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HIGHLIGHTS

« Soil moisture is a key predictor of bacterial
wilt disease (BWD) across China.

* Other soil properties have lesser role and
are locally associated to BWD.

+ Soil moisture can causally drive BWD in
greenhouse experiment.

» Water management strategies could poten-
tially be used in BWD control.
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ABSTRACT

Soil-borne plant diseases cause major economic losses globally. This is partly because their
epidemiology is difficult to predict in agricultural fields, where multiple environmental factors could
determine disease outcomes. Here we used a combination of field sampling and direct
experimentation to identify key abiotic and biotic soil properties that can predict the occurrence of
bacterial wilt caused by pathogenic Ralstonia solanacearum. By analyzing 139 tomato rhizosphere
soils samples isolated from six provinces in China, we first show a clear link between soil properties,
pathogen density and plant health. Specifically, disease outcomes were positively associated with
soil moisture, bacterial abundance and bacterial community composition. Based on soil properties
alone, random forest machine learning algorithm could predict disease outcomes correctly in 75% of
cases with soil moisture being the most significant predictor. The importance of soil moisture was
validated causally in a controlled greenhouse experiment, where the highest disease incidence was
observed at 60% of maximum water holding capacity. Together, our results show that local soil
properties can predict disease occurrence across a wider agricultural landscape, and that
management of soil moisture could potentially offer a straightforward method for reducing crop
losses to R. solanacearum.

© Higher Education Press 2021
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1 Introduction

Multiple physicochemical and biotic environmental factors
have long been known to be important for plant disease
outbreaks, as suggested by the conceptual Disease Triangle
model (McNew, 1960). For example, soil moisture (Aung et al.,
2018), pH (Rahman and Othman, 2020), nutrient availability
(Berg and Koskella, 2018) and microbial communities (Trivedi
et al., 2020) all influence the severity of soil-borne diseases.
Furthermore, temperature can directly affect pathogen den-
sities (Wei et al., 2015a; Pimentel and Ayres, 2018) or the
strength of interactions between pathogen and its competitors
(Wei et al., 2017; Velasquez et al., 2018) with important
consequences for the disease occurrence. However, while the
significance of environment has been long recognized (Cheng
etal., 2019), we still poorly understand the relative importance
of different factors, or their combinations, for the disease
outcomes. Furthermore, the effects of soil properties are often
studied locally within one specific agricultural area making it
difficult to extrapolate results up to a level of a country or a
continent (Janvier et al., 2007; Orr and Nelson, 2018). To
study this, we used China-wide sampling of tomato plant
rhizosphere to identify key abiotic and biotic soil properties
associated with bacterial wilt disease occurrence, and
experimentally tested if one of the most important factors,
soil moisture, could causally drive bacterial wilt disease
incidence in a greenhouse experiment.

Ralstonia solanacearum bacterium is a causative agent of
notorious bacterial wilt disease that leads to a systemic wilting
of plants (Hayward, 1991). It can infect multiple important
crops belonging to the Solanaceae family (e.g., potato, tomato
and tobacco) and has a global distribution (Mansfield et al.,
2012). Previous studies have identified associations with
multiple soil physicochemical factors and R. solanacearum
infections both in the field and greenhouse experiments
(Hayward, 1991; Jiang et al., 2017; Wei et al., 2018; Siregar et
al., 2020). For example, R. solanacearum-infected plants
have previously been associated with increased soil moisture
(Jiang, 2016), acidic pH (Li et al., 2017a) and high nitrogen
availability (Dalsing et al., 2015; Y. Gu et al., 2020). These
environmental factors could affect bacterial wilt occurrence
directly by favoring the growth of the pathogen, as R.
solanacearum needs to reach certain threshold density in
the soil to express key virulence factors that are triggered by
quorum sensing signaling (Genin and Denny, 2012; Peyraud
et al., 2016, 2018). Alternatively, soil properties could have
indirect effects on the pathogen via plants or associated plant
rhizosphere microbiome. Plants have evolved sophisticated
defense mechanisms against pathogens, and recent evi-
dence suggests that environmental factors can directly affect
plant immunity and defense hormone pathways (Velasquez et
al., 2018). Rhizosphere microbiome also plays a crucial role in
forming the first line of defense against invading pathogens,
often considerably shaping the disease severity (Kwak et al.,
2018; Wei et al., 2019, 2020). In general, diverse microbial

communities can limit pathogen growth due to intense
competition for nutrients, space and other resources (Wei et
al., 2015b; S. Gu et al., 2020), or because they are likely to
contain highly antagonistic species that can directly inhibit the
pathogen for example by secreting antimicrobial molecules
(Raza et al., 2016). Crucially, soil properties often determine
the composition and diversity of rhizosphere microbiome and
could hence indirectly affect the likelihood of R. solanacearum
infections.

Understanding the potential role of soil properties in R.
solanacearum infections is especially important because
bacterial wilt dynamics often show high temporal and spatial
variability both between and within fields (Wei et al., 2017,
2018). Previous work has shown that between-field variability
could be driven by local fluctuations in temperature and
humidity (Wei et al., 2017), while within-field variation could be
explained by spatial differences in soil physicochemical
properties or the composition of microbial communities,
which both have been associated with disease outcomes
previously (Wei et al., 2018, 2019; Lee et al., 2021). However,
it is unclear which soil properties are relatively more important
than the others, and if the previously observed patterns hold
across a wider geographical area with varying local environ-
mental conditions. To study this, we focused on six
geographically separated tomato fields in China (area of 1.3
million km?) to explore the role of within- and between-field
variation in abiotic and biotic soil properties for bacterial wilt
disease occurrence. We first collected and analyzed 139
rhizosphere soil samples originating from healthy and
diseased plants at every field and identified significant
associations between the disease outcome, pathogen den-
sities and different soil properties. Second, machine learning
algorithm was used to identify the relatively most important
soil properties associated with the bacterial wilt disease,
whose importance was directly tested in a greenhouse
experiment. It was found that despite considerable between-
field variation, healthy and diseased plants were consistently
associated with certain soil properties, which could predict
bacterial wilt disease occurrence with 75% accuracy. Soil
moisture, bacterial community composition and bacterial
abundances were the most important predictors of disease
by a random forest model, and soil moisture content treatment
at 60% of maximum water holding capacity led to the highest
levels of disease incidence in a controlled greenhouse
experiment. Together, our findings suggest that local variation
in abiotic and biotic soil properties can reliably predict
bacterial wilt disease outcomes across large agricultural area.

2 Experimental procedures

2.1 Sampling sites and collection of plant soil samples

Soil samples were collected from tomato fields at six locations
in Changsha of Hunan province (112°58'E, 28°11'N), Ningbo
of Zhejiang province (121°67'E, 29°91'N), Nanchang of
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Jiangxi province (115°51'E, 28°41'N), Nanjing of Jiangsu
province (18°57'E, 32°03'N), Nanning of Guangxi province
(108°21'E, 22°49'N) and Wuhan of Hubei province (114.31'E
30.52'N) during tomato bacterial wilt disease outbreaks in the
summer 2015. The sampled fields in Central (Hubei and
Hunan), Eastern (Jiangsu and Zhejiang) and Southern
(Guangxi) China recurrently experience R. solanacearum
outbreaks (Jiang et al., 2017) and had suffered from bacterial
wilt disease epidemics between 3 to 15 years based on
communication with the local farmers. Within each sampling
site, common local tomato cultivars were used: Solanum
lycopersicum cv. “Hengkang #1” in Changsha, “CTX 201" in
Nignbo, “Hezuo 906” in Nanachang, “Guihong #1,” “Jipin” in
Nanjing and “Huafan #13” in Wuhan. At each sampling site,
around 12 symptomatic (diseased) and 12 asymptomatic
(healthy) tomato plants were chosen and randomly sampled
at the early fruiting stage resulting in a total of 139 rhizosphere
samples. Excess root soil was discarded by gently shaking
and the remaining soil attached on the root surfaces was
collected and considered as the rhizosphere soil (Wei et al.,
2011). Around 10 g of fresh rhizosphere soil per plant was
sampled and divided into two sealed 5 mL Eppendorf tubes to
retain natural soil properties. One tube was cryopreserved in 5
mL of 30% glycerol at —-80°C to analyze biotic properties of
rhizosphere samples (pathogen and total bacteria densities
and microbial community diversity and composition). Another
tube was used for determining soil physicochemical (abiotic)
properties as described in the following section.

2.2 Determination of abiotic and biotic soil properties
2.2.1 Abiotic properties

Abiotic physiochemical properties included soil moisture
content (Moisture, %), pH, available phosphorus (P,
mg kg™"), available potassium (K, mg kg™'), water-soluble
carbon (C, mg kg ') and total nitrogen (N, mg kg™"). The
difference in fresh and air-dried soil sample weight was used
as a proxy of soil moisture for each rhizosphere sample. Soil
pH was measured in a 20% water (w/w) suspension (Li et al.,
2017a) using a pH meter (PB-10, Sartorius, Germany).
Available P and K were extracted with hydrochloric acid and
ammonium fluoride and measured using molybdenum blue
method (Pansu and Gautheyrou, 2006). The water-soluble
carbon and total N were determined by following a previous
protocol (Pansu and Gautheyrou, 2006) using a multi C/N
analyzer 3000 (Analytik Jena AG, Germany).

2.2.2 Biotic properties

The total DNA was exacted from ~0.25 g of cryopreserved
rhizosphere soil using PowerSoil DNA Isolation Kit (Mobio
Laboratories, Carlsbad, CA, USA) following the manufac-
turer’s protocol. DNA quality and concentration were checked
using a NanoDrop 1000 spectrophotometer (Thermo Scien-
tific, Waltham, MA, USA). Soil DNA was subjected to 16S
rRNA (rRNA) lllumina amplicon sequencing to determine the

diversity and composition of bacterial communities at Shang-
hai Biozeron Biological Technology Co. Ltd. The V4 hypervari-
able region of the 16S rRNA gene was amplified with the
primer pair 563F (5-AYTGGGYDTAAAGVG-3') and 802R (5'-
TACNVGGGTATCTAATCC-3'). All sequences were pro-
cessed with QIIME (Caporaso et al., 2010). The OTU
similarity cut-off was assigned at 97% identity level using
USEARCH (Edgar, 2010). OTUs were assigned to corre-
sponding bacterial taxa using the Ribosomal Database
Project (RDP) database with the online version of the RDP
classifier (Cole et al., 2014). The microbial community
diversity was determined as Shannon diversity index (Shan-
non) and Chao1 richness index (Shannon) using the vegan R
package (Dixon, 2003) after removing R. solanacearum OTUs
(Wei et al., 2018). Microbial community composition was
quantified as a dissimilarity index (Bray—Curtis) based on
average Bray—Curtis distance of each sample from each other
at the OTU level. The pathogen and total bacterial densities
were examined with qPCR using R. solanacearum-specific
primer Rsol_fliC (Schénfeld et al., 2003) and general bacterial
primer pair Eub338/Eub518 (Fierer et al., 2005). SYBR
Premix Ex Taq Kit (TaKaRa Biotech. Co, Japan) was used
following the manufacturers’ protocol, and each sample was
measured in triplicate using a 7500 Fast Real-Time PCR
System (Applied Biosystems, CA, USA).

2.3 Establishing causality between soil moisture and bacterial
wilt incidence in tomato

A greenhouse experiment was conducted in Yixing of Jiangsu
province to test whether soil moisture can predictably drive the
development of bacterial wilt disease under controlled
environmental conditions. Experimental soils that were free
of R. solanacearum were collected from a riverside of
Zhangzhu town in Yixing: no R. solanacearum growth was
detected using semi-selective agar medium (Wei et al., 2018).
Tomato seeds (S. lycopersicum cv. “Jipin”) were surface-
sterilized with NaCIO (3%; v:v) and germinated on moist filter
paper for 2 days before sowing in sterilized nursery substrate
(Huaian Agricultural Technology Development Ltd). Tomato
seedlings were transplanted into plastic pots with five kg of
homogenized dry soils at four-leaf stage. The soil moisture
content was manipulated using five treatments with 40%,
50%, 60%, 70%, and 80% of maximum water holding
capacity, and 12 replicate pots were used per treatment.
This moisture range covered dry (40%) and flooded (80%)
soils. Plants were acclimated in greenhouse conditions for
three weeks before pathogen inoculation and then grown in
the same conditions until the end of the experiment (constant
temperature of 30°C+3°C, relative air humidity of 80%, and
14 h of light and 10 h of dark daily cycle). Water content was
kept constant in each treatment by adding sterile water to
each pot accordingly. After three weeks of acclimatization, R.
solanacearum pathogen strain QL-Rs1115 (a strong virulent
reference strain) was inoculated to all pots using soil
drenching method with resulting in final concentration of 5.0
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x 10® CFU g soil (Wei et al., 2011). The disease
development was monitored on a daily basis and quantified
as a disease index on a scale ranging from 0 to 4 where one
whole number change corresponds to 25% increase in wilted
leaves per plant (Schandry, 2017).

2.4 Data analyses

2.4.1 Comparing differences in abiotic and biotic properties of
healthy and diseased plant rhizosphere samples

All measured abiotic and biotic properties were normalized
between the range 0 — 1 using min-max normalization before
statistical analyses (Patro and Sahu, 2015). Nonparametric
Wilcoxon rank sum test (Wilcoxon test) was used to compare
differences between healthy and diseased plant rhizosphere
soil samples (Cuzick, 1985). The microbial community
composition was ordinated by principal coordinates analysis
(PCoA) using Bray-Curtis distance and differences between
healthy and diseased plant rhizosphere soil samples were
compared using the nonparametric permutational multivariate
analysis of variance (PERMANOVA, P<0.05, 999 permuta-
tions) using Adonis function in R vegan package (Dixon,
2003). Principal component analysis (PCA), based on the
Euclidean distance of the range normalized values for overall
abiotic and biotic properties, was used to visualize differences
between healthy and diseased plants (FactoMineR R pack-
age (Lé et al., 2008); statistical significance tested using
nonparametric PERMANOVA (P<0.05) with 999 permuta-
tions using Adonis function in R vegan package (Dixon,
2003)).

2.4.2 ldentifying key abiotic and biotic predictors for pathogen
abundance and plant health

To identify key abiotic and biotic predictors for pathogen
abundance, we build up a model using multiple linear
regression function in R stats package (R Core Team, 2020)
to predict R. solanacearum densities based on all measured
soil properties. The relative importance of different predictors
was estimated based on their significance for the model
performance (% of R?) using Anova (R Core Team, 2020) and
relweights functions in R (Kabacoff, 2015). To understand the
relationship between environmental variables and disease
incidence, we used Random forest approach using random-
Forest package in R as follows (Breiman et al., 2018). We first
randomly selected 80% of the entire 139 sample data set as a
training set (n = 111) to generate a classification model for
predicting plant health status (healthy vs. diseased) based on
soil abiotic (moisture, pH, P, K, C, N) and biotic properties
including Chao1, Shannon and Bray-Curtis metrices of the
bacterial community in tomato rhizosphere soils. 10-fold
cross-validation was performed 10 times using the rfcv
function to select appropriate number of predictor properties
whose importance and cross-validation curves were visua-
lized by using the R ggplot2 package (Wickham et al., 2020).
Remaining 20% of samples (n = 28) were used as a test set to

predict plant health based on the abiotic and biotic rhizo-
sphere soil properties.

2.4.3 Analysis of disease dynamics in a greenhouse experi-
ment

The effect of soil moisture on disease dynamics was analyzed
based on temporal changes in disease index values using a
logistic growth curve (Schandry, 2017). The disease dynamics
curves were fitted individually for each plant using gcFitModel
function in R grofit-package (Kahm et al., 2010). As described
previously (Wei et al., 2015b), this fit could be divided into
three variables describing different stages of disease devel-
opment: 1) lag phase referred to as the delay time of disease
symptom onset after inoculation of the pathogen (early
infection stage); 2) disease rate referred to as the exponential
increase of disease progression (exponential infection stage);
3) area under progression of the disease dynamics curve
(AUDPC) referred to as the overall severity of wilt disease
(late infection stage). Shapiro-Wilk and Bartlett’s tests were
used to test the normality and homogeneity of the fitted
variables using the R stats-package. If the data matrix
followed a normal distribution with homogeneous variances,
ANOVA and post hoc Tukey’s HSD tests were used to
compare differences between different soil moisture groups
(P<0.05) using R multcomp-package (Hothorn et al., 2008).
Otherwise, non-parametric Kruskal-Wallis and post hoc
Dunn’s tests were used for statistical analyses using R
agricolae package (Mendiburu, 2020).

3 Results

3.1 Rhizosphere soil properties vary between healthy and
diseased plants

We first compared the abiotic physiochemical and biotic
rhizosphere soil properties (Table 1) of diseased and healthy
tomato plants across six sampled provinces in China.
Pathogen densities were on average 15.79 times higher in
diseased compared to healthy plants (P<0.0001, Wilcoxon
test, Figs. S1 and S2), and also the other rhizosphere soil
properties differed between diseased and healthy plants
(Fig. 1, Figs. S1 and S2). Specifically, diseased plants were
characterized by 1.15 times higher soil moisture (P = 0.001),
and 10.53 times higher total bacterial densities (P = 0.0002)
compared to the healthy plants (Wilcoxon test; Fig. 1A and
Figs. S1 and S2). While other physiochemical soil properties,
or microbial community diversity, did not differ between the
diseased and healthy plants (P>0.05; Wilcoxon test; Fig. 1A,
Figs. S1 and S2), PCoA analysis revealed that microbial
community composition varied depending on the plant health
status (R? = 0.10, P = 0.002) and between provinces (R? =
0.56, P = 0.001, PERMANOVA; Fig. 1B and Fig. S3).
Moreover, differences in microbial community composition
between the healthy and diseased plants were location-
specific: significant differences were found in CS, NB, NJ and
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NN (P>0.05) but not in NC or WH provinces (P<0.05, differed between provinces (R? = 0.62, P = 0.001), and
PERMANOVA; Fig. S3). Moreover, when analyzed together between healthy and diseased plants within each province
using PCA, abiotic physicochemical and biotic soil properties (R? = 0.09, P = 0.001, PERMANOVA; Fig. 1C and Fig. S4).

A Soil environmental factor variation B Bacterial community composition C Overall soil biotic and abiotic factors
Moisture - I L I 0.25 A e Diseased
£ A 4~ NB A Health
PH N NC ¥ To ot
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Fig. 1 Differences in abiotic physicochemical and biotic soil properties between healthy and diseased plants. (A) Comparison of
the normalized physicochemical (blue) and biotic (black) parameters between healthy (green) and diseased (red) tomato plant
rhizosphere samples (ns denote for non-significant correlation (P>0.05) and stars (**, ***, ****) denote significant correlation at
levels P<0.01, P<0.001 and P<0.0001, respectively). Pathogen and total bacterial abundances are abbreviated as ‘Pathogen’
and ‘Bacteria’, respectively. (B) Comparison of microbial community composition (PCoA) between healthy and diseased tomato
plant rhizosphere samples (status) at each sampling location (site). (C) Comparison of abiotic soil physicochemical properties and
biotic soil properties (PCA) between healthy and diseased tomato plant rhizosphere samples (status) at each sampling location
(site).

Table 1 Differences in abiotic physicochemical and biotic soil properties between healthy and diseased plants

Factor Name (units) Statistical method Diseased vs healthy plants (P-values)*
CS NB NC NJ NN WH

Moisture  Soil moisture content (%) Wilcoxon test <0.001 0.026 0.115 0.009 0.006 0.922
pH Soil pH value Wilcoxon test 0.312 0.729 0.025 0.016 0.954 0.431
Phosphorus Available phosphorus (mg kg™') ~ Wilcoxon test 0.514 0.63 0.606 0.079 0.862 0.224
Potassium Available potassium (mg kg™") Wilcoxon test 0.114 0.319 0.001 0.928 0.012 0.699
Carbon Water-soluble carbon (mg kg™')  Wilcoxon test 0.799 0.378 0.599 0.009 0.008 0.047
Nitrogen ~ Water-soluble nitrogen (mg kg') ~ Wilcoxon test 0.887 0.143 0.028 0.211 0.419 0.401
Pathogen R. solanacearum density (log4ofliC
density gene copies g~ soil) Wilcoxon test <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Bacterial ~ Total bacterial density (log4976S 0.002 0.04 0.645 0.005 0.014 0.081
density rRNA gene copies g ' soil) Wilcoxon test

Shannon index for bacterial 50999 0198 0519 0002  0.291 0.133
Shannon  community diversity (OUT level) Wilcoxon test

Chaot index for bacterial 0755 0977 0133 0002 0198  0.401
Chao1 community richness (OTU level)  Wilcoxon test

Bray—Curtis dissimilarity index for
Bray—Curtis bacterial community composition = PERMANOVA test  0.034 0.023 0.298 0.001 0.003 0.067

*Sampling locations are abbreviated as follows: CS = Changsha, NB = Ningbo, NC = Nanchang, NJ = Nanjing, NN = Nanning

and WH = Wuhan. P-values less than 0.05 are shown in red color. Details of the analysis are listed in Supplementary Figs. 2 — 4.
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Together, these results suggest that diseased and healthy
plants were associated with distinct soil properties despite
clear between-province variation in environmental conditions.

3.2 Soil moisture is the relatively most important factor
distinguishing diseased and healthy plant samples

To compare the relative importance of different soil properties,
we used correlation analysis and machine learning. We found
statistically significant relationships between abiotic physico-
chemical and biotic parameters and R. solanacearum patho-
gen densities in case of all variables except for P and K
availability (P>0.05, Fig. 2A and Fig. S5). Specifically,
pathogen densities correlated negatively with N availability
(R? = 0.24, P = 0.005) and average Bray—Curtis dissimilarity
(average Bray-Curtis distance of microbial community com-
position from other 139 samples, R?=0.28, P = 0.001). In
contrast, pathogen densities were positively associated with
total bacterial densities (R? = 0.60, P<0.0001), soil moisture
(R? = 0.55, P<0.0001), pH (R? = 0.28, P = 0.001), Shannon
diversity (R2 = 0.20, P = 0.017) and Chao1 richness (R? =
0.21, P=0.014; Fig. 2A and Fig. S5). Of all predictor variables,
soil moisture (relative weight = 40.36%), total bacterial density
(relative weight= 22.77%) and soil pH (relative weight=
14.59%) were the most significant predictors of pathogen
densities in the tomato rhizosphere (multiple regression
model, AIC: 324.09; F;o 125 = 10.6, R? = 0.45, P<0.0001,
Table S1).

Random forest modeling was further used to analyze
associations between soil properties and plant health. By
using all measured soil properties, we could predict bacterial

wilt disease outcomes with 78.6% accuracy (AUC = 0.89; Fig.
S6). To eliminate the obvious link between pathogen
abundance and disease incidence, we re-ran the model
without pathogen density data (Fig. 2B). The high predict-
ability of the model was retained, and bacterial wilt disease
outcomes could still be predicted with 75% accuracy (AUC =
0.75; Fig. 2C). Based on 10-fold cross-validation with 10
independent model simulations (inset of Fig. 2B), soil moisture
was ranked as the most important individual predictor of plant
health followed by the total bacterial abundances (Fig. 2B).
Together, these results suggest that abiotic and biotic soil
properties can reliably predict bacterial wilt disease occur-
rence, with soil moisture being the relatively most important
factor.

3.3 Variation in soil moisture can causally drive bacterial wilt
disease occurrence

To directly test if soil moisture can drive variation in bacterial
wilt disease incidence, we performed a greenhouse experi-
ment where tomato plants were exposed to R. solanacearum
type strain under different soil moisture treatments. We found
that bacterial wilt disease dynamics differed depending on soil
moisture content and the stage of infection (Fig. 3). On
average, the highest disease incidence was observed in 60%
followed by 70% soil moisture content treatments, while no
differences were observed between the other treatments
(Fig. 3A-3B). Specifically, soil moisture effects were visible
during the early stages of infection in terms of reduced lag-
phase of disease onset (Fy,; = 7.48, P<0.0001, ANOVA;

A | B C
Bacteria-| ... F[106 Moisture — z ‘%‘
Moisture { ==} Bacteria : E
pH o = FH Fo04 Potassium - i %
Carbond -~ L pH - Cross validation (CV) s %
Chaol4 - I }o.2 Phosphorus = = : Rpimel= § Accuracy = 75.0%
Shannon4 .. | Shannon - % ' § AUC =0.75
Potassium—~ ns [ | 0.0 Carbon § = /—\ E E
Phosphorus 4 ns | Chao1 ,_,gJ : g 'g-
Nitrogen 4wt 1 92 Bray-Curtis - 2 — g %
Bray-Curtis — , L Nitrogen | | I\]umber 05f factofs | E g
Pathogen 4 8 20

Correlation coefficient

Mean of decreased accuracy

Prediction of plant status

Fig. 2 The relative importance of abiotic physicochemical and biotic soil properties in predicting bacterial wilt disease
occurrence. (A) Correlation coefficients (ranging from negative (purple) to positive (cyan)) between R. solanacearum pathogen
densities and abiotic physicochemical (blue) and biotic (black) soil properties across all tomato rhizosphere samples (ns denote
for non-significant correlation (P>0.05) and stars (**, ***, ****) denote significant correlation at levels P<0.01, P<0.001 and
P <0.0001, respectively). (B) Relative importance rank of abiotic physicochemical (blue) and biotic (black) soil properties and 10-
fold cross-validation of random forest model (inset in B) based on the training set (80% of randomly selected rhizosphere
samples). Total bacterial abundances are abbreviated as ‘Bacteria’. (C) Validation of random-forest model with a test set (20% of
remaining samples) predicting plant disease outcomes based on soil properties: green and red filled cells denote for correct
predictions and filled cells with white crosses denote for false predictions.
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Fig. 3B) and as overall differences in area under disease
progression curve (AUDPC, *? = 13.73, P = 0.008, AUDPC
panel), while soil moisture content had no effect on the
disease rate during the exponential phase of infection (%% =
4.07, P = 0.396, Kruskal-Wallis test; Fig. 3B). Together, these
results demonstrate that soil moisture alone can causally drive
bacterial wilt disease outcomes in otherwise homogenous
tomato rhizosphere environments.

4 Discussion

Here we studied if plant-level variation in bacterial wilt disease
occurrence could be explained by local abiotic and biotic soil
properties across six provinces in China. Our sampling data
shows that healthy and diseased plant rhizosphere soils were
associated with distinct abiotic and biotic properties which
could predict bacterial wilt disease occurrence with 75%
accuracy. Soil moisture was identified as the most important
predictor, and its causal role was tested directly in a
greenhouse experiment with tomato. It was found that
variation in soil moisture alone, could considerably change
the disease dynamics resulting in different levels of disease
incidence. Our results are in line with previous studies that
have identified a tight link between moisture and plant
diseases (Huber and Gillespie, 1992) with Pseudomonas
syringae (Xin et al., 2016) and M. oryzae pathogens in plant

phyllosphere (Li et al., 2014) and expands this association to
crops and other soil-borne bacterial diseases.

Moisture could affect plant pathogens in several ways
(Aung et al., 2018) ranging from effects on pathogen survival,
movement and growth in the soil (Smilanick and Mansour,
2007; Kearns, 2010) to effects on pathogen invasiveness (Li
et al.,, 2014) or indirect effects on the activation of plant
defenses (Panchal et al., 2016; Velasquez et al., 2018). While
the relationship with moisture has previously been observed
with other soil-borne pathogenic fungi and bacteria, including
R. solanacearum (Chairman et al., 1981; van Elsas et al.,
2000; Islam and Toyama, 2004; Satou et al., 2006; Mondal et
al., 2014; Jiang et al., 2018), we here show that moisture was
the relatively most important factor predicting bacterial wilt
occurrence across broad geographical scale spanning six
Chinese provinces. Our sampling area covered various soil
types, tomato cultivars and climate conditions. While clear
geographical variation between locations was observed, the
significance of soil moisture on plant health status was
significant within each field. As a result, this difference could
not be explained by local climate or agricultural practises,
such as use of certain tomato cultivars. In the future, it will be
important to see if our findings can be extrapolated to other
countries and agricultural areas experiencing recurrent R.
solanacearum outbreaks.

In addition to identifying an important country-wide link with
the soil moisture, we show that this association might not be
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an indirect consequence of R. solanacearum infection, which
typically leads to increased soil moisture via reduced water
uptake and transpiration in the infected plants (Jiang, 2016).
Instead, by using controlled greenhouse experiment, we
demonstrate that soil moisture alone can causally drive
bacterial wilt disease outcomes in otherwise identical soil
environmental conditions. Highest levels of disease incidence
were observed at 60% and 70% maximum water holding
capacity soil moisture treatments, and there are several
potential reasons for this. First, it is possible that this moisture
content level was optimal for the plant growth (Kramer, 1983)
leading to more efficient root exudation (Larson and Funk,
2016) and improved growth and colonisation of the plant by
the pathogen (van Elsas et al., 2000; Islam and Toyama,
2004). Moreover, non-optimal soil moisture levels have
previously been shown to lead overexpression of plant
resistance genes (Sinha et al., 2016; Jiang et al., 2018),
which could have also affected the observed differences in
disease occurrence, as reported before (Mondal et al., 2014).
Alternatively, it is possible that certain moisture levels were
directly beneficial to the pathogen, potentially allowing more
efficient growth, movement and colonisation of the plant
(Beattie, 2011; Aung et al., 2018; Velasquez et al., 2018).
Finally, soil moisture is known to affect the availability of
oxygen (Mainiero and Kazda, 2005) and nutrients (Cavag-
naro, 2016), which could have affected the R. solanacearum
growth (Dalsing et al., 2015) or the strength of microbiome-
mediated pathogen suppression (Chen et al., 2007; Brockett
et al., 2012) in the rhizosphere. Further experiments are
hence needed to test these explanations directly.

In addition to soil moisture, also some soil physiochemical
properties, such as microbiome composition, pH and nitrogen
availability, differed between healthy and diseased plants
depending on the sampling sites. This is in line with previous
findings showing a clear link between bacterial community
composition and bacterial wilt disease outcomes (Wei et al.,
2018, 2019), highlighting also the importance of microbial
interactions for R. solanacearum infections (Wei et al., 2019;
Wen et al.,, 2020; Lee et al.,, 2021). While differences in
bacterial community richness and diversity of healthy and
diseased plants were only significant in Nanjing, bacterial
community composition was more consistently associated
with plant health status indicative of its importance in
predicting bacterial wilt disease occurrence (Wei et al.,
2019). In the future, it would be interesting to test if the
abundance and activity of certain R. solanacearum-suppres-
sing bacteria, such Firmicutes and Actinobacteria (Lee et al.,
2021), were positively or negatively affected by the soll
moisture content. Furthermore, it has previously been shown
that bacterial wilt disease is aggravated in acidic soils (Li et al.,
2017a, 2017b; Wang et al.,, 2017) and by high nitrogen
availability (Y. Gu et al., 2020), while high C, N, P and K
availabilities have been linked with healthy plant rhizosphere
(Wang et al., 2017; Wei et al.,, 2018; Wu et al.,, 2020).
However, we found that the physicochemical soil properties
did not consistently differ between healthy and diseased

plants by field sampling and machine learning algorithm.
There might be a latent infection in healthy plants during field
sampling, which could lead to an underestimate the difference
of soil properties between non-infection healthy plant and
diseased plants. In the future, it would be interesting to test if
our algorithm can predict bacterial wilt disease occurrence
using other unrelated data sets, and if its performance can be
improved by taking latent infection into account, and including
some other abiotic and biotic variables that vary temporally,
such as temperature and humidity. Furthermore, it is likely that
certain environmental factors will have interactive effects,
which should be further explored experimentally.

5 Conclusions

We conclude that soil properties can be used as reliable
predictors of bacterial wilt disease occurrence, with sail
moisture being one of the most import single factors that
consistently differed between healthy and diseased plants
across all sampling locations. Moreover, while other soil
properties played important roles, their effects were often
sampling location-specific, indicative of their potential impor-
tance at the local scale. The causal role of soil moisture was
directly validated in a greenhouse house experiments, which
highlights the value of direct experimentation in separating
causes from consequences in plant pathology studies. The
obtained information will be helpful for developing predictive
modeling to better understand the epidemiology of bacterial
wilt disease outbreaks in spatially and temporally varying
agricultural environments and should be validated in the future
with unrelated data sets from other countries and agricultural
areas. Finally, the importance of soil moisture suggests that
relatively simple water management practises could poten-
tially be effective way to control bacterial wilt disease
occurrence.
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