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A B S T R A C T   

The concept of physical resilience may help geriatric medicine objectively assess patients’ ability to ‘bounce 
back’ from future health challenges. Indicators putatively forecasting resilience have been developed under two 
paradigms with different perspectives: Critical Slowing Down and Loss of Complexity. This study explored 
whether these indicators validly reflect the construct of resilience in geriatric inpatients. Geriatric patients (n =
121, 60% female) had their heart rate and physical activity continuously monitored using a chest-worn sensor. 
Indicators from both paradigms were extracted from both physiological signals. Measures of health functioning, 
concomitant with low resilience, were obtained by questionnaire at admission. The relationships among in-
dicators and their associations with health functioning were assessed by correlation and linear regression ana-
lyses, respectively. Greater complexity and higher variance in physical activity were associated with lower frailty 
(β = − 0.28, p = .004 and β = − 0.37, p < .001, respectively) and better ADL function (β = 0.23, p = .022 and β =
0.38, p < .001). The associations of physical activity variance with health functioning were not in the expected 
direction based on Critical Slowing Down. In retrospect, these observations stress the importance of matching the 
resilience paradigm’s assumptions to the homeostatic role of the variable monitored. We present several lessons 
learned.   

1. Introduction 

The population is aging, and individuals in need of medical care are 
simultaneously becoming older, frailer and more likely to have multiple 
diseases (World Health Organization, 2018). Even with detailed prog-
nostic assessment and clinical intuitions, medicine is unable to objec-
tively assess who will resist and recover from health stressors imposed 
by disease or by its treatment. The concept of physical resilience – the 
individual’s capacity to resist functional decline and recover physical 
health following a stressor – may facilitate this objective assessment and 
simultaneously shift medicine towards a more positive outlook empha-
sizing a person’s resources instead of deficits (Whitson et al., 2016). In 
fact, the development of tools that inform clinical intuitions about older 
adults’ resilience has been termed a priority in aging research (Hadley 
et al., 2017). 

Researchers have developed a number of concepts and associated 

indicators that may help quantify the resilience of the older adult (Lip-
sitz, 2002; Kok et al., 2021; Lipsitz and Goldberger, 1992; Olde Rikkert 
et al., 2016; Scheffer et al., 2009). The current study focuses on in-
dicators hypothesized to be associated with resilient outcomes after a 
physical stressor. These indicators come from two leading paradigms 
that take modeling humans as a complex system as a starting point: the 
‘Critical Slowing Down’ (CSD) and the ‘Loss of Complexity’ (LoC) 
paradigms. 

The CSD approach proposes that as a generally stable system be-
comes less resilient, system variables show increasing delays in their 
recovery from internal or external perturbations (Olde Rikkert et al., 
2016; Scheffer et al., 2018). Specifically, with loss of resilience, physi-
ological time series display larger fluctuations, slower recovery to 
equilibrium, and more rigid coupling between sub-systems (e.g., car-
diovascular and respiratory systems). These indicators of CSD are re-
flected statistically in increased variance, temporal autocorrelation and 
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cross-correlations between sub-systems, respectively (Scheffer et al., 
2009). Empirical validation of the predictive validity of these CSD- 
related indicators in human psychology and physiology is emerging 
(Gijzel et al., 2017; Gijzel et al., 2019a; Gijzel et al., 2019b; van de 
Leemput et al., 2014). By extracting these indicators from the patient’s 
dynamic responses to naturally occurring small-scale perturbations, or 
micro-perturbations, such as ingesting a meal or standing from a chair, 
one can make predictions about the response of the older adult to a 
larger perturbation in the future (Olde Rikkert et al., 2016; Scheffer 
et al., 2009; Scheffer et al., 2018; van de Leemput et al., 2014). 

The LoC approach proposes that many interacting regulatory pro-
cesses, operating over multiple time scales, give rise to complex physi-
ological output and allow the individual to flexibly adapt to internal and 
external perturbations (Lipsitz, 2002; Lipsitz and Goldberger, 1992). 
Age- and disease-related declines in these interactions, and the corre-
sponding loss of physiological complexity, are associated with decreased 
adaptation to physiologic stress and subsequent functional decline. 
Thus, quantifying the complexity of physiologic systems may provide 
hints about the individual’s ability to adapt to future stressors. Non- 
linear methods like multiscale entropy (MSE), and its multivariate 
extension (MVMSE), can be used to quantify the complexity embedded 
in one or more physiological signals (Ahmed and Mandic, 2011; Costa 
et al., 2002; Costa et al., 2005). Overall, lower complexity in physio-
logical time series is generally associated with poorer functioning and 
lower resilience of the system under study (Lipsitz, 2004; Zhou et al., 
2017). 

Importantly, while related in their purpose, these two paradigms 
make use of different underlying assumptions and are hypothesized to 
be theoretically complementary in their potential for ascertaining 
resilience. CSD assumes that the small magnitude and temporal inde-
pendence of fluctuations around a homeostatic equilibrium in response 
to perturbation indicate resilience in terms of stability, whereas LoC 
assumes that more complex fluctuation patterns across multiple tem-
poral scales at rest reflect resilience in terms of adaptability (Lipsitz, 
2002; Olde Rikkert et al., 2016; Scheffer et al., 2009) (see Fig. 1). It is 
currently unknown whether, individually or combined, these indicators 
can assess the potential resilience of older adults. 

As a first step towards evaluating how dynamical resilience in-
dicators derived from these two paradigms can be reliably and validly 
used in the care of acutely ill older persons, we extracted putative in-
dicators of both paradigms using continuous heart rate and physical 
activity time series data collected from geriatric inpatients. Heart rate 
and physical activity were chosen as commonly used, dynamic variables 
that are relatively easy to obtain in the daily routine of patient care. To 
explore their construct validity, we examined the degree to which the 
extracted resilience indicators coincided with three measures of health 
functioning known to reflect greater vulnerability to stressors (i.e. low 
resilience) at hospital admission: frailty, multimorbidity and Activities 
of Daily Living (ADL). For reliability, we examined the test-retest reli-
ability comparing LoC and CSD indicators derived from the first and 
second 24 h. 

2. Methods 

2.1. Participants 

Participants were included from the Wellbeing and Resilience Study 
at Radboud University Medical Center (Gijzel et al., 2019a). Eligible 
patients aged 65 years or over admitted to the geriatric ward were 
consecutively enrolled between March and October 2017. The medical 
ethics committee CMO Radboudumc approved the study (ID: 2017- 
3225) and all participants gave written informed consent. 

2.2. Measures of health functioning 

Pre-admission frailty was measured retrospectively at admission 
with The Older Persons and Informal Caregivers Survey – Minimal 
Dataset (TOPICS-MDS) 45-item frailty index (range 0–1, lower is better) 
(Lutomski et al., 2013a; Lutomski et al., 2013b). Multimorbidity was 
measured as the number of diseases out of a possible nineteen physician- 
diagnosed chronic conditions: sixteen from the TOPICS-MDS question-
naire, supplemented by information on Parkinson’s disease, aortic ste-
nosis and cardiac rhythm disorders. The TOPICS-MDS questionnaire also 
results in a validated Activities of Daily Living (ADL) score (range 0–6, 

Fig. 1. Complex systems paradigms and associated indicators quantifying resilience in physiological time series data from older adults. Critical Slowing Down 
(Scheffer et al., 2009) reflects resilience in terms of stability around an equilibrium. Indicators of low resilience from this paradigm include increased variance 
(vertical arrow), temporal autocorrelation (horizontal arrow) and cross-correlation between sub-systems (not shown). Loss of Complexity (Lipsitz, 2002) reflects low 
resilience in terms of diminished adaptability of complex physiological output. Complexity can be quantified using multiscale entropy, whereby more negative slopes 
indicate less complexity and low resilience. 
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higher is better) (Lutomski et al., 2013b). This score included 6 items: 
the ability to independently walk outside for 5 min, take a shower/bath, 
dress oneself, stand up from a chair, walk up a flight of 15 stairs, and 
take medication. Information for patients with dementia or cognitive 
impairments was additionally obtained using informants and as well as 
hospital records, cross-validating against physician judgement. 

2.3. Continuous monitoring of heart rate and physical activity 

A chest-worn sensor, the HealthPatch MD (VitalConnect, San Jose, 
California, USA), was used to simultaneously collect continuous heart 
rate and physical activity data starting immediately after the patient was 
admitted to the geriatric ward. The sensor reliably sampled patients’ 
electrocardiogram (ECG) at 125 Hz and a triaxial accelerometer at 
31.25 Hz (Breteler et al., 2018). More details can be found in the Sup-
plementary materials (Appendix A). 

2.4. Heart rate and physical activity data pre-processing 

Pre-processing of ECG and accelerometer data during the first 24 h 
after hospital admission was carried out in MATLAB (R2014b, Math-
works, Natick, MA); details are available in the eMethods (Appendix A). 
To calculate the multivariate indicators (i.e. cross-correlation and 
MVMSE), the pre-processed time-series of heart rate was interpolated 
and re-sampled using the time stamps of the pre-processed physical 
activity time series. This resulted in two time-matched physical activity 
and heart rate signals – both sampled once every 4 s (0.25 Hz). Because 
these indicators would ideally be able to provide actionable information 
within the first 12 h or less, the resilience indicators were extracted from 
the first 10,000 data points immediately after admission; this translated 
to approximately 11 h of recording time (median [IQR] = 11.1 [0.45] 
for heart rate; 11.1 [0.33] for physical activity). This fixed number of 
data points also facilitated comparison of (MV)MSE estimates between 
patients. As separate control variables, patients’ average heart rate (in 
beats per minute [bpm]) and physical activity (in activity counts per 
hour) were also calculated for the entire 24-h period. 

2.5. Critical slowing down indicators calculation 

Variance of heart rate and physical activity was calculated as the 
average squared standard deviation of the pre-processed time series 
from its detrended mean. Temporal autocorrelation (TAC) was calcu-
lated by correlating each time series with a time-lagged version of itself. 
For physical activity, the autocorrelation was calculated using a lag of 4 
s (1 epoch). For heart rate, a lag of 24 s was used to better capture the 
intrinsic dynamics of the heart. The cross-correlation was the bivariate 
correlation between the pre-processed heart rate and physical activity 
time series. 

2.6. Multiscale entropy and scaling regions 

MSE was calculated using the methods described by Costa et al. 
(2002, 2005). Briefly, the sample entropy, a measure of information 
content, is calculated for progressively larger times scales within the 
time series. The MSE slope is the change in sample entropy values as a 
function of time scale and reflects the ‘meaningful structural richness’ or 
complexity of the time series. More negative slopes reflect less 
complexity, whereas more positive slopes indicate greater complexity 
(Fig. 1). MVMSE is an extension of the MSE method to multivariate time 
series data (Ahmed and Mandic, 2011). It reflects the joint complexity of 
heart rate and physical activity over time. 

It is possible for time series to display distinct trends of information 
content across different time scales. This gives rise to so-called scaling 
regions of the MSE slope that may correspond to regulatory mechanisms 
acting within specific time scales (Iyengar et al., 1996). Based on visual 
inspection, univariate heart rate MSE and MVMSE showed two scaling 

regions: from scale 1–4 (4–16 s) and from scale 4–10 (16–40 s; see 
eFig. 1). We therefore estimated separate slopes for these two scaling 
regions (scaling region 1 and 2, respectively). See eMethods (Appendix 
A) for more extensive methods description. 

2.7. Statistical analyses 

Statistical analyses were performed in IBM SPSS version 25 (IBM 
Corp., Chicago, IL). To explore the unique or overlapping nature of in-
formation contained in the putative resilience indicators, bivariate 
correlations were carried out between the indicators of CSD and (MV) 
MSE slopes. Next, each of the indicators was entered as separate pre-
dictors of each of the three measures of health functioning in linear 
regression analyses. Each regression model was adjusted for age and sex 
(Model 1). To investigate whether the indicators were associated with 
functioning independent of average heart rate or physical activity, a 
second model (Model 2) was included that additionally adjusted for the 
corresponding 24-hour average of heart rate, physical activity or both, 
depending on the system of the resilience indicator being tested. As 
these analyses were aimed at hypothesis-driven questions of an explor-
atory nature, no adjustments for multiple comparisons were made and p- 
values should be interpreted with caution. 

Three relevant supplementary analyses were carried out: relative 
weights analysis, a test of repeatability, and a comparison of within- 
person changes in indicators across paradigms. First, to assess the rela-
tive contribution of each CSD and LoC resilience indicator to explaining 
the variance in the measures of health functioning, relative weights 
analysis was conducted (Johnson, 2000). Relative weights analysis 
partitions the total explained variance (R2) among the multiple pre-
dictors to quantify the unique contribution of each predictor in the 
model (Tonidandel and LeBreton, 2011). Second, as the indicators may 
be prone to measurement error, we assessed within-subject test-retest 
reliability by repeating the main regression analyses using indicators 
extracted from the first 24-hour period with the indicators extracted 
from the second 24-hour period post-admission (24–48 h) as indepen-
dent variables. Third, if the CSD and LoC indicators indeed reflect 
related, but distinct information about resilience, their changes over 
time within-persons would show low correlations. The extraction of 
indicators from the second 24-hour period in the repeatability analysis 
also allowed for examination of whether within-person changes in in-
dicators from CSD and LoC were correlated with one another (see 
eMethods in Appendix A for more details). 

3. Results 

3.1. Participant characteristics 

Table 1 shows the characteristics of the 121 patients in this study. 
The participants’ mean ± SD age was 84.2 ± 6.3 years and 60% were 
female. Prior to hospital admission, 73% were living independently and 
29% had a diagnosis of dementia. The average frailty index score was 
0.38 ± 0.14. Participants had a mean of 4.4 ± 2.0 chronic medical 
conditions (multimorbidity) and an average ADL function score of 2.7 ±
2.2. For a summary of reasons for admission and most common co- 
morbidities, see eTables 1 and 2 in the Supplemental materials. 

3.2. Resilience indicators 

Table 2 shows the mean and standard deviation of the resilience 
indicators from participants’ heart rate and physical activity time series 
data. Of note, the MSE slope for physical activity was on average 
negative, but close to zero, mean ± SD = − 0.01 ± 0.02 (see eFig. 1). The 
average MSE slope for heart rate over scaling region 1 (4–16 s) was 
positive, 0.24 ± 0.10, whereas the slope of scaling region 2 (16–40 s) 
was close to zero, 0.01 ± 0.02. Recall that more negative slopes are 
indicative of lower complexity, and presumably lower resilience, of the 

J.L. Rector et al.                                                                                                                                                                                                                                



Experimental Gerontology 149 (2021) 111341

4

sub-system. The MVMSE displayed a similar scaling behavior as the 
heart rate and was also described by the same two scaling regions: a 
slightly positive MVMSE slope over scaling region 1, 0.04 ± 0.02 and a 
flat MVMSE slope for scaling region 2, 0.00 ± 0.01. 

3.3. Between-participant correlations among CSD & LoC indicators 

Table 3 shows the between-participant correlations among the 
resilience indicators. Correlations were mostly weak-to-moderate. 
Comparing the two paradigms’ resilience indicators (3–7 vs. 8–12 in 
Table 3), 22 out of 25 correlations were below ρ = 0.50 with significant 
associations ranging in absolute value from ρ = 0.197 to ρ = 0.472 (all p 
< .05). The strongest correlations between paradigms were observed for 
heart rate TAC (24-second lag) and heart rate (MV)MSE slope over 
scaling region 1 (MSE: ρ = − 0.769, p < .01; MVMSE: ρ = − 0.694, p <
.01). Physical activity variance was also moderately associated with 
physical activity MSE slope (ρ = 0.665, p ≤ .01). 

3.4. Relationship between CSD & LoC indicators and health functioning 

Table 4 shows the associations of CSD and LoC indicators with health 
functioning measures at admission. Higher mean 24-h physical activity 
was significantly associated with lower frailty (β = − 0.27, p < .010) and 
better ADL function (β = 0.29, p < .010). Average 24-hour heart rate was 
unrelated to the health functioning measures. 

More positive MSE slopes, indicative of higher complexity, for 
physical activity were associated with lower frailty index scores (β =
− 0.28, p = .004) and better ADL function (β = 0.23, p = .022). The latter 
association with ADL function was reduced to a trend after adjustment 
for mean 24-hour physical activity. More positive heart rate MSE slopes 
were associated with lower multimorbidity for scaling region 2 (16–40 
s) only (β = − 0.24, p = .010). The pattern for the MVMSE slopes was 
nearly identical to that found for the univariate heart rate MSE slope. 

Opposite to the assumptions under CSD, greater variance in physical 
activity was associated with lower frailty index scores (β = − 0.37, p <
.001) and better ADL function (β = 0.38, p < .001). Increased temporal 
autocorrelation in physical activity was likewise associated with better 
ADL function (β = 0.20, p = .050). This latter association with ADL 
function was attenuated after adjustment for mean 24-hour physical 
activity. The remaining associations were non-significant (all p > .05). 

3.5. Relative weights, repeatability, and associations of within-person 
change 

The results of the relative weights analysis and repeatability analysis 
are available in the Supplemental materials (Appendix A). Briefly, 
relative weights analyses revealed that three indicators derived from 
physical activity – the 24-hour average, variance and MSE slope – were 
the top 3 contributors to the explained variance in frailty index and ADL 
function. Specifically, physical activity variance accounted for a signif-
icant proportion of the total explained variance (R2) in frailty (35%) and 
ADL function (38%). The reliability analyses showed that most of the 
indicators were relatively stable from the first to the second day of 
hospitalization. Finally, the associations of within-person changes be-
tween CSD and LoC indicators revealed nearly all weak (i.e. below ρ = | 
0.20|) and non-significant (p > .50) associations, providing further 
support that these paradigms reflect related, but distinct aspects of 
resilience (see eResults and eTables 3–6 in Appendix A). 

4. Discussion 

The general lack of strong correlations between CSD and LoC in-
dicators suggested that they represent largely unique resilience features 
embedded within the time series. Greater physical activity variance and 
complexity were significantly associated with lower frailty index scores 
and greater ADL function, while greater heart rate complexity was 
associated with lower multimorbidity. In this group of acutely ill geri-
atric inpatients, there were no associations in the hypothesized direction 
between resilience indicators based on the CSD paradigm and health 
functioning. In fact, contrary to the theory of CSD, increased physical 
activity variance was associated with lower instead of higher frailty and 
disability. Here, we will scrutinize several factors related to how we used 
the two paradigms that – in retrospect – may offer plausible explanations 
for the pattern of associations. Importantly, we provide a number of 
lessons learned for other researchers interested in applying these para-
digms to the resilience of ill older persons. 

4.1. Homeostatic roles of regulated and effector variables 

When designing this study, we did not consider one aspect that we 
later found is crucial for empirically evaluating indicators from the CSD 
and LoC paradigms. That is the distinction between the homeostatic 
roles of regulated variables, such as blood pressure, which need to be 
maintained within tight ranges, and effector variables, such as heart 

Table 1 
Pre-admission characteristics of geriatric patients (n = 121).   

Mean ± SD/n (%) 

Age (years) 84.2 ± 6.3 
Females 73 (60%) 
Body mass index (kg/m2) 25.2 ± 5.3 
Education level  

Low 60 (56%) 
Middle 27 (25%) 
High 23 (21%) 

Living situation  
Independent, alone 52 (43%) 
Independent, with others 39 (32%) 
Residential care 18 (12%) 
Nursing home 12 (10%) 

Admitted from  
Emergency room 107 (88%) 
Elective 9 (7%) 
Other hospital unit 5 (4%) 

Dementia 35 (29%) 
Health functioning measures  

Multimorbidity (0–19) 4.4 ± 2.0 
Frailty index (0–1) 0.38 ± 0.14 
ADL function (0–6) 2.7 ± 2.2 

Note. ADL = activities of daily living. 

Table 2 
Resilience indicators based on two different paradigms extracted from patients’ 
heart rate and physical activity time series data.   

Mean SD N 

24-hour average 
HR Mean (bpm)  83.85  16.75  112 
PA Mean (counts/h)  625.75  235.87  119  

Critical Slowing Down 
HR Variance  35.22  45.96  112 

TAC (24 s)  0.65  0.66  117 
PA Variance  0.72  0.17  102 

TAC (4 s)  0.72  0.08  112 
HR + PA Cross-correlation  0.36  0.16  112  

Loss of Complexity 
HR Slope (scale 1–4)  0.24  0.10  112 

Slope (scale 4–10)  0.01  0.02  112 
PA Slope (total)  − 0.01  0.02  112 
HR + PA Slope (scale 1–4)  0.04  0.02  112 

Slope (scale 4–10)  0.00  0.01  112 

Note. HR = heart rate; PA = physical activity; HR + PA = multivariate indicator 
using heart rate and physical activity; TAC = temporal autocorrelation; slope =
multiscale entropy slope. More negative slopes indicate lower complexity. 
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rate, which flexibly adapt to perturbations to help maintain the regu-
lated variables within their physiological bounds (Fossion et al., 2018a). 
For regulated variables, high variability may reflect loss of resilience, 
whereas for effector variables, high variability may reflect greater 
resilience. Considering these homeostatic roles, it is proposed that the 
CSD indicators primarily reflect loss of stability in regulated variables 
fluctuating around an equilibrium, whereas LoC indicators best reflect 
loss of adaptability in effector variables (Fossion et al., 2018a; Fossion 
et al., 2018b). 

We included physical activity and heart rate as commonly used, 
easily obtainable time series that also reflect aspects of homeostasis and 
systemic resilience, given their crucial involvement in the maintenance 
of health and response to illness. There is certainly a well-established 
link between average physical activity levels and health functioning, 
including health in mental and social domains (Manini and Pahor, 2009; 
Peterson et al., 2009; McMurdo et al., 2012; Reinertsen and Clifford, 
2018). Similarly, indicators derived from cardiovascular dynamics can 
discriminate patients with various heart conditions from healthy con-
trols and help understand the breakdown in heart regulation with dis-
ease (Chen et al., 2017; Peng et al., 1995). While at longer time scales of 

days to weeks, heart rate and physical activity conceivably fluctuate 
around an equilibrium, this is less obvious for the shorter time scales of 
seconds to minutes considered in this study. At this resolution, neither 
physical activity nor heart rate can be reasonably considered to behave 
as regulated variables. Applying the CSD indicators to these variables 
may have thus been inappropriate based on their expected behavior and 
the underlying assumptions of the paradigm. 

Taken together, these findings suggest that it is important to match 
the underlying assumptions of each paradigm to the homeostatic role of 
the variable one uses to extract potential indicators of resilience. Other 
sub-systems than the ones studied here, such as the balance system or 
blood pressure are shown to be more appropriate for applying CSD in-
dicators (Gijzel et al., 2019). In addition to measures of these sub- 
systems at rest, provocative tests like the orthostatic (sit-to-stand) 
challenge can further probe resilience and provide deeper insight, if not 
contraindicated for the patient. 

4.2. Intuitive associations with physical activity 

The association of activity-derived MSE slopes with health 

Table 3 
Between-participant Spearman correlation coefficients for critical slowing down and multiscale entropy indicators. 

# 1 2 3 4 5 6 7 8 9 10 11
24-hour average

1 HR Mean 1.000 -- -- -- -- -- -- -- -- -- --

2 PA Mean .137 1.000 -- -- -- -- -- -- -- -- --

Critical Slowing Down
3 HR Variance .162 .262** 1.000 -- -- -- -- -- -- -- --

4 TAC (24 seconds) -.043 .166 -.030 1.000 -- -- -- -- -- -- --

5 PA Variance -.042 .723** .303** .105 1.000 -- -- -- -- -- --

6 TAC (4 seconds) -.186 .054 .041 .149 .219* 1.000 -- -- -- -- --

7 HR + PA Cross-correlation -.328** .041 .118 .310** .136 .317** 1.000 -- -- -- --

Loss of Complexity
8 HR Slope (scale 1-4) .184 -.074 -.160 -.769** -.074 -.173 -.297** 1.000 -- -- --

9 Slope (scale 4-10) -.038 .130 -.014 .432** .030 .005 .291** -.514** 1.000 -- --

10 PA Slope (total) -.042 .440** .309** .104 .665** .138 .201* -.171 .221* 1.000 --

11 HR + PA Slope (scale 1-4) .131 .039 -.020 -.694** .054 -.134 -.197* .891** -.469** .068 1.000

12 Slope (scale 4-10) -.136 .173 .087 .472** .160 .084 .326** -.611** .832** .357** -.534**

Note. Specific comparisons between Critical Slowing Down and Loss of Complexity indicators are highlighted with a light grey box. HR = heart 
rate; PA = physical activity; HR + PA = multivariate indicator using heart rate and physical activity; TAC = Temporal autocorrelation; slope =
multiscale entropy slope. Bolded values indicate correlations significant at the *p < .05 and **p < .01 level. 

Table 4 
Association between critical slowing down and multiscale entropy indicators and measures of health functioning.   

Multimorbidity Frailty ADL 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

24-hour average 
HR Mean 0.12 (0.220) – 0.02 (0.805) – 0.08 (0.445) – 
PA Mean 0.01 (0.911) – ¡0.27 (0.006)** – 0.29 (0.004)** –  

Critical Slowing Down 
HR Variance 0.10 (0.315) 0.08 (0.412) − 0.17 (0.099) − 0.17 (0.088) 0.13 (0.185) 0.13 (0.225) 

TAC (24 s) − 0.08 (0.430) − 0.07 (0.489) − 0.04 (0.672) − 0.04 (0.678) 0.07 (0.493) 0.09 (0.408) 
PA Variance − 0.09 (0.347) − 0.27 (0.068) ¡0.37 (<0.001)*** ¡0.44 (0.006)** 0.38 (<0.001)*** 0.42 (0.008)** 

TAC (4 s) − 0.02 (0.853) − 0.02 (0.845) − 0.15 (0.134) − 0.13 (0.191) 0.20 (0.050)* 0.17 (0.076) 
HR + PA Cross-correlation − 0.06 (0.508) − 0.02 (0.860) − 0.07 (0.460) − 0.07 (0.520) 0.01 (0.907) 0.05 (0.663)  

Loss of Complexity 
HR Slope (scale 1–4) 0.15 (0.111) 0.13 (0.175) 0.14 (0.152) 0.15 (0.157) − 0.09 (0.395) − 0.11 (0.299) 

Slope (scale 4–10) ¡0.24 (0.010)** ¡0.23 (0.016)* − 0.10 (0.317) − 0.10 (0.330) − 0.03 (0.752) − 0.02 (0.843) 
PA Slope (total) − 0.04 (0.691) − 0.05 (0.626) ¡0.28 (0.004)** ¡0.23 (0.019)* 0.23 (0.022)* 0.17 (0.080) 
HR + PA Slope (scale 1–4) 0.14 (0.137) 0.13 (0.201) 0.12 (0.245) 0.11 (0.274) − 0.11 (0.290) − 0.12 (0.244) 

Slope (scale 4–10) ¡0.24 (0.011)* ¡0.23 (0.019)* − 0.17 (0.081) − 0.16 (0.109) 0.07 (0.480) 0.08 (0.456) 

Note: Values are standardized beta coefficient (p-value); Model 1 adjusted for age and sex; Model 2 = Model 1 additionally adjusted for mean heart rate, mean physical 
activity or both. ADL = activities of daily living; HR = heart rate; PA = physical activity; HR + PA = multivariate indicator using heart rate and physical activity; TAC 
= temporal autocorrelation; slope = multiscale entropy slope. Bolded coefficients significant at the *p < .05, **p < .01 and ***p < .001 level. 
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functioning is consistent with previous findings linking physical activity 
complexity with advanced age and mortality in older adults using other 
complexity methods (Raichlen et al., 2019). However, the positive as-
sociation between physical activity variability and health functioning 
may be expected intuitively given that more physical activity in hospi-
talized adults is typically a good sign (except when due to restlessness or 
acute confusion). For example, serious ailments requiring hospitaliza-
tion are often associated with reduced mobility (Brown et al., 2004; 
Kleinpell et al., 2008). Patients with higher average levels of physical 
activity, despite their condition, would thus be expected to display more 
(not less) physical activity variance and have greater health functioning. 
This idea is supported by the sizable positive correlation between mean 
24-hour activity and variance in this study (ρ = 0.723, p < .001). This 
opposing finding is likely unrelated to presence or absence of CSD and 
tells more about the function of the physical activity than the validity of 
the paradigm. Future tests of these paradigms should consider whether 
the hypothesized directions of associations are in line with the nature of 
the sub-system measured. 

4.3. Noise inherent in empirical time series data 

Real data are often very noisy, certainly free-living time series of 
persons with many deficits and morbidities. For example, approximately 
one third (n = 35, 31%) of the current study population reported a 
cardiac rhythm disorder, including atrial fibrillation. These conditions 
may have impacted the relationships observed with indicators derived 
from the heart rate time series data. However, despite these conditions, 
increased heart rate complexity was still associated with lower multi-
morbidity, even after additional adjustment. Although typically done in 
comparable studies (Chaves et al., 2008; Varadhan et al., 2009), 
excluding these patients would have strongly biased the results, as well 
as hindered generalizability. Thus, this could also be considered a 
strength of this study. Considering the types of noise expected, its po-
tential sources and ways to prevent it, if possible, will undoubtedly 
improve the insights garnered from the use of these indicators in future 
research. It is also possible, for example, to apply the indicators to time 
series data obtained from patients under more controlled conditions, 
including standardized fatigability tests like grip work assessment 
(Bautmans and Mets, 2005). 

4.4. Unknown trajectories of geriatric inpatients 

Patients admitted to the hospital, by definition, have experienced a 
stressor too great to resist. Except for planned stressors (e.g., elective 
surgery), patient monitoring is not synchronized with the stressor but 
often starts from an arbitrary moment within the time course of the 
patient’s condition. Therefore, the decrement from pre-stressor func-
tioning and the phase of the recovery process that the patient is currently 
in are largely unknown. The considerable heterogeneity in the patients’ 
diagnoses and in the corresponding time course of their resolution 
means that this study likely assessed snapshots of individuals at different 
phases of the disease process. While comparing geriatric patients’ rela-
tive resilience may help identify those most in need of care, it cannot 
reveal whether an individual patient’s condition is worsening or 
improving. An alternative approach is to perform regular measurements 
in a large, longitudinal cohort and wait for stressors to occur, paying 
close attention to within- rather than between-person changes in in-
dicators. Particularly, studies involving multiple repeated measures over 
a prolonged period that adaptively include higher-frequency measure-
ments around a stressor (e.g., ‘measurement-burst’ study designs) are 
scarce but valuable (Ram and Gerstorf, 2009). Examining resilience 
indicators obtained from such study designs may better discern the 
within-person dynamics in response to various health stressors. 

4.5. Unknown stable states of geriatric inpatients 

From the perspective of the CSD paradigm, it is not uncommon for a 
strong perturbation to force an adaptive system functioning in one state 
(e.g., healthy) to shift into another stable, albeit less desirable state (e.g., 
disease). This new, alternative state may be quite resilient, as can be 
seen in reinforcing feedback loops of pathophysiological or psychiatric 
symptom networks (Olde Rikkert et al., 2016; van de Leemput et al., 
2014). Importantly, the CSD resilience indicators reflect the resilience of 
the state that the system is in and may therefore reflect a high resilience 
for patients that are in a diseased state. Thus, another consequence of 
taking only snapshots of patients at hospitalization is that we cannot 
differentiate patients that are settling back into their ‘normal’, healthy 
state from those that – due to the health stressor – have moved into an 
alternative, equally stable ‘disease’ state. Consideration of other clinical 
characteristics should help here. 

4.6. Strengths and limitations 

There are still other features of the current study that should be 
highlighted. Importantly, with the recent surge in time-intensive data 
from wearable sensors, there is a need for techniques that reliably 
extract actionable indicators that can improve clinical decision-making. 
A major strength of this study is that we took a theory-based approach 
that translates features embedded in physiological time series data into 
potential indicators of resilience in the face of a health stressor. The 
implications for clinical care arising from the resilience perspective as 
well as opportunities clinicians and researchers can already exploit to 
improve prediction, understanding, and management of resilience in 
older adults have been discussed in detail (Gijzel et al., 2019, Table 2). 
While attempting to put the indicators to the test of empirical validation, 
we discovered potential pitfalls and tips for their proper application not 
typically discussed in the current literature. 

Beyond the lessons learned above, another limitation is the cross- 
sectional study design, which is especially relevant for the measure-
ment of resilience as an inherently dynamic process. As a first step to-
wards evaluating the construct validity of these indicators in geriatric 
inpatients, resilience was proxied here by static measures reflecting 
increased vulnerability to health stressors. However, longitudinal study 
designs will facilitate comparison of these indicators to patients’ resil-
ience trajectories (e.g., Colon-Emeric et al., 2019) and provide insight 
into their ability to predict the dynamic actualization of resilience in 
older adults. Furthermore, there are several explanatory questions 
raised that were not considered in this study due to its focus on construct 
validity and predictive modeling. Potential explanatory factors, such as 
education, pre-admission living situation, and BMI, as well as medica-
tions and modes of treatment are expected to leave signatures in the 
physiological signals that require deeper exploration in future studies. 

5. Conclusion 

The current study provided evidence that, in a heterogeneous sample 
of geriatric inpatients, indicators from Critical Slowing Down and Loss of 
Complexity capture largely distinct underlying features from physio-
logical time series data. Our findings stress that different or even 
opposing patterns of associations may arise when applying different 
indicators to regulated or effector variables and further emphasizes the 
importance of matching the paradigms’ underlying assumptions. These 
results warrant the further development of an overarching framework 
that will guide researchers and allow medicine to leverage the most 
appropriate tools to gain insight into resilience using time series data 
from both regulated and effector variable types. Future studies should 
include both regulated and effector variable types and directly investi-
gate how well these indicators predict resilience, operationalized as the 
dynamic trajectory of geriatric patients, as well as their added value 
above and beyond traditional non-dynamic measures of health 
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