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A B S T R A C T   

We assess the impact of increasing the resolution of hydrologic modeling, calibration of selected model pa-
rameters and assimilation of streamflow observation toward event-based urban flood modeling and prediction 
using WRF-Hydro in the Dallas-Fort Worth area (DFW). We use quantitative precipitation estimates at 500-m 1- 
min resolution from the Collaborative Adaptive Sensing of the Atmosphere radar network for observed rainfall, 
Stepwise Line Search for calibration, and fixed-lag smoothing for data assimilation (DA). The model domain is a 
144.6 km2 area comprising 3 urban catchments in Arlington and Grand Prairie in the middle of DFW. It is shown 
that event-specific calibration of 6 WRF-Hydro parameters is largely successful in simulating hydrographs at the 
catchment outlets particularly for the most important rising limbs, but less so for attenuated peaks or fast- 
receding falling limbs. A spatial resolution of at least 250 m was necessary for the land surface model (LSM) 
to delineate small catchments and hence to capture catchment-wide rainfall with acceptable accuracy. Simula-
tions at selected combinations of resolutions, 250 and 125 m for the LSM and 250, 125, 50 m for the routing 
models, showed mixed results. The overall results indicate that, in the absence of resolution-specific prescription 
and calibration of channel routing parameters, a resolution of 250 m for both the LSM and routing models is a 
good choice in terms of performance and computational requirements, and that, in the absence of high-quality 
calibration and continuous simulation of streamflow, DA is necessary to initialize WRF-Hydro for event-based 
high-resolution urban flood prediction.   

1. Introduction 

With the implementation of the National Water Model (NWM), the 
National Weather Service (NWS) has made a step-change advance in 
operational water forecasting by enabling high-resolution (1 hr, 1 km for 
land surface and 250 m for routing) hydrologic modeling across the US 
(NWS, 2020). As a part of the NWM initiative, the NWS has been 
mandated to provide forecasts at even higher spatiotemporal resolutions 
when and where such information is demanded such as in large urban 
areas for flood warning, and areas of high-value infrastructure, 

susceptible to landslides, or impacted by forest fires (Graziano et al., 
2017). The value of high-resolution products and services depends not 
only on the hydrologic and hydraulic models but also on the quality of 
the forcings, model parameters, initial conditions (IC) and boundary 
conditions at the commensurate resolutions. In the DFW area, the 
Collaborative Adaptive Sensing of the Atmosphere (CASA) Program 
operates a network of X-band radars to provide a suite of meteorological, 
hydrometeorological and hydrologic products for severe weather and 
flash flood monitoring and prediction (Chandrasekar et al., 2013). The 
network currently consists of 7 radars located at Addison, Arlington, 
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Cleburne, Denton, Fort Worth, Mesquite and Midlothian, TX. A salient 
feature of the above operation is that the radar rainfall data are available 
at a very high resolution of 500 m and 1 min. The CASA quantitative 
precipitation estimates (QPE) are currently input to the NWS Hydrology 
Laboratory-Research Distributed Hydrologic Model (HL-RDHM, Koren 
et al., 2004; NWS, 2009) to produce a suite of hydrologic products at the 
same resolution in real time (Rafieeinasab et al., 2015; Habibi et al., 
2016; Habibi and Seo, 2018). The characteristic spatial scale of natural 
and man-made physiographic features in the study area suggests that a 
further increase in hydrologic model resolution may improve the in-
formation content of the model output (Habibi et al., 2019). There is also 
an ever increasing demand for higher resolution hydrologic products for 
enhanced spatio-temporal specificity. The purpose of this work is to 
assess using WRF-Hydro how increasing the resolution of hydrologic 
modeling, calibration of selected model parameters and assimilating 
locally-available observations of precipitation and streamflow may 
improve flood modeling and prediction toward high-resolution water 
forecasting in urban areas. 

Real-time continuous operation of high-resolution models is 
computationally very expensive particularly for large areas (Habibi 
et al., 2019). A more practical approach is likely to be event-based 
operation with robust initialization. As such, our assessment is carried 
out in the context of event-based modeling and prediction. The event- 
based paradigm meant that most conventional calibration methods, 
which rely on time-continuous observations of precipitation and 
streamflow, and sequential DA methods, which employ recursive state 
updating, may not be applicable or desirable. To that end, we employ 
multi-event averaging of event-specific parameter optimization results 
for calibration and reduced-rank fixed-lag smoothing for DA. The new 
contributions of this paper are: selective calibration of WRF-Hydro for 
urban flood modeling and prediction, improving simulation of highly 
peaked hydrographs with the addition of a conditional bias (CB) 

penalty, and assessment of the impacts of different spatio-temporal 
resolutions of rainfall-runoff and routing models, of ICs and land 
cover, and of assimilation of streamflow observations for initialization of 
WRF-Hydro toward event-based operation of high-resolution urban 
flood prediction. This paper is organized as follows. In Section 2, we 
describe the study area, data used and the hydrologic models used. 
Section 3 describes the methods used in the experiment design, cali-
bration and DA. Section 4 describes the experiments and presents the 
results. Section 5 provides the conclusions and future research 
recommendations. 

2. Study area, data and hydrologic models used 

Here we describe the study area, data used and hydrologic models 
used. 

2.1. Study area 

The study area comprises the Johnson (40.2 km2), Cottonwood (32.3 
km2) and Fish (54.6 km2) Creek Catchments in the Cities of Arlington 
and Grand Prairie in the Dallas-Fort Worth (DFW) area of TX (see 
Fig. 1a,b). These basins have been used in previous studies of high- 
resolution hydrologic modeling and sensing (Rafieeinasab et al., 2015, 
Norouzi, 2016; Habibi et al., 2016, 2019). The Johnson, Cottonwood 
and Fish Creek Catchments, referred to herein as JC, CC and FC, 
respectively, are highly urbanized with impervious fractions of 0.48, 
0.37 and 0.31, respectively (Habibi et al., 2019, see Fig. 1a). Hydro-
climatologically, the study basins are particularly challenging for hy-
drologic modeling and prediction due to very short memory in the 
surface and soil water storages. Recent assessment of the streamflow 
prediction skill of the NWS operational hydrologic models indicates that 
the study region has the smallest predictability among the 138 basins 

Fig. 1. a) The 3-basin study area with commercial impervious (purple) and high-density developed (red) areas in the background. b) State-wide view of the study 
area. c) USGS 24-category and d) NLCD land cover in the study area. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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assessed in 8 different River Forecast Centers’ (RFC) service areas across 
large sections of the US (Alizadeh et al., 2020). 

2.2. Data used 

The CASA QPE products have been extensively evaluated (Chan-
drasekar et al., 2012; Chen et al., 2017; Cifelli et al., 2018). Comparative 
evaluation of different radar-based QPE products (Rafieeinasab et al., 
2014, 2015) showed that the CASA QPE is generally more accurate for 
larger precipitation amounts in the study area whereas the Multisensor 
Precipitation Estimator (MPE, Seo et al., 2010) estimates do better for 
smaller amounts. The CASA QPE operation recently began fusing the 
QPE from the X-band radar network with that from the WSR-88D in 
Burleson, TX (Chen and Chandrasekar, 2015). The rainfall estimates 
used in this study are the resulting fused QPE product. For details, the 
reader is referred to Chandrasekar (2017). 

Because the CASA network has been in continuous operation only for 
several years, a long period of time-continuous data is not available. In 
this study, we used the 5 recent events of varying magnitude listed in 
Table 1. Fig. 2 shows the total rainfall maps for the 4 largest events. All 
other forcings for WRF-Hydro are from the near real-time North Amer-
ican Land Data Assimilation System (NLDAS) Phase 2 forcing and model 
output produced operationally at the Environmental Modeling Center of 
the NOAA/NWS/National Centers for Environmental Prediction (Cos-
grove et al., 2003). Networks of ALERT sensors operated by the Cities of 
Arlington and Grand Prairie provide water level observations in the 
study area including at the catchment outlets. The observations are 
based on pressure transducers located at the channel bottom. To esti-
mate discharge from stage observations, we used rating curves derived 
by Norouzi (2016) at the outlets of the 3 catchments (see Fig. 1a) based 
on the numerical modeling approach of Kean and Smith (2004), Kean 
and Smith (2005), and Kean and Smith (2010). 

2.3. Hydrologic model used 

The hydrologic model used is WRF-Hydro Version 5.0.2. (Gochis 
et al., 2018). For urban flood modelling, the most important components 
are the rainfall-runoff, terrain, or hillslope, routing and channel routing 
models. Below, we describe only the core model dynamics that are 
directly relevant to the development of this work. 

2.4. Rainfall-runoff model 

The rainfall-runoff option used in this work is the Simple Water 
Balance model (SWB) of Schaake et al. (1996) which is used by the NWM 
also. As in Moore (1985) and the SCS curve number method (USDA, 
1986), the SWB models the average runoff depth over a grid box or a 
catchment, Qs, as (Schaake et al., 1996): 

Qs =
P2

x

(Px + Ic)
2 (1)  

where Px and Ic denote the average precipitation depth and infiltration 
capacity over the grid box. The infiltration capacity, Ic, in Eq. (1) is 
modeled as (Schaake et al., 1996): 

Ic = Dx(1 − e− kt) (2)  

Where Dx denotes the maximum water holding capacity of the soil 
column, k denotes the decay coefficient and t denotes the time elapsed. 
Eq. (2) is analogous to the potential infiltration depth, F, of the Horton 
infiltration model (Horton, 1941) without the constant infiltration rate 
due to gravity: 

F =
fo

k
(1 − e− kt) (3)  

where f0 denotes the initial potential infiltration rate due to suction 
pressure and k denotes the decay rate. One may hence interpret the 
maximum soil water holding capacity, Dx, as representing f0/k in Eq. (2) 
where 1/k represents the time scale of decay of potential infiltration 
rate. The maximum water holding capacity Dx in Eq. (2) is modeled as 
(Schaake et al., 1996): 

Dx =
∑4

i=1
ΔZi(θsat − θi) (4)  

where ΔZi denotes the thickness of the i-th soil layer, θsat denotes the 
saturation soil water content (i.e., porosity) and θi denotes the initial soil 
water content in the i-th soil layer. Eq. (4) is analogous to the total 
infiltration depth in the Green-Ampt infiltration equation (Green and 
Ampt, 1911): 

F = Zf (θsat − θinit) (5)  

where Zf denotes the depth to the wetting front and θinit denotes the 
vertically uniform initial soil water content. As shown above, the surface 
runoff component of the SWB may be considered as a combination of the 
SCS method for runoff ratio and the Horton infiltration equation without 
the gravity term for time decay in potential infiltration rate in which the 
maximum water holding capacity is prescribed by the depth-integrated 
soil pore space given the antecedent soil water content. The study area is 
highly urbanized. Accurate high-resolution depiction of land cover is 
hence very important (Rafieeinasab et al., 2015; Norouzi, 2016; Habibi 
et al., 2016). WRF-Hydro uses the United States Geological Survey’s 
(USGS) 24-category land cover product (Loveland et al., 1995, see 
Fig. 1c) to parameterize the Land Surface Model (LSM). In this work, we 
use the USGS’s National Land Cover Database (Wickham et al., 2020) for 
higher resolution depiction (see Fig. 1d) and compare with the USGS 24- 
category land cover. 

2.5. Terrain routing model 

The terrain, or hillslope, routing option used in this work is the 
diffusive wave model. The mass balance equation is given by: 

∂h
∂t

+
∂qx

∂x
+

∂qy

∂y
= ie (6)  

where h denotes the water depth, qx and qy denote the specific discharge 
along the x- and y-directions, respectively, and ie denotes the excess 
precipitation, or surface runoff depth, given by the rainfall-runoff 
model. Though expressed as a 2D model, Eq. (6) is solved only along 
the steepest-descending direction, referred to as the D8 option in WRF- 
Hydro (Gochis et al., 2018). The momentum balance equation is given 
by: 

Table 1 
List of rainfall events used.  

Event Event total mean areal 
rainfall (mm) 

Period of record Dura- 
tion 

JCa CCb FCc 

Jan 
2017  

75.8  90.8  71.6 00:00Z 01/16/2017–23:59Z 01/ 
17/2017 

48 hrs 

Feb 
2018  

95.2  93.7  100.5 00:00Z 02/20/2018–07:59Z 02/ 
21/2018 

32 hrs 

Sep 
2018  

97.6  103.1  131.9 12:00Z 09/21/2018–19:59Z 09/ 
22/2018 

32 hrs 

Apr 
2019  

31.5  33.5  27.1 00:00Z 04/17/2019 – 11:28Z 
04/18/2018 

35 hrs 

May 
2019  

56.5  60.1  62.5 00:00Z 05/08/2019 – 03:43Z 
05/09/2019 

28 hrs  

a Johnson Creek Catchment. 
b Cottonwood Creek Catchment. 
c Fish Creek Catchment. 
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−
∂h
∂x

+ Sox = Sfx =

(
novqx

h5/3

)2

(7) 

where Sox denotes the terrain or channel bed slope, Sfx denotes the 
friction slope and nov denotes the Manning’s friction coefficient for the 
hillslope. The last equality in Eq. (7) follows from the Manning’s 
equation under the wide channel assumption (Akan and Houghtalen, 
2013). In WRF-Hydro, Sox is calculated based on the DEM data and nov is 
prescribed according to land cover. As such, the choice of the land cover 
data impacts terrain routing. 

2.6. Channel routing model 

The channel routing option used in this work is the gridded diffusive 
wave model which solves the following mass and momentum balance 
equations: 

∂A
∂t

+
∂Q
∂x

= ql (8)  

−
∂h
∂x

+ So = Sf =

(
nQ

AR2/3

)2

(9) 

where A denotes the wetted channel cross-sectional area, Q denotes 
the flow rate, ql denotes the lateral inflow from Eqs. (6) and (7), h de-
notes the water depth, So denotes the channel bed slope, n denotes the 
Manning’s roughness coefficient for the channel bed and R denotes the 
hydraulic radius of the channel cross section. The resulting finite dif-
ference equation is solved iteratively using the Newton-Raphson method 
(Gochis et al., 2018). The channels are delineated based on the National 
Hydrographic Dataset Plus Version 2 (NHDPlusV2, Moore et al., 2019). 
The channel routing model assumes trapezoidal cross section for which 
two additional parameters, the channel bottom width and side slope, are 
necessary: 

Q =
1
n

AR2/3Sf
1/2 =

1
n

((Bw + zh)h )5/3

(
Bw + 2h

̅̅̅̅̅̅̅̅̅̅̅̅
1 + z2

√ )2/3Sf
1/2 (10) 

where Bw denotes the channel bottom width, z denotes the channel 
side slope and h denotes the water depth. WRF-Hydro prescribes the 
above parameters stream order-specifically, i.e., channels of the same 
Strahler stream order share the same parameter values for channel 
routing (Gochis et al., 2018). 

3. Methods 

To assess how the resolution of hydrologic modeling, calibration, 
and DA may impact urban flood modeling and prediction using WRF- 
Hydro, we designed and carried out a set of simulation experiments. 
In this section, we describe the experiment design, calibration and DA. 

3.1. Design of experiments 

Table 2 shows the combinations of resolutions considered in this 
work. The CASA QPE is available at 500 m 1 min resolution. Rafieei-
nasab et al. (2015) report that a resolution of 500 m and 15 min or 
higher is necessary for streamflow prediction at the outlets of the study 
basins using CASA QPE and HL-RDHM (Koren et al., 2004). To assess 
how higher spatial resolution of hydrologic modeling may improve flood 

Fig. 2. Event total rainfall maps (in mm) for the a) Jan 2017, b) Feb 2018, c) Sep 2018 and d) May 2019 events.  

Table 2 
Combinations of spatio-temporal resolutions used.   

QPE Rainfall- 
runoff 

Terrain and channel 
routing 

Spatial 125, 250, 500 m (all at 1 min 
resolution) 

125, 250 m 50, 125, 250 m 

Temporal 1, 10 min (both at 250 m 
resolution) 

1 min 
timestep 

15 sec timestep  
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simulation in the study area, we disaggregate the 500 m QPE to QPEs at 
nominal resolutions of 250 m and 125 m by remapping the CASA QPE on 
a lat-lon grid to a Lambert conformal conic grid for ingest by WRF- 
Hydro. For the remapping, we used the conserve method available for 
ESMF (NCAR, 2020). In addition, to assess possible gains from higher 
temporal resolution modeling, we aggregated the native resolution 1 
min CASA QPE to 10 min accumulations. With the above choices, the 
LSM was run at 3 different spatial resolutions of 500, 250 and 125 m 
with a common native temporal QPE resolution for the spatial resolution 
experiment, and at two different temporal resolutions of 1 and 10 min 
with a common spatial resolution of 250 m for the temporal resolution 
experiment. In the above experiments, the resolution of the routing 
models was fixed at 250 m. The limited number of combinations of 
resolutions represent a compromise between the computational re-
quirements and the range of resolutions that are most likely to be of 
operational interest in the study area. 

It was observed in the early stages of the spatial resolution experi-
ment that the mean areal precipitation (MAP) calculated at 500 m res-
olution is significantly different from that at 250 m or 125 m. The 
differences were traced to the coarseness of 500 m grid boxes in delin-
eating small catchments in WRF-Hydro. Significant errors in precipita-
tion volume often translate into significant errors in peak flow and time- 
to-peak flow. As such, we excluded 500 m resolution from further 
consideration. For routing, we initially considered 25 m resolution as 
well. It was discovered in the early stages, however, that the number of 
stream segments at this resolution for the study domain exceeds the 
maximum allowed by WRF-Hydro. For this reason, we excluded 25 m 
from further consideration for routing. Though limited in number, the 
resulting combinations allow comparisons of the LSM resolutions of 250 
m and 125 m given the common routing model resolution of 125 m and 
of the routing model resolutions of 250 m, 125 m and 50 m given the 
common LSM resolution of 125 m. 

3.2. Calibration 

WRF-Hydro employs a large number of parameters for rainfall-runoff 
and routing modeling. Most of them are modeled as spatially-varying 
and specified by spatial maps or lookup tables of the relevant physio-
graphic variables. Due to the computational cost, it is impractical to 
calibrate a large number of parameters. The approach taken in this work 
is to identify only the most influential and adjust them up or down with 
multiplicative scaling factors over the entire catchment, thus main-
taining the prescribed spatial variations and physiographic relationships 
(Gupta et al., 2003). Examination of the model physics described in Eqs. 
(1) through (10) indicates the most influential parameters for the 
rainfall-runoff and routing models are likely to be the potential infil-
tration rate decay coefficient k in Eq. (2), the Manning’s friction coef-
ficient for overland flow, nov, in Eq. (7) and the 4 channel routing 
parameters of the Manning’s friction coefficient n, the bottom width, Bw, 
the side slope z, and the initial water depth, h. The above 6 parameters, 
k, nov, n, Bw, z and h, are denoted in WRF-Hydro as refdk, sfc rough,
rmannn, bw, chsslp and hlink, respectively, which are used below. 
Extensive sensitivity analysis involving all rainfall-runoff and routing 
parameters confirm the above choices. The decay coefficient k in Eq.(2) 
is coded in WRF-Hydro as: 

k =

(

REFKDT
DKSAT
REFDK

)

∙
(

DT
86400

)

(11)  

where DKSAT denotes the saturated hydraulic conductivity, REFDKDT 
and REFDK are parameters for surface runoff (Gochis et al., 2018), and 
DT denotes the time step in seconds. Both REFKDT and REFDK are cal-
ibratable parameters. Because adjusting REFDKT has the same effect as 
adjusting REFDK− 1 for k, it is not necessary in practice to calibrate both. 
As such, we calibrate only REFDK in this work. Note in Eq. (11) that, if 
REFDK increases or decreases, k decreases or increases and hence the 

infiltration capacity decreases or increases given the maximum water 
holding capacity, Dx, respectively. Accordingly, one may consider 
REFDK as controlling the runoff ratio. All other parameters in the LSM 
are set to the WRF-Hydro default (Gochis et al., 2018). 

For the terrain routing model, nov is by far the most important. In 
WRF-Hydro, nov is prescribed according to the USGS 24-category land 
cover (Loveland et al., 1995). In this work, we use the National Land 
Cover Database (NLCD, Wickham et al., 2020) and the same default land 
cover-dependent values of nov. In the calibration process, we apply a 
single multiplicative adjustment factor to the spatially varying nov for 
the entire catchment. Calibration of channel routing parameters pre-
sents a particular challenge as elaborated below. There are a total of 4 
parameters, Bw, z and n, and the initial condition, h, to be determined in 
the calibration process whereas the only source of information available 
is observed streamflow at the catchment outlet. For most natural 
channels, the cross sections are not trapezoidal. It is hence difficult to 
prescribe Bw and z externally based on physiographic information 
particularly for small streams. Given the above picture, we opted to 
assess first the impact of changes in each channel routing parameter via 
a series of idealized sensitivity analysis using the recently developed 
general analytical solution for nonlinear reservoir (Nazari and Seo, 
2020). In this analysis, we prescribe an impulse as the upstream 
hydrograph and route it through a nonlinear reservoir which is modeled 
as a hydraulically-equivalent trapezoidal channel as in WRF-Hydro. We 
then visually examine the shape of the downstream hydrographs and 
assess the impact of changes in each of the 4 parameters to the down-
stream hydrograph. The results indicate that changes in each of the 4 
routing parameters often produce similar effects, that the shape of the 
outlet hydrograph is least sensitive to changes in z and that, in addition 
to n, both Bw and h shape the outlet hydrograph to a significant degree, 
in particular, the upper and lower parts of the falling limb. The above 
findings suggest that one may be able to prescribe z externally and 
calibrate only the other three. In this work, we chose to calibrate all 4 
parameters to assess empirically the degree of under-determinedness in 
each. 

For calibration, we initially considered the Shuffled Complex Evo-
lution (SCE, Duan et al., 1992) and the Stepwise Line Search (SLS, 
Kuzmin et al., 2008). Due to excessive computational requirement of 
SCE, however, we chose SLS as the main calibration technique (see 
Kuzmin et al., 2008 for comparison). Once the parameter space is 
defined, we use Latin Hypercube sampling (LHS, Tang, 1993) to run 
WRF-Hydro with the randomly-sampled parameter values from which a 
small number of best-performing parameter sets is retained. We then run 
SLS using the parameter sets retained above as starting points, visually 
examine the resulting hydrographs and choose the best. The original SLS 
minimizes the multi-scale objective function consisting of normalized 
root mean square error of simulated flow at multiple time scales of ag-
gregation such as hourly, daily, weekly, monthly, etc. The hydrologic 
response time of the study basins, on the other hand, is sub-daily for 
which the multiscale objective function is not necessary. A second 
modification to SLS deals with the objective function itself as elaborated 
below. Arguably the two most important variables for urban flood pre-
diction are the peak flow and time-to-peak flow, i.e., the time until the 
peak flow occurs relative to some reference time of user’s interest. The 
hydrographs for the study basins are often characterized by high degrees 
of peakedness due to fast surface runoff over urban and semi-dry land 
surfaces. Commonly used objective functions for calibration such as the 
mean squared error (MSE) of simulated flow or its variable transform is 
not very effective in simulating very sharp peaks due to the typically 
very small number of observations associated with peak flows. To 
address the above, we combine the mean error (ME), MSE and Type II 
conditional bias (CB) for the objective function as follows the last of 
which is specifically to improve simulation of peaked hydrographs: 

J =

(
1
n
Σn

i=1Oi −
1
n

Σn
i=1Si

)2

+
1
n

∑n

i=1
(Oi − Si)

2 
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k

)
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(12)  

where Oi and Si denote the observed and simulated flows at timestep i, n 
denotes the total number of {Oi, Si} pairs in the calibration period, α 
denotes the weight given to the conditional bias penalty term, K denotes 
the number of subintervals dividing the range of observed flow, Omin

k and 
Omax

k denote the lower and upper bounds of the k-th subinterval, nk 

denotes the number of observed flow within the k-th subinterval, Omid
k 

denotes the mid-point between Omin
k and Omax

k , i.e., Omid
k = Omin

k +

(Omax
k − Omin

k )/2, and Si|Omin
k ≤ Oi ≤ Omax

k denotes the i-th simulated 
flow for which the verifying observed flow falls in the k-th subinterval. 
The three terms in Eq. (12) represent the ME, the MSE and the mean of 
the Type-II CB squared, respectively. The first term may appear redun-
dant in that reducing CB is a sufficient condition for reducing ME. In 
practice, however, the CB penalty may not be effective across all ranges 
of flow due to small sample size in certain sub-ranges. Our experience 
indicates that a sub-range of 10 (cms) and α = 2 generally yield satis-
factory results for the study basins. We note here that the last two terms 
in Eq. (12) represent a sample statistic for the objective function used in 
CB-penalized optimal linear estimation for improved estimation of ex-
tremes (Brown and Seo, 2013; Seo, 2012; Seo et al., 2014; Kim et al., 
2018; Seo et al., 2018a, 2018b; Shen et al., 2019; Lee et al., 2019; 
Jozaghi et al., 2019). 

Though the number of parameters calibrated is small, it is still 
computationally too expensive to perform resolution-specific calibration 
for all combinations of resolutions (see Table 2). The alternative strategy 
adopted in this work is to calibrate using SLS-LHS at the lowest spatial 
resolution, i.e., 250 m for both the LSM and routing models, and use the 
resulting parameter values as the starting point for calibration at the 
next higher-resolution using SLS only. For the routing model resolution 
of 50 m, however, the above strategy could not be used due to exces-
sively large computational requirements (see Table 3). Instead, we 
borrow the calibration results at 250 m LSM and 125 m routing models 
and assess parameter transferability from 125 m to 50 m for routing. 
Event-specific calibration is bound to overfit the specific event at hand. 
To avoid dependent evaluation based on overfitted parameters, we 
averaged the middle 3 parameter values out of the 5 from event-specific 
calibration. The rationale for dropping the largest and the smallest 
values is to avoid large biases arising from possible extremes. The 
average parameter values thus obtained are referred to as the non-event- 
specific calibration results. 

3.3. Assimilation of streamflow observations 

Hydrologic and hydraulic processes are heavily controlled by com-
plex local physiography. The models may not capture the fixed bound-
ary conditions, the ICs or the physical processes occurring over certain 
ranges of scale. In addition, the precipitation input may have significant 
systematic or random errors, or the hydrologic model may lack adequate 
calibration. In such situations, the model states may become too unre-
alistic to produce skillful predictions especially when the hydrometeo-
rological or hydrologic conditions depart from the historically observed. 

For this reason, some form of state updating, manual or automatic, is 
generally necessary for real-time flood forecasting (WMO, 1992). With 
high-resolution models, however, manual DA is not viable due to the 
very large dimensionality (Lee et al., 2011; Lee and Seo, 2014). In this 
work, we assess how assimilating streamflow observations at the 
catchment outlet may be used to initialize WRF-Hydro for event-based 
prediction. For the DA method, we use the fixed-lag formulation (Seo 
et al., 2003, 2009) of the ensemble Kalman filter (EnKF, Evensen, 1994, 
2003). The motivation for the fixed-lag smoother is to support 
forecaster-supervised on-demand initialization of WRF-Hydro whether 
DA was previously run or not. We note here that EnKF is implemented in 
OpenDA (Van Velzen et al., 2016; Rakovec et al., 2015) which is inte-
grated with the NWS’s Community Hydrologic Prediction System (Roe 
et al., 2010), the main operational river forecast system at the RFCs. As 
such, there already exists an operational tool for implementation of the 
proposed method. 

The control variables, i.e., the variables to be updated or adjusted via 
DA, include the multiplicative adjustment factor, βP, to precipitation, Px, 
applicable uniformly to the precipitation over the entire catchment Px, 
and over the entire assimilation window (see Eq. (13)), and the multi-
plicative adjustment factor, βθ, to soil moisture, βθ, applicable uniformly 
to all 4 soil moisture layers θi,i = 1,..,4, and valid at the beginning of the 
assimilation window(see Eq. (14)): 

Qs =
(βPPx)

2

(Px + Ic)
2, βP ≥ 0 (13)  

Dx =
∑4

i=1
ΔZi(θsat − βθθi), βθ ≥ 0, i = 1, .., 4 (14) 

The simulated streamflow observations are then augmented to the 
state vector to render the observation equation linear (Lorentzen and 
Naevdal, 2011; Rafieeinasab et al., 2014; Lee et al., 2019). As formu-
lated above, the DA problem amounts to solving for the two adjustment 
factors in each assimilation cycle such that the simulated streamflow at 
the catchment outlet tracks the observed. If sequential estimation is 
desired, the control variables may be propagated from one assimilation 
cycle to the next based, e.g., on the first-order autogressive-1 model (Lee 
et al., 2019). Different variations of the above DA approach have been 
used successfully with both lumped and distributed hydrologic models 
in both operational and research settings in the US and elsewhere (Lee 
et al., 2011, 2012, 2015, 2016; Lee and Seo, 2014; Kim et al., 2014; 
Mazzoleni et al., 2018; Noh et al., 2018; Rafieeinasab et al., 2014; Riazi 
et al., 2016; Seo et al., 2003, 2009). 

An important difference between the above formulation and the 
previous formulations of fixed lag smoothing is that the former does not 
include additive errors to runoff, i.e., later inflow into channels. The 
reason for this departure is that the addition requires modifications to 
the WRF-Hydro source code. Because there is no guarantee a priori that 
the model dynamics admit the error-added flows, the above modifica-
tions may produce numerical instabilities that are difficult to diagnose 
or control. The lack of additive error in the control vector means that the 
DA formulation is strongly-constrained rather than weakly-constrained 
(Lee et al., 2016), and hence more likely to render the smoother more 
susceptible to model structural or parametric errors. In addition to the 
assimilation window length and ensemble size, it is necessary to pre-
scribe several uncertainty parameters for the smoother: the observation 
error variances for precipitation and streamflow, and mean and variance 
(or, alternatively, median and coefficient of variation) of each of βθ and 
βp. In this work, the above DA parameters were prescribed following Lee 
et al. (2019) using the homoscedastic model and lognormal distribution 
for βθ and βp, and were estimated based on limited sensitivity analysis 
(Rafieeinasab et al., 2015; Lee et al., 2019). Due to the strongly- 
constrained nature of the DA formulation, however, the performance 
of DA is likely to benefit significantly from more rigorous estimation of 
the DA parameters. 

Table 3 
Wall clock times (in sec) for a 32-hr WRF-Hydro simulation.a.  

Resolution (m) Number of threads 
LSM Routing models 4 8 16 32 

250 250 32 18 13 11 
250 125 63 37 26 22 
250 50 1043 637 386 264 
125 125 150 79 48 43  

a On Intel(R) Xeon(R) Gold 6152 CPU @ 2.10 GHz 44 CPU core (2 threads/ 
core) Linux computer. 
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4. Results 

Our assessment consisted of the 5 experiments described below. We 
use peak flow and time-to-peak flow errors as the primary performance 
measures, by far the two most important for urban flood prediction (Liu 
et al., 2011; Rafieeinasab et al., 2014). 

4.1. Experiment 1: Event-specific vs. non-event-specific calibration 

Fig. 3 shows examples of event-specific (black) vs. non-event-specific 
(red) calibration results at 250 m resolution for both the LSM and 
routing models. Additional results are presented in Fig. 10 in the context 
of DA. The temporal resolution of QPE is 1 min. The event-specific re-
sults are based on calibrating the 6 parameters specifically for each 
event. The non-event-specific results are based on dropping the largest 
and smallest values from the 5 event-specific results and averaging only 
the middle 3. It is important to point out that, in event-specific cali-
bration, rekft reflects the soil moisture ICs. Note in Eqs. (2) and (4) that 
changing refdk has effects similar to changing the maximum water 
holding capacity of the soil, Dx, which is a function of the initial soil 
water content. Event-specific calibration of refdk is hence subject to 
event-to-event variability of antecedent soil moisture conditions. The 
averaging of the 3 middle parameter values from the event-specific re-
sults is an attempt to dampen or average out this variability in the ICs. To 
illustrate, Fig. 4a shows the event-specific result for the multiplicative 

factor to rmannn, or fac rmannn. Significant event-to-event variations 
are seen particularly for less impervious CC and FC (see Fig. 1). Fig. 4b 
shows the non-event-specific result from averaging the middle 3 
parameter values in Fig. 4a. Note that JC, which has the largest imper-
vious fraction (see Fig. 1), has significantly smaller rmannn than CC and 
FC, and that little adjustment from the WRF-Hydro default was needed 
for the least impervious FC. 

The event-specific results indicate that the calibration strategy is 
mostly successful in simulating hydrographs for the most important 
rising limbs. For a number of cases, however, the simulated hydrographs 
do not recede as quickly as the observed. A likely contributing factor is 
that WRF-Hydro does not model storm drains. While the impact of storm 
drains is not very significant for large events (Rafieeinasab et al., 2015), 
in lower flow conditions, the impact is likely to be larger (Habibi and 
Seo, 2018). Of the 15 cases (i.e., from 5 events for 3 basins), significant 
differences were observed for 10 cases between the event-specific and 
non-even-specific results. Comparison of the parameter values between 
the two indicates that significant differences exist most often in refdk 
followed by rmannn and sfc rough. For bw, hlink and chsslp, significant 
differences were observed only in a few cases. The large event-to-event 
variability of refdk is not surprising in that in event-specific calibration 
this parameter can effectively control dynamically-varying runoff ratio 
as explained above. Of the 15 non-event-specific cases, 6 and 3 cases 
show over- and under-simulation of runoff volume resulting in over- and 
under-simulation of peak flows and too early and late rises to peak flows, 

Fig. 3. Simulation results from event-specific (black) and non-event-specific (red) calibration vs. the observed (blue empty circles) for the a) JC Jan 2017, b) CC Jan 
2017, c) FC Feb 2018 and d) JC Sep 2018 cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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respectively. Fig. 5a shows the simulated peak flows from event-specific 
(black) and non-event-specific (red) calibration vs. the observed. Fig. 5b 
shows the associated time-to-peak flow since the beginning of the rising 
limb vs. the observed. In Fig. 5b, the absolute magnitude of the time-to- 
peak flow is of little importance because the beginning of the rising limb 
can be anywhere, and only the departure of the time-to-peak flow from 
the diagonal is of interest. In Fig. 5, the JC Feb 2018 event was excluded 
due to lack of observed peak flow. Shown for reference in Fig. 5a and 
Fig. 5b are the lines of 10, 20 and 30 percent errors in peak flow and of 1, 
2 and 3 hr errors in time-to-peak flow, respectively. Harmel et al. (2006) 
report streamflow measurement errors of 42%, 19%, 10%, 6% and 3% 
for small watersheds for the worst, typical maximum, typical average, 
typical minimum, and the best case scenarios, respectively. Di Baldas-
sarre and Montanari (2009) report that the overall error affecting river 
discharge observations ranges from 6.2% to 42.8%, at the 95% confi-
dence level, with an average value of 25.6%. The 10 to 30 percent error 
lines in Fig. 5a hence provide a sense of the magnitude of the errors in 
simulated peak flow relative to possible observational errors. Empirical 
unit hydrographs for JC, CC and FC show time-to-peak values of 0.75, 3 
and 2.75 hrs, respectively (Rafieeinasab et al., 2015). An error in time- 
to-peak flow on the order of the time-to-peak values hence indicates 
poor performance. Fig. 5 indicates that most case-specific calibration 
results have less than 10% error in peak flow and less than an hour of 
time-to-peak flow error, but that, for about 5 cases, the non-event- 

specific results suffer from significantly larger errors. All 5 cases of 
excessively large peak flow or time-to-peak flow errors are associated 
with significant volume errors except for the FC May 2019 case for 
which a less than accurate simulation of the rising limb is responsible for 
the large time-to-peak flow error. The above results indicate that high- 
quality initialization is necessary for event-based urban flood predic-
tion using WRF-Hydro. In Experiment 5, we assess how DA may help 
address the situation. 

4.2. Experiment 2: Impact of temporal resolution of precipitation 

In this experiment, we assess how the temporal resolution of pre-
cipitation input may impact the quality of streamflow simulation by 
forcing the LSM with 1-min average of 10-min QPE vs. the native 1-min 
QPE. For 10 min QPE, we aggregate the 1-min CASA QPE to 10 min 
accumulations and run the LSM at 1 min timestep using the 1-min 
average over each 10 min period. For comparison, we also ran the 
LSM at 10 min timestep using 10-min QPE. In this experiment, we use 
the parameter values obtained from the event-specific calibration to 
reduce hydrologic uncertainty. The common spatial resolution used is 
250 m for both the LSM and routing models. Examination of the results 
for all cases indicates that the differences in simulated hydrographs due 
to 1 min vs. 10 min QPE are very small except for the May 2019 event 
which we elaborate below. Fig. 6 shows the simulated vs. observed 

Fig. 4. a) Multiplicative factors to Manning’s n for channel routing obtained from event-specific calibration. b) Non-event-specific estimates of Manning’s n for 
channel routing obtained from averaging for each catchment the middle 3 of the 5 values in a). 

Fig. 5. a) Comparison of simulated peak flow 
from event-specific (black) and non-event- 
specific (red) calibration vs. the observed for all 
15 cases except for the JC Feb 2018 case. The 
symbols “J”, “C” and “F” denote the JC, CC and 
FC results, respectively. The solid, dashed and 
dotted gray lines represent ±10, 20 and 30% er-
rors. b) Same as a) but for time-to-peak flow. The 
solid, dashed and dotted gray lines represent ±1, 
2 and 3-hr errors. (For interpretation of the ref-
erences to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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hydrographs at the outlet of JC for the May 2019 event. The simulation 
of the second rise for this double-peaked event is cut short due to missing 
CASA QPE. To identify possible causes for the disparate response in 
simulated streamflow, we examined the MAP time series for all cases. It 
is observed that the MAP values for the second peak of the May 2019 
event are significantly smaller than those for all other events. Because 
runoff generation may be considered as thresholding rainfall such that 
little runoff occurs for rain rate below some threshold and almost all 
excess rainfall runs off for rain rate above the threshold (see Subsection 
2.4, Norouzi et al., 2019), one may look for a threshold rain rate above 
and below which the runoff response is very different. Examination of 
the MAP hyetographs and the associated hydrographs for the May 2019 
event points to a threshold of about 0.5 mm. For this event, the 
maximum 1 min MAP associated with the second peak was well above 
0.5 mm for all three basins. The maximum 1 min-average of 10 min 
MAP, on the other hand, was well below 0.5 mm for JC and CC, and 
stayed above 0.5 mm only for a single 10 min period for FC. The above 
findings indicate that the SWB used for rainfall-runoff modelling in 
WRF-Hydro is sensitive to the temporal resolution of precipitation for 
moderate precipitation amounts due to the increased nonlinearity in 
runoff generation (see Eqs. (1), (2) and (11)). 

4.3. Experiment 3: Impact of spatial resolutions of rainfall-runoff 
modelling and routing 

In this experiment, we compare the quality of the outlet simulations 
for peak flow and time-to-peak flow among the resolutions of 250 m, 
125 m and 50 m for routing with a common LSM resolution of 125 m, 
and between the resolutions of 250 m and 125 m for LSM with a com-
mon routing model resolution of 125 m. The 250 m LSM and 250 m 
routing model simulations, referred to herein as the 250 m-250 m re-
sults, are based on event-specific calibration using SLS with LHS. One 
may hence consider the above calibration as based on quasi-global 
optimization. The 250 m LSM and 125 m routing simulations, referred 
to herein as the 250 m-125 m results, are based on event-specific cali-
bration using only SLS in which the local search is started with the 250 
m-250 m results. One may hence consider the above calibration as local 
optimization of a priori parameter values from a coarser resolution. As 
mentioned in Section 3, it was not possible to calibrate at the 250 m LSM 
and 50 m routing resolution due to excessive computational re-
quirements (see Table 3). The 250 m LSM and 50 m routing simulations, 
referred to herein as the 250 m-50 m results, are based on the parameter 

values borrowed from the 250 m-125 m results. One may hence consider 
the above results as based solely on a priori parameter values transferred 
from a coarser resolution. Because the level of calibration is different 
from one resolution to another, it is not very meaningful to compare the 
non-event-specific results. For this reason, we focus below on the event- 
specific results only. 

Fig. 7a and b show the simulated peak flow vs. the observed, and the 
simulated time-to-peak flow vs. the observed, respectively. As in Fig. 5, 
we overlay the 10, 20 and 30 percent error lines in Fig. 7a and of 1, 2 and 
3 h of timing error lines in Fig. 7b to help assess the magnitude of the 
errors. Fig. 7 indicates that the 250 m-250 m and 250 m-125 m results, 
both of which are calibrated scale-specifically, are very similar, and that 
for a number of events the 250 m-50 m results are not as good as the 
above two. The above observations are perhaps not very surprising in 
that one may expect scale-specific calibration to perform better than 
using parameter values borrowed from a lower resolution. The magni-
tude of the errors in the 250 m-50 m results, however, is surprisingly 
large for a number of events. To trace the potential sources of the error, 
we examined the spatially-distributed channel routing parameters, 
including the channel grid, flow accumulation, flow direction and 
stream order at all resolutions. It is seen that, whereas the differences 
between 250 and 125 m are relatively small, there are large differences 
between 50 m and the coarser resolutions. To illustrate, Fig. 8a and b 
show the histograms of the stream order in the model domain at reso-
lutions of 125 m and 50 m, respectively. The histogram at 250 m is 
similar to that at 125 m. In the figure, the frequency for the stream order 
of zero represents the number of grid boxes that do not contain any 
channel segments. As one may expect, at 50 m resolution, the channel 
network is much denser and has more higher-order streams. WRF-Hydro 
prescribes the channel routing parameters according to the stream 
order. As such, changes in the channel density or stream order are very 
likely to change the conveyance characteristics of the channel network. 
The above findings suggest that a combination of resolution-specific 
prescription of the channel routing parameters and their calibration is 
likely to be necessary to benefit from very high-resolution modeling 
using WRF-Hydro. We also compared the 250 m-125 m results with the 
125 m-125 m to assess the impact of increasing the LSM resolution. As 
with the 250 m-125 m results, the 125 m-125 m results are based on 
scale-specific local optimization using SLS in which the parameter 
values from the 250 m-125 m results are used as the starting point. The 
comparison indicates that the 125 m-125 m results improve the peak 
flow prediction over the 250 m-125 m for the study basins but only 
marginally. 

4.4. Experiment 4: Impact of quality of ICs 

In this experiment, we assess how the quality of the ICs of the 
rainfall-runoff model may impact the accuracy of streamflow prediction. 
A potential source of the ICs in real-time event-based operation of WRF- 
Hydro is the warm states of the NWM. A direct use in this experiment of 
the NWM warm states, however, is not likely to allow clear attribution at 
least for two reasons. The first is that the USGS 24-category land cover 
(see Fig. 1c) and the MRMS QPE (Zhang et al., 2011, 2016) used in NWM 
are of coarser resolution than those used in this work. The second is that 
the model parameter values used in the NWM (Gochis et al., 2019) are 
not the same as those used in WRF-Hydro in this work. As such, the ICs 
from the NWM analysis are not likely to transfer cleanly to WRF-Hydro 
as implemented in this work as evidenced in Experiments 1 through 3 
above. As a compromise, we emulate the NWM analysis by running 
WRF-Hydro using the USGS 24-category land cover and NLDAS pre-
cipitation (Cosgrove et al., 2003) in place of the NLCD land cover and 
CASA QPE, respectively. The NLDAS precipitation has a much lower 
resolution than the 1 km 1 hr MRMS QPE used by the NWM. It is hence 
possible that the results from this experiment may somewhat inflate the 
positive impact of higher resolution precipitation. The above experiment 
design nonetheless completely removes all model-parametric 

Fig. 6. Comparison of simulated hydrographs forced by 1-min (black) and 1- 
min average of 10-min (red) CASA QPE vs. the observed (blue empty circles) 
for the JC May 2019 case. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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uncertainties and hence makes possible unambiguous attribution. 
In this experiment, we start running WRF-Hydro at least several 

hours before the prediction time using the NLDAS precipitation and 
USGS 24-category land cover where the lower resolution NLDAS 

precipitation is disaggregated uniformly in space and time to a resolu-
tion of 250 m and 1 min. The prediction time is chosen where the 
observed hydrograph begins to rise. This is also when streamflow 
response is most sensitive to the ICs. At the prediction time, we switch to 

Fig. 7. Same as Fig. 5 but the comparison is among the 250 m LSM and 250 m routing (black), 250 m LSM and 125 m routing (red) and 250 m LSM and 50 m routing 
(green) results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Histograms of stream order as modeled at resolutions of a) 125 m and b) 50 m.  

Fig. 9. Same as Fig. 5a but the comparison is for a) the NLCD (black) vs. the USGS 24-category (red) land cover results, and b) the CASA QPE (black) vs. the NLDAS 
QPE (red) results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the CASA QPE and NLCD land cover for simulation over the forecast 
horizon. For the above comparison run, we assume average soil moisture 
conditions for the LSM and pre-storm conditions for the hillslopes and 
channel routing models as obtained from event-specific calibration (see 
Subsection 4.1). In the baseline run, we run the model at 250 m 1 min 
resolution using the CASA QPE and NLCD land cover for the entire 
simulation period. Any differences in the two simulated hydrographs 
over the forecast horizon are hence due solely to the ICs valid at the 
prediction time. Fig. 9a shows the simulated vs. observed peak flow for 
the NLCD (black) and USGS 24-category (red) land cover. All other 
conditions are the same as in the baseline 250 m-250 m simulation. The 
positive impact of higher-resolution land cover is readily seen. Note that 
the differences are the smallest for JC which is identified mostly as urban 
by the USGS 24-category land cover in agreement with the NLCD (see 
Fig. 1c,d). Fig. 9b shows the simulated vs. observed peak flow for the 
CASA (black) and NLDAS (red) QPE-forced ICs. All other conditions are 
the same as in the baseline 250 m-250 m simulation. Note the very 
significant positive impact of higher-resolution QPE, particularly for CC 
and FC for Feb 2018 and Sep 2018, the two largest events among the five 

(see Fig. 2 and Table 1). Examination of timing errors associated with 
Fig. 9a and 9b shows similarly positive impact of higher-resolution QPE 
and, to a lesser extent, land cover. 

4.5. Experiment 5: Impact of updating ICs via DA 

In this Experiment, we assess how DA may potentially be used to 
initialize WRF-Hydro for event-based prediction. In the real world, it is 
generally not possible to schedule pre-storm warmup runs as described 
in the 4th Experiment. Instead, it is necessary to be able to initialize the 
model on demand often without the aid of any a priori information. The 
fixed-lag smoother, solved using EnKF in this work, is aimed at sup-
porting such an operation. For high-resolution runs, EnKF is computa-
tionally expensive. In this work, all ensemble runs were made at the 
coarsest spatial resolution of 250 m for both the LSM and routing 
models. Limited sensitivity analysis suggests that a small ensemble size 
of 12 is generally acceptable for ensemble mean prediction owing to the 
very low dimensionality of the DA formulation. We then use the non- 
event-specific calibration results to emulate realistic model-parametric 

Fig. 10. DA-aided ensemble predictions (cyan), ensemble mean prediction (blue) and DA-unaided base predictions based on non-event-specific calibration (red) vs. 
the observed (blue empty circles) for the a) FC Jan 2017, b) CC Feb 2018, c) FC Feb 2018 and d) CC Sep 2018 cases. The green and black lines show the ensemble DA 
analysis within the assimilation window and the prediction time, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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uncertainty and predict streamflow with and without DA. Due to the 
small sample size, quantitative verification was not possible. Instead, we 
critically examine the DA-aided predictions for those 5 cases for which 
the non-event-specific calibration results compare least favorably with 
the event-specific in Experiment 1 (see Fig. 3). By far the largest po-
tential value of DA in urban flood prediction is improving peak flow and 
time-to-peak flow predictions when the streams first respond to rainfall. 
Accordingly, we focus specifically on DA-aided predictions when the 
hydrograph begins to rise. This is also the time when the degrees of 
freedom for signal for DA (Rodgers 2000) is greatly reduced due to the 
generally reduced predictive skill of rainfall-runoff and routing models, 
and hence streamflow observations carry larger information content 
relative to the model prediction (Zupanski et al., 2007; Zupanski, 2009). 

Fig. 10 shows the streamflow predictions without DA (red), DA-aided 
ensemble predictions (cyan), the associated ensemble mean predictions 
(blue), ensemble streamflow analysis from DA (green) and the verifying 
observed hydrographs (empty blue circles) for 4 of the 5 cases for which 
non-event-specific calibration produced very poor simulations in 
Experiment 1. The case not shown in Fig. 10 due to space limitations is 
JC Apr 2019 which is by far the smallest event of the 5 and is hence of 
lesser interest. In the figure, the vertical gray line indicates the predic-
tion time which also marks the end of the assimilation window. The 
horizontal extent of the ensemble analysis (green) shows the size of the 
assimilation window. All streamflow and precipitation observations 
valid within the assimilation window are assimilated in these runs to 
update the soil moisture states valid at the prediction time. All DA re-
sults are based on single assimilation cycles to emulate on-demand 
operation without the potential benefit of any previous DA cycles. The 
results indicate that DA improves prediction for all 5 cases over the DA- 
unaided base predictions. For the FC Jan 2017 and CC Feb 2018 events, 
for which non-event-specific calibration very significantly over- and 
under-predict, respectively, DA greatly improves prediction. As noted in 
Section 3, the primary source of error in peak flow or time-to-peak flow 
is the error in runoff volume. The results indicate that DA is largely able 
to reduce runoff volume errors by providing WRF-Hydro with high 
quality ICs. Fig. 10 shows, however, that the ensembles are significantly 
underspread in the recession limb due to lack of accounting of structural 
and parametric uncertainties, and that WRF-Hydro is not able to 
reproduce the bimodal or attenuated peaks, or the fast-receding falling 
limbs in FC Jan 2017 (Fig. 10a) and FC Feb 2018 (Fig. 10c). The above 
results indicate that, overall, the fixed-lag smoother is very effective in 
reducing runoff volume errors and hence errors in peak flow and time- 
to-peak flow. 

5. Conclusions and future research recommendations 

We assess the impact of increasing the resolution of hydrologic 
modeling, calibration of selected model parameters and assimilation of 
streamflow observations toward event-based high-resolution urban 
flood modeling and prediction using WRF-Hydro in the Dallas-Fort 
Worth area (DFW). We use quantitative precipitation estimates (QPE) 
at 500-m 1-min resolution from the Collaborative Adaptive Sensing of 
the Atmosphere (CASA) operation for observed rainfall, the Stepwise 
Line Search for calibration, and ensemble Kalman filter (EnKF) imple-
mentation of fixed-lag smoothing for data assimilation (DA). The model 
domain is a 144.6 km2 area comprising 3 urban catchments in the Cities 
of Arlington and Grand Prairie in the middle of DFW. The main findings, 
conclusions and recommendations follow below. 

Event-specific calibration of the 6 WRF-Hydro parameters identified 
in this work is largely successful in simulating hydrographs in the study 
area, in particular, the most important rising limbs. It is less successful, 
however, for attenuated peaks or fast-receding falling limbs. A novel 
element in the above calibration is the inclusion of a conditional bias 
penalty in the objective function to improve simulation specifically of 
highly peaked hydrograph. A spatial resolution of at least 250 m is 
necessary for the land surface model (LSM) to delineate small 

catchments and hence to capture catchment-wide rainfall with accept-
able accuracy. Increasing the resolution of the LSM from 250 m to 125 m 
showed marginal improvement. The same resolution increase for the 
routing models showed little improvement. Increasing the routing res-
olution further to 50 m using parameter values borrowed from 125 m, on 
the other hand, increased errors for a number of cases due to large 
changes in channel grid and stream order. The above findings suggest 
that, to benefit from very high-resolution modeling using WRF-Hydro, a 
combination of resolution-specific prescription and calibration of the 
channel routing parameters is likely to be necessary. The high-resolution 
CASA QPE and the National Land Cover Database (NLCD) land cover 
showed very significant and significant positive impact on streamflow 
simulation compared to the lower-resolution North American Land Data 
Assimilation System (NLDAS) QPE and USGS 24-category land cover, 
respectively. The above points out the importance of resolution- 
consistent high-quality initialization of WRF-Hydro for event-based 
operation. The EnKF implementation of fixed-lag smoother signifi-
cantly reduced peak flow errors under realistic parametric uncertainty 
for predictions made when streams first respond to rainfall. The DA- 
aided ensemble predictions are, however, significantly underspread in 
the recession limb due to lack of accounting of structural and parametric 
uncertainties. The overall results suggest that, in the absence of 
resolution-specific prescription and calibration of channel routing pa-
rameters, a resolution of 250 m for both the LSM and routing models is a 
good choice in terms of performance and computational requirements. 
Recall that the National Water Model currently runs routing at 250 m 
over the continental US. The results also suggest that, in the absence of 
high-quality calibration and continuous simulation of streamflow, DA is 
necessary to initialize WRF-Hydro for event-based operation for high- 
resolution urban flood prediction. 
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