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A B S T R A C T   

A multi-model inter-comparison study was conducted to evaluate the performance of ten potato crop models to 
accurately predict potato yield in response to elevated CO2 (Ce) when calibrated with ambient CO2 data (Ca). Exper
imental data from seven open-top chambers (OTC) and free-air− CO2-enrichment (FACE) facilities across continental 
Europe were used. Model ensemble percent errors averaged over all datasets for simulated yields were 26.5 % for Ca and 
27.2 % Ce data. Metrics such as Wilmott’s index of agreement (IA) and root mean square relative error (RMSRE) ranged 
broadly among individual models and locations, such that four of the ten models outperformed the median or mean of 
the ensemble for about half of the Ce datasets. These top performing models were representative of three different model 
structural groups, including radiation use efficiency, transpiration efficiency, or leaf-level based approaches. Relative 
response to an increase in CO2 was more accurately modeled than absolute yield responses when averaged across all 
locations, and within 3.3 kg ppm− 1 (or 5%) of observed values. Specific targets in the model structure needed for 
improvement were not identified due to large and inconsistent variation in the accuracy of yield predictions across 
locations. However, models with the lowest calibration errors tended to be top performers for Ce predictions as well. 
Such results suggest calibration is at least as important as model structure. Where possible, modelers using potato 
models to estimate Ce responses should use Ce calibration data to improve confidence in such predictions.  

Abbreviations: Ca, ambient atmospheric carbon dioxide concentration; Ce, elevated atmospheric carbon dioxide concentration; CO2, atmospheric carbon dioxide 
concentration; CV, coefficient of variation; EOS-yield, end of season tuber dry mass; FACE, free air CO2 enrichment; IA, index of agreement; LF, crop models which 
use leaf-level algorithms to represent gas exchange responses; MBE, mean bias error; MME, multi-model ensemble; OTC, open-top chambers; Perr, absolute percent 
error; RMSE, root mean square error; RMSRE, root mean square relative error; RUE, radiation use efficiency; TE, transpiration efficiency. 
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1. Introduction 

Process-level crop models are increasingly used to project climate 
change impacts on food security (e.g. Ahmad et al., 2020; Chen et al., 
2020; Resop et al., 2016; Wang et al., 2020; Xiao et al., 2020). Recent 
literature uses projections from a single model to estimate the magni
tude of such effects on yield and other response variables. However, a 
strong case can be made for using estimates from a group of models, 
referred to as a multi-model ensemble (MME), instead of individual 
models (Wallach et al., 2016) for many of these research studies. Recent 
crop model inter-comparison studies with maize (Bassu et al., 2014), 
potato (Fleisher et al., 2017), rice (Li et al., 2015), sugarcane (Marin 
et al., 2015), and wheat (Asseng et al., 2013; Martre et al., 2015) 
concluded that the MME median or mean consistently out-performed 
any individual model in terms of accuracy when compared across 
varying management treatments, locations and/or climate conditions. 
Model inter-comparison studies primarily consist of comparisons of 
simulated yields to projected, but not observed, changes in CO2, air 
temperature, and rainfall. Carter (2013) noted that although estimates 
from a sufficiently large MME tend to converge around a projected yield 
value for CO2 response, convergence does not imply better accuracy or 
measure of ‘true yield’. Thus, the use of MME for simulated climate 
responses does not guarantee a better representation of real-world data 
(Asseng et al., 2013), and more effort is required to understand single 
and ensemble model responses to measured climate change responses, 
such as elevated CO2 (Ce). 

Nearly all crop models incorporate methods to respond to direct ef
fects of CO2 on assimilation and/or transpiration rate. Approaches vary 
considerably and range from radiation use efficiency (RUE) and tran
spiration efficiency (TE) methods to mechanistic leaf-to-canopy level 
(LF) photosynthesis scaling algorithms (e.g. Boote et al., 2013). 
Regardless of methodology, Tubiello and Ewert (2002) indicated most 
models have not fully tested the simulation of crop growth and yield 
using empirical data under Ce conditions, a situation that appears to 
remain even more relevant today with the CO2 concentration of the 
atmosphere reaching 400 ppm in 2013. The availability of appropriate 
data remains a significant obstacle for vigorous model evaluation for 
CO2 responses under field conditions (Boote et al., 2015). There is 
substantial literature regarding experimentally measured crop responses 
to climate change factors, most having been conducted within 
controlled environment facilities. These data are frequently used to 
develop and test model sub-components (e.g. Dathe et al., 2014; Kim 
et al., 2012), but may not be as well-suited for rigorous whole model 
validation studies. In this regard, the use of electric lighting with 
differing spectral qualities and intensity than sunlight, enclosure effects, 
controlled environment, specific cultural systems, and other artifacts 
may affect direct transferability to field conditions (Fleisher et al., 
2010a; Kimball, 2011). Evaluation and testing of model subroutines or 
components associated with CO2 response does not necessarily imply 
validation for projection of crop growth or yields under field conditions 
(Tubiello and Ewert, 2002). 

Studies by Van Oijen and Ewert (1999) and Ewert et al. (2002) used 
data from open top chambers (OTC) and free-air CO2 enrichment (FACE) 
facilities to evaluate simulated wheat yield responses. A two model 
ensemble was used in Van Oijen and Ewert (1999) and a three model 
ensemble in Ewert et al. (2002). Models were calibrated using experi
mental data from ambient CO2 (Ca) treatments, so that ability of models 
to extrapolate the effects of a CO2 increase on grain yield could be fully 
evaluated. Wolf and Van Oijen (2003) assessed the accuracy of a single 
potato model using data from OTC and FACE facilities when calibrated 
in a similar procedure as the prior two studies. More recently, a maize 
MME study comprised of 21 models was conducted by Durand et al. 
(2018) for predicting Ce and water availability interactions. Half of the 
models were within 1 Mg ha− 1 of the observed grain yield mean, and the 
MME median showed a small bias of less than 1 Mg ha− 1. A rice MME 
comparison was conducted by Hasegawa et al. (2017) using FACE and 

soil-plant-atmosphere research (SPAR) chamber data. The authors also 
observed accurate representation of MME predicted grain yield under 
both Ca and Ce conditions. However, a large variability (as large as 50 % 
difference for observed versus predicted yields) was observed among 
individual rice models for Ce responses. Modelers were given access to 
both Ca and Ce data in a few of these studies, which were used to test, 
improve, and calibrate models before contributing results. This partic
ular experimental design, however, confounds the ability to truly eval
uate predicted Ce responses of MME and individual models as compared 
to the more typical situation where observed Ce data are not available 
for the study space in question. 

Considerably fewer model inter-comparison and evaluation studies 
have been conducted with tuber / root crops such as potato as compared 
with cereal grains (Fleisher et al., 2017). In the current study, the Eu
ropean CHIP potato project data (De Temmerman et al., 2002a) were 
used to evaluate ten potato models’ ability to mimic yield responses for 
the same cultivar across seven continental European locations. The 
models were first tested to replicate Ca response using a single calibra
tion parameter set across all locations. Accuracy of individual model and 
MME predictions were then evaluated for Ce responses using the same 
calibration set. The study hypothesis was that MME mean and/or me
dian would provide more accurate yield predictions than individual 
models. It was expected to observe similar levels of uncertainty, or 
model variability, for Ca and Ce yield estimates, as other studies have 
shown that model agreement within an MME is relatively constant with 
respect to rising atmospheric carbon dioxide concentration (CO2) (e.g. 
Asseng et al., 2013; Bassu et al., 2014; Fleisher et al., 2017; Li et al., 
2015). Finally, large differences due to location on these responses were 
expected as observed by other studies in which cross-location calibra
tion methods were tested such as Van Oijen and Ewert (1999); Wolf and 
Van Oijen (2002), and Ewert et al. (2002). Specific objectives were thus 
to evaluate the (1) accuracy of a potato MME to simulate Ce yield re
sponses when calibrated with Ca data, (2) extent of variation within the 
MME and the influence of model structure on these results, and (3) effect 
of location on accuracy and model agreement. Results will help to 
identify areas of weakness among current potato models to capture 
elevated CO2 responses across a regional scale and indicate the utility of 
using ensemble approaches for climate change projections. 

2. Materials and methods 

2.1. Experimental data 

Data from the European CHIP experiment (De Temmerman et al., 
2002a) included one or two years of measured potato (S. tuberosum L. cv. 
Bintje) yield at seven locations across continental Europe at Ca (≈379 
ppm) or Ce (≈624 ppm) levels (Table 1). Experimental facilities 
included open-top chambers (OTC) and free-air CO2 enrichment (FACE) 
systems. OTCs were used at six of the locations and FACE systems were 
maintained only at the Germany and Italy locations. The Germany 
location included both OTC and FACE facilities. Altogether, there were 
28 combinations of experimental data, or datasets. Each dataset was 
assigned a seven-letter code consisting of facility type (F – FACE or O – 
OTC), location (e.g. IT – Italy, UK – the United Kingdom), CO2 con
centration (Ca or Ce), and year (98–1998 or 99–1999). For example, 
‘FITCa98′ referred to the FACE study in Italy under an ambient CO2 
concentration in 1998. All Ca and Ce treatment levels are defined in 
Table 1 and seasonal environmental averages are shown in Table 2. 

Standardized management practices with regards to potato seed
piece size, cultural practice, and planting densities were followed at all 
locations (De Temmerman et al., 2002a). Fertilization (Table 2) and 
irrigation were supplied with a goal of providing optimum nutrient and 
water supply. Climate data was obtained from on-site weather stations 
and aggregated to a 24-h time step in the current study for daily solar 
radiation, daily maximum or minimum air temperature, daily rainfall 
rate, and CO2 concentration (Table 2). Initial conditions for soil 
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moisture, prior crop residue, and nitrogen were not available from 
experimental data. They were obtained, with permission, from Ray
mundo et al. (2017). Measured crop data included end-of-season tuber 
yield (both dry and fresh weight) for each year. Certain locations 
included time-series data for above-ground biomass, including leaf and 
stem dry weight. 

2.2. Potato models and calibration protocol 

Ten modeling groups volunteered to use their dynamic crop simu
lation model, each of which required evidence of prior peer-review. 
Details regarding the structure for each model, along with the primary 
reference associated with the description of each model, were summa
rized in Table 3. Models were loosely classified into three broad groups 
with respect to incorporation of direct CO2 response including those 
employing radiation use efficiency (RUE, n = 6), leaf-level (LF, n = 3), or 
transpiration efficiency (TE) (n = 1) bases. RUE groups use an empiri
cally derived multiplier to adjust daily carbon gain based on CO2 level 
(e.g. Hoogenboom et al., 2015) and TE groups use a similar approach to 
modify the estimate of water productivity (e.g. Steduto et al., 2009). In 
leaf-level methods, atmospheric CO2 concentration directly affects 
photosynthetic rate which is usually coupled with stomatal conductance 
and transpiration via an energy balance as in Kim and Lieth (2003). 
These methods generally fall under the “P-R” gross photosynthesis – 
respiration approaches for light utilization in Table 3. 

The complete set of Ca data at each location was made available to 
each modeling group. Modelers were required to independently develop 
input files in the format for their models, conduct calibration and/or 
evaluation using standard practice, execute the assigned model runs, and 
deliver model output data to the primary author. Modelers were tasked 
with obtaining a single common set of calibration values to be applied to 
all locations. Each modeling group was composed of scientists directly 
involved in source code development and/or maintenance of their 
particular model and used their own specific procedures for their cali
bration approach. Specific calibration methods thus varied among 
modeling groups and included manual and/or automated procedures for 
minimizing differences between predicted versus observed values via the 
use of ‘genetic coefficients’. Genetic coefficients in these models repre
sent crop phenotype response to weather and management factors (Fle
isher et al., 2020). A list of the major genetic coefficients calibrated for 
each model, their resulting values, and the institute of each modeling 
group that performed the calibration was shown in supplemental Table 
S1. A range of calibration values obtained when the model was calibrated 
for each individual location was also provided; however, only the com
mon set of calibration values across all locations was used for this study. 
Each group then simulated Ce responses for each site using this common 
calibration with no further modifications. All these model application 

research tasks were conducted for each model only by members of the 
development team associated with that particular model. 

2.3. Analysis 

A code, M1 through M10, was assigned to each model to improve 
legibility in tables and figures. The multi-model ensemble (MME) mean 
and median response were represented in figures and tables by ‘mean’ or 
‘median’ respectively, which were obtained by aggregating across in
dividual model results for the given dataset or location. Custom R scripts 
(version 3.5.1) written in RStudio (vs 1.21335) were used to analyze 
results for end-of-season tuber dry yield (EOS-yield). Multiple metrics 
were utilized including absolute percent error (Perr), mean bias error 
(MBE), root mean square error (RMSE), root mean square relative error 
(RMSRE), and index of agreement (IA, (Willmott et al., 2012)). Perr was 
calculated as in Eq. (1), where S refers to simulated and O observed 
EOS-yield. 

Perr =
|O − S|

O
x100 (1) 

MBE (eqn 2) was pooled across all datasets for each model at each 
CO2 level, where n = number of datasets for each CO2 level (14). MBE 
indicated the direction and magnitude of bias (tendency to under- or 
over-predict yield) such that negative values indicate under-prediction. 

MBE =

∑n

i
(Si − Oi)

n
(2) 

RMSE showed the absolute magnitude of error while RMRSE 
normalized this term by dividing by the observed mean for each dataset 
to account for the wide range in observed yield across locations as in 
Martre et al. (2015) (eqn (3), with variables as defined previously). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n− 1
∑n

i=1
(Oi − Si)

2

√

;RMSRE = 100x

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n− 1
∑n

i=1

(
Oi − Si

Oi

)2
√

(3) 

IA is the ratio of mean square error and potential error, in which a 
value of 1 describes a perfect correspondence between simulated and 
observed values while a 0 value means that no agreement was found. In 
Eq. (4), Ō is the mean of observed values. 

IA = 1 −

∑n
i=1 (Oi − Si)

2

∑n
i=1

(⃒
⃒
⃒Si − O

⃒
⃒
⃒+

⃒
⃒
⃒Oi − O

⃒
⃒
⃒

)2 (4) 

Slopes of the 1:1 plot fit through the origin were used to evaluate 
over or under-estimation of yield for individual models and the MME 
across all locations. The coefficient of variation (CV) among models was 
computed as an indication of variability (uncertainty) among model 

Table 1 
Overview of CHIP experimental data including locations, experiment facility (OTC = open top chamber; FACE = free air CO2 enrichment), CO2 treatment set-points (Ca 
– ambient; Ce – elevated), in-season harvest numbers, and naming conventions used in this study.  

Location Lat Long Type of 
Experiment 

Target CO2 (ppm) 
concentration[a] 

#Time-series 
harvests[b] 

Code Dataset Names    

OTC FACE Ca Ce 1998 1999   

Rapolano, Italy 43◦17′N 11◦39′E – Yes 370 550 5 5 IT FITCa98,99 FITCe98,99 
Giessen, Germany[c] 50◦34′N 8◦40′E Yes Yes 370 680/550 2 2 GE OGECa98,99 OGECe98,99 FGECa98,99 FGECe98,99 
Tervuren, Belgium 50◦50′N 4◦31′E Yes – 370 680 2 2 BE OBECa98,99 OBECe98,99 
Sutton Bonington, UK 52◦45′N 1◦15′W Yes – 370 680 3 2 UK OUKCa98,99 OUKCe98,99 
Carlow, Ireland 52◦51′N 6◦54′W Yes – 370 680 2 2 IR OIRCa98,99 OIRCe98,99 
Goteborg, Sweden 57◦54′N 12◦24′E Yes – 370 680 1 – SW OSWCa98 OSWCe98 
Jokioinen, Finland 60◦50′N 23◦28′E Yes – 370 680 – 2 FI OFICa99 OFICe99  

[a] Values were CO2 treatment levels setpoints. Measured values were summarized in Table 2. 
[b] Including end-of-season harvest data. 
[c] Pot experiments with transparent rainout shelter. CO2 setpoints were 680 ppm for OTC and 550 ppm for FACE system. 
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simulations for a given dataset. 

3. Results 

3.1. Yield predictions across locations for ambient CO2 concentration 

Observed Ca yields across all locations varied from 8.5 to 22.7 Mg 
ha− 1 (Fig. 1) and models were challenged to replicate this range using a 
single calibration set. Percent EOS-yield error averaged 26.5 % across all 
models and locations (Table 4). Slopes of 1:1 plots between observed 
and simulated EOS-yields were above unity for eight of the 10 models 
(Table 4), and MME mean slope was 1.06, indicating a small trend to
wards under-estimating yields (Fig. 2). This under-prediction was 
associated with locations where EOS-yields exceeded 15 Mg ha− 1. 
Conversely, over-predictions occurred when the observed yields were 
less than 10 Mg ha− 1. Models with slopes greater than unity had MBE 
less than zero and those with slopes less than one showed positive bias. 
Seven out of ten models had negative MBE values averaging − 0.93 Mg 
ha− 1, lending support to the overall bias towards under-prediction. 
There was considerable variation among models for this trend, howev
er, as MBE ranged between a high of 0.57 Mg ha− 1 and a low of − 4.6 
(Fig. 3). 

Models that alternated between over- and under- prediction of yields 
among individual locations were likely to have a value of MBE close to 
zero. However, a more negative or positive MBE was not necessarily 
associated with more accurate predictions. For example, M1, M3, M4, 
and M9 had MBE values of − 0.6 Mg ha− 1 or lower, but also had more 
accurate Perr results (Table 4). Root means square error (RMSE) and 
RMSRE results were similar in response to Perr, since most datasets 
other than OUK and FIT had only two or three time-series measurements 
for yield. These metrics varied broadly among models, with RMSRE 
ranging from 18 to 59 % (Fig. 3). The index of agreement also followed 
similar trends as RMSE or RMSRE (Table 4). Noteworthy is that the MME 
mean for IA was 0.51, which indicates that even after calibration, 
models on average were only explaining 50 % of the locational vari
ability of the observed yield. 

3.2. Yield predictions across locations for elevated CO2 concentration 

The MME mean Perr across all models for EOS-yield was similar to Ca 
calibration results, averaging 27.2 % (Table 4). Accuracy varied broadly 
across locations (Fig. 1), and variation among individual model Perr 
ranged between a low of 12.5 % and a high of 51 %. Slopes were higher 

than unity for four out of 10 models, suggesting that there was less 
tendency to under-predict EOS-yields as compared with Ca data 
(Table 4). However, sets with high EOS-yields were still under-predicted 
(Fig. 4). The mean MME mean bias error was about half that of Ca results 
(− 0.55 compared with − 0.93 Mg ha− 1), but there was more variation 
among individual models (Fig. 3). 

RMSE was higher than the Ca results for all models, with an average 
34 % increase (Table 4). However, this increase was roughly propor
tional to the larger EOS-yields observed in response to increasing CO2. 
When expressed as RMSRE, the errors for individual models and MME 
mean between the two CO2 levels were similar (Fig. 3). The index of 
agreement declined slightly from 0.51 to 0.47, although there were in
dividual models whose values were closer to the ideal score of 1. 

3.3. Influence of location 

More accurate calibration results were generally associated with 
more accurate Ce responses. For example, the lowest MME Perr values 
from Ca datasets were associated at OBE, OIR, and OSW locations, which 
also remained among the lowest errors for Ce predictions (Table 5). 
Conversely, locations with largest errors during calibration, such as FIT 
and OUK, exhibited similar inaccuracies for Ce responses. A modeling 
analysis by Wolf and Van Oijen (2002) observed similar challenges 
when using the CHIP dataset for potato model assessment possibly 
associated with limitations due to inadequate plot size, edge effects, and 
OTC artifacts. The disparity in model accuracy for certain locations may 
also be associated with large differences in observed annual yields. For 
example, differences for Ca and Ce data at FGE were 5.8 and 6.8 Mg 
ha− 1, 6.9 and 8.1 Mg ha− 1 at OGE, and 13 and 22 Mg ha− 1 at OUK. CHIP 
protocols changed between 1998 and 1999, using larger seed-piece size 
and decreased planting density. However, this change does not explain 
the considerably closer annual variation among other locations. An in
crease in daily solar radiation intensity between 1998 and 1999 of 2.7 
MJ m− 2 d− 1 was observed for the FGE location which may have 
explained the higher yields (Table 2), but there were little differences in 
annual climate conditions for OGE and OUK. Water and nitrogen man
agement were also similar for both years at these locations, except FGE 
1999 year received about 1 mm d− 1 more of total rainfall and irrigation 
while the OUK 1999 year had more than double the fertilizer rate 
(Table 2). Authors did not report either water or nitrogen stress at the 
prior year at these locations, however. FGE and OGE sites were also pot 
studies placed under moveable rainout shelters (Table 1) which may 
have exerted an additional influence on light quality and air, soil and 

Table 2 
Mean daily growing season environmental conditions and irrigation and fertilizer addition for each location x year. SRAD – solar radiation; PP – average photoperiod 
for 30 days post emergence; Tmax – daily maximum air temperature, Tmin – daily minimum air temperature, Tamp – daily temperature amplitude, Rain Rate – daily 
rainfall, Irr Rate – daily irrigation, Ca – ambient CO2 concentration, Ce – elevated CO2 concentration, Fert – total inorganic fertilizer.  

Location[a] Year SRAD PP Tmax Tmin Tamp Rain Rate Irr Rate Ca Ce Fert   
MJ m− 2 d-1 h ◦C ◦C ◦C mm d− 1 mm d− 1 ppm ppm kg N ha− 1 

FGE 1998 16.5 16.2 21.1 10.0 11.1 1.9 1.0 395 428 150  
1999 19.2 16.2 22.4 10.5 11.9 0.8 3.0 374 487 157 

FIT 1998 21.0 15.2 28.7 11.1 17.5 1.0 [c] 369 555 250  
1999 20.2 15.2 26.6 10.7 15.9 1.3 [c] 367 553 249 

OBE 1998 14.4 16.1 22.9 12.1 10.8 3.2 2.9 371 650 205  
1999 16.5 16.1 24.7 12.5 12.2 1.2 2.4 387 657 220 

OFI 1999 13.0 19.0 26.2 9.4 16.7 0.7 0.0 368 680 80 
OGE[b] 1998 9.6 16.2 26.8 13.3 13.5 0.0 3.0 375 643 150  

1999 10.2 16.2 28.1 13.2 14.9 0.0 3.8 382 650 115 
OIR 1998 10.6 16.2 24 11.3 12.7 1.6 0.0 370 677 250  

1999 12.8 16.2 22.1 10.0 12.1 2.5 0.0 369 684 250 
OSW 1998 14.2 17.9 18.9 8.8 10.1 2.3 4.5 402 704 88 
OUK 1998 13.5 16.1 20.4 9.2 11.2 1.3 1.3 377 677 110  

1999 12.0 16.1 20.8 9.7 11.1 1.1 1.4 398 690 250 
Average – 14.6 16.4 23.8 10.8 13.0 1.4 – 379 624 180  

[a] Locations were defined in Table 1. 
[b] Plants were located under rain-out shelter. 
[c] Values not reported. Crops were irrigated to maintain soil moisture content above 75 % of field capacity. 
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Table 3 
Participating potato crop models and methodologies used to simulate soil, plant, and atmospheric components, including method of incorporating CO2 effects. Number of cultivar parameters refers to only the number of 
parameters that were used for calibration in the current study. The primary reference regarding model structure and operational information was provided for each model.  

Model Leaf area \ 
Light 
interception a 

Light 
utilization b 

Yield 
formation c 

Crop 
phenology d 

Root 
distribution e 

Environmental 
stressesf 

Water 
stress g 

Heat 
stress h 

Water 
dynamics i 

ET j Soil CN- 
model k 

CO2 

effects l 
# of cultivar 
parameters 

Reference 

AQUACROP V6.0 S TE HI T LIN W,A,H,O S R C,RO P, PM, 
PT,TW, 
MAK, 
HAR,SW 

– TE 10 Steduto et al. 
(2009) 

CROPSYST V4 S TE*, RUE HI, B T, DL LIN W,N E  C, R PM, PT N, P(4) TE*, 
RUE 

13 Stockle et al. 
(2003) 

DSSATv4.7 CSM- 
SUBSTOR_Potato 

S RUE Tn, Prt T,DL, O CA, O W,N, A E V, R C PM,PT CN, P 
(3) 

PT, 
RUE 

5 Hoogenboom 
et al. (2019) 

EXPERTN - SPASS D P-R Prt T, DL O W, N, A,H E, S V R PM CN, P 
(3) 

RUE 6 Stenger et al. 
(1999) 

EXPERTN -GECROS D P-R Tn, Prt T, DL LIN W, N, H E V R PM CN, P 
(3) 

F,T, PT 6 Stenger et al. 
(1999) 

LINTUL V4 S RUE Prt T, DL LIN W,A N S V C P – RUE 10 Shibu et al. 
(2010) 

MONICA V1.0 S P-R Prt T,DL, V,O EXP W,N, A,H E, S V C PM CN, P 
(6), B 

PT, F 12 Nendel et al. 
(2011) 

SOLANUM S RUE Prt T NR W,H E, S V, R C PM – RUE 8 Harahagazwe 
et al. (2018) 

SPUDSIM v.2.0 D P-R Prt T,DL, O CA,O W,N, H E, S V, R R PM, PT, O CN, P 
(2) 

F, T, LF 7 Fleisher et al. 
(2010b) 

TIPSTAR S RUE Tn, Prt T EXP W, N, A E, S  C MAK CN RUE 4 Jansen (2008)  

a Leaf area development and light interception: S, simple approach (e.g. LAI); D, detailed approach (e.g. canopy layers). 
b Light utilization or biomass growth: RUE radiation use efficiency approach; P–R, gross photosynthesis – respiration; TE, transpiration efficiency biomass growth. 
c Yield formation depending on: HI, fixed harvest index; B, total (above-ground) biomass; Tn, number of tuber or tuber growth rate; Prt, partitioning during reproductive stages. 
d Crop phenology is a function of: T, temperature; DL, photoperiod (day length); O, other water/nutrient stress effects considered. 
e Root distribution over depth: LIN, linear; EXP, exponential; SIG, sigmoidal; CA, carbon allocation; NR, no roots-just soil depth zone; O, other approaches. 
f Stresses involved: W, water stress; N, nitrogen stress; A, aeration deficit stress; H, heat stress; O, other stresses. 
g Type of water stress: E, actual to potential evapotranspiration ratio; S, soil available water in root zone. 
h Type of heat stress: Stress applied to V, vegetative organ (source); R, reproductive organ (sink). 
i Water dynamics: C, “Tipping bucket” capacity approach; R, Richards approach. 
j Evapotranspiration: P, Penman; PM, Penman-Monteith; PT, Priestley-Taylor; TW, Turc-Wendling; MAK, Makkink; HAR, Hargreaves; SW, Shuttleworth and Wallace (resistive model). 
k Soil CN-model: CN, CN model; N, N model; P(x), x number of organic matter pools; B, microbial biomass pool. 
l CO2 effects: RUE, radiation use efficiency; TE, transpiration efficiency; GY, grain yield; CLN, critical leaf N concentration; F, Farquhar model; T, stomatal conductance; PT, photosynthesis and transpiration; LF, Leaf- 

level photosynthesis-rubisco o on QE and Amax. 
* TE methodology was disabled for this study such that only RUE was used for both light utilization and CO2 response. 
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leaf temperatures not captured by the models or measured by the 
experimental data. The use of pots may also restrict root growth and 
affect yields as well as posing challenges in estimating planting density 
as area per plant is based on the spread of the plant for light capture and 
not necessarily pot size (e.g. Poorter et al., 2012). 

The FIT location was associated with the highest model ensemble 
errors, and the calibration Ca data was over-predicted by 45–50 % 
(Fig. 1, Table 5). Both years were characterized by higher daily solar 
radiation, maximum temperatures, and shorter photoperiod prior to 
tuber initiation than other locations (+6 MJ m− 2 d− 1, +3.9 ◦C, and − 1.2 
h respectively, Table 2). Both years were also irrigated and had similar 
fertilizer amounts. The observed yield was also lower than those 
measured at other locations (Table 5, Fig. 1). Wolf and Van Oijen (2003) 
indicated that the pre-planting procedures at the FIT location resulted in 
a relatively low leaf area index (LAI). The LPOTCO model from their 
study was only able to replicate the yield data when the model used fixed 
LAI measurements observed from the data set. This may have explained 
the very large errors for this location in our study. Assessment of 
site-specific model performance also indicated that FIT, more than any 
other location, was strongly skewed by outlying model results (Fig. 5). 
At this location, model M2 exhibited particularly high errors for Ca and 
Ce datasets, and M7 and M8 showed high errors for Ca datasets (Fig. 5). 
Removing these models reduced the mean MME Perr at the FIT location 
to less than 35 % for Ca and 25 % for Ce datasets (not shown). 

Agreement among models varied considerably (Table 5). Under Ca 
sets, CVs (expressed as a fraction) ranged from 0.16 to 0.36 and aver
aged 0.22. Although the highest CVs were associated with both years at 
FIT (0.26 and 0.29) and OGE (0.33 and 0.36) Ca datasets, a consistent 
relationship between Perr and CV was not observed at other locations. 
This is because lower CVs imply more precision among models in the 
ensemble, but that agreement does not necessarily result in a higher 
accuracy if most models are still under- or over-estimating the observed 
yields. The CV increased slightly to an average of 0.26 for Ce results. The 
highest variation among models was still observed at FIT and OGE with 

an average of 0.32 and 0.35 across years. As with the Ca results, aside 
from the FIT location, most of the CV was not associated with outlier 
predictions from models. 

Observed EOS-yields increased by 21.9 % (or about 13 kg ppm− 1) in 
response the increased CO2 concentration across all locations and years 
(Table 5). The MME mean was 26.8 % (16 kg ppm− 1), suggesting that 
the simulated relative yield increase was accurate. However, there was a 
broad range of under- and over-prediction of the CO2 enrichment effect 
primarily associated with FIT, OBE, and OGE locations. Differences in 
predicted and observed relative yield increase across both years were 
about 20 %, − 22 %, and − 22 % respectively, for these datasets. Re
sponses at FIT were under-predicted by 19 or 31 % depending on year 
and were attributed to over-prediction of yield for Ca datasets and 
under-prediction for Ce (Fig. 1). Conversely, errors at OBE and OGE 
(Table 5) were associated with under-prediction of Ca and over- 
prediction of Ce yield. Observed OSW Ce responses were unique in 
showing a decline in yield to the higher CO2 level, a response that no 
model replicated. 

3.4. Individual and group rankings 

Performance of individual models was evaluated using all six metrics 
(IA, Perr, MBE, RMSE, RMSRE, and slope) from Table 4 and based on the 
frequency in which a given model was ranked in the top or bottom five 

Fig. 1. Variation in simulated end-of-season potato tuber yield (dry mass basis) 
among potato models (n = 10) versus site x year combinations under ambient 
(Ca, left column) and elevated CO2 (Ce, right column) as identified in Table 1. 
Observed means (n = 6 for OSW, 2 for FGE and OGE, and 3 for all other lo
cations) are shown as red dots along with standard deviations, median of model 
simulations shown as black horizontal bars, average of model simulations 
shown as ‘X’, and model outlier points indicated as black dots. 

Table 4 
Individual model metrics for EOS-yield predictions across all locations. Metrics 
include index of agreement (IA), percent error (Perr), mean bias error (MBE), 
root mean square error (RMSE), root mean square relative error (RMSRE), slope 
of the 1:1 plot between observed and simulated values, and correlation coeffi
cient from this relationship (R2)[a]. Negative values for MBE indicate under- 
predictions.   

Metric 

Model IA Perr MBE RMSE RMSRE Slope R2   

% Mg ha− 1 % Mg Obs Mg 
Sim− 1  

Ambient CO2 Concentration 
1 0.65 19.5 − 1.59 3.48 21 1.13 0.96 
2 0.38 41.1 0.05 7.05 59 0.85 0.79 
3 0.83 15.6 − 0.93 2.76 18 1.07 0.97 
4 0.59 19.8 − 1.0 3.59 24 1.07 0.94 
5 0.38 25.4 − 0.27 4.24 31 1.00 0.92 
6 0.42 32.0 0.08 5.09 41 0.94 0.88 
7 0.39 35.6 − 4.61 6.68 40 1.38 0.86 
8 0.35 32.0 0.57 5.25 43 0.91 0.88 
9 0.75 17.2 − 0.66 3.24 21 1.04 0.95 
10 0.38 26.7 − 0.93 4.51 31 1.04 0.91 
MME 

mean 
0.51 26.5 − 0.93 4.58 33 1.06 0.93 

MME 
median 

0.41 26.5 − 0.80 4.38 31 1.04   

Elevated CO2 Concentration 
1 0.85 14.3 0.61 3.33 17 0.97 0.97 
2 0.25 51.0 4.60 9.95 64 0.71 0.82 
3 0.79 12.5 − 2.36 3.88 16 1.18 0.97 
4 0.42 25.4 − 3.16 6.18 28 1.21 0.91 
5 0.42 31.2 1.99 5.75 38 0.89 0.91 
6 0.54 26.3 − 0.56 5.84 35 0.99 0.89 
7 0.41 29.6 − 5.23 8.03 36 1.36 0.86 
8 0.27 29.6 0.03 6.36 35 0.96 0.88 
9 0.55 21.6 − 2.73 5.78 27 1.16 0.91 
10 0.21 30.5 1.34 6.31 39 0.90 0.89 
MME 

mean 
0.47 27.2 − 0.55 6.14 34 1.03 0.92 

MME 
median 

0.42 28.0 − 0.27 6.01 35 0.98   

[a] Note that linear models with no intercept (as in this case) require use of an 
adjusted formula to calculate R2. This is not considered to be as useful a metric as 
would be obtained from the full linear model (Alexander et al., 2015). 
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