in published materials and
protocols may be prohibitive. Still, a key conclusion made clear in P. Hurtado-Lopez’s
Discussion chapter is that more needs to be done toward improving data practices. In
particular, she identifies three elements that should be part of proper documentation
for multi-environment studies, if reuse is to be successful: content, origin/source and
structure. All of these elements are part of the MIAPPE standard (Papoutsoglou
et al., 2020a). It is also key to remember that, although Hurtado-Lopez’s work is an
example of successful reuse, it reflects work that was logistically complicated for entirely
unscientific reasons.

Hurtado-Lopez’s work was completed before the establishment of the FAIR data
principles, though standardization had already taken root in some scientific domains (e.g.
MIAME for microarray data). Therefore, the data she received was often disorganized,
lacking important details and sometimes messy, resulting in communications that cost
time to incrementally resolve ambiguities. In some cases, data could not be used as there
was insufficient information. When all the information was there, the harmonization of
the variety of formats and data file structures was another point to be tackled. In spite
of that, Hurtado-Lopez was able to successfully reuse a significant part of the different
datasets, integrating them and extracting new, biologically significant conclusions.

Sufficiently organized documentation alone would have resolved issues pertaining to
implicit details about the experiments, and would have reduced the time spent tracking
down bits of information in largely unstructured chains of literature. Moreover, the
ability to tackle data integration and manipulation uniformly for all experiments would
have been a practical, time-saving asset. These benefits would have had an impact on
the final outcome of that work, if more data had been usable. Nevertheless, eliminating
(or at least relieving) some of the hindrances to this particular instance of data reuse
would have saved resources, and enabled the researcher to focus on more biological,
and fewer data handling challenges.

We envision a scenario where different data handling stages (acquisition, integration,
analysis/reuse) can be presented as fully streamlined and reproducible. To that end,
we use a case study approach and focus on showcasing an example of data integration
from different datasets (5 field trial datasets and as many environmental ones) from
different sources, and on investigating the challenges and benefits of the approach.
We present and evaluate a workflow illustrating an alternative process that could have
been followed had the initial data been formatted according to the FAIR principles.
The process starts from the phenotyping datasets and moves on to ones holding data
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about the environmental attributes desired. The data is used to generate descriptive
visualizations, which can be invaluable for exploratory data analysis.

Results

This work relies on the datasets that Hurtado-Lopez used in her doctoral thesis. As
shown below, it comprises 5 phenotypic experiments and the respective photoperiod
and temperature conditions at those locations.

Data

An overview of the datasets can be found in Table 4.1.

Content description Experiment ID Types of source files

P
h

en
o

ty
p

ic
d

a
ta

se
t

Data from the 1999 field
trial in the Netherlands

1999NL
Excel files with experimental
measurements

Data from the 2003 field
trial in Venezuela

2003VE
Excel files with experimental
measurements

Data from the 2004 field
trial in Finland

2004Fin
Excel files with experimental
measurements, genotype name
translation files

Data from the 2005 field
trial in Finland

2005Fin
Excel files with experimental
measurements, genotype name
translation files

Data from the 2005 field
trial in Ethiopia

2010ET
Excel files with experimental
measurements

W
ea

th
er

d
a

ta
se

t

Photoperiod data (per day)
for each location, covering
at minimum the time period
in question

N/A
Website
(www.timeanddate.com)

Temperature data (daily
average) for each location,
covering at minimum the
time period in question

N/A Excel files with measurements

Table 4.1: Summary of the two datasets with their constituents and other attributes.

Phenotypic data

No phenotypic data was generated for the present work. The phenotyping experiments
that were considered for this work were conducted in: the Netherlands (1999) (C.
Celis-Gamboa et al., 2003), Venezuela (2003), Finland (2004 and 2005) (Zaban et
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al., 2006), and Ethiopia (2010) (Hurtado-Lopez, 2012). All experimental data was
retrieved from P. Hurtado-Lopez’s PhD thesis supervisor after her departure from the
university. Hurtado-Lopez was not the original data collector with the exception of the
one experiment in Ethiopia. The rest of the data was relayed to Hurtado-Lopez by its
original creators, and was subsequently organized by her. It is unknown which, if any,
steps were taken to disambiguate and harmonize the contents of these files.

To us, the data was available predominantly in the form of spreadsheets. The
measurements for each experiment were recorded by different people, which is evident
in the internal structure of the files.

Weather data

P. Hurtado-Lopez used weather data to conduct multi-environment and multi-trait
analyses in her work (Hurtado-Lopez, 2012). Temperature and weather data was
available through her files. However, in some cases, retrieval of finer-resolution data
points for the sunlight hours over the span of an experiment was done online (www.
timeanddate.com), for reasons of homogeneity, reliability and accuracy of this source.

Process

We retrieved the field trial datasets, each involving a different file/folder structure
comprising, among others, spreadsheet files. We selected a trait (tuber weight) and
placed the relevant data in text (csv) files. Metadata could be located in publications
and local text documents, slidesets, and P. Hurtado-Lopez’s thesis text. The relevant
metadata were assembled according to MIAPPE 1.1, and everything was transformed
to RDF using PPEO (Papoutsoglou et al., 2020a). Weather data was also retrieved and
similarly transformed using the AEMET weather ontology (Atemezing et al., 2013).To
help aspiring FAIR data owners expose their data and their attributes, and users to
find and re-use those datasets, development of FAIR Data Points (FDPs) has been
proposed (Kuzniar et al., 2020). They present a hierarchy of levels (FDP, catalog,
dataset, distribution) to help organize and present their contents. Humans as well as
machine agents can navigate FDPs in either direction in the hierarchy, progressively
harvesting the (meta)data therein as necessary. We have constructed and used a simple
FDP for this case, which is available on GitHub (FAIR-CxE contributors, 2020).

An observation was made during the configuration of the FDP metadata, especially
for the dataset level. The FDP specification recommends the use of specific attributes to
describe the dataset (Kuzniar et al., 2020), and the information given mainly describes
the resource. However, no concrete information about the dataset content can be given
this way. The existing recommendations cannot accommodate our use case, since we
need to know essential attributes about a dataset to reuse it, without having to look
inside it (which is inefficient).To support meaningful indexing and searchability on FAIR
data portals, the contents of datasets should be somehow described on the FDP. Our
suggested solution is to extend the metadata descriptors that the FDP provides on the
Dataset level. We did this by embedding the MIAPPE metadata into the Dataset level.
The principle of the function of the FDP remains the same, but with this additional
layer of metadata we can decide whether we are interested in a dataset without the
additional step of accessing it. A schematic of this issue and our solution can be seen on

76

www.timeanddate.com
www.timeanddate.com


4444 4

Chapter 4

Figure 4.1. The detailed steps of the FDP exploration can be seen in Supplementary
Notes S4.1.

With the FDP in place, we can navigate to its topmost level and start exploring
the FAIRified data. The role we assume is of a researcher who knows of the existence
of the CxE datasets (though not their details), and wants to run a multi-environment,
multi-trait analysis. We will not conduct a proper biological analysis in this work, as the
methodology for plant phenotyping analyses and their intricacies are outside the scope
of this work. Instead, we want to showcase what FAIR data discovery, acquisition, and
integration could look like, focusing on six milestones (Figure 4.2), each reflecting a
step that a researcher would take in exploring the data.

For this scenario, the FDP lists a version (“distribution”) of the phenotypic dataset
(including data and metadata) that is available on a triple store and directly queriable
with the SPARQL language.

This process is described in greater detail in the Jupyter notebook available in
our repository, and everything (code, original and derived data files, FDP, triple store,
scripts, queries) is also available there (FAIR-CxE contributors, 2020).

Finding relevant phenotypic datasets on the FDP

To find relevant phenotypic datasets, a user has to navigate to the FDP of their institute.
The top-level of the FDP exposes metadata, among others, about the host institute,
and the data catalogs it contains (Figure 4.3). In this case we have chosen to separate
the data by types: phenotypic, genotypic and genomic, and since we are looking for the
CxE phenotypic datasets, we navigate to the Phenotypic catalog. We examine each
dataset, and we see that, out of the three present, one is relevant. To be able to explore
the dataset by querying it, we select the SPARQL endpoint distribution, and we get an
URL for it. For this, they only need to know the address of the FDP.

Exploring the Investigation and Study metadata

To begin with, we can write a query to retrieve the investigation in that SPARQL
endpoint, and the properties (from the PPEO ontology) that connect it to further
information. Assuming one has limited knowledge of a dataset, this step of exploration
may present us with an arrangement as seen on Figure 4.4.

With the same approach, we can discover the attributes that connect the studies to
their details. We can also produce more structured tables, holding each study attribute
in a specified column (Figure 4.5).

Verifying that the experiments have overlapping genotypes

A necessary prerequisite in the scenario we are developing (multi-environment analysis)
is the existence of an overlap in the genotypes in the studies. We can write a query to
verify that they indeed exist, and we can have a list. In total, there are 101 common
genotypes across all experiments.
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Figure 4.1: An illustration of the FDP Dataset specification (left), and our extension of it
with MIAPPE metadata (right). Without concrete metadata about the dataset contents,
the FDP cannot support meaningful, content-oriented indexing and searchability. Note
only the connection that is made in the picture is between the Investigation and the
Dataset. Other alignments between the two sides (e.g. Distribution and Study) have
no meaning.

Figure 4.2: A diagram showing the steps that a researcher in this situation would
follow to locate, acquire, examine, and reuse data in a FAIR way.
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Figure 4.3: The structure of our FDP. One can start at the left and move toward the
right, along the path indicated by the arrows, following the shapes with the dashed
outlines. It is also possible to move backwards, as each level links to both its parent
and its child.

Finding weather data for the location and time period of interest

Through the FDP, we previously discovered the address of a SPARQL endpoint holding
the data for the phenotyping experiments we were interested in. Though the process is
not shown here, we assume that we have discovered a similar SPARQL distribution for
weather data. We can jointly query this endpoint and our phenotyping data endpoint,
to make sure that the weather data we are interested in is indeed there.

The weather data is structured around weather stations, each located at certain
coordinates, producing measurements at certain intervals for certain weather variables.
More information about this structure is given in the Methods section. For each
experimental location, we have constructed a weather station. In real life scenarios,
these points would probably not overlap with the experimental fields. Nonetheless,
we assume this to be a perfect case. The MIAPPE metadata gives us the location
coordinates for the studies, from which we can calculate the distance to each weather
station. Sorting in ascending order, we see the lowest values indicating the matches
(Figure 4.6).

Focusing on a trait and plotting it for all experiments, for each genotype

We now know that we have access to phenotypic data and weather information for our
experiments. We will focus on the correlation between temperature and photoperiod,
as P. Hurtado-Lopez’s thesis does (among many other things), to demonstrate data
integration. One of the choices to be made revolves around the trait to examine. A
few traits are available for each investigation, and they can be examined more closely
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Figure 4.4: Retrieving the investigation properties, their values and their class type,
when applicable. NaN values in the type column indicate that the target of that
MIAPPE attribute is a literal.

Figure 4.5: Fetching specific study values for each study: the study ID, the country
abbreviation, the location name and address, the start and end dates of the study, its
GPS coordinates and altitude.
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Figure 4.6: A query calculating the differences (squared) between the coordinates of
each experiment and each weather station. Sorting the differences in ascending order
confirms that there is a weather station that is suitable for each experiment.

Figure 4.7: Necessary steps to be taken if a trait is to be compared/summarized in a
plot across experiments.
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Figure 4.8: A chart showing the total tuber weight produced, on average, by each
genotype in each experiment, for a total of 292 genotypes. Not all genotypes have been
used in all experiments. The x-axis on this chart lists the genotype name and the y-axis
the average tuber weight per genotype (averaged by plant). The different dot colors
show which experiment the data point corresponds to.

Figure 4.9: A chart showing the total tuber weight produced, on average, by each
genotype in each experiment. Unlike the previous figure, this one includes the genotypes
that not only were studied in all 5 experiments (101), but also had a value for our trait
of interest (80). The x-axis on this chart lists the genotype name (though not all are
labeled on the x-axis), and the y-axis the average tuber weight per plant per genotype.
The different dot colors show which experiment the data point corresponds to.
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through the Observed variables. We will focus on data for Tuber weight per genotype
for each experiment. The process for plotting a trait across all experiments is illustrated
in Figure 4.7.

The queries required to assemble the data from the SPARQL endpoint are detailed
in the notebook available on the GitHub repository for this work (FAIR-CxE contributors,
2020). With the responses, we can see that there are sharp differences in the performance
of the genotypes in each experiment, and great variability even for each genotype. Figure
4.8 includes all genotypes (292), whereas Figure 4.9 only the ones that were present
in all five studies (101). Of those, not all have a value for the trait in question.

Making plots combining this trait with the weather information

Literature indicates that there is an association between the yield of potato plants and
day length. In Hurtado-Lopez’s thesis, she also includes a measure that combines the
effects of temperature as well as day length, (cumulative) photo-beta thermal time
(PBTT) (Hurtado-Lopez, 2012). We have calculated these values for each experiment,
as shown on Figure 4.10.

We finally want to create a figure where tuber weight is plotted against the photo-
beta thermal time. In the figure below, we have combined three different types of data:
a) data from the phenotyping experiments (tuber weight values); b) data from the
experiment metadata (to get the genotypes associated to the observation unit IDs);
and c) weather information, for the average hours of sunlight at each location, for the
duration of its experiment. In Figure 4.11, a line is drawn for each genotype based on
two data points: one for the lowest average tuber weight yielded by the plants of that
genotype in an experiment, and one for the highest. Some lines rise and others fall; the
difference between the minimum and maximum values can be seen as an indicator of
the performance stability for that genotype.

With these results, we have shown that the data and the metadata are queryable
and homogeneous. The datasets are discoverable on the FDP. MIAPPE ensures that
key aspects are documented, and their components are easier to understand as their
information is assembled in an organized way. Furthermore, all of the data can be
processed uniformly. This means that it is easier to integrate it not only with other
datasets of the same type (phenotyping experiments), but also with different types (e.g.
weather). Although no new biological insight is given in these exploratory visualizations,
this type of summary can be useful to indicate where particular attention is warranted
by a domain expert.

Discussion

The FAIR data principles encompass a broad collection of data attributes and methods
related to management practices to increase data gain. Reusability is a broader challenge
that affects science, and some fronts can be tackled in singular ways across domains (e.g.
provision of licenses for reuse). In this work, we evaluate the domain-specific requirements
for FAIRness and the process to fulfill them in plant phenotyping. We consider a pipeline
which starts with data that is already enriched with computer-readable documentation,
and present a transparent pipeline that combines heterogeneous data. The pipeline
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Figure 4.10: The cumulative PBTT calculated for each experiment, based on daily
average temperatures and photoperiod.

Figure 4.11: This figure shows the best and the worst performance for each genotype,
depending on the environment. Each environment/study corresponds to a specific value
of cumulative PBTT on the x-axis. The y-axis shows the average tuber weight per
plant per genotype. A line that is rising (green) indicates that the genotype performed
worst in an environment where the days were, on average short and the temperatures
low, and better where days were long and temperatures high, whereas a falling line
(red) indicates the opposite.
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is composed of different stages for data discovery (F - Findability), acquisition (A
- Accessibility / I - Interoperability), analysis and integration (R - Reusability) for
exploratory purposes.

Most of the challenges encountered in this work are exclusive to the FAIRification
stage and in particular revolve around interpreting the data and metadata. The parties
involved in data generation are frequently the only ones to possess various details
about experimental settings and details, as they are not deemed important enough to
document, or to document in an organized manner. In this use case, the metadata was
predominantly present as free text (in Hurtado-Lopez’s thesis and referenced papers).
The authors clearly knew that; in order to publish their work and make it reproducible,
the experiments had to be well-documented, and made great efforts to provide all
necessary information. In some cases, this work proves that, in spite of those efforts,
the results fell short of the ambition.

Without standards to guide the authors, and possibly because of their continued
immersion in their work, this documentation (metadata) is not always comprehensive.
This can be observed in the Environment and Events section of the MIAPPE spreadsheet
that was filled in this experiment, and how little information is available in this section.
For example, planting dates are mostly there, but the presence of only some actions
around watering or fertilizer use highlights the information which was not recorded,
and which could have been useful to know for future reuse. After all, the original data
generator has no way of predicting which attributes may turn out significant for future
re-users. Furthermore, whereas traits with complex evaluation procedures or scales are
described in great detail, more “humble” ones don’t enjoy the same benefit. E.g., for
plant height: where from and where to exactly was this trait measured? Data from a
wheat (Triticum aestivum) trial where plant height was measured “from the ground
level to the tip of the spike” (Abebe et al., 2020) may not be directly comparable to
height measured “from the first node to the tip of the spike (excluding awns)” (Niu
et al., 2020), or may require transformations and other considerations if integration
of such datasets is required. When such details are unknown, reuse of data can be
impossible or irresponsible.

Conflicts and ambiguities also arise when the actual data is examined alongside
the metadata. In some cases, the thesis/articles stated that, alongside a number of
CxE genotypes, commercial cultivars were planted and evaluated. The data itself may
fail to include those (though in some cases may state that they have been removed),
or fail to match the number of reported genotypes for that experiment. In many
cases, the spreadsheet files where data was logged have labels in different languages
(presumably because of the authors’ native languages), use undocumented abbreviations
(which renders the data invalid for reuse), or not specific enough (is this value a
sum? or an average? is it per plant or per plot? how many plants were averaged?).
More confusingly, some abbreviations had different meanings across different files (e.g.
“tottub” or presumably “total tubers”: in some cases it was the number per plant, in
other cases the average for that genotype across plants) - which is crucial when one
needs to be sure that the data points they wish to compare, from different experiments,
are indeed compatible. Another complication that arose was the use of symbols or
categories outside the ones declared for certain traits (e.g. for a 0-7 flowering scale,
undefined dots or asterisks).
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In some cases, the same information was allegedly given in more files, but the
numbers did not match up. This could be attributed to use of the same abbreviations,
or similar labels, with different meanings across files. Ultimately, to resolve some of
these questions and proceed with this work, it was necessary to consult with coordinators
of the original experiments on some details. Finally, even when the data files and the
metadata was comprehensive and unambiguous, cleaning the original data files and
reshaping them to a common format was a time consuming process, as different traits
for each experiment were organized differently, and significant effort had to be put into
locating all relevant details in an ocean of free text.

In this work, the process of metadata collection and (meta)data harmonization was
undertaken by a doctoral student with an engineering background who had spent three
years interacting in the plant phenotyping community, helping shape standards and
improve data sharing methods in the domain. It should therefore be noted that the
time investment may have been markedly different for a plant biologist. However, for
the current requirements, it took on average two weeks per experiment to read the
relevant literature (inside and outside the core, Hurtado-Lopez’s thesis), examine the
pre-organized data files and reliably draw conclusions about the attributes that were
collected. Furthermore, only a small part of the data (for the traits used in this work)
was harmonized. A much larger volume was ignored because of time constraints, as
understanding and sufficiently documenting all aspects would have been prohibitively
time consuming. This work would have benefited appreciably from organized, structured
documentation, the likes of which have been highly unlikely in plant phenotyping until
the establishment of MIAPPE: it would have effectively reduced this time investment to
mere hours, as only a brief examination of the attributes and data transformation would
have been required. The investment would have been lower for the data collectors, as
they are inherently familiar with their work.

Having been through the process of FAIRifying and using FAIR data, an open
question has arisen with respect to findability. The FDP specification includes a “theme”
that can be listed for a dataset, but that can be as general as “science” or “biology”.
More details need to be present alongside that, and there is probably some overlap with
the minimum information and Minimum Information standards for different domains.
The realization is that, depending on the purpose, the definition of what should be
“minimum” varies: whereas all MIAPPE details are relevant when it comes to describing
a phenotyping experiment, not all of them need to be there to serve findability (e.g.
observation unit details). Consideration should be given to that, and in particular with
respect to scalability issues. The scenario illustrated here, with a human manually
navigating a FDP, will ideally not translate to reality; instead, indexing sites should
provide search functions over larger dataset collections, relying on minimum information.

From this work, it is obvious that there is a high knowledge barrier to entry when it
comes to the technologies chosen here to implement FAIR. As this is a proof of concept
with respect to the possibilities, user friendliness was not a priority. With graphical
user interfaces, instead of the html-based FDP used here, the steps of data discovery
and acquisition could be facilitated greatly, though such approaches may sacrifice some
flexibility that the more tech-savvy users could enjoy. The technical know-how required
may dissuade a significant portion of users from utilizing powerful FAIR resources, so it
should be one of the first points to be considered for improvement.
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The pipeline we present here embraces all elements of the FAIR principles. Findability
is achieved with unique identifiers for every (meta)data element, connections between
them and rich descriptors. Although the metadata is currently not findable through
any community repository, the FDP structure combined with the (partial) metadata
provides a clear path to doing so (by indexing data catalog / dataset metadata). For
accessibility, we use a combination of established protocols (HTTP), data models (RDF)
and formats (TTL), and ensure that metadata are available independently of the data.
Reusability is achieved through the explicit use of a license, the MIAPPE metadata
standard (which includes provenance, though the FDP does too), and data that follows
(admittedly still developing) community data formatting recommendations. Finally,
MIAPPE and the use of a community-promoted implementation for it are responsible
for (meta)data interoperability, thanks to the explicit data model of MIAPPE.

It is imperative that the science community as a collective start the process of data
FAIRification as soon as possible, even if that means making strong compromises on
the technical side. A balance needs to be achieved between assembling datasets that
are FAIR-ready (i.e. equipped with good documentation and some identifiers) even
though the technical provisions (FDPs, registries, curation, versioning and querying
specifications) may not be in place. At least, the scientific communities should be
exposed to the idea that standards are beneficial and worth some investment. Producing
sufficient standards and actually using them to annotate one’s own datasets is time-
consuming, other benefits may have to be made clear, such as enhanced visibility and
citability of one’s own datasets. Furthermore, standards need to be promoted more
strongly through entities such as journals, to create a basis for future incremental
improvements.

Methods

Standards and data formats

MIAPPE has been in development by the plant phenotyping community since 2016,
and recently received enhancements to its specifications, formats and scope (Ćwiek-
Kupczyńska et al., 2016; Krajewski et al., 2015; Papoutsoglou et al., 2020a). It is the
state-of-the-art standard for metadata provision in this community, and now answers
the explicit need for a domain-relevant community standard required by the FAIR data
principles (R1.3).

The MIAPPE implementations that are currently mature enough to fully implement
it are the ISA-Tab format (Rocca-Serra et al., 2010), the Breeding API (Selby et al.,
2019) and the Plant Phenotype Experiment Ontology (PPEO) (Pommier et al., 2020)
. A spreadsheet implementation exists, though it is intended to play a secondary role
to the others and serve as an easy way to introduce the standard to newcomers. For
this work, a combination approach was deemed best: the spreadsheet has been used
to assemble the metadata and as a means of intuitive inspection, and the PPEO to
support machine readability.

As far as weather data is concerned, there is no clear preference for a specific ontology
in the global community. The Linked Open Vocabularies portal (Vandenbussche et
al., 2017), which aggregates ontologies from the web so that they may be reused,
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presents three results to a “weather” query: the Home Weather ontology, the Smart
Home Weather ontology, and the Air Traffic Data ontology. As they pertain to either
smart home or air traffic contexts, they were not deemed appropriate. Further search
indicated the BIMERR Weather Ontology (1) and the SEAS Weather Ontology (2) as
possibilities, but no examples of actual use were found to support its adoption for this
work. Contrary to that, the AEMET weather ontology (Atemezing et al., 2013), of the
Spanish Meteorological Office, is currently used to expose its data as linked data (3),
and for this reason it was chosen.

While MIAPPE does not specify a data format, it states that “The data files are
formatted according to the common practices of the domain and contain references to
that Variable ID, the measured values and times plus any information which researchers
might deem useful”. We made the choice to use common tabular files with columns
for the observation unit ID and measurement date, followed by the variable ID for the
traits in question. In some cases, especially when it comes to time series, this results in
sparse files. For the weather data, the same data format was followed.

Technologies

FAIR Data Point

To approach this work in a way that is consistent with the FAIR principles, it was
necessary to produce a FAIR data point (FDP). The metadata was assembled according
to the specifications developed by the Dutch Techcentre for Life Sciences (Kuzniar et al.,
2020). It includes a tree structure with the metadata for the FDP itself at the root,
followed by a Catalog (a collection of datasets), the dataset itself, and distributions of
it (in different formats). Each level, on top of the metadata about itself, includes links
to the ones below and above it, enabling navigation. The metadata is given in RDF /
turtle format (ttl) , and exposed by a python server script.

Part of the given details of a dataset, whether inside or outside a FDP, concern its
contents or its description, so that interested parties may be aware of its topic prior
to accessing it. In the general FDP specifications, a general way to accomplish this is
indicated.

Resource Description Framework (RDF)

We chose to provide all data as linked RDF data. RDF is a W3C standard for data
interchange, and one of the pillars powering the semantic web (Lassila, Swick, et al.,
1998). It is used to describe any kind of resource by making statements about it, each
composed of three parts: a subject, a predicate and an object. Subjects are referred
to by Unique Resource Identifiers (URIs) and statements can be made about them,
connecting them to plain literals or other subjects with their own URIs. Semantic
schemas specifying, for a given domain, possible ways to lay out and request information
about subjects can be provided as ontologies. In turn, other parties can make statements

(1)https://bimerr.iot.linkeddata.es/def/weather/
(2)https://ci.mines-stetienne.fr/seas/WeatherOntology
(3)http://aemet.linkeddata.es/index_en.html
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about those subjects, eventually assembling a web of linked data. RDF data can be
queried using the SPARQL query language.

FAIRification process

The process started with the FAIRification of the phenotyping datasets. Note that,
for this work, no genotypic information is included. For this proof of concept only a
few traits were chosen, with the base goal being a showcase of FAIR data discovery,
acquisition and integration.

The materials used are available in this GitHub repository: FAIR-CxE contributors,
2020.

Assembling the MIAPPE metadata

MIAPPE requires information for a number of categories. For each, an effort was made
to locate the relevant information in P. Hurtado-Lopez’s thesis and related publications
referenced therein. The information was compiled on MIAPPE’s spreadsheet format,
using a different tab for each section.

� Investigation: We chose to represent the Investigation as a collection of the
5 experiments contained in P. Hurtado-Lopez’s thesis. The details reflect this
content, and were chosen freely.

� Study: Each of the 5 phenotyping experiments comprises a study. General details,
such as the location, start and end date and experimental design information, are
listed here.

� Person: The coordinators of this work and P. Hurtado-Lopez are listed.

� Data file: 5 data files were composed, each holding the data for one study. They
are listed here.

� Biological material: For this section, we create one biological material for each
CxE genotype (including the parents), and other cultivars. In particular, the CxE
cross is listed as the material source for each of the genotypes produced from it.
It is important to maintain traceability of each genotype through the experiments,
as we want to compare their performance in different environments.

� Environment: Details supplied in the thesis about the conditions (e.g. av-
erage temperature, type of soil) are present here, though this list is far from
comprehensive.

� Experimental factor: There were no factors.

� Events: Planting dates, where known, are listed here, as well as applications of
fungicides and known water treatments. Note that a date is necessary for the
creation of an event, which prohibits the inclusion of un-timestamped occurrences.
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� Observation unit: For most experiments, we have information about individual
plants, and their organization into plots and blocks. The exception is the exper-
iment in 2003 in Venezuela, where the data was first recorded (by the person
who conducted this experiment) per plant, and then averaged for each genotype -
which are the only data records communicated. In this case, the observation unit
type “genotype” is used. There are some rare data points in other studies where
the same unit type is used, as some genotypes were precluded from the records
for not being a CxE clone.

� Sample: There were no samples to list.

� Observed variable: For the most part, the thesis gives a general description
about the way that plant traits were evaluated. In some cases, assumptions had
to be made as the were not unambiguous.

The resulting spreadsheet can be found on this GitHub repository (FAIR-CxE contributors,
2020).

Figure 4.12: Part of the experimental data file for the 2010 Ethiopia experiment.
The first column lists the observation unit ID, which can be cross-referenced with the
metadata present in MIAPPE for more information, such as the observation level of
that unit (in this case: plant), or its genotype. The date column is followed by columns
labeled with the observation unit IDs, which again can be cross-referenced with MIAPPE
metadata for a comprehensive explanation.

Assembling the experimental data

For each experiment, a tab-delimited text file was composed, holding all data for it.
This includes data that was only measured once (e.g. total tuber weight for a plant), or
as part of a time series. An example of such a file can be seen in Figure 4.12.

Generating RDF

The MIAPPE spreadsheet holding the information about the experiments was processed
using a Python script. This script used PPEO to produce RDF from the spreadsheet
data, capturing all of its contents. The process can be inspected in a Jupyter notebook.
Note that certain formatting assumptions were made (for example, for the location
details cells of the spreadsheet) to make this possible. This process is fully reproducible,
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however this is not a general-purpose converter as it does not cover the parts of MIAPPE
(sections, attributes) that were not used in this work.

PPEO was also used to generate RDF for the actual experimental data. The URIs
generated by the script in this process are not resolvable online. An example of the
MIAPPE RDF file and of a data RDF file can be seen in Figure 4.13 and Figure 4.14
respectively.

Exposing RDF

The lightweight Jena Fuseki triple store was chosen to serve as a SPARQL endpoint. In
it, two datasets were created: one for the phenotypic data, and one for the weather
data. In practice, these can be treated as two separate SPARQL endpoints and they can
be queried individually. In a real life scenario, it would be realistic to have a long list of
SPARQL endpoints, but two are sufficient for the purposes of an integration showcase.
With federation, these two endpoints can collaborate and respond to questions that
address data on both - whereas each individual one cannot.

For the FDP, TTL files were composed with relevant metadata, and then exposed
as plain text using a Python script (with the Flask library).

Data and code availability

All associated data and code are available on the GitHub repository: FAIR-CxE contrib-
utors, 2020.
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Figure 4.13: Part of the generated file with RDF for the MIAPPE metadata, showing
the Investigation declaration.

Figure 4.14: Part of the generated file with RDF for the 2010 Ethiopia phenotyping
experiment, showing the declaration of a data file with its location, and some of the
observation (IDs) listed in it.
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Abstract

Background

Scientific literature carries a wealth of information crucial for research, but only
a fraction of it is present as structured information in databases and therefore
can be analyzed using traditional data analysis tools. Natural language processing
(NLP) is often and successfully employed to support humans by distilling relevant
information from large corpora of free text and structuring it in a way that lends
itself to further computational analyses. For this pilot, we developed a pipeline
that uses NLP on biological literature to produce knowledge networks. We focused
on the flesh color of potato, a well-studied trait with known associations, and we
investigated whether these knowledge networks can assist us in formulating new
hypotheses on the underlying biological processes.

Results

We trained an NLP model based on a manually annotated corpus of 34 full-text
potato articles, to recognize relevant biological entities and relationships between
them in text (genes, proteins, metabolites and traits). This model detected the
number of biological entities with a precision of 97.65% and a recall of 88.91% on
the training set. We conducted a time series analysis on 4023 PubMed abstract of
plant genetics-based articles which focus on 4 major Solanaceous crops (tomato,
potato, eggplant and capsicum), to determine that the networks contained both
previously known and contemporaneously unknown leads to subsequently discovered
biological phenomena relating to flesh color. Analysis of these networks indicates a
connection between our trait and a candidate gene (zeaxanthin epoxidase) already
two years prior to explicit statements of that connection in the literature.

Conclusions

Our time-based analysis indicates that network-assisted hypothesis generation
shows promise for knowledge discovery, data integration and hypothesis generation
in scientific research.

96



5555 55

Chapter 5

Introduction

Scientific publications accumulate knowledge and developments in any field of research.
One of the most important tasks in a researcher’s work and career is keeping up to
date with the ever-increasing volume of scientific literature, placing new outputs into
context, and investigating the implications in their field. However, as the number of
scientific publications is growing at an exponential rate, there is a need to use artificial
intelligence to enable a machine to read, extract, and analyze the information in textual
sources.

Potato (Solanum tuberosum L.) is one of the most important staple crops for human
nutrition. In addition to its culinary versatility, potato is a cost-effective product and
plays a major role in meeting the ever-increasing food demands of the world. Its tubers
are a good source of starch, proteins, vitamin C, folate, and provitamin A in the form
of beta-carotene (Sulli et al., 2017). Different potato genotypes produce tubers of
different properties, like shape, size, color, starch content, and nutritional value.

One of the most extensively studied traits in potato is tuber flesh color. Potato
tubers can have a wide range of colors, from orange to white and purple. Carotenoids
are considered to be the primary determinant of tuber flesh color (C. Brown et al.,
2006). Carotenoids play essential roles in photosynthesis, while in non-photosynthetic
tissues, they exert a broad range of functions acting as pigments, antioxidants, and
precursors of signaling molecules, including volatiles (Giuliano, 2014). Previous studies
have shown that beta-carotene and zeaxanthin are the components that predominantly
determine potato tuber flesh color. In recent years, several candidate genes like beta-
carotene hydroxylase (BCH/CHY2) and zeaxanthin epoxidase (ZEP) have been found
to relate to tuber flesh color. BCH/CHY2 are the genes related to the production of
beta-carotene while ZEP is considered responsible for the accumulation of zeaxanthin
(Acharjee et al., 2011). Scientific evidence for the association of tuber flesh color with
genetic and molecular entities is found in the scientific literature or biological databases.
For example, Acharjee et al. previously published networks of experimentally found
biological entities that relate to tuber flesh color in the years 2011 and 2016 (Acharjee
et al., 2016, 2011). In this research, we automate the process of extracting knowledge
of molecular entities (genes/proteins/metabolites) that influence changes in tuber flesh
color from scientific publications.

Compared to structured information (as in databases), textual information is huge,
noisy, and redundant. Artificial intelligence can help automate the processing of textual
information and the discovery of new knowledge. Natural Language Processing (NLP)
is a field of artificial intelligence that focuses on enabling machines to understand
and analyze (unstructured) data in the form of text (Hirschberg and Manning, 2015).
Despite the availability of various data repositories for plant research, a wealth of
information currently remains buried within the scientific literature. Hence, information
extraction via NLP is of growing interest and importance. NLP can render scientific
texts computationally accessible, support information extraction, knowledge network
(KN) construction and hypothesis generation.

In the past years, many NLP based research studies have been conducted on the
literature from molecular biology (Harmston et al., 2010; C.-C. Huang and Z. Lu,
2015). These focused primarily on rule-based named entity recognition (NER) i.e.
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identifying and annotating biological entities such as genes or proteins (Baran et al.,
2011; Ding et al., 2015), metabolites (Choi et al., 2016; Galea et al., 2018), traits
(Endara et al., 2018), QTLs (G. Singh et al., 2018), diseases (Cho et al., 2017), and
drugs (Jang et al., 2018) in literature. A few NLP studies paid attention to extracting
associations (relationships and events) between these biological entities, using NER
systems under the hood (Ding et al., 2015; Hahn et al., 2012; Van Landeghem et al.,
2013). Automated approaches to mining knowledge concerning the association of an
entity to its phenotypes are required to further advance the field of precision breeding
(Sharma et al., 2017).

Rule-based NLP is more widely used in mining knowledge from biological context
than machine learning-based NLP (Cook and Jensen, 2019; Kim et al., 2019). However,
construction and formalization of rules is a complex task in rule-based NLP. Often
the rule-based NLP user tends to overfit the rules to the training set, which affects
performance in the test set. Dictionaries and ontologies are used as building blocks
in rule-based NLP. In supervised machine learning-based NLP, on the other hand, a
domain specialist annotates the training set of documents manually. These manually
annotated documents, supported by dictionaries and ontologies, are used by an algorithm
to produce context-specific rules. Finally, these rules are used to perform NLP on the
unannotated test set.

In this research, we investigated whether the latent knowledge in scientific literature
can be harnessed with NLP, and if new leads for gene-trait associations can be highlighted
for hypothesis generation in a timely manner. We chose to focus on the flesh color of
potato tubers, an agronomically important trait with known associations. This enabled
us to compare the relationships that we distilled from the literature with established
facts, serving as a metric for the performance of our pipeline. It was necessary to
validate more secondary hypotheses before we could focus on the time dimension of this
question, namely 1) whether the NLP model is able to extract the expected relationships
from the free text in literature; and 2) whether abstracts alone can act as high-certainty,
information-dense proxies for their corresponding articles.

Our pipeline started with the NLP model, which was customized based on domain-
relevant literature to find biological entities (genes, proteins, metabolites, and traits)
and general relationships between them. We chose to use the commercial IBM Watson
software suite, as it has been previously used to successfully mine knowledge from
large corpora of texts available online (Y. Chen et al., 2016; Ferrucci, 2012). Watson
Knowledge Studio is a proprietary cloud-based application to train an NLP model based
on the context and linguistic nuances of a specific literature domain. In addition to
annotating entities of interest in a given text (named entity recognition), Watson also
performs relationship extraction; that is, labeling the connections between the detected
entities of interest. The relationships extracted by Watson were used to build KNs.
After a normalization step, we were able to integrate these, and produce visualizations
of the distilled knowledge from a set of texts.

We composed a primary corpus of 34 selected articles, mainly concerning potato
flesh color, which we used to train our NLP model. Later we deployed it on a subset
of these 34 (abstracts only) and a broader-spectrum corpus comprising 4023 PubMed
abstracts, published from 2000 to 2016. For the former, we compared the nodes and
the edges of the networks to test our secondary hypotheses. For the latter, we also
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performed a time-based analysis, tracking the closeness of our trait of interest to other
relevant entities, marking the time points where significant developments occurred, to
evaluate whether this approach is indeed helpful for research.

This proof of concept (although limited in size) is an example of how literature
mining can help plant scientists obtain a clearer “big picture” about specific areas in
their field of expertise. Elusive findings in the expanding body of literature could come
to light, be automatically organized into KNs, and ultimately help accelerate research
in a process with little human intervention.

Results

First, to confirm that our domain-specific NLP model performed as intended and
extracted knowledge networks (KNs) with the focus on tuber flesh color from scientific
literature, we deployed it on 2 different corpora, i.e. the training set with full-text
articles and the test set with PubMed abstracts only. This was followed by a time
analysis on the test set, to investigate whether the knowledge in these KNs could really
be used in the way we envision, to generate new hypotheses.

Case 1: Analysis of training corpus (full-text articles)

We built a KN on the training set of 34 articles, with a total of 293 nodes and 551
unique edges. Out of these 293 nodes, there are a total of 159 genes/proteins, 112
metabolites and 22 traits (Figure 5.1). Carotenoids (an entity of the type metabolites)
was the primary centroid of this network having 76 first-order neighbors. To evaluate
the nodes and connections of this KN, we analyzed the overall structure based on
the currently known experimental knowledge of tuber flesh color. Our KN contains
scientifically credible links between nodes and the trait of interest, tuber flesh color.
Most genes/proteins and metabolite entries in this network are part of the carotenoid
biosynthesis pathway, which includes beta-carotene biosynthesis, xanthophyll cycle,
abscisic acid biosynthesis, lutein biosynthesis, etc.

The trait under study, tuber flesh color, has 38 first-order neighbors, comprising 11
genes/proteins and 27 metabolites (the Cytoscape network can be found at (G. Singh
and Papoutsoglou, 2019a)). These genes/proteins and metabolites are also listed in
Table 5.1. Previously conducted research studies have found that ZEP and BCH/CHY
are associated with white, yellow and orange flesh color. AN1, a gene responsible for
the production of anthocyanin, is associated with purple flesh color. All these genes
occur as direct neighbors of tuber flesh color in our network.

Our NLP model retrieved the entities in the training set with a precision of 97.65%,
a recall of 88.91% and an F1 score of 93.07%. Supplementary table S5.1 presents
a confusion matrix showing the total number of entities per document, number of
true positives (TP), number of false negatives (FN) and number of false positives
(FP). Precision and recall were calculated as TP / (TP + FP) and TP / (TP + FN)
respectively.

Additionally, to compare the difference in volume and quality of information extracted
from abstracts vs. full-text versions of articles, our NLP model was applied separately
on only the abstracts of the training corpus.
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Figure 5.1: A KN representing knowledge triples found in the training set of 34 full
articles. Yellow nodes refer to a trait entity, red nodes refer to gene/protein entities,
and green nodes represent the metabolite entities. The centroid of this network is tuber
flesh color. Nodes with bold outlines indicate that these entities have an experimentally
proved association with tuber flesh color (trait of interest). This experimental evidence
of these entities with tuber flesh color is reported in the articles (Acharjee et al., 2016,
2011).
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Set A Set B Set A - Set B

AN1 anthocyanin AN1

anthocyanidin ascorbic acid anthocyanidin

anthocyanin b-carotene carotene hydroxylase

ascorbic acid b-carotene hydroxylase cyanidin

b-carotene bHLH epoxides

b-carotene hydroxylase caffeic acid essential amiacids

bHLH carotenoid glycosides

caffeic acid CCD lutein

carotene hydroxylase chlorogenic acid lutein-5,6-epoxi

carotenoid CHY malvidin

CCD Or nonepoxide

chlorogenic acid phenolic pelargonidin

CHY TP peonidin

cyanidin tuberigen activation complex petunidin

epoxides xanthophyll Pf

essential amino acids zeaxanthin phenolic acid

glycosides zeaxanthin epoxidase phytoene synthase

lutein polyphenol

lutein-5,6-epoxide recessiveZEP

malvidin violaxanthin

nonepoxide violaxanthin-like carotenoid

Or

pelargonidin

peonidin

petunidin

Pf

phenolic

phenolic acid

phytoene synthase

polyphenol

recessiveZEP

TP

tuberigen activation complex

violaxanthin

violaxanthin-like carotenoid

xanthophyll

zeaxanthin

zeaxanthin epoxidase

Table 5.1: Sets representing first order (direct) neighbors of flesh color nodes. Set A
represents first-order neighbors of tuber flesh color nodes found in full-text articles. Set
B represents first-order neighbors of tuber flesh color nodes found in abstracts of articles
of the training set. The difference between these sets (SET A - SET B) represents all
entities that are first-order neighbors of tuber flesh color in full-text articles, but not in
abstracts alone.
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This highlighted a quantitative difference between these two representations of a
scientific article. We hypothesized that the abstract would concretely and concisely
present the core outputs of a publication, whereas the introduction section would
mainly recapitulate established theories and relevant biological connections but without
contributing new knowledge. Finally, the results and discussion sections would combine,
in greater detail, the significant contributions of the article, and make further suggestions
for future experimentation. We found supporting evidence for this hypothesis, as
the abstract-only network still includes the entities experimentally shown to be most
important for tuber flesh color. In Sets A and B, Table 5.1 lists the direct neighbors of
tuber flesh color node in the KNs of full text representation (Figure 5.1) and abstracts
only (Figure 5.2).

The difference between these two sets (Table 5.1; Set A - Set B) is also shown.
These 20 entities occur as direct neighbors of flesh color in the full-text KN, but
not in the abstract-only KN. Of these 20 entities, 6 (AN1, lutein, lutein-5,6-epoxide,
polyphenol, phytoene synthase, violaxanthin) are still present in the KN of abstracts
(Figure 5.2), even though they are not direct neighbors, but rather second-order
neighbors of tuber flesh color and first-order neighbors of carotenoids, BCH, or ZEP.
Furthermore, recessive ZEP is also represented in the abstract-only KN. Since the
recessive allelic variant of ZEP is similar to the dominant one, these nodes are not
represented as separate entities. The same applies to other aspects of gene/protein
characteristics, such as chemical isomers and trait measures, which we grouped together
with the main entity to reduce fragmentation in our KNs. The remaining 12 entities
(nonepoxide, peonidin, anthocyanidin, petunidin, pelargonidin, cyanidin, pf, malvidin,
epoxides, glycosides) are not represented in the abstract-only KN. These entities are
associated with key metabolites causing changes in flesh color. However, they do not
influence the trait directly. Hence, our results illustrate that the most important nodes
in the full-text network are still present in the reduced abstract-only network.

Case 2: Analysis of testing corpus (PubMed abstracts)

To assess how our NLP model performed on an unknown corpus, we deployed it on a
testing corpus of 4023 abstracts from PubMed articles. Watson retrieved a KN with a
total of 681 nodes and 976 unique edges (Figure 5.3a), more than in Case 1 (293 resp.
551), which means our model was able to identify new nodes and edges in this corpus.
Carotenoid was again the primary centroid of this network, with 107 first-order neighbors.
Our trait under study, tuber flesh color, has 21 first-order neighbors, comprising 9 genes
/ proteins and 12 metabolites (see Cytoscape network at (G. Singh and Papoutsoglou,
2019a)).

While our model is tailored toward potato tuber flesh color (ranging between
white and orange), additional traits and their respective biological associations were
detected as well. For example, the KN from the test set also detected genes/proteins
and metabolites which influence other traits, such as enzymatic discoloration, tuber
initiation, tuber development, tuber maturation, cooking types, stolon swelling, flower
development etc. (Figure 5.3b). This illustrates that the information content extends
beyond the specific use case. Moreover, our NLP model can extract information related
to tuber flesh color in a wider context than the use case only, without requiring further
specific training.
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Figure 5.3: A KN representing knowledge triples found in the test set of 4023 PubMed
articles. Yellow nodes refer to a trait entity, red nodes refer to gene entities, and green
nodes represent the metabolite entities. (A) complete zoomed-out knowledge network
(B) zoomed-in snapshot of the knowledge network focusing on tuber flesh color and
additional traits with their respective biological associations.
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Chapter 5

Identifying emerging candidates with time analysis

To assess the accumulation of knowledge over time, the abstracts of the test set were
organized in subsets ordered chronologically (i.e. by the date of their publication).
Starting from the year 2000 and incrementing yearly (i.e. all publications up to 2000, all
publications up to 2001, . . . , all publications up to 2016), subsets were formed. Each
of these subsets was used to construct a separate KN. A network of a given year is
always a subset of a KN from the following years and a superset of the previous years.

To study the development of entity connections with regard to our trait of interest
(tuber flesh color), we worked backwards. The most recent collection was the most
complete, so the nodes widely concerning tuber flesh color were chosen (color, flesh,
flesh color, flesh trait, orange flesh color, tuber color, tuber flesh, tuber flesh color, white
flesh color, yellow-orange flesh color) and are henceforth referred to as flesh color nodes.
We focused our attention on the nodes that eventually ended up directly connected
to a flesh color node. Then, we tracked the distance of these selected nodes to each
individual flesh color node, and the changes over time. Supplementary table S5.2
shows an example of such a table for changes occurring between 2009 and 2010. Scripts
were finally written to parse the collections for all years in the corpus. Based on these
year-by-year summaries, a master summary table was made (Table 5.2).

Table 5.2 shows that the literature already contained significant indications as to
the relevance of specific genes that were found to be important for potato flesh color
(Acharjee et al., 2011). Most prominently, both beta-carotene hydroxylase (BCH) and
zeaxanthin epoxidase (ZEP) were in close proximity (2nd order neighbors) from 2007
onwards and made the transition to direct neighbors of flesh color nodes in 2010. While
investigating the sentence that contributes to the transitions of ZEP in the time ranges
from 2006 to 2010, we found that this gene was hypothesized to be associated with
flesh color Diretto et al., 2007b; Wolters et al., 2010 before experimental evidence was
published in 2011. The details about the literature (publication and exact sentences)
providing these connections can be found in Supplementary notes S5.1.

Similarly, false positives such as lycopene, a metabolite not found in potato tubers,
arise in the KN as first-order neighbors. While for most domain experts it is clear that
lycopene is the compound responsible for flesh color in tomato, and therefore trivial
to eliminate from the knowledge network as a significant player, it does reinforce the
requirement for domain specialists to apply their knowledge to these results.

Discussion

This work served as a pilot to study the benefits of using NLP platforms, such as
Watson, for performing knowledge discovery in plant science literature. With the
exponential increase in the number of scholarly publications and the sheer volume of
available biological literature, researchers are finding it increasingly difficult to keep
up-to-date with all information relevant to their field. Assembling knowledge from
available literature in a single network is useful to generate new hypotheses or aid
researchers in assembling a better overall picture of the components surrounding their
area of interest. However, unlike for a human research expert, it is more challenging for
a machine to comprehend biological insights from complex sentences and text structures
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of scientific literature. Each NLP model has a limited scope of research questions it
can address. The developed type system of our NLP model cannot capture and reflect
all biological complexities in knowledege networks (KNs). However, our developed
NLP model is intended to only mine genotypic-phenotypic information from scientific
literature into KNs, so that this knowledge can be structured data, easily readable by
both machines and humans.

Further, only generic relationships (“is related to”) of association between these
entities were captured. The degree of association between two entities (positive, negative,
inexplicit) was ignored in our model. The performance of our model, nevertheless, is
satisfactory for the pilot study and addresses the above stated research objective. In
order to optimize the efficiency of the process of manual annotation of the training set,
we restricted ourselves to a limited training corpus of 34 full-text articles. Although
training was thus limited, it was still sufficient to enable our model to extract similar
knowledge from the test set, a collection of documents referring to different crops, traits
and processes.

While making the testing corpus for our NLP model, we included literature from
other Solanaceae crop species (tomato, capsicum, eggplant) as well. Mining and
assembling information from all of these different literature resources into a single KN
was somewhat controversial. Many genes and metabolites are involved in a similar
bio-mechanism across these crop species. However, in some cases literature on other
species may introduce noise, whereas in other cases it may be a source of ideas. There is
a certain tradeoff to be observed here: the wider the scope of the processed documents,
the higher the margin for noise, but also the potential. The premise for this trial, after all,
was that newly published research in a broad domain of science would indiscriminately
be funneled into an NLP model, to produce networks that can assist humans.

A similar balance exists when it comes to the parts of documents that are used for
text analysis. Abstracts are an easily accessible and summarized form of significant
information from an article. However, different journals prescribe different formats for
their abstracts and other sections of scientific articles they publish. Therefore, the
quality of minable information mentioned in an abstract depends on the journal as
well as the type of article. Abstracts of articles such as reviews, scientific methods, or
articles that cover a wide range of topics, might not provide comprehensive minable
scientific leads. For example, in the journal Nature, contributions may not always
formally describe all scientific leads in their abstract, and results are more frequently
mentioned in the main text.

It is worth mentioning that there were instances where the NLP approach failed to
meet expectations. In cases where biological entities were abbreviated, or associations
between two entities were mentioned in more than one sentences, our NLP model could
not predict these entities and relationships. Watson’s type system includes facilities to
co-refer abbreviated entries or pronouns to their original forms. However, due to the
relatively small number of instances in our training corpus, Watson’s NLP model was
not able to capture these entities and relations. However, Watson is not unique in this
respect. In fact, most NLP tools suffer from the same flaw. Biological abbreviations
are haphazard. Frequently, two biological concepts have the same abbreviation. For
example, an abbreviation MIC might mean Minimal Inhibitory Concentration, or refer to
a Major Histocompatibility Complex (MHC) class I chain related (MIC) gene. Training
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on a larger corpus might increase accuracy in predicting the correct entities.
Overall, our work produced a model that powered the construction and time analysis

of meaningful KNs under restricted-effort conditions. We conclude that having the
information we describe above available can provide key indications of scientifically
relevant links, before such links are experimentally substantiated or published. Therefore,
we believe that a more intensive effort would yield improved results and could play an
important role in bringing together diverse information from large literature corpora and
in hypothesis generation. Presently our KNs contain unweighted edges. In the future,
we would like to assign edges a weighted score, based on experimental knowledge from
databases, and the number of times a particular relationship occurred in text. In this
way, text mining can be used to compare established and emerging knowledge.

Conclusions

Our work strongly indicates that the computer-assisted extraction of knowledge from
plant science literature can facilitate research. The results of our time analysis suggest
that the individual components necessary for the formulation of new hypotheses may
be published but remain unassociated for longer periods. Therefore, integrating these
components into comprehensive knowledge networks can accelerate the generation of
new hypotheses.

Methods

Experimental corpora

To make a supervised NLP model, we assembled scientific articles into 2 corpora,
comprising a training set and a test set. The training set consisted of open source
full-text articles, while the test set was built from PubMed abstracts.

The training corpus is a collection of 34 full-text scientific articles (see Supplemen-
tary material S5.3) which focus on tuber flesh color and known biological entities like
metabolites and proteins involved in the carotenoid pathway, for example, beta-carotene
hydroxylase and zeaxanthin epoxidase (Acharjee et al., 2016). The training set was
manually annotated with Watson Knowledge Studio (WKS). WKS uses these manual
annotations to generate a supervised NLP model that can capture phenotypic tuber
traits and the associated genes, proteins and metabolites. Later, we assessed the
capabilities of this supervised NLP model to construct a knowledge network (KN) on
this training set as well as on a larger test set.

The test set consists of 4023 abstracts from PubMed from the years 2000 to 2016
(which can be found at (Papoutsoglou and G. Singh, 2020a)). These abstracts are
plant genetics-based articles which focus on 4 major Solanaceous crops (tomato, potato,
eggplant and capsicum). To limit the scope of the NLP model to find direct genomic
associations related to tuber flesh color, no pathogen related articles were included in
the test set. Our developed NLP model is capable of extracting KNs for the tuber flesh
color trait. However, the articles in the test sets deal with a variety of different topics
in plant genetics and are not limited only to the tuber flesh color trait. This test set
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challenges the NLP model to a more real-world application, as opposed to a restricted
use case in our training set.

In addition, to analyze the difference between information contained in abstracts
and full text representations of an article, we divided the training set into section-based
subsets. We also divided the test set of abstracts into subsets based on their year of
publication, to study the evolution of knowledge over time.

Watson Knowledge Studio and Watson Explorer

IBM’s Watson Knowledge Studio (WKS) is a proprietary text mining solution. It can be
used to build machine learning models that perform named entity recognition (NER) and
relationship extraction, using state of the art methods (Florian et al., 2003; Kambhatla,
2004; M. C. McCord et al., 2012; C. Wang et al., 2012). The models can be tailored
to different kinds of text (e.g. marketing, legal, scientific), and customized as to the
type of annotations they produce.

To build a machine learning annotator in WKS, users must first define a type system
to establish the “entities” (i.e. categories/classes of things that they wish for it to
capture) and the “relations” between them. With the type system in place, they mark all
occurrences (”mentions”) of these entities and relations in collections of representative
texts, producing a ground truth. Part of these collections, the training set, is then
analyzed by WKS for linguistic structures, patterns and nuances specific to the domain,
to produce the machine learning model. The other part, the test set, is only used to
quantify the performance of the model (precision, recall). The type system and the
annotations can be changed iteratively until the model performs satisfactorily.

Our final type system comprised three entities (Gene/Protein, Metabolite, Trait) and
seven relations between them, as seen in Figure 5.4. We attained the best results with
relations of a simple and all-encompassing nature, which is why many of the relations
are only labeled as “related to”. The exceptions (“encodes”, “part of”) were included
since the high number of instances in the corpus allowed WKS to produce models that
could successfully identify them in the text.

Each entity can be supported by an entity-specific dictionary. Dictionaries are used
in a pre-annotation step of NER, before the corpus is annotated manually. To minimize
noise (undesirable annotation of entities and relations), all dictionaries were made small
and are limited to molecular entities known to be associated with tuber flesh color or
with the carotenoid pathway. We selected our preferred labels from known molecular
databases or ontologies. The Gene/Protein and the Metabolite dictionaries contain 183
genes/proteins and 85 metabolites, respectively. 56 potato-related traits taken from
the Solanaceae Phenotype Ontology (SPTO: Solanaceae Phenotype Ontology 2018)
comprise the Trait dictionary.

Watson Explorer (WEx) can use the model to annotate new documents. A schematic
of its pipeline can be seen in Supplementary figure S5.2. Its outputs are text documents
in XML/CAS files, containing annotations of the entities and their relations that have
been extracted, and their documents (and document position) of origin. We use these
XML/CAS files to build our KNs.
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Modeling decisions

To train our NLP model to capture KNs of only genotypic-phenotypic entities and their
relationships, the type system underwent a number of major changes and revisions in
an iterative process. With trial-and-error optimization, entities and relationships were
introduced as well as discarded, based on how well the knowledge is captured and
presented in the KN. In our analysis, a knowledge triple is defined as a data structure
consisting of two entities and a label for their underlying relationship.

Some modeling decisions important to be mentioned are presented below.

� Biological entities that were tested but not included in the final model:

– biochemical processes

– metabolic pathways

– trait values

– organism names, species names and genotypes

While these biological entities occur in text and contain sources of knowledge to
understand the biological mechanisms involved in the phenotypes, the numbers of
mentions in the text were insufficient for WKS to adequately train a model. We
therefore chose not to include these entities in the type system of our NLP model.
Furthermore, including these entities in our model would have shifted the focus
away from the research question of mining genotypic-phenotypic relationships in
text.

� Combination of genes and proteins to a single entity:

A. Entities

B. Relationships

1. Gene / Protein encodes Gene / Protein

2. Gene / Protein (is) related to Gene / Protein

3. Gene / Protein (is) related to Metabolite

4. Gene / Protein (is) related to Trait

5. Metabolite (is) part of Metabolite

6. Metabolite (is) related to Metabolite

7. Metabolite (is) related to Trait

Gene / 

Protein
Trait

Metabolite

Figure 5.4: Watson Knowledge Studio (WKS) configurations of the type system for a
customized NLP annotator. (A) 3 types of entities in the type system. (B) 7 types of
relationships defined in the type system of an annotator.
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Initially, we kept genes and proteins as two separate entities. However, during
manual annotation, difficulties were encountered in distinguishing between the
two, as they are frequently used interchangeably in the text. Furthermore, for
subject matter experts, there is little information lost by combining them, and
separating them introduced many misclassifications. Hence, in our type system
genes and proteins are a single entity.

� Annotation rule for metabolites (specific metabolite mentions vs generic mentions):

Metabolites are included in scientific literature in different forms. Mentions may
consist of specific composite terms (e.g. petunidin-3-p-coumaroyl-rutinoside-5-
glucoside) or more generic ones (e.g. carotenoids). According to our type system,
we annotated all forms of metabolite mentions as in this way we can capture both
knowledge triples with specific entities and knowledge triples with generic entities.

� Annotation rules for genes:

As is the case with metabolites, genes may be introduced in different formats.
Sometimes the full name is presented (zeaxanthin epoxidase), sometimes the
short form (ZEP), and other times there is a species indicator as a prefix (LeZEP).
We chose to annotate all these cases to train the model.

Building and visualization of knowledge networks

For the construction of a KN, only entities with relationships were used. The mention of
an entity by itself, with no connections, was not included in the KN. With help of Python
scripts, we filtered out data of entities and relationships data from XML/CAS files
(Papoutsoglou and G. Singh, 2020b). This script captured relationships as knowledge
triples in easily parsable CSV files containing the relationship ID, relationship type,
original mention of each entity, entity label, entity type, document in which this sentence
occurred, sentence position and position of the source and target nodes.

As various entities appear in a variety of spellings in the corpus (e.g. β-carotene, b-
carotene, beta-carotene), we also included a normalization step, attributing an additional
preferred label to each entity. This was done manually on the list of individual entities
that had been extracted. In the normalization process we first converted all spellings
of entities and relationships to American English uppercase characters. Additionally,
prefixes relating to species were removed from gene names. For example, the term
StAN1, referring to anthocyanin 1 in Solanum tuberosum (potato), was converted
to AN1. Similarly, suffixes indicating individual members of gene families were also
removed, for example BCH1 and BCH2 (both referring to forms of beta-carotene
hydroxylase), were converted to beta-carotene hydroxylase.

For metabolites, EC number references were converted to full names of enzymes.
Further, apostrophes and # notations were removed, e.g. flavonoid-3’,5’-hydroxylase
becomes flavonoid-3,5-hydroxylase, 9#-cis-neoxanthin becomes 9-cis-neoxanthin. Lastly,
all abbreviations were expanded to the long form, for example, NCED2 into 9-cis-
epoxycarotenoid dioxygenase. These preferred labels were based on Uniprot (Pundir
et al., 2017) for genes/proteins, KEGG (Kanehisa et al., 2016) for metabolites, and the
Solanaceae Phenotype Trait Ontology (R. Shrestha et al., 2012) for traits.
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While the above steps reduce the specificity of a particular entity (for example
we labeled BCH1 and BCH2 as BCH), as is always the case with tokenization, this
simplification boosts network connectivity, despite the loss of information.

Finally, Cytoscape version 3.7.1 was used to visualize these KNs (Shannon et al.,
2003). Cytoscape can plot KNs using CSV files as input.

Availability of data and materials

All data generated or analyzed during this study are included in this published article
and its supplementary information files.

Additionally, a supervised NLP model made on Watson Knowledge Studio (WKS)
to extract genotypic-phenotypic relations in scientific articles of potato is archived here
(G. Singh and Papoutsoglou, 2019b).
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In this chapter I present an overview of the progress made in this thesis. First, I dive
into an overview of the data-related challenges in research, and in plant phenotyping in
particular, and outline how the FAIR data principles can resolve them. Then I detail
the contributions of each chapter and reflect on their implications for the broader data
landscape. With those insights in mind, I consider future prospects for 1) the general
state of FAIR, and the specific needs for future implementation that became evident in
this thesis, and 2) the road ahead for FAIR in plant phenotyping.

Data-related challenges

Over the last decades, scientists have grown increasingly aware of flaws in the commonly
adopted attitudes toward data which hamper not only reusability but also experiment
reproducibility, one of the cornerstones of the scientific method. The gravity of the
situation as pertains to the latter is unquestionable; in fact, a 2012 review of biomedical
and life-science research articles showed that 43.4% of retractions were due to “fraud
or suspected fraud” (F. C. Fang et al., 2012), with neither fraud itself nor unverifiable
suspicions thereof boding well for science. There can be no reproducibility without
reuse, depending on the definition of the latter, but the benefits of reuse extend beyond
reproducibility, to meta-analyses (e.g. Chivenge et al., 2011; Poorter et al., 2012; J.
Wang et al., 2021), novel insight generation through data integration (e.g. Lee et al.,
2005; H. Tong and Nikoloski, 2021) and model-building pursuits (e.g. Bernal-Vasquez
et al., 2017; Heslot, 2014).

The FAIR data principles introduced guidelines to improve data and metadata
practices not only to enable reuse but also to improve the conditions surrounding
it: from licensing and documentation to rich semantics boosting machine readability.
However, the principles are generic, and suggest practices that are heavily domain-
dependent (for data and metadata descriptors). It is up to the respective communities
to undertake the development of domain-specific data and metadata standards. This
work focuses on plant phenotyping, a domain where the data landscape is challenged
because of factors such as data fragmentation (multitude of institutional databases as
opposed to a central repository), content heterogeneity (different kinds of phenotyping
data, e.g. fruit weight, flowering times), variation in experimental settings (lab, field),
designs (e.g. replications, layouts) and management practices (e.g. watering, fertilizer
application), inconsistent or lacking documentation practices, and data file format and
syntax variations.

This work explores different aspects of the FAIR principles for plant phenotyping,
investigates the associated challenges and potential, and takes steps to further the state
of the art for all of those aspects. Figure 6.1 shows how the components presented in
this work might come together to improve the data landscape for plant phenotyping, and
Figure 6.2 presents the potential for data integration, based on advances in this thesis,
between phenotyping and domains related to it (genotyping, environmental data).

The improved MIAPPE metadata standard

MIAPPE was originally conceived as a flat checklist to help plant scientists document
their phenotyping experiments (Krajewski et al., 2015). The developments on this
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Figure 6.1: This diagram reflects the progress made in this thesis for the phenotyping
domain. The left side (“Before”) shows the generally adopted approach in the domain
when it comes to data collection: researchers have to look in a variety of repositories
as there are no central hubs in the community. The data is served from institutional
databases and local files, with heterogeneity in respect to content, way of querying,
format and accessibility. The right side (“After”) shows the proposed architecture for
FAIR plant phenotypic data and the components presented in this thesis. A scientist
can direct their question to a central FAIR Data Point registry, which is responsible
for forwarding it to individual FAIR Data Points. FAIR Data Points can be responsible
for covering database, API and file archive metadata. Communication between all
components must be conducted based on any MIAPPE, and the FDPs can point to any
MIAPPE implementation. BrAPI is particularly suited to this kind of communication.
This process obviates the need, on the scientist’s part, to look into individual institutional
databases or use different APIs to discover relevant datasets (F), to find ways to request
acquisition of those datasets (A), and to integrate them based on source-specific
transformations and considerations (I). Compliance to community standards, in addition
to the above, promotes data reusability (R). Methods proposed in this thesis can also be
used to extract information from scientific literature with NLP, with the future prospect
of making it FAIR and part of this ecosystem. Finally, the parts of the diagram that
each chapter in this thesis has contributed the most to are indicated.
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front are described in Chapter 2. Its new scope extension means that it can be more
inclusive and provide a means for a greater part of the community to describe datasets
in an organized manner. Furthermore, the documentation improvements render it more
accessible to plant scientists and clarify ambiguities that were identified in its previous
version. However, it is the addition of an explicit structure that truly elevates it beyond
its previous status as a checklist into a formal data model with rich domain-specific
semantics that can truly be used for FAIR.

This work introduces a data model for MIAPPE. It clarifies the connections between
entities and attributes in it, and provides concrete MIAPPE implementations. This
allows for metadata to be compared and contrasted with the structures used by
institutional databases, other repositories or storage media. These steps are necessary
for the harmonization of experimental datasets, and alleviate the burden associated with
making assumptions about the structure and meaning of data acquired from external
sources. More than that, the data model means that automated agents can explore the
metadata reliably (since all possible attributes and connections are specified).

The formalized data model that was expressed as an OWL ontology in this work also
fits in with the vision of the semantic web, in which the web is enriched with machine-
readable, interlinked descriptors. Although all MIAPPE implementations unequivocally
organize its content, the MIAPPE ontology is necessary to make it computer-readable

Figure 6.2: The three cylinders on the diagram represent three different domains:
phenotyping, genotyping, and environmental. The arrows connecting them show
the concepts based on which inter-domain data integration can be achieved. Both
types of integration (between phenotypic and genotypic data; between phenotypic
and environmental data) are currently achievable from the perspective of phenotyping
datasets thanks to MIAPPE. Advances for standardization and semantic representation
of datasets are necessary for genotypic and environmental data, but the groundwork
laid by MIAPPE represents a significant first step.
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in a global context. By providing unique identifiers (more specifically, URIs) for all
MIAPPE concepts, the ontology can ensure that connections can be made to it even
from other fields, including but not limited to mappings. For example, the concept of a
genotype is important for sequencing, a domain that is served by other standards.

A significant advantage to having a computer-readable metadata standard is the
explicit decoupling of metadata from data. The FAIR principles themselves make
mention of this separation in Principle A2 (“Metadata should be accessible even when
the data is no longer available”), which can be counterintuitive. MIAPPE, by presenting
itself as a metadata standard, becomes a reminder that metadata should be available in
a structured format and not only hidden away in the free text of scientific publications
and documentation.

The Breeding API (BrAPI)

Chapter 3 describes the development of BrAPI, a standardized REST API specification
for the communication of plant breeding data. BrAPI has found wide community
adoption in the years following its emergence. Its rapid development rate is evidence of
the strong interest that plant breeding database users and developers have it in, and
the biannual hackathons confirm that the adopters are committed and increasing in
numbers. Another indicator for its success is the growing library of “BrAPPs” (https:
//brapi.org/brapps), i.e. tools that rely on BrAPI, developed by the community.

Although BrAPI boasts a scope that is not limited to the plant phenotyping side,
this side is one of its focal points. Its development has been influenced by the progress
of MIAPPE, and the contributions of this thesis ensure that BrAPI version 2 has a
complete mapping to the standard. While MIAPPE ensures that BrAPI metadata
adheres (content- and structure-wise) to community recommendations for better data
reusability, BrAPI contributes majorly toward all other aspects of FAIR. Projects like
FAIDARE (1) can build upon it by harvesting information from BrAPI endpoints and
serving as a central aggregator portal for all of them. This synergy is perhaps also the
biggest achievement of the plant phenotyping community to date with respect to FAIR.

The scope of BrAPI is however not limited to metadata. In fact, most BrAPPs
make use of the data exposed through endpoints for visualization purposes, which can
be convenient for initial explorations of unfamiliar datasets before one delves further
into their attributes. The BrAPI community acknowledges also the potential of the API
to serve as a linked data provider. With the MIAPPE ontology, this possibility could
materialize in the form of JSON-LD, providing semantic contexts for BrAPI content for
unique characterization of resources, as discussed above. This semantic enhancement
would also facilitate the integration of BrAPI outputs with data from different sources,
bridging together fragments of distributed data for better reusability.

Lessons learned from the implementation of MIAPPE in a FDP to
improve the reusability of plant phenotyping data

Chapter 2 presents the improved MIAPPE 1.1. The same chapter draws upon examples
for the use of the standard to serve its evaluation, as well as the evaluation of its

(1)https://urgi.versailles.inrae.fr/faidare/
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implementations. Although the standard itself declares that it supports FAIR and is
necessary for it, it is only a part of the picture behind the principles which should also
feature tools and infrastructure to support FAIR.

In Chapter 4, we use MIAPPE to compose a broader picture of FAIR (meta)data and
highlight features of the process as well as challenges. We use a dataset composed of
experiments conducted in previous years by different people and express all metadata as
dictated by the standard. We uniformize part of the data as well, transform everything
to linked data and expose it on a triple store. FAIR data points (FDPs) have been
proposed as part of the infrastructure that can support FAIR, organizing datasets into
catalogs and exposing their metadata, in addition to various formats of the datasets. In
this case we use an example FDP to present the dataset and point to the triple store
where it resides.

The main contributions of this chapter are related to the process of making data
FAIR and the human factor. There are three main actors involved in the process: 1) the
original data producers; 2) the person who assembled different datasets for an integrated
analysis; 3) the person who has made the data FAIR for further reuse. The transitions
between actors 1-2 and 2-3 were charged with challenges related to documentation and
ambiguities. Some of these challenges were resolvable with communication (a luxury
that, unfortunately, should not be taken for granted when contacting former researchers
or unfamiliar parties), but there was some information loss involved. As much as this
process may resemble the telephone game, where messages get distorted upon each
transmission, it is unfortunately unknown whether attributes were similarly distorted in
the process of making data FAIR. From actor 3 onwards, information loss should be
entirely avoidable.

The core message from this chapter is therefore that, indeed, making data FAIR
should not be an afterthought that only occurs upon the completion of a project. Data
should be shared following the FAIR principles by its original producers, and the planning
for this process should be developed along with the experimental setup itself. The
process of making existing datasets in general is resource intensive, as databases or
local files kept by researchers are likely to be disorganized and incomplete with the
information that domain standards will demand in the future. On the flipside, the
message is also that, if data is FAIR, the steps required to reuse and integrate it are
trivialized. The time investment for finding and acquiring a dataset through an FDP,
based on specific search terms, decreases. The same applies to getting an overview of a
dataset with respect to the experimental attributes deemed important by the community
(e.g. biological materials, observed variables, experimental factors and designs). Finally,
structured, standardized data can be readily processed and combined regardless of its
source. Provided an initial investment, the potential for easy reuse is high.

The IBM Watson use case: Tuber flesh color

The FAIR principles aim to encourage good data practices across the board and are
usually only considered in the context of structured datasets. In this work, we also
investigated another approach when it comes to locating, integrating and reusing
information: one that focuses on scientific literature. The free text in articles is
accessible to humans, but limited by the rate of human information consumption - as
opposed to that of machine agents.
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With our pilot on the IBM Watson use case, we explored the possibility of genotypic-
phenotypic association mining with an NLP model for the construction of knowledge
networks, and ultimately integration of knowledge in a way that can best support
researchers (Chapter 5). This is a complementary path to the structured, well-described
metadata requirements behind FAIR, but at the same time it is a step in the same
direction, as it aims to make existing information easier to discover and make use of.
The fact remains that we are making steps toward better-structured data which is more
readily exploitable.

The Watson Potato experiment highlights the need for data integration as, even
with a simplistic type system, it was possible to analyze connections in the network that
hinted at biological associations before they manifested in an actual article. A more
powerful model with a plurality of entities and more detailed relationships between them
could leverage the full potential of Watson and offer further benefits to researchers.

The focus of this chapter (Chapter 5) on the potential of NLP for timely hypothesis
generation in specific. The time analysis conducted is evidence that it does exist, but
there are still several challenges to be tackled. A “guided” tour in a knowledge network,
i.e. starting with the entities related to the researcher-user’s current objective, is indeed
a feasible way to make use of integrated knowledge. We envision that researchers would
look at 2nd/3rd degree neighbourhoods around their entities of interest, but on a larger
scale, as the entities of interest increase, this may become more chaotic purely because
of the number of nodes involved. A smarter approach would involve a computer-aided
exploration. Such scenarios are explored by KNetMiner in the shape of graph pattern
mining, graph interestingness and gene ranking (Hassani-Pak et al., 2020) and would
be applicable to biological networks relevant to our use case.

Future prospects

Needs for FAIR data in general

The FAIR data principles need to be implemented in different ways to address the needs
of each community. Concerns such as confidentiality and scalability are paramount, but
remain outside the scope of this work. With respect to the former, the recommendation
remains that, even when data itself is not to be public, the existence of the dataset can
be ascertained solely through metadata and ideally outlining a path to access for external
parties. After all, data does not necessarily have to be open in order to ensure that it is
FAIR. As far as scalability is concerned, this work makes note of a single point, which is
independent of the specific technologies that can be chosen for FDP implementations.
Namely, that the current FDP specification is lacking any indication that metadata
describing the content of each dataset in detail (for plant phenotyping, e.g. biological
materials, observed variables, experimental factors) should be attached to the dataset
layer. As such metadata is plentiful, especially compared to the resource-descriptive
metadata that FDP layers hold, it may impact scalability. Therefore, consideration
should be given to the metadata that is necessary for the task.

Overall, this work contributed to the design, test and implementation of a (meta)data
sharing standard for the plant phenotyping community that can address the needs for
FAIR, at least with respect to elementary attributes of experiments. Plant sciences
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however encompass more types of data beyond phenotyping, only some of which are
currently subject to standardization. High-throughput data produced by automated
phenotyping systems comprises ever more and bigger datasets, which carry metadata at-
tributes, mainly from equipment manufacturers. Again, this data is highly heterogeneous
and has to be connected to each specific use of those systems. Also, environmental
data is central to field experiments, and indeed efforts are being made to improve
its documentation through initiatives such as EMPHASIS (2). The broader landscape,
beyond plant sciences, holds promise as well as challenges for standardization and FAIR.
The geo-information community, for example, has long been committed to producing
standards in specific formats and widely adhering to them (Tom, 1994). On the other
hand, as evidenced by this work (Chapter 5), the standardization of weather data
remains unclear as a number of standards exist, though none are widely used. For
standardization in general, and consequently FAIR, to succeed, not only does there
need to be a respected consensus in each domain, but that consensus also has to be
well-documented enough for members outside the given communities to understand
and use.

In addition to scientific content, the structure of FDPs also needs to adhere to
standards. An implementation specification does exist, but does not appear to be
widely adopted at this moment. This is necessary as different domains need to be
consistent in their implementation of FDPs, if FAIR interdisciplinary research is to
become a possibility. Although the different FDPs can be fully independent in their
implementations (as long as they uphold the domain-relevant formats and information),
something akin to FDP registries need to exist: without those, information will remain
hard to be publicly discovered and thus unusable. A FDP registry would conceivably list
the base address of each FDP and possibly index the top level(s) of each, though the
extent of that depth and the overall capabilities of such a service should be a point for
future research. The same applies to the identification of providers, for each domain,
that could feasibly host such a registry. To further conceptualize this on a global scale,
a “registry of registries” would also have to be considered, as scientists may not be
necessarily aware of central data service providers in different disciplines.

An open question remains with respect to FAIR and linked data. Although the
principles themselves make no explicit mention of linked data technologies, they are
a commonly interpreted corollary. Rich annotations and metadata as well as unique
identifiers fit into this vision, and enable linking data originating from different sources.
In particular, establishing controlled vocabularies or ontologies, on top of semantic data
models, is necessary for identifying objects in an open semantic web. The more specific
these vocabularies are, the more accurate the descriptions that they are able to provide
to allow computers to act on the data. On the other hand, humans are challenged to use
extensive vocabularies and over-specific and complicated models, especially potential
re-users outside of their native domain (e.g. a plant scientist attempting to reuse
weather data). There needs to be a balance between these two extremes. Unfortunately,
only part of this challenge can be alleviated through tools such as ontology lookup
services. Therefore, it may turn out important for data management guidelines to evolve
along with the willingness of users to comprehend the more intricate sides of linked
data.

(2)https://emphasis.plant-phenotyping.eu/
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Secondary to the above comes the issue of trustability. Having an ocean of data
at one’s disposal, all of which is in theory ready to be exploited, comes with the
requirement of responsible reuse. High quality data can lead to high quality outputs,
but when a myriad of sources are readily accessible, verifying the validity of each can
be time-consuming. Consequently there is a need for these datasets to be curated,
but no clear answer as to the authority that might be responsible for such actions,
or the way in which such a task may be undertaken. A starting point could be data
validation with tools such as shape expressions or the shapes constraint language. Even
with good quality datasets (meaning datasets that correctly and comprehensively follow
annotation guidelines), a re-user may be led to poor decisions and conclusions, only
because interdisciplinary research is inherently delicate, and effortless access to datasets
adjacent to one’s own domain may be too easy to warrant a deeper examination of
those datasets. Therefore, the role of more authoritative sources and peer review for
data will become even more important.

A solution to the above conundrum would be to eliminate the human factor, and
rely on well-defined computer algorithms to identify compatible datasets across domains,
or even within the same domain. For the latter, it is conceivable that smart applications
could be produced to identify at least a subset of datasets that could be used in
an analysis alongside one’s own, or for a given purpose. The former scenario would
be significantly more complicated to envision. Overall, FAIR data holds promise for
reproducibility. In this work, we ensure reproducibility with the provision of Docker
containers holding the data and the databases, and with Jupyter notebooks which
can run on those (Kluyver et al., 2016; Merkel, 2014). This means that there are
no ambiguities about the data or any step of the process that was followed. More
progress has been made on the FAIR data principles as they should apply to software
by Lamprecht et al., 2020.

All in all, it is important to remember that FAIR is not a binary state, and that the
benefits that accompany it will increase in proportion with the adoption across and
within communities. There is ongoing work for recommendations for the quantification
of resource FAIRness (Wilkinson et al., 2018), which can act as motivator to data
holders (i.e. better numerical scores would be more desirable) since the principles are
being promoted by official bodies (for example, the European Union (Collins et al.,
2018)). Eventually, a critical mass of users and FAIR datasets should be reached that
can sufficiently demonstrate that FAIR data is really worth the investment, and that it
can indeed move from being a liability to something that researchers benefit from on a
daily basis.

FAIR data in plant phenotyping

This work takes steps toward FAIR plant data by contributing to metadata standards
(Chapter 2), data exchange interfaces (Chapter 3), case studies (Chapter 4) and data
mining (Chapter 5). It is clear that, while these steps provide real-world value, they are
not the final ones in the process.

First and foremost, data curation following the FAIR principles needs to be promoted
to the researchers and data holders - not as a general concept which is difficult to
disagree with - but as a process that individual users need to follow. Currently, the return
on investment for efforts aiming to make data FAIR may be perceived as low, which
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can be tackled from either perspective, that of the return or that of the investment.
At these initial stages, the more realistic approach may be to decrease the initial
investment. This can be done by providing clear instructions to scientists, minimizing
the time required to make a dataset FAIR, and ensuring that data stewards are available.
Part of the instructions should be about the standards that are adopted, and another
part should be about the process surrounding the management of the (meta)data
produced. The required time can be reduced with the creation of graphical interfaces
that guide scientists and behave “smartly”, pre-filling fields and making automatic
suggestions wherever possible. Data stewards should be able to answer questions,
address concerns and provide technical support. To support these efforts, central FAIR
data hubs/registries should be created, pointing to institutional and other repositories
that expose FAIR datasets. On the other side, increasing the given return may be more
difficult until that critical mass of FAIR data has been reached in a domain. Until then,
researchers should be made more aware of the attribution advantages that may come
to them (in the form of citations) (Piwowar et al., 2007). Finally, scientific journals
should push for standardized metadata more strongly, when a publication comes with an
accompanying dataset. This should not remain on the high level of descriptive resource
metadata, but dive into domain-specific descriptors.

The plant phenotyping community has invested in the development of ontologies
and controlled vocabularies, as seen for example in the Crop Ontology, the Plant Trait
Ontology, the Plant Ontology. They are most commonly used in databases that have
been explicitly designed to support them, and now they are promoted by the MIAPPE
standard. Their limited use in literature however tells another story that demonstrates
the lack of awareness, as far as most plant scientists are concerned, insufficiency due
to their scope, or both. In Chapter 4, an effort was made to assign Crop Ontology
identifiers (specifically, from the Potato Ontology (Research Informatics Unit (RIU),
CIP, 2020)) to the variable metadata and, in most cases, this effort was fruitless: even
when a trait does exist in the ontology, the current trait-method-scale combinations
were rarely suitable for reuse. This indicates that, indeed, further development of these
vocabularies is necessary, or perhaps additionally a change in the organizational scheme
followed. For example, Figure 6.3 shows that for the trait “Average of tuber weight”,
the only given method is associated with a per-plot average value. A modular approach
is necessary, able to combine information across scales and offer conceptual foundation
for the phenomenology underlying scientific observations (Villa et al., 2017).

NLP could give a means to rapidly expand controlled vocabularies revolving around
plant traits, anatomy, environments, or other experimental documentation details. In
Chapter 5, we saw that IBM Watson was able to detect relationships between entities
reliably, based on the domain-specific training it received. This pilot was restricted
to training on data about potato and the flesh color of its tubers, and it is true
that scientists may use different language to describe other plants and traits of other
categories. A more general training, on a broader scope, could contribute to a model
that is able to identify entities that should be included in controlled vocabularies.

Taken a step further, there is a path for NLP to truly contribute to FAIR in a more
direct way. Many phenotyping experiments are described in unstructured text, published
or otherwise. For a human, examining those texts in detail to locate attributes that
belong to the MIAPPE metadata is a time consuming task. A model trained to identify
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these attributes in the text and use them to present at least part of the metadata that
pertains to an experiment would be an important facilitator for data reusability. Even if
this last step is skipped and the attributes are only annotated in the text, it could be
a great help - for example, that would have been the case in the metadata collection
stage of Chapter 4.

FAIR plant (meta)data hold great potential for science, but there are parties other
than scientists that are interested. The motivation behind the Farm Data Train (FDT)
includes farmers themselves in the group of primarily interested stakeholders. Precision
agriculture has become a driver for agricultural decisions, integrating heterogeneous data
from on-situ sensors, drones and genome analyses. The distributed nature of the data
and the variety of sources necessitate some means for easy sharing and interoperability,
for which the FAIR principles are highlighted. Chapter 4 includes the building blocks for
a FDT infrastructure in their simplest form: A data station (FAIR data point - FDP)
is contacted by a train (Jupyter notebook) and serves its data to it. The connection
between the train and the station in this case is direct - there is no need for matchmaking
between queries and resources, therefore no track for the FDT. For a more realistic
scenario, this track is crucial: there would be many more trains and stations, each
with different data types and restrictions, so the track would have to direct each train
(query) to the appropriate station(s) and deliver the response back. The FDP can use
the MIAPPE standard for phenotypic metadata as in Chapter 4, and based on that
metadata, the track can determine which datasets on which FDPs can address which
train’s response. BrAPI can be the implementation used to communicate data as well
as metadata, as privacy is also covered in it and it can filter out unauthorized requests.

In this thesis, decisive steps were made toward establishing FAIR plant data for the
FDT to use. MIAPPE itself can provide identifiers for biological materials (accessions,
genotypes) that can be used for integration with genotypic data, a lot of which is already
available on platforms such as EVA (EBI, 2020) and ENA (Leinonen et al., 2010). We

Figure 6.3: The only method associated with the “Average of tuber weight” trait
currently (as of February 2021) in the CIP Potato Ontology (Research Informatics Unit
(RIU), CIP, 2020).
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show that environmental data can be integrated as well, e.g. when it comes to field
trials or farms, thanks to attributes pertaining to the time and location of an experiment.
This would necessitate the provision of FAIR weather data as well, which merits further
investigation in the environmental domain. However, once those attributes are not only
present but also FAIR for these plant-related domains (genotyping and environmental),
integration and better exploitation of combined datasets should become trivial. Thus
they fit into the scenarios that the FDT envisions and into the analyses it is expected
to power.

In a recent review of machine learning applications in plant sciences and breeding,
integration is presented as essential for the composition of datasets that can support
analyses intended to disentangle the relationships between genotype, phenotype and
environment (A. D. J. v. Dijk et al., 2020). An overview of articles (Table 6.1) describing
mult-environment analyses (ones published in 2020) shows that the description of the
datasets used is not always clear, in particular when it comes to whether they were
generated for previous analyses and reused, or generated specifically for the purpose of
the analysis presented in the publication. For the most part, they are performed with
data likely collected by a single stakeholder - so data is likely not being reused for such
scenarios. Most of these multi-environment trials rely on data from relatively few (12
or fewer) locations. Usually, when information is there, it is provided on a very high
level (e.g. for environment measurements, experimental designs, treatments, cultural
practices). None of the examined publications present metadata in a structured way,
therefore reuse would be time consuming, if even possible at all (since some elements
are not documented at all). Importantly, FAIR datasets and metadata would eliminate
such doubts and make the generation of such an overview easier. This underlines the
fact that FAIR data will be highy advantageous in the years to come as crop stability
(e.g., yield) studies (which must use multiple environments by definition) are becoming
increasingly common. The scientists conducting them would not only gain access to
more datasets, but they would also find them readily interpretable and with a low
integration cost.

The current landscape of data practices in plant phenotyping is broad, heterogeneous
and messy. It is common for departments using such data to come up with their own
guidelines for better data management. However, data management plans usually only
cover top-level attributes about the resources and have no specification about the
description of the dataset contents, as MIAPPE does. The first and most important
step to be taken to start transitioning toward a more FAIR state of data is simple: it
is about accepting the idea that metadata/documentation according to community
guidelines is not optional, and neither is the official allocation of time for such tasks.
This can be facilitated with the provision of adequate examples, training workshops and
support personnel. Furthermore, the establishment of databases to host this metadata
would encourage reuse and collaborations - though of course privacy concerns need to
be addressed. These steps are not technically complicated, but generally face resistance
due to time or willingness constraints on the human side.

The human side - researchers - often don’t perceive the benefits of FAIR data. It is
equated with mountains of paperwork that exists only to satisfy management criteria; it
is only standing in the way of science instead of supporting it. As discussed, the benefits
will become clearer when a critical mass of adopters is reached. However, until then,
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relying on the efforts of the few enthusiastic members of the scientific community who
see the “carrot” of the situation, may not be enough, however promising the results
of Chapter 4 may be. We are given a limited peek into the benefits: metadata and
established (meta)data structures trivialize integration between different phenotypic
datasets and between phenotypic and weather data precisely because data is FAIR. A
supplementary “stick” will probably be necessary in some form, as indicated earlier, to
supplement the numbers of those critical early adopters.

With the concluding remark of this thesis, I would like to emphasize once again that
better data management based on rich metadata (MIAPPE on the phenotyping side,
other standards for other domains), structured data and repositories that collect them
can pave the way toward more, better, small or large scale analyses. Plant research in
particular would benefit from investigations into different aspects of plant biology and
biotic/abiotic interactions on an unprecedented scale.

127



66666666

T
a

b
le

6
.1

(m
u

lt
ip

le
p

a
g

es
)

#
T

it
le

re
u

se
?

T
/

L
/

E
S

/
Y

L
C

E
D

T
O

V
S

o
il

R
a

in
T

em
p

C
V

1

A
d

ap
ta

b
ili

ty
an

d
st

ab
ili

ty
an

al
ys

es
o

f
p

la
n

ts
u

si
n

g
ra

n
d

o
m

re
g

re
ss

io
n

m
o

d
el

s

(S
o

u
za

et
al
.,

2
0

2
0

)

u
n

cl
ea

r
1

3
tr

ia
ls

/

2
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s

2

B
ro

o
m

ra
p

e
as

a
m

aj
or

co
n

st
ra

in
t

fo
r

g
ra

ss
p

ea
(L
at
h
yr
u
s
sa
ti
vu

s)
pr

o
d

u
ct

io
n

in
m

ed
it

er
ra

n
ea

n
ra

in
-f

ed
en

vi
ro

n
m

en
ts

(R
u

b
ia

le
s
et

al
.,

2
0

2
0

)

re
u

se
o

f
ex

p
er

im
en

ts
w

h
er

e
th

e
au

th
or

s
w

er
e

in
vo

lv
ed

1
7

tr
ia

ls
/

3
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s
ye

s

3

M
u

lt
ip

le
-t

ra
it

,
ra

n
d

o
m

re
g

re
ss

io
n

,
an

d
co

m
p

o
u

n
d

sy
m

m
et

ry
m

o
d

el
s

fo
r

an
al

yz
in

g
m

u
lt

i-
en

vi
ro

n
m

en
t

tr
ia

ls
in

m
ai

ze
br

ee
d

in
g

(F
er

re
ir

a
C

o
el

h
o
et

al
.,

2
0

2
0

)

or
ig

in
al

d
at

as
et

s

4
tr

ia
ls

/

1
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s
ye

s

4

G
en

et
ic

d
is

se
ct

io
n

o
f

co
m

p
o

n
en

t
tr

ai
ts

fo
r

sa
lin

it
y

to
le

ra
n

ce
at

re
pr

o
d

u
ct

iv
e

st
ag

e
in

ri
ce

(C
h

at
to

p
ad

h
ya

y
et

al
.,

2
0

2
0

)

or
ig

in
al

d
at

as
et

s

2
tr

ia
ls

/

1
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s

5

G
en

o
ty

p
e-

by
-e

n
vi

ro
n

m
en

t
in

te
ra

ct
io

n
an

d
yi

el
d

st
ab

ili
ty

an
al

ys
is

of
b

io
m

as
s

so
rg

h
u

m
h

yb
ri

d
s

u
si

n
g

fa
ct

or
an

al
yt

ic
m

o
d

el
s

an
d

en
vi

ro
n

m
en

ta
l

co
va

ri
at

es

(I
.

C
.

M
.

O
liv

ei
ra

et
al
.,

2
0

2
0

)

u
n

cl
ea

r;

re
u

se
o

f
w

ea
th

er
d

at
a

2
9

tr
ia

ls
/

1
3

lo
c.

ye
s

ye
s

ye
s

g
en

er
al

ye
s

ye
s

ye
s

6

In
te

g
ra

ti
n

g
u

n
iv

ar
ia

te
an

d
m

u
lt

iv
ar

ia
te

st
at

is
ti

ca
l

m
o

d
el

s
to

in
ve

st
ig

at
e

g
en

o
ty

p
e

x
en

vi
ro

n
m

en
t

in
te

ra
ct

io
n

in
d

u
ru

m
w

h
ea

t

(M
o

h
am

m
ad

i
et

al
.,

2
0

2
0

)

u
n

cl
ea

r
4

tr
ia

ls
/

4
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s



6666 6666

T
a

b
le

6
.1

(m
u

lt
ip

le
p

a
g

es
)

#
T

it
le

re
u

se
?

T
/

L
/

E
S

/
Y

L
C

E
D

T
O

V
S

o
il

R
a

in
T

em
p

C
V

7

A
ch

ie
ve

m
en

ts
an

d
ch

al
le

n
ge

s
to

w
ar

d
s

a
su

st
ai

n
ab

le
co

n
se

rv
at

io
n

an
d

u
se

of
’G

al
eg

a
vu

lg
ar

’
O
le
a
eu
ro
p
ae
a

va
ri

et
y

(S
al

es
et

al
.,

2
0

2
0

)

N
/

A
:

re
vi

ew

8

G
en

et
ic

b
as

is
o

f
p

h
en

o
ty

p
ic

p
la

st
ic

it
y

an
d

g
en

o
ty

p
e

x
en

vi
ro

n
m

en
t

in
te

ra
ct

io
n

s
in

a
m

u
lt

i-
p

ar
en

ta
l

to
m

at
o

p
o

p
u

la
ti

o
n

(D
io

u
f
et

al
.,

2
0

2
0

)

or
ig

in
al

d
at

as
et

s

1
2

tr
ia

ls
/

3
lo

c.
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s

9

G
en

o
ty

p
e-

by
-e

n
vi

ro
n

m
en

t
in

te
ra

ct
io

n
an

al
ys

is
ac

ro
ss

th
re

e
cr

o
p

cy
cl

es
in

su
g

ar
ca

n
e

(M
o

m
o

ta
z
et

al
.,

2
0

2
0

)

u
n

cl
ea

r
5

tr
ia

ls
/

5
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s
ye

s

1
0

G
en

o
ty

p
e

by
en

vi
ro

n
m

en
t

in
te

ra
ct

io
n

o
n

re
si

st
an

ce
to

ca
ss

av
a

g
re

en
m

it
e

as
so

ci
at

ed
tr

ai
ts

an
d

eff
ec

ts
o

n
yi

el
d

p
er

fo
rm

an
ce

o
f

ca
ss

av
a

g
en

o
ty

p
es

in
N

ig
er

ia

(J
iw

u
b

a
et

al
.,

2
0

2
0

)

u
n

cl
ea

r
6

tr
ia

ls
/

3
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s
ye

s

1
1

G
en

o
ty

p
e

by
en

vi
ro

n
m

en
t

in
te

ra
ct

io
n

fo
r

o
il

q
u

al
it

y
co

m
p

o
n

en
ts

in
o

liv
e

tr
ee

(N
av

as
-L

o
p

ez
et

al
.,

2
0

2
0

)

u
n

cl
ea

r
5

tr
ia

ls
/

5
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s

1
2

R
et

ro
sp

ec
ti

ve
q

u
an

ti
ta

ti
ve

g
en

et
ic

an
al

ys
is

an
d

g
en

o
m

ic
pr

ed
ic

ti
o

n
o

f
g

lo
b

al
w

h
ea

t
yi

el
d

s

(J
u

lia
n

a
et

al
.,

2
0

2
0

)

re
u

se

5
3

4
(5

1
9

)
+

3
6

tr
ia

ls
/

6
0

lo
c.

ye
s

ye
s

p
ar

ti
al

p
ar

ti
al

p
ar

ti
al



66666666

T
a

b
le

6
.1

(m
u

lt
ip

le
p

a
g

es
)

#
T

it
le

re
u

se
?

T
/

L
/

E
S

/
Y

L
C

E
D

T
O

V
S

o
il

R
a

in
T

em
p

C
V

1
3

N
o

n
lin

ea
r

ke
rn

el
s,

d
o

m
in

an
ce

,
an

d
en

vi
ro

ty
p

in
g

d
at

a
in

cr
ea

se
th

e
ac

cu
ra

cy
o

f
g

en
o

m
e-

b
as

ed
pr

ed
ic

ti
o

n
in

m
u

lt
i-

en
vi

ro
n

m
en

t
tr

ia
ls

(C
o

st
a-

N
et

o
et

al
.,

2
0

2
1

)

re
u

se
o

f
in

st
it

u
ti

o
n

al
d

at
as

et
s;

so
m

e
au

th
or

s
w

er
e

in
vo

lv
ed

in
pr

o
d

u
ci

n
g

th
em

2
tr

ia
ls

/

2
lo

c.
ye

s
ye

s
ye

s
ye

s
ye

s

1
4

M
u

lt
i-

tr
ai

t
m

u
lt

i-
en

vi
ro

n
m

en
t

d
ia

lle
l

an
al

ys
es

fo
r

m
ai

ze
br

ee
d

in
g

(C
o

el
h

o
et

al
.,

2
0

2
0

)

or
ig

in
al

d
at

as
et

s

4
tr

ia
ls

/

4
lo

c.
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s

1
5

G
en

o
m

e-
b

as
ed

tr
ai

t
pr

ed
ic

ti
o

n
in

m
u

lt
i-

en
vi

ro
n

m
en

t
br

ee
d

in
g

tr
ia

ls
in

g
ro

u
n

d
n

u
t

(P
an

d
ey

et
al
.,

2
0

2
0

)

u
n

cl
ea

r
6

tr
ia

ls
/

3
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s

1
6

C
E

R
E

S
-M

ai
ze

m
o

d
el

fo
r

si
m

u
la

ti
n

g
g

en
o

ty
p

e-
by

-e
n

vi
ro

n
m

en
t

in
te

ra
ct

io
n

o
f

m
ai

ze
an

d
it

s
st

ab
ili

ty
in

th
e

d
ry

an
d

w
et

sa
va

n
n

as
o

f
N

ig
er

ia

(A
d

n
an

et
al
.,

2
0

2
0

)

or
ig

in
al

d
at

as
et

s;

re
u

se
o

f
w

ea
th

er
d

at
a

8
tr

ia
ls

/

4
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s

1
7

G
en

o
m

ic
pr

ed
ic

ti
o

n
en

h
an

ce
d

sp
ar

se
te

st
in

g
fo

r
m

u
lt

i-
en

vi
ro

n
m

en
t

tr
ia

ls

(J
ar

q
u

in
et

al
.,

2
0

2
0

a)

u
n

cl
ea

r
u

n
cl

ea
r

/

3
lo

c.
va

g
u

e
ye

s
u

n
cl

ea
r

1
8

G
en

o
m

ic
pr

ed
ic

ti
o

n
ap

p
lie

d
to

m
u

lt
ip

le
tr

ai
ts

an
d

en
vi

ro
n

m
en

ts
in

se
co

n
d

se
as

o
n

m
ai

ze
h

yb
ri

d
s

(A
.

A
.

d
.

O
liv

ei
ra

et
al
.,

2
0

2
0

)

u
n

cl
ea

r
6

tr
ia

ls
/

1
lo

c.
ye

s
ye

s
g

en
er

al
ye

s



6666 6666

T
a

b
le

6
.1

(m
u

lt
ip

le
p

a
g

es
)

#
T

it
le

re
u

se
?

T
/

L
/

E
S

/
Y

L
C

E
D

T
O

V
S

o
il

R
a

in
T

em
p

C
V

1
9

C
o

m
b

in
in

g
cr

o
p

g
ro

w
th

m
o

d
el

in
g

w
it

h
tr

ai
t-

as
si

st
ed

pr
ed

ic
ti

o
n

im
pr

o
ve

d
th

e
pr

ed
ic

ti
o

n
o

f
g

en
o

ty
p

e
by

en
vi

ro
n

m
en

t
in

te
ra

ct
io

n
s

(R
o

b
er

t
et

al
.,

2
0

2
0

)

re
u

se
4

2
en

v.
/

1
8

lo
c.

ye
s

ye
s

g
en

er
al

ye
s

ye
s

ye
s

2
0

A
d

d
it

iv
e

m
ai

n
eff

ec
t

an
d

m
u

lt
ip

lic
at

iv
e

in
te

ra
ct

io
n

an
al

ys
is

fo
r

g
ra

in
yi

el
d

in
br

ea
d

w
h

ea
t

(K
h

an
et

al
.,

2
0

2
0

)

u
n

cl
ea

r
9

en
v.

ye
s

ye
s

ye
s

g
en

er
al

ye
s

ye
s

ye
s

2
1

G
x

E
in

te
ra

ct
io

n
s

in
Q

T
L

in
tr

o
g

re
ss

io
n

lin
es

o
f

S
p

an
is

h
-t

yp
e

g
ro

u
n

d
n

u
t

(A
ra
ch
is
h
yp

o
g
ae
a
L
.)

(R
at

h
n

ak
u

m
ar

et
al
.,

2
0

2
0

)

u
n

cl
ea

r
5

tr
ia

ls
/

5
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s

2
2

M
u

lt
i-

en
vi

ro
n

m
en

ta
l

ev
al

u
at

io
n

o
f

m
ai

ze
h

yb
ri

d
s

d
ev

el
o

p
ed

fr
o

m
tr

o
p

ic
al

an
d

te
m

p
er

at
e

lin
es

(M
u

sh
ay

i
et

al
.,

2
0

2
0

)

u
n

cl
ea

r
5

tr
ia

ls
/

5
lo

c.
ye

s
ye

s
p

ar
ti

al
g

en
er

al
p

ar
ti

al
ye

s
ye

s
ye

s
ye

s

2
3

S
tr

en
gt

h
s

an
d

w
ea

kn
es

se
s

of
n

at
io

n
al

va
ri

et
y

tr
ia

l
d

at
a

fo
r

m
u

lt
i-

en
vi

ro
n

m
en

t
an

al
ys

is
:

A
ca

se
st

u
d

y
o

n
g

ra
in

yi
el

d
an

d
pr

o
te

in
co

n
te

n
t

(R
ah

im
i-

E
ic

h
i
et

al
.,

2
0

2
0

)

re
u

se
u

n
cl

ea
r

/

2
0

6
lo

c.
ye

s

2
4

G
en

o
ty

p
e

x
E

n
vi

ro
n

m
en

t
in

te
ra

ct
io

n
p

at
te

rn
s

in
ra

n
g

el
an

d
va

ri
et

y
tr

ia
ls

o
f

co
o

l-
se

as
o

n
g

ra
ss

es
in

th
e

w
es

te
rn

U
n

it
ed

S
ta

te
s

(R
o

b
in

s
et

al
.,

2
0

2
0

)

u
n

cl
ea

r
5

tr
ia

ls
/

5
lo

c.
ye

s
ye

s
ye

s
g

en
er

al
ye

s
ye

s
ye

s
ye

s
ye

s



66666666

T
a

b
le

6
.1

(m
u

lt
ip

le
p

a
g

es
)

#
T

it
le

re
u

se
?

T
/

L
/

E
S

/
Y

L
C

E
D

T
O

V
S

o
il

R
a

in
T

em
p

C
V

2
5

K
ey

lo
ca

ti
o

n
s

fo
r

so
yb

ea
n

g
en

o
ty

p
e

as
se

ss
m

en
t

in
S

o
u

th
B

ra
zi

l
re

g
io

n

(D
al

ló
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Chapter 2: Enabling reusability of plant phenomic
datasets with MIAPPE 1.1

Table S2.1: Detailed mapping between MIAPPE, ISA-Tab and BrAPI fields.

Mapping MIAPPE-BrAPI

MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-1 Investigation

DM-2 Investigation
unique ID

/trials/{trialDbId} None trialDbId

DM-3 Investigation
title

/trials/{trialDbId} None trialName

DM-4 Investigation
description

/trials/{trialDbId} None trialDescription

DM-5 Submission
date

/trials/{trialDbId} datasetAuthor-
ships

submission-
Date

DM-6 Public release
date

/trials/{trialDbId} datasetAuthor-
ships

publicRelease-
Date

DM-7 License /trials/{trialDbId} datasetAuthor-
ships

license

DM-8 MIAPPE
version

out of scope

DM-9 Associated
publication

/trials/{trialDbId} publications publicationPUI

DM-10 Study

DM-11 Study unique
ID

/studies/
{studyDbId} None studyDbId

DM-12 Study title
/studies/
{studyDbId} None studyName
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MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-13 Study
description

/studies/
{studyDbId} None

studyDescrip-
tion

DM-14 Start date of
study

/studies/
{studyDbId} None startDate

DM-15 End date of
study

/studies/
{studyDbId} None endDate

DM-16 Contact
institution

/studies/
{studyDbId} None instituteName

DM-17
Geographic
location
(country)

/studies/
{studyDbId} location

countryName /
countryCode

DM-18 Experimental
site name

/studies/
{studyDbId} location name

DM-19
Geographic
location
(latitude)

/studies/
{studyDbId} location latitude

DM-20
Geographic
location
(longitude)

/studies/
{studyDbId} location longitude

DM-21
Geographic
location
(altitude)

/studies/
{studyDbId} location altitude

DM-22

Description of
the
experimental
design

/studies/
{studyDbId}

experimen-
talDesign

description

DM-23
Type of
experimental
design

/studies/
{studyDbId}

experimen-
talDesign

PUI

DM-24
Observation
unit level
hierarchy

/studies/
{studyDbId} additionalInfo

observatio-
nUnitLevel
Hierarchy
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MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-25
Observation
unit
description

/studies/
{studyDbId} None

observatio-
nUnits
Description

DM-26 Description of
growth facility

/studies/
{studyDbId} growthFacility description

DM-27 Type of
growth facility

/studies/
{studyDbId} growthFacility PUI

DM-28 Cultural
practices

/studies/
{studyDbId} None

culturalPrac-
tices

DM-29
Map of
experimental
design

/studies/
{studyDbId} additionalInfo

mapOfExperi-
mental Design

DM-30 Person

DM-31 Person name
/studies/
{studyDbId} contacts name

DM-32 Person email
/studies/
{studyDbId} contacts email

DM-33 Person ID
/studies/
{studyDbId} contacts

orcid /
contactDbId

DM-34 Person role
/studies/
{studyDbId} contacts type

DM-35 Person
affiliation

/studies/
{studyDbId} contacts instituteName

DM-36 Data File

DM-37 Data file link
/studies/
{studyDbId} dataLinks type

DM-38 Data file
description

/studies/
{studyDbId} dataLinks name / url

DM-39 Data file
version

/studies/
{studyDbId} dataLinks version
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MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-40 Biological
Material

DM-41 Biological
material ID

/germplasm/
{germplasmDbId} None

accessionNum-
ber

DM-42 Organism
/germplasm/
{germplasmDbId} taxonIds

sourceName,
taxonId

DM-43 Genus
/germplasm/
{germplasmDbId} None

germplasm-
Genus

DM-44 Species
/germplasm/
{germplasmDbId} None

germplasm-
Species

DM-44’ Infraspecific
name

/germplasm/
{germplasmDbId} None subtaxa

DM-45
Biological
material
latitude

/germplasm/
{germplasmDbId}

germplasmOri-
gin

latitudeDeci-
mal

DM-46
Biological
material
longitude

/germplasm/
{germplasmDbId}

germplasmOri-
gin

longitudeDeci-
mal

DM-47
Biological
material
altitude

/germplasm/
{germplasmDbId}

germplasmOri-
gin

altitude

DM-48

Biological
material
coordinates
uncertainty

/germplasm/
{germplasmDbId}

germplasmOri-
gin

coordinate
Uncertainty

DM-49
Biological
material
preprocessing

/germplasm/
{germplasmDbId} None

germplasm
Preprocessing

DM-50

Material
source ID
(Holding insti-
tute/stock
centre,
accession)

/germplasm/
{germplasmDbId}/
mcpd

donorInfo
donorAccession
Number
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MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-51 Material
source DOI

/germplasm/
{germplasmDbId}
/mcpd

donorInfo
donorAcces-
sionPui

DM-52 Material
source latitude

/germplasm/
{germplasmDbId}
/mcpd

collecting-
Info.collectingSite

latitudeDeci-
mal

DM-53
Material
source
longitude

/germplasm/
{germplasmDbId}
/mcpd

collecting-
Info.collectingSite

longitudeDeci-
mal

DM-54 Material
source altitude

/germplasm/
{germplasmDbId}
/mcpd

collecting-
Info.collectingSite

elevation

DM-55

Material
source
coordinates
uncertainty

/germplasm/
{germplasmDbId}
/mcpd

collecting-
Info.collectingSite

coordinate
Uncertainty

DM-56
Material
source
description

/germplasm/
{germplasmDbId} None

seedSource
Description

DM-57 Environment

DM-58 Environment
parameter

/stud-
ies/{studyDbId}

environmentPa-
rameters

parameter-
Name

DM-59
Environment
parameter
value

/stud-
ies/{studyDbId}

environmentPa-
rameters

description

DM-60 Experimental
Factor

DM-61 Experimental
Factor type

/observationunits Treatment Factor

DM-62
Experimental
Factor
description

None None None
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MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-63 Experimental
Factor values

out of scope

DM-64 Event

DM-65 Event type /events None
eventType-
Name

DM-66
Event
accession
number

/events None eventTypeDbId

DM-67 Event
description

/events None description

DM-68 Event date /events None date

DM-69 Observation
Unit

DM-70 Observation
unit ID

/observationunits None
observatio-
nUnitDbId

DM-71 Observation
unit type

/observationunits None
observation-
Level

DM-72 External ID /observationunits
observatio-
nUnitXref

id/source

DM-73 Spatial
distribution

/observationunits None
observation-
Levels

DM-74
Observation
Unit factor
value

/observationunits treatments
fac-
tor/modality

DM-75 Sample

DM-76 Sample ID /samples None sampleDbId

DM-77

Plant
structure
development
stage

/samples additionalInfo
plantStructure
Develop-
mentStage
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MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-78
Plant
anatomical
entity

/samples None tissueType

DM-79 Sample
description

/samples additionalInfo
samplingDe-
scription

DM-80 Collection
date

/samples None
sampleTimes-
tamp

DM-81 External ID /samples additionalInfo externalId

DM-82 Observed
Variable

DM-83 Variable ID /variables None
observationVa-
riable Name

DM-84 Variable name /variables None

observationVa-
riable Name,
observationVa-
riable DbId

DM-85
Variable
accession
number

/variables None
xref,
(observationVa-
riableDbId)

DM-86 Trait /variables trait
traitName,
description

DM-87 Trait accession
number

/variables trait (traitDbId)

DM-88 Method /variables method methodName

DM-89
Method
accession
number

/variables method (methodDbId)

DM-90 Method
description

/variables method description

DM-91
Reference
associated to
the method

/variables method reference
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MIAPPE BrAPI

line # MIAPPE
Check list

BrAPI Call
BrAPI
Object(s)

BrAPI Field(s)

DM-92 Scale /variables scale scaleName

DM-93
Scale
accession
number

/variables scale (scaleDbId)

DM-94 Time scale None None None

Mapping MIAPPE-ISA-Tab

MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-1 Investigation

DM-2 Investigation
unique ID

Investigation
INVESTIGA-
TION

Investigation
Identifier

DM-3 Investigation
title

Investigation
INVESTIGA-
TION

Investigation Title

DM-4 Investigation
description

Investigation
INVESTIGA-
TION

Investigation
Description

DM-5 Submission
date

Investigation
INVESTIGA-
TION

Investigation
Submission Date

DM-6 Public
release date

Investigation
INVESTIGA-
TION

Investigation Public
Release Date

DM-7 License Investigation
INVESTIGA-
TION

Comment[License]

DM-8 MIAPPE
version

Investigation
INVESTIGA-
TION

Comment[MIAPPE
version]
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-9 Associated
publication

Investigation

INVESTIGA-
TION
PUBLICA-
TIONS

Investigation
Publication DOI

DM-10 Study

DM-11 Study unique
ID

Investigation STUDY Study Identifier

DM-12 Study title Investigation STUDY Study Title

DM-13 Study
description

Investigation STUDY Study Description

DM-14 Start date of
study

Investigation STUDY
Comment[Study Start
Date]

DM-15 End date of
study

Investigation STUDY
Comment[Study End
Date]

DM-16 Contact
institution

Investigation STUDY
Comment[Study
Contact Institution]

DM-17
Geographic
location
(country)

Investigation STUDY
Comment[Study
Country]

DM-18 Experimen-
tal site name

Investigation STUDY
Comment[Study
Experimental Site]

DM-19
Geographic
location
(latitude)

Investigation STUDY
Comment[Study
Latitude]

DM-20
Geographic
location
(longitude)

Investigation STUDY
Comment[Study
Longitude]

DM-21
Geographic
location
(altitude)

Investigation STUDY
Comment[Study
Altitude]
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-22

Description
of the
experimental
design

Investigation
STUDY
DESIGN DE-
SCRIPTORS

Comment[Study
Design Description]

DM-23
Type of
experimental
design

Investigation
STUDY
DESIGN DE-
SCRIPTORS

Study Design Type

DM-24
Observation
unit level
hierarchy

Investigation
STUDY
DESIGN DE-
SCRIPTORS

Com-
ment[Observation
Unit Level Hierarchy]

DM-25
Observation
unit
description

Investigation
STUDY
DESIGN DE-
SCRIPTORS

Com-
ment[Observation
Unit Description]

DM-26
Description
of growth
facility

Investigation
STUDY
DESIGN DE-
SCRIPTORS

Com-
ment[Description of
Growth Facility]

DM-27
Type of
growth
facility

Investigation
STUDY
DESIGN DE-
SCRIPTORS

Comment[Type of
Growth Facility]

DM-28 Cultural
practices

Investigation
STUDY
PROTOCOLS

Study Protocol
Description (for
Growth protocol)

DM-29
Map of
experimental
design

Investigation
STUDY
DESIGN DE-
SCRIPTORS

Comment[Map of
Experimental Design]

DM-30 Person

DM-31 Person name Investigation

INVESTIGA-
TION
CONTACTS /
STUDY
CONTACTS

Investigation Person
Last Name - First
Name - Mid Initials /
Study Person Last
Name - First Name -
Mid Initials
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-32 Person email Investigation

INVESTIGA-
TION
CONTACTS /
STUDY
CONTACTS

Investigation Person
Email /

Study Person Email

DM-33 Person ID Investigation

INVESTIGA-
TION
CONTACTS /
STUDY
CONTACTS

Comment[Person ID]

DM-34 Person role Investigation

INVESTIGA-
TION
CONTACTS /
STUDY
CONTACTS

Investigation Person
Roles / Study Person
Roles

DM-35 Person
affiliation

Investigation

INVESTIGA-
TION
CONTACTS /
STUDY
CONTACTS

Investigation Person
Affiliation / Study
Person Affiliation

DM-36 Data File

DM-37 Data file link Investigation STUDY
Comment[Study Data
File Link]

DM-38 Data file
description

Investigation STUDY
Comment[Study Data
File Description]

DM-39 Data file
version

Investigation STUDY
Comment[Study Data
File Version]

DM-40 Biological
Material

DM-41 Biological
material ID

Study None Source Name
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-42 Organism Study Source
Characteris-
tics[Organism]

DM-43 Genus Study Source
Characteris-
tics[Genus]

DM-44 Species Study Source
Characteris-
tics[Species]

DM-44’ Infraspecific
name

Study Source
Characteris-
tics[Infraspecific
Name]

DM-45
Biological
material
latitude

Study Source
Characteris-
tics[Biological
Material Latitude]

DM-46
Biological
material
longitude

Study Source
Characteris-
tics[Biological
Material Longitude]

DM-47
Biological
material
altitude

Study Source
Characteris-
tics[Biological
Material Altitude]

DM-48

Biological
material
coordinates
uncertainty

Study Source

Characteris-
tics[Biological
Material Coordinates
Uncertainty]

DM-49
Biological
material pre-
processing

Study Source

Characteris-
tics[Biological
Material
Preprocessing]

DM-50

Material
source ID
(Holding in-
stitute/stock
centre,
accession)

Study Source
Characteris-
tics[Material Source
ID]
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-51 Material
source DOI

Study Source
Characteris-
tics[Material Source
DOI]

DM-52
Material
source
latitude

Study Source
Characteris-
tics[Material Source
Latitude]

DM-53
Material
source
longitude

Study Source
Characteris-
tics[Material Source
Longitude]

DM-54
Material
source
altitude

Study Source
Characteris-
tics[Material Source
Altitude]

DM-55

Material
source
coordinates
uncertainty

Study Source

Characteris-
tics[Material Source
Coordinates
Uncertainty]

DM-56
Material
source
description

Study Source
Characteris-
tics[Material Source
Description]

DM-57 Environment

DM-58 Environment
parameter

Investigation
STUDY
PROTOCOLS

Study Protocol
Parameters Name
(for Growth protocol)

DM-59
Environment
parameter
value

Study
Growth
protocol

Parameter Value[ ]

DM-60 Experimen-
tal Factor

DM-61
Experimen-
tal Factor
type

Investigation
STUDY
FACTORS

Study Factor Name
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-62
Experimen-
tal Factor
description

Investigation
STUDY
FACTORS

Comment[Study
Factor Description]

DM-63
Experimen-
tal Factor
values

Investigation
STUDY
FACTORS

Comment[Study
Factor Values]

DM-64 Event

DM-65 Event type Investigation
STUDY
PROTOCOLS

Study Protocol Name
(for protocol of type
Event)

DM-66
Event
accession
number

Investigation
STUDY
PROTOCOLS

Study Protocol URI
(for protocol of type
Event)

DM-67 Event
description

Investigation
STUDY
PROTOCOLS

Study Protocol
Description (for
protocol of type
Event)

DM-68 Event date Event file None Event Date

DM-69 Observation
Unit

DM-70 Observation
unit ID

Study / Assay None Sample Name

DM-71 Observation
unit type

Study Sample
Characteris-
tics[Observation Unit
Type]

DM-72 External ID Study Sample
Characteris-
tics[External ID]

DM-73 Spatial
distribution

Study Sample
Characteris-
tics[Spatial
distribution]
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-74
Observation
Unit factor
value

Study
Source /
Sample

Factor Value[ ]

DM-75 Sample

DM-76 Sample ID Assay None Extract Name

DM-77

Plant
structure
development
stage

Assay Extract
Characteristics[Plant
Structure
Development Stage]

DM-78
Plant
anatomical
entity

Assay Extract
Characteristics[Plant
Anatomical Entity]

DM-79 Sample
description

Assay
Sampling
protocol

Parameter
Value[Sampling
Description]

DM-80 Collection
date

Assay
Sampling
protocol

Parameter
Value[Sampling Date]

DM-81 External ID Assay Extract
Characteris-
tics[External ID]

DM-82 Observed
Variable

DM-83 Variable ID
Trait Definition
File

None Variable ID

DM-84 Variable
name

Trait Definition
File

None Variable name

DM-85
Variable
accession
number

Trait Definition
File

None
Variable accession
number

DM-86 Trait
Trait Definition
File

None Trait
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MIAPPE ISA-Tab

line # MIAPPE
Check list

ISA-Tab File

ISA-Tab
Section (for
Investigation
file)

ISA-Tab Field

DM-87
Trait
accession
number

Trait Definition
File

None
Trait accession
number

DM-88 Method
Trait Definition
File

None Method

DM-89
Method
accession
number

Trait Definition
File

None
Method accession
number

DM-90 Method
description

Trait Definition
File

None Method description

DM-91
Reference
associated to
the method

Trait Definition
File

None
Reference associated
to the method

DM-92 Scale
Trait Definition
File

None Scale

DM-93
Scale
accession
number

Trait Definition
File

None
Scale accession
number

DM-94 Time scale
Trait Definition
File

None
Time scale
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Supplementary Notes S2.1: Summaries of the datasets used to evaluate
MIAPPE 1.1

All datasets and files mentioned in this supporting information file are listed and
accessible via the accompanying supplementary dataset (Papoutsoglou et al., 2020b).

Cork oak dataset (iBET)

The cork oak dataset derives from a report by Inácio et al., 2017 and focuses on the
evaluation of cork quality traits of cork oak (Quercus suber) trees and the putative
correlation between those traits and DNA methylation in living cork cells. This in-
vestigation includes three studies corresponding to three cork oak stands in different
locations in Portugal, characterized by Costa et al., 2016. In each study/stand, 8 to 10
trees were randomly chosen, and in total 27 trees were assessed. For each tree, 20 cork
quality traits were evaluated after debarking by manually phenotyping the cork plank.
All the traits were described using the Woody Plant Ontology (Michotey and Chaves,
2020; Pommier et al., 2019a).

As is typically the case, the cork oak trees in this dataset are identified only by means
of their geographical coordinates. In this dataset, the material source identification is
not described because cork harvesting for industrial applications starts on trees that are
over 40 years old, and the life history of trees that old is often lost or unknown.

The dataset is available from the PHENO BrAPI endpoint Chaves et al., 2020a,
and in the spreadsheet template in Chaves et al., 2020b.

Arabidopsis dataset (IPK)

The Arabidopsis dataset is the result of an investigation of movement and soil cover
effects on plant growth in a high throughput plant phenotyping system which combines
a growth chamber for controlled environmental conditions and the imaging chambers
for non-invasive trait assessment (Junker et al., 2015). Arabidopsis thaliana plants
were grown with a large number of replicates and their growth and development was
evaluated with respect to two factors: i) “moving vs. stationary” to assess if the
movement of plants on the conveyor belt influences plant growth and ii) “covered vs.
uncovered” to assess if soil covers influence plant growth. These special soil covers are
used for reducing transpiration and to facilitate segmentation of plant pixels from the
background during image analysis. The dataset is an update of a previously published
version (Junker et al., 2020) based on MIAPPE 1.0 (Arend et al., 2016b).

The dataset was encoded in ISA-Tab, uploaded to the Plant Genomics and Phenomics
repository (Arend et al., 2016a) and is available at (Junker, 2020).

Barley dataset (IPK)

The barley dataset is the result of an investigation about the phenotypic assessment of
growth and coloration dynamics as well as photosynthetic efficiency parameters in barley
(Hordeum vulgare) HvASL (Hordeum vulgare albostrians-like) mutants and wildtype
plants (M. Li et al., 2019). Barley HvASL mutants and wildtype plants were grown in
a high throughput plant phenotyping facility for small plants. Seedlings of 9 different
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genotypes (7 mutants and 2 wild types) were grown for 15 days in single-plant setups
in the automated phytochamber and imaged daily using RGB and static fluorescence
imaging. Automated image analysis routines were employed for the extraction of
growth-related features and coloration dynamics. Additionally, three times per week
seedlings were subjected to kinetic chlorophyll fluorescence imaging and photosynthetic
efficiency and quenching parameters were assessed in the light-adapted state as well as
during induction of photosynthesis after transition from dark to light. The dataset was
encoded in ISA-Tab and is available as Junker and M. Li, 2020.

Wheat dataset (GnpIS)

The wheat dataset is a subset of the Oury et al., 2018 dataset, focusing on 38 measures
related to the quality of the grain for bread making on 10 wheat (Triticum aestivum)
varieties. It includes 80 studies conducted from 2000-2014 over 8 experimental field
locations in France to study the impact of nitrogen nutrition on several traits of interest
in wheat production. In this dataset, each study represents one location over one year,
as the biological material changes each year. All the variables were measured from
a single sample of grains harvested from each variety and described using the Wheat
INRA Phenotyping Ontology (WIPO) (Pommier et al., 2019a). An experimental factor
(named “itk”) is used to discriminate between nitrogen “treated”, “low nitrogen” input
or “none”. All biological material is identified using accession numbers generated with
the French Small Grain Cereals Genbank (Small Grain Genetic Resource Centre, 2020).

The wheat dataset is provided as an ISA-Tab archive at Oury et al., 2020c and via
the GnpIS BrAPI endpoint (Oury et al., 2020b).

Poplar dataset (GnpIS)

The poplar dataset is the result of the investigation detailed in Monclus et al., 2012
studying the variation of traits related to phenology, growth and water use efficiency in a
full sib family of 360 poplar (Populus trichocarpa and deltoides crosses that produce the
Populus x generosa species) individuals in three different locations. It corresponds to a
test of clonal material (cuttings) derived from the same material source in orchards on
three experimental sites in Europe over two years. The material source is the genbank
accession and each biological material in each experimental site aggregates several
individuals. The dataset has been organized in three two-year studies, which share the
same material source. They include ten observed variables related to plant phenology,
growth and water use efficiency, which are all included in the reference Woody Plant
Ontology. Ad hoc variables were created in the dataset to refer to the measure of a
given Woody Plant Ontology variable in different years as described in Pommier et al.,
2019b. In this dataset, the trees were not identified by geographical coordinates, but by
unique identifiers. The poplar dataset is provided as an ISA-Tab archive at Michotey
et al., 2020b, and via the GnpIS BrAPI endpoint (Michotey et al., 2020a).

Maize datasets (VIB)

Three different maize (Zea mays) datasets were provided by VIB.
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The first experiment details the assessment of variation in 103 lines of the maize
B73xH99 recombinant inbred line (RIL) population in 13 studies in controlled growth
chambers, for a set of primarily leaf size traits, complemented with measurements
capturing growth dynamics, and cellular measurements (Baute et al., 2015). In the
second experiment, 1,636 MAGIC maize RILs were derived from eight genetically diverse
founder lines (Dell’Acqua et al., 2015). 529 of those lines were characterized, and
a number of traits (ear height, plant height, pollen shedding and transformed grain
yield) were determined in two fields. Finally, the third experiment describes the in-depth
phenotyping of the fourth leaf at later stages of development in 197 RILs of two different
maize populations (Baute et al., 2016). As a follow-up to the previous two experiments,
the traits from the former were selected for assessment, which was conducted on the
multiparent MAGIC population of the latter.

All three datasets are available via the VIB BrAPI endpoint (Baute et al., 2019a,c;
Pea et al., 2019a), and in ISA-Tab format (produced via BrAPI2ISA) at (Baute et al.,
2019b), (Pea et al., 2019b) and Baute et al., 2019d.
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Chapter 4: Using the MIAPPE standard to improve
reusability of plant phenotyping data: Lessons learned
from reusing multi-location potato field trial data

Supplementary Notes S4.1: Finding relevant phenotypic datasets on
the FDP

For this, the user has to navigate to the FDP of their institute. For this, they only
need to know the address of the FDP. For this proof of concept, everything is hosted
locally, so we have http://localhost:3131/FDP. In this case, this page looks like
the Figure S4.2. Note the presence of a list of catalogs that this FDP holds. In this
case, since we are looking for the CxE phenotypic datasets, we navigate to it.

The catalog itself (illustrated on Figure S4.3) includes a number of datasets. No
further information is given on this page about them, so they have to be manually
checked. The one we are interested in turns out to be dataset 1, the metadata for
which is shown on Figure S4.4. It should be noted that the FDP specification contains
no recommendations about the description of datasets. Therefore, to provide essential
information about the contents of this phenotypic dataset (biological materials, observed
variables, etc.), we have supplemented it with MIAPPE metadata (a schematic view
is given in Figure S4.5). Because of this supplementation, if this FDP were to be
indexed, information about the actual dataset contents could be harvested and enable
content-related searches.The metadata page for Dataset 1 is composed of two parts:
first, the metadata given in the FDP specification, for the dataset level; second, MIAPPE
metadata.

Finally, following the link to the SPARQL distribution, we find the URL of a SPARQL
endpoint hosting the dataset of interest (Figure S4.6). We can use this to explore it.
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Figure S4.2: The FDP metadata, including the address to the catalog of interest (in
the red box).
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Figure S4.3: The phenotypic catalog, holding links to the datasets it includes (in the
red box).

Figure S4.4: Metadata for dataset 1. The black frames indicate the FDP dataset
metadata specification. Everything else (green frames) is from MIAPPE (incomplete)
and has been added here to give an indication as to the specific contents of this dataset.
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Figure S4.5: Illustration of the metadata specification Dataset level of the FDP and
of MIAPPE (incomplete). The FDP only includes metadata about the resource, which
is not sufficient for describing the content of the dataset. Therefore, it should be
supplemented with content-oriented information about the experiments conducted that
are described in the dataset. The dataset holds a MIAPPE Investigation, which makes
for a good connection point.

Figure S4.6: The SPARQL distribution for the dataset of interest. The red box frames
the URL of the queryable endpoint itself, which we can use in our scripts.
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Chapter 5: Extracting knowledge networks from plant
scientific literature: Potato tuber flesh color as an ex-
emplary trait

Table S5.1: The confusion matrix displaying the entity detection per article for the
full training set of 34 articles.

Document ID

Total
entities
per
article

True
positives

False
positives

False
negatives

10.1007/s10142-008-0083-x 188 182 1 5

10.1186/1471-2164-11-158 280 248 5 27

10.1046/j.1365-313X.1996.9050745.x 126 113 0 13

10.1111/j.1744-7348.2003.tb00284.x 289 275 2 12

10.1007/BF02872013 148 140 5 3

10.1007/s00122-007-0560-y 221 220 0 1

10.1104/pp.110.158733 303 294 5 4

ISSN: 0016-6731 38 32 0 6

10.1093/jxb/erp394 298 278 9 11

10.1186/1471-2229-7-11 200 179 2 19

10.1371/journal.pone.0000350 230 225 1 4

10.1093/jxb/eri016 293 288 3 2

10.1006/mben.2002.0234 253 249 1 3

10.1111/j.1399-3054.2007.01016.x 257 187 44 26

10.1093/jxb/erh121 292 283 6 3

10.1111/j.1365-3040.2011.02301.x 375 355 14 6

10.21273/JASHS.136.4.265 275 244 19 12

10.17221/460/2013-PSE 128 122 1 5

10.1016/j.foodchem.2005.11.002 143 99 0 44

10.1016/j.foodchem.2012.11.114 359 232 3 124

10.17221/265/2011-PSE 222 144 5 73
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Document ID

Total
entities
per
article

True
positives

False
positives

False
negatives

10.1016/j.foodchem.2014.08.011 257 206 10 41

10.1016/j.jfca.2013.07.001 271 247 2 22

10.17221/49/2010-PSE 168 126 3 39

10.21273/JASHS.118.1.145 195 142 3 50

10.1111/j.1439-0523.2008.01420.x 139 134 0 5

10.1007/s00122-009-1024-3 99 66 6 27

10.1007/BF02853712 23 20 0 3

10.1016/j.foodchem.2006.09.033 220 132 3 85

10.21273/JASHS.126.6.722 222 181 2 39

10.1186/1471-2229-6-13 272 218 0 54

10.1007/BF02986245 274 266 1 7

10.1007/s00122-014-2349-0 340 309 1 30

10.1007/s12230-012-9250-7 152 136 1 15

Total: 7550 6572 158 820

Precision: 0.976523031

Recall: 0.889069264

F1: 0.930746353
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Table S5.2: Summary table of the single-year difference in connections between flesh
color and its eventual neighbours. It shows the degrees of separation between each flesh
color node, and the nodes that eventually became its direct neighbours.

2009�2010
flesh color-like nodes

min

flesh
flesh
color

tuber
flesh

tuber
flesh
color

white
flesh
color

yellow-
orange
color

ev
en

tu
a

l
d

ir
ec

t
n

ei
g

h
b

o
u

rs
to

fl
es

h
co

lo
r-

lik
e

n
o

d
es

CCD 3�1 x�3 6�3 x�3 x�1 x�2 3�1

CHY 2 x�1 5�3 x�2 x�3 x�3 2�1

DXS 1 x�3 5�3 x�3 x�3 x�3 1

PSY 1 x�3 5�3 x�3 x�3 x�2 1

TP 3 x�5 7�4 x�5 x�4 x�4 3

abscisic acid 1 x�3 5�2 x�3 x�2 x�3 1

aminocyclopropane-
1-carboxylic acid

1 x�4 5�4 x�4 x�3 x�3 1

anthocyanin 3 x�4 1 x�5 x�5 x�5 1

b-carotene
hydroxylase

2 x�1 5�3 x�1 x�3 x�3 2�1

bHLH 5�4 x�4 1 x�5 x�5 x�5 1

carotenoid 1 x�2 4�2 x�2 x�3 x�2 1

chlorophyll 1 x�3 5�3 x�3 x�3 x�3 1

ethylene 3 x�5 7�5 x�5 x�4 x�1 3�1

flavonoid 1 x�3 3 x�3 x�3 x�3 1

flavonol x x x x x x

hydroxycinnamic
acid

1 x�4 5�4 x�4 x�3 x�4 1

lycopene 2 x�3 5�3 x�3 x�2 x�1 2�1

lycopene e-cyclase 2 x�1 5�2 x�3 x�3 x�3 2�1

phenolic 2 x�3 4�3 x�3 x�4 x�3 2

phenylalanine
ammonia lyase

x x x x x x

zeaxanthin
epoxidase

2 x�2 5�1 x�3 x�3 x�3 2�1
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Supplementary Notes S5.1: Tracing of the critical connections between
ZEP/BCH and flesh color, in 2007 and 2009, as mentioned in the Results
section.

Based on 5.2, this section elaborates on the specific source of the connections between
ZEP, BCH and color nodes.

In 2007, Diretto et al., 2007b wrote:

� “Silencing of beta-carotene hydroxylase increases total carotenoid and beta-
carotene levels in potato tubers” (paper title)

In this case, a new connection has been drawn between b-carotene hydroxylase and
carotenoid; carotenoid has been a long time neighbour of flesh.

� “Changes in endogenous gene expression were extensive and partially overlapping
with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in
both cases, indicating that they may respond to the balance between individual
carotenoid species.”

Here a new connection is drawn between ZEP and carotenoid.

In 2010, similarly, Kloosterman et al., 2010 and Wolters et al., 2010 stated, respec-
tively:

� “Elevated expression level of a dominant allele of the beta-carotene hydroxylase
(bch) gene was associated with yellow flesh color through mapping of the gene
under a major QTL for flesh color on chromosome 3.” and “The identified
candidate genes for tuber flesh color (bch) and cooking type (tlrp) can provide
useful markers for breeding schemes in the future.”

� “We observed that among eleven beta-carotene hydroxylase 2 (Chy2) alleles only
one dominant allele has a major effect, changing white into yellow flesh colour”,
and “Analysis of zeaxanthin epoxidase (Zep) alleles showed that all (diploid)
genotypes with orange tuber flesh were homozygous for one specific Zep allele.”

The above sentences enabled Watson to extract direct relationships from ZEP and
BCH references to flesh color.

164



Supplementary Materials

Table S5.3: The list of 34 articles used in the training set.

ID
(#)

Year of
publica-

tion
Reference

DOI (other link if no DOI is
available)

Other ID

2 2008
Kloosterman et al.,
2008

10.1007/s10142-008-0083-x PMID: 18504629

4 2010
Kloosterman et al.,
2010

10.1186/1471-2164-11-158

PMID: 20210995,

PMCID:
PMC2843620

6 1996 Bachem et al., 1996
10.1046/j.1365-
313X.1996.9050745.x

PMID: 8653120

7 2003
C. Celis-Gamboa
et al., 2003

10.1111/j.1744-
7348.2003.tb00284.x

AGR:IND43669370

8 2006
C. Brown et al.,
2006

10.1007/BF02872013 AGR:IND43917866

9 2007 Werij et al., 2007 10.1007/s00122-007-0560-y
PMID: 17492422
PMCID:
PMC1913181

10 2010
Campbell et al.,
2010

10.1104/pp.110.158733 -

12 1988
Bonierbale et al.,
1988

https://www.genetics.org/

content/120/4/1095

PMCID:
PMC1203572,

PMID: 17246486

13 2010
Stushnoff et al.,
2010

10.1093/jxb/erp394

PMID: 20110266,

PMCID:
PMC2826661

14 2007 Diretto et al., 2007b 10.1186/1471-2229-7-11

PMID: 17335571,

PMCID:
PMC1828156

15 2007 Diretto et al., 2007a 10.1371/journal.pone.0000350

PMID: 17406674,

PMCID:
PMC1831493

16 2005 Ducreux et al., 2005 10.1093/jxb/eri016 PMID: 15533882

17 2002 Römer et al., 2002 10.1006/mben.2002.0234 PMID: 12646321

18 2008
N. Wang et al.,
2008

10.1111/j.1399-
3054.2007.01016.x

AGR:IND44012285

19 2004
W. Morris et al.,
2004

10.1093/jxb/erh121 PMID: 15047766

20 2011 Zhou et al., 2011
10.1111/j.1365-
3040.2011.02301.x

PMID: 21388418

21 2011
K. G. Haynes et al.,
2011

10.21273/JASHS.136.4.265 -

24 2013 Hamouz et al., 2013 10.17221/460/2013-PSE -

25 2007
Reyes and
Cisneros-Zevallos,
2007

10.1016/j.foodchem.2005.11.002 AGR:IND43869627
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ID
(#)

Year of
publica-

tion
Reference

DOI (other link if no DOI is
available)

Other ID

26 2013
Lachman et al.,
2013

10.1016/j.foodchem.2012.11.114 PMID: 23411230

27 2011 Hamouz et al., 2011 10.17221/265/2011-PSE -

28 2015
Q. Wang et al.,
2015

10.1016/j.foodchem.2014.08.011 PMID: 25236223

29 2013
Hejtmánková et al.,
2013

10.1016/j.jfca.2013.07.001
AGR:IND601134175

30 2010 Hamouz et al., 2010
http:

//www.agriculturejournals.

cz/publicFiles/25243.pdf

-

32 1993
C. Brown et al.,
1993

10.21273/JASHS.118.1.145 -

33 2008 Śliwka et al., 2008
10.1111/j.1439-
0523.2008.01420.x

AGR:IND44002450

34 2009
Y. Zhang et al.,
2009

10.1007/s00122-009-1024-3

PMID: 19363602,

PMCID:
PMC2690854

35 1991 De Jong, 1991 10.1007/BF02853712 -

38 2007 Teow et al., 2007 10.1016/j.foodchem.2006.09.033 AGR:IND43886854

39 2001 W. Lu et al., 2001 10.21273/JASHS.126.6.722 -

41 2006 Diretto et al., 2006 10.1186/1471-2229-6-13

PMID: 17406674,

PMCID:
PMC1831493

42 2007 Van Eck et al., 2007 10.1007/BF02986245 AGR:IND43959877

43 2014
Campbell et al.,
2014

10.1007/s00122-014-2349-0 PMID: 24965888

44 2012
P. McCord et al.,
2012

10.1007/s12230-012-9250-7 -
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R. Petrauskaitė, and P. Wittenburg (2018). Turning FAIR into reality: Final report
and action plan from the European Commission expert group on FAIR data. url:
https://hdl.handle.net/20.500.12259/103794 (cited on page 123).

Cook, H. V. and L. J. Jensen (2019). A guide to dictionary-based text mining. Bioin-
formatics and Drug Discovery, pp. 73–89. doi: 10.1007/978-1-4939-9089-4_5
(cited on page 98).

Cooper, L., A. Meier, M.-A. Laporte, J. L. Elser, C. Mungall, B. T. Sinn, D. Cavaliere,
S. Carbon, N. A. Dunn, B. Smith, B. Qu, J. Preece, E. Zhang, S. Todorovic,
G. Gkoutos, J. H. Doonan, D. W. Stevenson, E. Arnaud, and P. Jaiswal (2018).
The Planteome database: an integrated resource for reference ontologies, plant
genomics and phenomics. Nucleic Acids Research 46.D1, pp. D1168–D1180. doi:
10.1093/nar/gkx1152 (cited on pages 33, 34, 54).
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Krajewski, P., D. Chen, H. Ćwiek, A. D. van Dijk, F. Fiorani, P. Kersey, C. Klukas,
M. Lange, A. Markiewicz, J. P. Nap, et al. (2015). Towards recommendations for
metadata and data handling in plant phenotyping. Journal of Experimental Botany
66.18, pp. 5417–5427. doi: 10.1093/jxb/erv271 (cited on pages 20, 33, 56, 87,
116).
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Grüneberg, J. W. Low, and H. Campos (2020). Variance component estimations
and mega-environments for sweetpotato breeding in West Africa. Crop Science 60.1,
pp. 50–61. doi: 10.2298/GENSR2001367M (cited on page 134).

Szalay, A. and J. Gray (2006). Science in an exponential world. Nature 440.7083,
pp. 413–414. doi: 10.1038/440413a (cited on page 10).

Tardieu, F., L. Cabrera-Bosquet, T. Pridmore, and M. Bennett (2017). Plant phenomics,
from sensors to knowledge. Current Biology 27.15, R770–R783. doi: 10.1016/j.
cub.2017.05.055 (cited on page 32).

Taylor, C. F., N. W. Paton, K. S. Lilley, P.-A. Binz, R. K. Julian, A. R. Jones, W. Zhu,
R. Apweiler, R. Aebersold, E. W. Deutsch, et al. (2007). The minimum information
about a proteomics experiment (MIAPE). Nature Biotechnology 25.8, pp. 887–893.
doi: 10.1038/nbt1329 (cited on page 11).

Tenopir, C., S. Allard, K. Douglass, A. U. Aydinoglu, L. Wu, E. Read, M. Manoff, and
M. Frame (2011). Data sharing by scientists: practices and perceptions. PLOS One
6.6, e21101. doi: 10.1371/journal.pone.0021101 (cited on pages 10, 32).

Tenopir, C., N. M. Rice, S. Allard, L. Baird, J. Borycz, L. Christian, B. Grant, R.
Olendorf, and R. J. Sandusky (2020). Data sharing, management, use, and reuse:
Practices and perceptions of scientists worldwide. PLOS One 15.3, e0229003. doi:
10.1371/journal.pone.0229003 (cited on page 11).

Teow, C. C., V.-D. Truong, R. F. McFeeters, R. L. Thompson, K. V. Pecota, and G. C.
Yencho (2007). Antioxidant activities, phenolic and β-carotene contents of sweet
potato genotypes with varying flesh colours. Food chemistry 103.3, pp. 829–838.
doi: 10.1016/j.foodchem.2006.09.033 (cited on page 166).

Tessema, B. B. (2017). Genetic studies towards elucidation of drought tolerance of
potato. PhD thesis. Wageningen University & Research. doi: 10.18174/413763
(cited on pages 12, 15).

The COPO team (2020). COPO – Collaborative Open Plant Omics. url: https:
//copo-project.org/ (visited on 03/03/2021) (cited on page 48).

The Gene Ontology Consortium (2019). The Gene Ontology Resource: 20 years and
still GOing strong. Nucleic Acids Research 47.D1, pp. D330–D338. doi: 10.1093/
nar/gky1055 (cited on pages 33, 48).

The ISA Team (2020). ISA Commons. url: https://www.isacommons.org/ (visited
on 03/03/2021) (cited on page 41).

The UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. Nucleic
Acids Research 47.D1, pp. D506–D515. doi: 10.1093/nar/gky1049 (cited on
page 34).

Tom, H. (Sept. 1994). The Geographic Information Systems (GIS) Standards Infras-
tructure. StandardView 2.3, pp. 133–142. issn: 1067-9936. doi: 10.1145/202749.
202755 (cited on page 122).

191

https://doi.org/10.1093/jxb/erp394
https://doi.org/10.1371/journal.pone.0184143
https://doi.org/10.1371/journal.pone.0184143
https://doi.org/10.2298/GENSR2001367M
https://doi.org/10.1038/440413a
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1038/nbt1329
https://doi.org/10.1371/journal.pone.0021101
https://doi.org/10.1371/journal.pone.0229003
https://doi.org/10.1016/j.foodchem.2006.09.033
https://doi.org/10.18174/413763
https://copo-project.org/
https://copo-project.org/
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1055
https://www.isacommons.org/
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1145/202749.202755
https://doi.org/10.1145/202749.202755


References

Tong, H. and Z. Nikoloski (2021). Machine learning approaches for crop improvement:
Leveraging phenotypic and genotypic big data. Journal of Plant Physiology 257,
p. 153354. doi: 10.1016/j.jplph.2020.153354 (cited on page 116).

Van Berloo, R., R. Hutten, H. Van Eck, and R. Visser (2007). An online potato pedigree
database resource. Potato Research 50.1, pp. 45–57. doi: 10.1007/s11540-007-
9028-3 (cited on page 19).

Van Eck, J., B. Conlin, D. Garvin, H. Mason, D. Navarre, and C. Brown (2007).
Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-
carotene hydroxylase gene. American Journal of Potato Research 84.4, pp. 331–342.
doi: 10.1007/BF02986245 (cited on page 166).

Van Landeghem, S., S. De Bodt, Z. J. Drebert, D. Inzé, and Y. Van de Peer (2013).
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Zaban, A., M. Veteläinen, C. Celis-Gamboa, R. van Berloo, H. Häggman, and R. Visser
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Summary

The increasing nutritional demands of the world as well as the need for crops that
perform reliably, in spite of diverse environmental conditions (abiotic and biotic stresses
and variable weather conditions), put the plant sciences at the forefront of domains where
progress is urgently needed. To be able to do so, plant phenotyping and genotyping are
extremely important. Especially in plant phenotyping, research is met with challenges
related to poor data management, and thereby inefficient exploitation - let alone reuse
of datasets. The challenges to phenotypic data reuse and integration arise due to the
highly distributed nature of data in the domain (as there are no central plant phenotypic
data repositories) and their multifaceted heterogeneity. The variety of experimental
goals and the sheer number of species studied may necessitate different approaches (e.g.
for crops, model organisms, forest trees). Experiments may be conducted in open fields,
greenhouses or other locations, follow different designs and produce different types of
data (e.g. visual observation of a score, images, manual and automatic measurements,
molecular assays). Even when everything else matches, the data files produced may have
different formats and structures, which is a challenge for data integration. Moreover,
good data documentation practices are often lacking, which hinders interpretation and
reuse. In the vast majority of cases, plant phenotyping datasets are used only once,
solely to address the research question for which they were originally generated. It
is the exception, rather than the rule, when different datasets, produced by different,
uncoordinated parties, are analyzed to generate further knowledge. Even rarer, though
much more useful, are cases where independently created datasets are integrated for
the purpose of meta-analyses or improvement of statistical and predictive models. Such
work is crucial, for example, for multi-environment studies investigating the adaptability
of crops to different conditions. This relative rarity of meta-analyses and integrative
studies indicates that researchers conduct experiments and collect data anew for every
new study they wish to undertake, which is in many cases a suboptimal use of resources.
This may not be a serious issue on a low level (i.e., single experiments) but on a higher
level where multiple independent experiments may be reused and integrated in e.g.
multi-environment trials, this has a greater impact.

The challenges mentioned in the previous paragraph for plant phenotyping are not
specific, but generic for the data life cycle in research. To address this challenge, the
FAIR (Findable, Accessible, Interoperable, Reusable) data principles have been proposed
as guidelines to alleviate generic reusability bottlenecks. However, FAIR data principles
require domain-specific solutions. With them, datasets become more easily discoverable,
interpretable, integratable and reusable. Furthermore, the principles emphasize that
there should be an equal focus on human and machine readability, so that automated
techniques can facilitate every step of the process. It is up to each community to devise
ways to implement the FAIR principles. In this thesis, we investigated the application
of the FAIR data principles in the domain of plant phenotyping. Our initial research
question focused on a core requirement of FAIR, domain-relevant community standards.
We identified and tackled shortcomings of the MIAPPE (Minimum Information About
a Plant Phenotyping Experiment) metadata standard, which was initially presented as

198



Summary

a flat checklist. We produced a new, refined version, MIAPPE 1.1, which can cover
experiments involving a broader range of plant species (including forest trees), boasts
improved documentation, and can now support FAIR data through its explicit data
model and ontology (Chapter 2). We tested the new version of the standard by using
it to describe a wide range of different plant phenotyping experiments which proved
that it can sufficiently accommodate the metadata of those experiments in a variety of
formats.

For our second research question, we addressed the needs of machine readable
data exchange for plant breeding information systems with the plant Breeding API
(BrAPI), a standardized RESTful API (Application Programming Interface) specification,
developed by and for the community (Chapter 3). Unlike MIAPPE, which is strictly
a metadata standard for phenotyping experiments, BrAPI has a broader scope, which
covers phenotypic and genotypic data alike. BrAPI can now be used to interact uniformly
with breeding systems, fetching essential genotypic, phenotypic and organizational
information, and BrAPI-compliand endpoints can support modular applications for
a variety of use cases. Finally, we ensured that BrAPI includes community-relevant
metadata by following the MIAPPE community standard and ensuring that its essential
attributes were present. BrAPI is only one of the MIAPPE implementations: in Chapter
2, to make the metadata standard easier to adopt, we provided more of them for
different usage contexts. We developed the Plant Phenotype Experiment Ontology
for the RDF (Resource Description Framework) implementation, and a configuration
supporting ISA-Tab (Investigation Study Assay-Tabular) archives. Therefore, all of these
implementations can now communicate MIAPPE-compliant datasets, in fulfillment of
the FAIR data requirements for reuse (domain-relevant community standards).

For our third research question, we retrace some of the steps of a previous project,
which revolved around the integration and reuse of heterogeneous data (phenotypic,
genotypic, environmental) from potato experiments. Reuse was challenging in that
project mainly due to a lack of organized metadata, which is a central requirement for
FAIR data. Otherwise, resolving the heterogeneity in the presentation of data to arrive
at a common format was time consuming and, in some cases, ambiguous. To improve
this, in Chapter 4, we report steps toward better reusability of the data. Relevant
subsets of the datasets were made FAIR and placed on a FAIR Data Point, which can
be used to discover, acquire and reproducibly reuse the data. This process proved that
the MIAPPE standard can support this integration, and highlighted difficulties that
may arise when documentation and metadata are not compiled when an experiment
is first conducted. It also emphasized that attributes supported by MIAPPE can be
used to integrate datasets from different domains (phenotyping, environment), a type
of integration crucial to investigations of crop stability. The FAIR Data Point provides
the location of an RDF version (distribution) of the phenotypic dataset. We show that,
by using a Jupyter notebook that interacts with it, we can easily create different views
of the data, and that combining it with (environmental) data obtained from external
resources is trivial.

Finally, we took a different approach toward data integration, findability and reusabil-
ity. The core concern was the accelerating pace of research publications and the limited
time that researchers can devote to consuming large volumes of text. Whereas databases
and other structured information sources can be readily explored, articles - which primar-
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ily consist of unstructured text - do not enjoy the same benefit. To present researchers
with a more efficient means toward hypothesis generation, we constructed knowledge
networks based on relationships extracted with natural language processing (NLP)
methods, in particular IBM’s Watson suite. Using potato tuber flesh color as the
trait of interest, we conducted a time analysis to test the viability of our approach,
discovering that latent connections hinting at new genotype-phenotype associations
between particular metabolites, proteins and genes existed already for longer periods in
literature before they were experimentally confirmed. Our knowledge networks included
new and testable genes two years ahead of the actual publications (Chapter 5).

This thesis contributes to state-of-the-art methods for making plant phenotyping
data FAIR. With metadata standards to aid interpretation and reusability, and better
means for computer-readable data exchange, an infrastructure can be set up to benefit
farmers, academic and industry stakeholders. Not only can better data management
pave the way for more reuse and more powerful analyses and models, improving the
landscape for plant research and the outlook for advances in the domain; it can also
help with gaining new insights which would not have been possible without the linked
datasets. We show using the carrot rather than using the stick that, by having FAIR
plant phenotyping data, we can enhance re-use and further integration of existing
datasets and enable a new era of data-driven research.
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Marie-Angélique Laporte, your work on AGRO and related ontologies, among others,
has been an inspiration. Thank you for our pleasant interactions at BrAPI hackathons
and conferences.

I would like to give special thanks to the whole Elixir-NL, DTL and GO-FAIR teams,
with certain members of which I enjoyed many interactions. Rob Hooft, thank you for
pushing for so many developments. I found your work on the Data Stewardship Wizard
inspiring. Louis Bonino, Mark Thompson, Erik Schultes, Marco Roos, Rajaram
Kaliyaperumal and Kees Burger, I learned from you in various workshops. Thank you
for your interesting presentations, friendliness and willingness to help!

On the IBM side, the Watson paper brought a fruitful collaboration with Mark Rice,
Frederique Keijts-Lalleman and Bilyana Vencheva. Thank you for your ever positive
attitudes and your help.

Of course, there are also many people that made my PhD experience as good as it
was within my home department of Plant Breeding. Many thanks to all colleagues!

I would like to especially thank the terrific secretaries, Nicole, Daniëlle and Letty.
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Óscar, Daniel, João, Joey, Nick and Rob, my odd group of international friends:
Though we have not managed to meet much in recent years, you have all been a much
needed constant in my life for well over a decade. That is no minor achievement! Thank
you for your unwavering presence —day and night— and support, and for all the good
times.

Stephan, my partner in crime: thank you for your continued support and for always
making me laugh, sometimes (often?) in spite of myself. Best of luck finishing your
PhD! I’d also like to express my gratitude to Stephan’s family (especially Michael,
Brigitte and Linde-Irisa): Hartelijk bedankt dat jullie me vanaf het eerste moment
geaccepteerd hebben, en dat jullie me thuis hebben laten voelen.

Last but not least, I would like to thank my family. Aunts, uncles and cousins, back
in Greece and outside of it, thank you for believing in me!
Agni (mam�), Giannis (mpamp�), this thesis is dedicated to you. None of this would
have been possible without you. Thank you for always being there for me, unconditionally
and patiently supporting my decisions, and taking pride in my achievements. There is
no greater gift I could have asked for!

204



About the author

Evangelia Anastasia (aka Eliana) Papoutsoglou was born in Thessaloniki, Greece, in
1992. Throughout her early education, she discovered that she was a practical person
and appreciated the sciences, but developed a bias against most humanities (except
for languages, the utilitarian one). She studied English (evidently), German (somehow
earning an Abitur from the German School of Thessaloniki) and Japanese [eventually
triumphing (over not too many competitors) in a national competition]. Finally, she
realized that her aptitudes were suited to non-human languages as well.

Motivated by her growing fascination with technology, she followed a 5-year pro-
gramme in Electrical and Computer Engineering at the Democritus University of Thrace
in Xanthi, Greece, graduating in 2015 and specializing in Electronic and Information Sys-
tems. Her diploma (or MSc-equivalent) thesis took her on an adventure to understand
and manage data heterogeneity in air pollution sensor data, in collaboration with the
Swiss Tropical and Public Health institute, under supervision of Ioannis Athanasiadis.
This piqued her continued interest in data management, integration and semantics.

In 2016, Eliana moved to the Netherlands to join the department of Plant Breeding
at Wageningen University & Research and start her journey toward a PhD. Though
not a biologist/plant scientist/breeder herself, she became enthusiastic about data
management and generation for breeding purposes. Because of that, she was successful
in collaborating with other researchers to advance the FAIR data principles for plant
phenotyping. The results of this project culminated in the present thesis, with her
supervisors Richard Visser, Richard Finkers, and Ioannis Athanasiadis once again.

Eliana’s PhD work also took her on literal journeys, as she had ample opportunity
to travel. She participated in working groups through Elixir (the European research
infrastructure for life science data) in different countries, attended conferences and
workshops, met all kinds of different people, and got to feel quite international.

Nowadays, her research interests lie in interoperability, linked data, ontologies, the
FAIR principles and machine learning. She likes puzzles of different kinds, fiction and
animals (and spent two weeks of her PhD with a rescue gosling).

205





Education Statement of the Graduate School   

Experimental Plant Sciences   

Issued to: Evangelia A. Papoutsoglou
Date: 16 June 2021
Group: Plant Breeding
University: Wageningen University & Research

1) Start-Up Phase date cp
► First presentation of your project

Automatic semantic integration for the effective reuse of genotypic and 
phenotypic data, following the FAIR data principles 31 Jan, 2017 1.5

► Writing or rewriting a project proposal
Automatic semantic integration for the effective reuse of genotypic and 
phenotypic data, following the FAIR data principles 03 Apr, 2017 6.0

► MSc courses
PBR-22303 Plant Breeding 2017 3.0

Subtotal Start-Up Phase 10.5

2) Scientific Exposure date cp
► EPS PhD student days

EPS PhD student days ("Get2Gether"), Soest (NL) 15-16 Feb, 2018 0.6
EPS PhD student days ("Get2Gether"), Soest (NL) 11-12 Feb, 2019 0.6

► EPS theme symposia
EPS Theme 1 Symposium, "Developmental Biology of Plants", 
Wageningen (NL) 05 Feb, 2020 0.3

EPS Theme 2 Symposium, "Interactions between Plants and Biotic 
Agents", Utrecht (NL) 04 Feb, 2020 0.3

► Lunteren Days and other national platforms
Annual Meeting "Experimental Plant Sciences", Lunteren (NL) 10-11 Apr, 2017 0.6
Annual Meeting "Experimental Plant Sciences", Lunteren (NL) 08-09 Apr, 2019 0.6
National eScience Symposium 2016, Amsterdam (NL) 13 Oct, 2016 0.3
National eScience Symposium 2017, Amsterdam (NL) 12 Oct, 2017 0.3
Bioinformatics and Systems Biology (BioSB) conference 2017, 
Lunteren (NL) 04-05 Apr, 2017 0.6

Bioinformatics and Systems Biology (BioSB) conference 2019, 
Lunteren (NL) 02-03 Apr, 2019 0.6

► Seminars (series), workshops and symposia
FAIR Data Stewardship Workshop, Wageningen (NL) 04 Nov, 2016 0.3
IBM Watson Knowledge Studio lab, Amsterdam (NL) 09 Nov, 2016 0.3
DTL Programmers meeting, Utrecht (NL) 25 Nov, 2016 0.2
SWAT4LS conference hackathon - tutorial days, Amsterdam (NL) 5, 8 Dec, 2016 0.6
Breeding API hackathon, Montpellier (FR) 12-16 Dec, 2016 1.5
DTL Programmers meeting, Utrecht (NL) 20 Jan, 2017 0.2
Lorentz Workshop: How to make data FAIR for open science, 
Leiden (NL) 15-19 May, 2017 1.5

BYOD BrAPI Workshop, Ghent (BE) 30 May - 01 Jun, 2017 0.9
Breeding API hackathon, Seattle (WA, USA) 12-16 Jun, 2017 1.5
RDFeno (MIAPPE) workshop (ELIXIR capacity exchange), Lisbon (PT) 26-28 Sep, 2017 0.9
FarmHack, Leeuwarden (NL) 24-25 Nov, 2017 0.6
Seminar: Access to (plant) data, Wageningen (NL) 11 Dec, 2017 0.2

207



Breeding API meeting, Wageningen (NL) 12-14 Dec, 2017 0.9
Breeding API hackathon, Versailles (FR) 04-09 Feb, 2018 1.5
Elixir Capacity Exchange meeting, Lisbon (PT) 16-17 Apr, 2018 0.6
SWAT4LS conference - tutorial day, Antwerp (BE) 03 Dec, 2018 0.3
Breeding API hackathon, Wageningen (NL) 29 Apr - 03 May, 2019 1.5

► Seminar plus
► International symposia and congresses

SWAT4LS conference, Amsterdam (NL) 06-07 Dec, 2016 0.6
Elixir All Hands meeting, Rome (IT) 21-23 Mar, 2017 0.9
International Semantic Web Conference 2017, Vienna (AT) 21-25 Oct, 2017 1.5
PhenoHarmonIS 2018, Montpellier (FR) 14-17 May, 2018 1.2
Elixir All Hands meeting, Berlin (DE) 04-07 Jun, 2018 1.2
Elixir All Hands meeting, Lisbon (PT) 17-20 Jun, 2019 1.2
Elixir All Hands meeting (virtual) 08-10 Jun, 2020 0.9

► Presentations
Talk: "Elixir Plant Use Case" (Session D4: ELIXIR: Data Interoperability & 
Plants), at BioSB 2017 conference 04 Apr, 2017 1.0

Poster: "Added value from datasets: The C×E potato use case", 
at BioSB 2017 conference 04 Apr, 2017 1.0

Poster: "Toward better data sharing methods for genebanks", at the 
International Semantic Web Conference 2017 (Semantics for Biodiversity 
Workshop)

22 Oct, 2017 1.0

Talk: "Towards FAIR: Standardizing plant phenotyping (meta)data with 
MIAPPE", at WUR B-Wise bioinformatics seminar 1 Oct, 2019 1.0

Talk: "Beyond reproducibility: improving the reusability of plant 
phenotyping data with MIAPPE", at DTL Focus meeting: "Metadata for 
data reusability: eNotebook standards" 

31 Oct, 2019 1.0

Talk: "MIAPPE 1.1: Building upon an existing standard for better plant 
phenomics data FAIRness", at Elixir All Hands 2020 10 Jun, 2020 1.0

► 3rd year interview
► Excursions

EPS PhD Council Company Visit: Tomato World 14 Oct, 2016 0.3
Subtotal Scientific Exposure 32.1

3) In-Depth Studies date cp
► Advanced scientific courses & workshops

BioSB course: Algorithms for Biological Networks (including project), 
Wageningen (NL) 25-29 Jun, 2018 3.0

edX online course with certificate: "Deep learning with TensorFlow" (IBM 
DL0120EN) 2020 - 23 Feb, 2021 0.7

► Journal club
► Individual research training

Training and practice on semantic technologies - via Elixir capacity 
exchange, at Instituto Gulbenkian de Ciência, Lisbon (PT) 18-24 Apr, 2018 1.5

Subtotal In-Depth Studies 5.2

208



4) Personal Development date cp
► General skill training courses

EPS Introduction course, Wageningen (NL) 16 Feb, 2017 0.3
WGS course: Infographics and Iconography, Wageningen (NL) 26 Nov, 2019 0.3
WGS course: Project and Time Management, Wageningen (NL) 05 Nov - 13 Dec, 2019 1.5
WGS course: Career Perspectives, Wageningen (NL) 09 Nov - 07 Dec, 2020 1.6

► Organisation of meetings, PhD courses or outreach activities
► Membership of EPS PhD Council

Subtotal Personal Development 3.7

5) Teaching & Supervision Duties date cp
► Courses

INF-33306 Linked Data 2019 2.8
► Supervision of BSc/MSc students 

Subtotal Teaching & Supervision Duties 2.8

TOTAL NUMBER OF CREDIT POINTS* 54.3

Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by 
the Educational Committee of EPS with a minimum total of 30 ECTS credits. 

* A credit represents a normative study load of 28 hours of study.

209



The research described in this thesis was financially supported by a grant
from Plant Breeding, Wageningen University & Research.

Financial support from Wageningen University for printing this thesis is
gratefully acknowledged.

Cover: K. Hanika, E. A. Papoutsoglou
Layout: E. A. Papoutsoglou
Printing: ProefschriftMaken (proefschriftmaken.nl)

https://www.proefschriftmaken.nl/



	List of abbreviations
	General introduction
	Enabling reusability of plant phenomic datasets with MIAPPE 1.1
	BrAPI — An application programming interface for plant breeding applications
	Using the MIAPPE standard to improve reusability of plant phenotyping data: Lessons learned from reusing multi-location potato field trial data
	Extracting knowledge networks from plant scientific literature: Potato tuber flesh color as an exemplary trait
	General discussion
	Supplementary materials
	References
	Summary
	Acknowledgements
	About the author
	Education statement

