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Abstract
Complex traits like yield are those in which phenotypic variation can be modeled as

a linear function of a set of quantitative trait loci (QTLs) with environment depen-

dency. This environment dependency can be observed at a phenotypic level as geno-

type × environment interaction (GEI) for yield itself and at an underlying genetic

level as QTL × environment interaction (QEI). We show how GEI in yield may fol-

low from pleiotropic QTLs for yield components that themselves are not environ-

ment dependent. We generated synthetic yield data via a crop growth model and

analyzed these data by common statistical models for GEI and QEI. The QTLs for

yield were pleiotropic with those for yield components. Such pleiotropy offers a path

for improvement of yield under GEI. As a model system we used sweet pepper (Cap-
sicum annuum L.) and developed an eco-physiological model for yield with seven

genotype-specific inputs or yield components. Synthetic yields were simulated for

a back cross population of 500 lines across a factorial combination of four major

environmental drivers. The yield components were given a simple QTL basis and

produced credible amounts and patterns of GEI for yield. The QEI for yield could be

interpreted from the expression of QTLs for yield components and the interaction of

these components with the environmental drivers. We see the generation of synthetic

yield data via crop growth models followed by an analysis with statistical models for

GEI and QEI to quantify the contribution of yield components to GEI as a helpful

step in the development of yield prediction models for complex traits across environ-

ments that can also serve as a basis for decisions on selection strategies of complex

traits.

Abbreviations: AMMI, additive main effects and multiplicative

interaction; G-P, genotype-to-phenotype; GEI, genotype × environment

interaction; GGE, genotypic main effects and genotype × environment

interaction; GPAR, photosynthetic active radiation; QEI, quantitative trait

locus × environment interaction; QTL, quantitative trait locus; VCOV,

variance-covariance.

© 2021 The Authors. Crop Science © 2021 Crop Science Society of America

1 INTRODUCTION

Genotype × environment interaction (GEI) is the phe-

nomenon observed when the relative performance of

genotypes depends on the environment. For example, a

genotype that is superior under well-watered conditions

Crop Science. 2021;1–17. wileyonlinelibrary.com/journal/csc2 1

https://orcid.org/0000-0002-1248-9910
mailto:paulocanas@gmail.com
https://wileyonlinelibrary.com/journal/csc2


2 RODRIGUES ET AL.Crop Science

may yield poorly under dry conditions. A trait that shows

strong GEI is difficult to predict, especially when consid-

ering predictions for new genotypes in new environments.

Genotype × environment interaction is common for complex

traits, where phenotypic variation depends on many genes,

or quantitative trait loci (QTLs), with relatively small effects,

that are also environment dependent. A common example

of a complex trait is yield. Understanding of GEI can lead

to better predictions of complex traits and is a fundamental

requirement for genetic selection and improvement of such

traits (Iwanska et al., 2020).

In a statistical genetic context, GEI can be addressed by

regressing the GEI part of phenotypic responses on molec-

ular marker variation to identify QTLs that show environ-

ment dependency, or QTL × environment interaction (QEI).

The QEI can be further modeled in relation to environmen-

tal covariables, so that GEI can be predicted from mark-

ers linked to QTLs for the complex trait and environmental

inputs. A well-known class of genotype-to-phenotype (G-P)

models that can be subsumed under this approach are mixed

linear and non-linear models with various types of QTL terms.

Examples of this approach can be found in Bhakta et al.

(2017), Boer et al. (2007), Malosetti et al. (2004, 2013), Millet

et al. (2016, 2019), and van Eeuwijk et al. (2005, 2010, 2019).

A physiologically inspired alternative approach to GEI is

based on crop growth simulation models. Classical crop mod-

els (reviewed by Marcelis et al., 1998; van Ittersum et al.,

2003) have been developed to predict crop yield in trials with

varying environmental conditions, but these models are usu-

ally calibrated for a single genotype. Genetic control of physi-

ological input parameters can be incorporated into crop mod-

els with GEI arising as an emerging property. In that case,

crop growth models represent a class of G-P models based

on prior biological knowledge that has proved to be useful

for understanding GEI and QEI (Baldazzi et al., 2016; Bertin

et al., 2010; Bustos-Korts et al., 2016; Chapman et al., 2002;

Chenu et al., 2009; Cooper et al., 2005; Hammer et al., 2005;

Letort et al., 2008; Malosetti et al., 2016; van Eeuwijk et al.,

2005, 2010). A particularly strong point of crop growth mod-

els in comparison with more statistically oriented G-P models

is that they contain explicit representations of development

over time and especially this feature may be useful in describ-

ing GEI (Bustos-Korts, Boer, et al., 2019; Chenu et al., 2009).

A wide spectrum of physiological models with genetic control

of genotype specific input parameters is available for better

interpretation of GEI and QEI, for traits of varying complex-

ity like yield (Chenu et al., 2008; Tardieu, 2003; Yin et al.,

2000, 2004), leaf elongation (Chenu et al., 2008; Reymond

et al., 2003, 2004), concentrations of chemical compounds in

seed grains (Ishii et al., 2010), flowering time (Zheng et al.,

2013), and fruit quality (Quilot et al., 2005).

Most papers that aim at combining crop growth modeling

approaches with quantitative genetic approaches give little

attention to an integrated statistical analysis and understand-

ing of the patterns of GEI and QEI that occur across environ-

ments. In the current paper, a major objective is to investigate

GEI and QEI for a complex trait in relation to its known

genetic and physiological basis, as generated from a relatively

simple crop growth model in which key physiological param-

eters follow from the assignment of underlying explicit QTL

effects. An important question for breeders is whether QTLs

for a complex trait will map to genomic locations where QTLs

for component traits are known to be present and whether the

QTLs for the complex trait will show environment depen-

dency (QEI), even where the component traits are known to

possess no environment dependency at all. Some relevant

questions include: when we map the complex trait yield, do

all QTLs for yield coincide with those of underlying yield

components? Is the set of QTLs for yield a subset of the QTLs

for yield components, where we know that the yield compo-

nents are organized according to the structure and dynamics

of a physiological model? Are there additional QTLs for

yield that are mapped away from QTLs for yield components

and, if yes, how do we interpret such QTLs? How much

QEI do yield components show? To consider these issues,

we simulated yield as a complex trait in pepper (Capsicum
annuum L.) making use of information from experiments on

a recombinant inbred line (RIL) population for pepper (Alimi

et al., 2013).

Insight into the complex controls of yield will determine to

which extent a dissection of yield in yield components offers

a viable breeding strategy for the improvement of yield in the

face of strong GEI. In an ideal scenario, a plant breeder could

measure or predict a limited set of yield components with little

or no QEI and insert those measurements or predictions into

a crop growth model together with environmental inputs to

predict yield for whichever condition. The nonlinear interac-

tions between the yield components over developmental time

feed into emerging properties of the crop growth model that in

the end cause GEI in yield. When the yield component can be

predicted from a selected set of markers (QTLs) or a full set

of markers, like in genomic prediction (de los Campos et al.,

2013; Heslot et al., 2015), yield performance for combinations

of new genotypes in new environmental conditions could be

predicted early on in the breeding cycle from marker profiles

together with environmental inputs (Bustos-Korts et al., 2016,

2018; Malosetti et al., 2016).

Currently, various groups develop methods that try to pre-

dict yield from marker inputs together with environmental

inputs, where the emphasis is on whole genome prediction

methods, in contrast with the earlier developed QTL-based

methods. These attempts range from statistical approaches

using mixed models (Jarquín et al., 2014, 2017) and machine

learning and deep learning (A. Montesinos-López et al., 2018;

O. A. Montesinos-López et al., 2018) to integrations of crop

growth models with mixed model and Bayesian statistical
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genetic approaches (Cooper et al., 2016; Messina et al., 2018;

Technow et al., 2015). We emphasize that we do not intend

here to develop predictive models for GEI along the lines of

those authors. This study presents a preliminary step to the

building of predictive models and demonstrates how genet-

ically simple yield components without environment sensi-

tivity produce the genetic complexity of realised yield with

strong GEI. An improved understanding of yield QTLs via

an identification of the corresponding yield components and

their QTLs should smoothen the path to better predictive

models for yield.

We developed a simple crop growth model containing a

small set of component traits. By generating the component

traits from a QTL basis, we achieve an integration of crop

growth models and statistical genetic models in the spirit of

Yin et al. (2000, 2004); for a recent example, see Wallach et al.

(2018). We report below on the results of a simulation study

in pepper focusing on the questions of (a) whether credible

patterns of variation in GEI and QEI for yield could be gen-

erated using a simple crop growth model and (b) whether the

main effect QTLs, without QEI, used to generate the com-

ponent traits, the physiological parameters, could be identi-

fied in a QTL analysis for yield and whether these yield QTLs

showed QEI.

The structure of the paper is as follows. We first describe

and justify the structure of our pepper crop growth model,

which is a genotype-specific extension of a more gen-

eral species-specific crop growth model. The complex trait,

yield, is produced from a small set of genotype-specific and

environment-independent physiological component traits.

Values for the component traits were based on prior exper-

iments and literature. Environmental inputs were obtained

from actual environmental characterizations in earlier grow-

ing seasons. Breeding populations (back-crosses) were sim-

ulated in which the variation in the components traits was

assigned a genetic basis in terms of one or more underly-

ing QTLs and some residual genetic variation. The simula-

tion framework is thus defined by (a) the structure of the

crop growth model and (b) its inputs, the genotype-specific

component traits generated from underlying QTLs, and the

environmental inputs.

After the description of this framework, we briefly describe

published statistical techniques that will be used to analyze

the simulated data for the patterns in GEI and QEI. These sta-

tistical analyses of the simulated data can be considered as

special cases of sensitivity analysis. Finally, we address inter-

pretation of QTL analyses for component traits and the result-

ing complex trait yield. Pleiotropic QTLs for component traits

and complex trait, where the former do not show QEI and the

latter does, may allow the identification of beneficial marker

profiles for the complex trait.

2 MATERIALS AND METHODS

2.1 Description of the
genotype-to-phenotype model

The eco-physiological G-P model (Figure 1) is based on the

LINTUL crop model (Ezui et al., 2018; van Ittersum et al.,

2003), limited to conditions where the only environmen-

tal effects are via solar radiation, temperature, and ambient

CO2 concentration [CO2] (i.e., no stresses due to nutrition,

water supply, or biotic effects). This simple model can be

articulated in a series of equations with environment inputs

and “genotype-specific” parameters (Table 1). The traits crop

duration and fruiting period, leaf area, net carbon assimilation

rate, and partitioning to fruit are influenced by temperature,

whereas daily assimilation is further affected by radiation and

[CO2].

Cumulative dry matter production (TDM𝑖,𝑗 for genotype 𝑖

in environment 𝑗; g m−2) is the product of cumulative inter-

cepted light and light use efficiency (LUE𝑖,𝑗 ; g mol−1):

TDM𝑖,𝑗 =
𝑡𝑓 ,𝑗∑
𝑡=𝑡0,𝑗

{[
1 − exp

(
−𝐾𝑖 × LAI𝑖,𝑗,𝑡

)]
𝐼𝑗,𝑡

}
× LUE𝑖,𝑗 ,

(1)

where 𝑡0,𝑗 and 𝑡𝑓 ,𝑗 represent the first and last day of the grow-

ing season in environment 𝑗, 𝐾𝑖 is the light extinction coeffi-

cient for genotype 𝑖, LAI𝑖,𝑗,𝑡 represents the leaf area index (m2

leaf area m−2 ground area) for genotype 𝑖, in environment 𝑗

on day 𝑡, and 𝐼𝑗,𝑡 represents the photosynthetic active radia-

tion (PAR; mol m−2 d−1) on top of the crop in environment 𝑗

and on day 𝑡.

Light use efficiency (crop growth rate per unit of inter-

cepted PAR) is assumed to increase with CO2 and with tem-

perature according to a saturating response:

LUE𝑖,𝑗 = LUEmax
𝑖

×
{
1 − exp

(
𝑐
[
CO2

]
𝑗

)}
×
(
1 − exp

{
−𝑍𝑖

[
𝐼
(
𝑇𝑗 > 𝑇LUE,𝑗

) (
𝑇𝑗 − 𝑇LUE,𝑗

)]})
(2)

where LUEmax
𝑖

is the light use efficiency of genotype i, when

both CO2 concentration and temperature are not limiting

LUEi,j, c, Zi, and TLUE,j are scaling constants, 𝐼(𝑇𝑗 > 𝑇LUE,𝑗)
an indicator variable, Tj represents the 24-h average tempera-

ture, 𝐼(𝑇𝑗 > 𝑇LUE,𝑗) is an indicator variable taking the value

1 when the condition is met, and [CO2]j represents the aver-

age CO2 concentration during the day (light period). Further

details about the constants used in this model are available in

Table 2. In our simulations, CO2 concentration and tempera-

ture are constant over the whole growing season (see below).
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YIELD

Cumulative Dry 
Weight (Biomass)

Fraction of 
Absorbed PAR

Leaf Area Index

Cumulative 
Temperature Sum

Temperature

Sunlight/Radiation

CO2

FTF

W
Z

K

B

FDMC

LUEmax

LUE

FTFmax

F I G U R E 1 Schematic diagram of the crop growth model with seven genotype specific parameters. The diamonds represent input data,

rectangles are states, ellipses are parameters and lines represent transfer of matter or information. The seven genotype specific parameters are

(a) maximum light use efficiency (LUEmax); (b) light extinction coefficient (𝑘); (c) slope for the leaf area increase with temperature sum (𝐵);

(d) maximum fraction of dry weight partitioned into the fruits (FTFmax, harvest index); (e) slope of the linear reduction in harvest index with

temperature above 15 ˚C (𝑊 ); (f) fruit dry matter content (FDMC); and (g) slope of the linear reduction in LUE for temperatures below 20 ˚C (𝑍).

PAR, photosynthetic active radiation

T A B L E 1 The seven genotype-specific, environment-independent physiological parameters in the yield model (see caption Figure 1 for full

names), parameterized for greenhouse pepper. For each parameter, the mean value and the standard deviation (SD) are given. The last column

presents the references for the chosen values (index i refers to genotype i)

Parameter Mean SD References
LUEmax

𝑖
a 0.87 0.174 (Nederhoff, 1994; Heuvelink, 1995)

𝑊𝑖
b 0.04 0.011 (Wubs et al., 2009; Wubs et al., 2011)

FTFmax
𝑖

0.65 0.04 (Rijsdijk & Houter, 1993; Gelder et al., 2007)

FDMC𝑖 0.0774 0.00508 (Wubs et al., 2009)

𝑍𝑖
c 0.6 0.05 (de Swart et al., 2006)

𝐾𝑖 0.7 0.04 (Marcelis, Heuvelink & Goudriaan, 1998)

𝐵𝑖 0.000378 3.78 × 10−5 (Marcelis et al., 2006)

Note. LUEmax
𝑖

, light use efficiency of genotype i, when both CO2 concentration and temperature are not limiting LUEi,j,; Wi, time-dependent scaling constant for genotype

i; FTFmax
𝑖

, maximum level of fraction to fruits for genotype i; FDMCi, fruit dry matter content for genotype i; Zi, time dependent scaling constant for genotype i; Ki, light

extinction coefficient for genotype i; Bi, genotype specific slope for the regression of leaf area per shoot (m2) on temperature sum for genotype i.
aMean value of LUEmax

𝑖
and c (Table 2) are chosen such that LUE at a CO2 concentration of 370 μmol mol−1 is 0.65 g dry matter (DM) mol−1 photosynthetic active

radiation (PAR) (Heuvelink, 1995) and the relative increase in LUE when CO2 concentration rises to 1,000 μmol mol−1 agrees with Nederhoff (1994).
bMean value of Wi and TFTF (Table 2) are chosen such that the linear reduction in fraction partitioning to the fruits for temperatures above 15 ˚C agrees with Wubs et al.

(2009; 2011).
cMean value of Zi and TLUE (Table 2) are chosen such that LUE is not much different between 20 and 25 ˚C, but is reduced at 15 ˚C in agreement with De Swart et al.

(2006).

Different LUE values for cultivars grown under the same envi-

ronment have been reported, for example, by Quero et al.

(2018), Higashide and Heuvelink (2009) and Li et al. (2014).

The leaf area index (LAI𝑖,𝑗,𝑡) is the product of leaf area per

shoot and shoot density and is assumed to increase linearly

with temperature sum (Marcelis et al., 2006). With 𝑎 being

a genotype-independent intercept and 𝐵𝑖 being a genotype-

specific slope for the regression of leaf area per shoot (m2) on

temperature sum (˚C d), (𝑇𝑗 − 𝑇base)(𝑡 − 𝑡0), the LAI for geno-

type 𝑖 in the environment 𝑗 at day 𝑡, LAI𝑖,𝑗,𝑡, can be calculated
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T A B L E 2 Parameterization of the constants in the model for sweet pepper. For each constant, the equation number, the chosen values and

reference/section with further explanations are given

Constant Equation Value(s) Reference or section
𝑡0,j (1) 10 Jan. (NL); 10 Sept. (SP) Section 2.2

𝑡f ,j (1) 30 Nov. (NL); 30 Apr. (SP) Section 2.2

𝑐 (2) −0.004 (Nederhoff, 1994; Heuvelink, 1995)

CO2,𝑗 (2) 370, 1,000 (μmol mol−1) Section 2.2

𝑇LUE,𝑗 (2) 13 (˚C) (de Swart et al., 2006)

𝑎 (3) 0.03372 (Marcelis et al., 2006)

𝑇base (3) 10 (˚C) (Marcelis et al. 2006)

Sd (3) 7 (m−2) Common practice in the Netherlands

𝑇𝑗 (3) 15, 20, 25 (˚C) Section 2.2

RAD𝑗,𝑡 (4) Numerical variable Historical data

𝐹PAR (4) 0.5 (Goudriaan & Laar, 1994)

Tr𝑗 (4) 0.75 (NL); 0.60 (SP) Section 2.2

𝑇FTF (6) 15 (˚C) (Wubs et al., 2009; Wubs et al., 2011)

Note. NL, the Netherlands; SP, Spain; 𝑡0,j, first of the growing season in environment j; 𝑡f ,j, last day of the growing season in environment j; 𝑐, scaling constant;CO2,𝑗 , average

carbon dioxide concentration during the day for environment j; 𝑇LUE,𝑗 , scaling constant for environment j; 𝑎, genotype independent intercept; 𝑇base, base temperature; Sd,

shoot density; Tj, the 24-h average temperature for environment j; RADj,t, global radiation at day t in environment j; FPAR, fraction of photosynthetically active radiation

(PAR) in global radiation; Trj greenhouse transmissivity in environment j; TFTF, scaling constant.

as follows:

LAI𝑖,𝑗,𝑡 =
{
𝑎 + 𝐵𝑖

[
𝐼(𝑇𝑗 > 𝑇base) ×

(
𝑇𝑗 − 𝑇base

)] (
𝑡 − 𝑡0

)}
Sd
(3)

where 𝑇base is the base temperature and 𝐼(𝑇𝑗 > 𝑇base) is an

indicator variable, 𝑡 represents the 𝑡th day of the growing sea-

son (𝑡 = 𝑡0 is the day of the first flowering), and Sd is the

shoot density.

The PAR incident on the crop on day 𝑡 in environment 𝑗,

𝐼𝑗,𝑡, is the product of (a) global radiation at day t in envi-

ronment j, RADj,t, (b) a fraction of PAR in global radiation

(𝐹PAR), and (c) greenhouse transmissivity in environment 𝑗

(Tr𝑗):

𝐼𝑗,𝑡 = RAD𝑗,𝑡 × 𝐹PAR × Tr𝑗 . (4)

Fresh yield is calculated from cumulative dry matter pro-

duction by multiplying the latter with a partitioning index

(FTF𝑖,𝑗) and dividing by fruit dry matter content (FDMC𝑖):

Yield𝑖,𝑗 = TDM𝑖,𝑗 × FTF𝑖,𝑗 ×
1

FDMC𝑖

(5)

where partitioning index FTF𝑖,𝑗 decreases linearly with tem-

perature from a genotype-specific maximum level, FTFMax
𝑖

,

that is not limited by high temperatures (since high tempera-

ture stimulates abortion of flowers and fruit, hence a reduced

partitioning to the fruits; Wubs et al., 2009):

FTF𝑖,𝑗 = FTFMax
𝑖

{
1 −𝑊𝑖

[
𝐼
(
𝑇𝑗 > 𝑇FTF

)
×
(
𝑇𝑗 − 𝑇FTF

)]}
,

(6)

in which 𝑊𝑖 and 𝑇FTF are scaling constants, whereas

𝐼(𝑇𝑗 > 𝑇FTF) is an indicator variable.

The model was programmed in the R language (R Core

Team, 2019).

2.2 Parameterization of the model

A breeding population of greenhouse pepper genotypes

(described below) was simulated by assigning values to the

seven genotype-specific, and environment-independent, phys-

iological component traits of the G-P model above. For each

trait, we assumed a Gaussian distribution with mean values

based on a priori knowledge, as specified in Table 1. There

were no physiological reasons to believe that the component

traits would be moderately or strongly dependent, and there-

fore they were assumed to be independent.

2.3 Environments

The genetic and environmental configurations for our data

simulations were inspired by real experiments on yield in

pepper as described in Alimi et al. (2013). Thirty six envi-

ronments were defined, a three-by-two-by-two-by-three full

factorial combination of four environmental factors: (a) three

levels of daily radiation (low, average, and high radiation)

based on historical annual weather data (1994, 2000, and

2008 for Spain; 1998, 2003, and 2007 for the Netherlands),

(b) two countries (Spain and The Netherlands), (c) two

levels of CO2 concentration (370 μmol mol−1 for the open
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Z

F I G U R E 2 Genetic map for pepper, based on the lengths of chromosome and number of markers per chromosome in Barchi et al. (2007;

2009). The marker positions were taken randomly. The arrows with the name of the seven genotype-specific crop model parameters indicate the

place where the quantitative trait loci (QTLs) were placed. See Figure 1 for definitions of parameters

environment, and 1,000 μmol mol−1 for the closed green-

house with CO2 enrichment), and (d) three levels of daily

average temperature (15, 20, and 25 ˚C). The growing season

in Spain was considered to start on 10 September and end on

30 April (232 d) and in the Netherlands this was from 10 Jan-

uary to 30 November (324 d). The greenhouse transmissivity

(Tr) was considered to be 0.75 for the Netherlands (high tech

glasshouses) and 0.60 for Spain (“paral” plastic greenhouses).

2.4 Simulation of the population

To study the generation of GEI for a complex trait by simu-

lating yields for a set of genotypes belonging to a segregating

breeding population, we chose a backcross with the pheno-

types predicted by the LINTUL-based model described above

for each genotype in each environment. Hence, the simulation

model combines genotype-specific physiological parameters

(no GEI), with environment-specific inputs, to generate yield

phenotypes that should show GEI. Yield was simulated for a

population of 500 backcross lines (each line is a new indepen-

dent draw of seven genotypic parameter values), for each of

the 36 environments, resulting in a two-way 500 genotypes ×

36 environments data table. A population size of 500 lines can

be expected to produce clear test profiles for the QTLs.

Chromosome lengths and numbers of markers were based

on the pepper population described by Barchi et al. (2007). A

single map was generated with marker positions drawn from a

continuous uniform distribution defined over the full length of

the corresponding chromosomes, and ensuring markers were

present at both ends of each chromosome (Figure 2). Marker

positions and alleles were generated by the function sim.map

in package qtl (Broman & Sen, 2009) of R software, and for

convenience, QTLs for the seven genotype-specific physio-

logical input parameters were assigned one at a time to 11 out

of 12 chromosomes, and they were positioned at the marker

closest to the middle of the chromosome (Table 3).

Yield given by Equation 5 depends on seven physiologi-

cal parameters, each of which was considered to depend on

a given number of QTLs (Figure 2, Table 3). Since LUEmax

and 𝑊 were found to have stronger impact on the final phe-

notypic data [higher proportion of variance explained in sen-

sitivity analysis, see Table 4 below, and higher −log10(P)

values in a preliminary QTL analysis], we decided to make

these parameters dependent on more than one QTL. We now

express the physiological parameters of Equation 5 in terms
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T A B L E 3 Genetic architecture in the studied model. For each

genotype specific parameter, the number of quantitative trait loci

(QTLs) responsible for its genetic variation, the location of the QTLs

and their heritabilities are presented. All the 11 QTLs were placed next

to the closest marker to the middle of the given chromosome

Parameter
No. of
QTLs

Location of the
QTLs
(chromosome) h2

LUEmax 4 2, 7, 8, 10 .12 each

𝑊 2 6, 9 .16 each

FTFmax 1 4 .64

FDMC 1 5 .64

𝑍 1 11 .64

𝐾 1 1 .95

𝐵 1 3 .95

Note. LUEmax, maximum light use efficiency; 𝑊 , time dependent scaling parame-

ter; FTFmax, maximum level of fraction to fruits; FDMC, fruit dry matter content;

𝑍, time dependent scaling parameter; 𝐾 , light extinction coefficient; 𝐵, genotype

specific slope for the regression of leaf area per shoot (m2) on temperature sum.

T A B L E 4 Yield analyzed in terms of genotype-specific

physiological parameters and environmental characterizations (3

temperature levels, 3 radiation levels, 2 countries, and 2 CO2

concentrations) using a factorial regression model. The percentages of

explained variation are given for genotypic and environmental main

effects as well as genotype × environment interaction. Results for 10

simulation runs are presented as minimum, maximum, and average

across those runs. Bold fonts represent the maximum percentages of

explained variance for the main effects and for the interaction

Main effects Interaction
Parameter Min. Max. Avg. Min. Max. Avg.

%

Physiological parameters

LUEmax 64.85 74.81 69.82 13.71 14.29 13.93

W 11.69 13.23 12.68 24.59 27.08 25.88
FTFmax 6.09 6.87 6.43 0.81 1.58 1.32

FDMC 7.15 8.41 7.66 1.14 2.03 1.59

Z 0.29 0.51 0.37 1.16 1.51 1.32

B 0.66 0.90 0.74 0.27 0.51 0.39

K 0.21 0.46 0.30 0.09 0.24 0.17

Environmental Variable

Country 41.04 41.98 41.49 8.78 9.57 9.16

Temperature 19.50 20.19 19.85 28.49 30.37 29.41
CO2 16.36 17.12 16.71 3.64 4.32 3.92

Radiation 9.10 9.63 9.37 1.90 2.32 2.11

Note: All other combinations of genotypic parameters and environmental variables

represent at most 1.1% of the main effects or interactions. LUEmax, maximum light

use efficiency; 𝑊 , time dependent scaling parameter; FTFmax, maximum level

of fraction to fruits; FDMC, fruit dry matter content; 𝑍, time dependent scal-

ing parameter; 𝐾 , light extinction coefficient; 𝐵, genotype specific slope for the

regression of leaf area per shoot (m2) on temperature sum.

of QTL effects. For example, when the parameter LUEmax for

genotype i would depend on a single QTL the model is as fol-

lows:

LUEmax
𝑖

= g_LUEmax
𝑖

= 𝑥𝑖α + g∗_LUEmax
𝑖

(7)

where we first assume the phenotypic differences for the phys-

iological parameters to be equal to the genetic differences, or

the heritability for the physiological parameters is 1. Next, we

partition the genetic differences in a QTL part and a (poly-

genic) genetic residual, with 𝑥𝑖 a function of the QTL geno-

type, α the QTL allele substitution effect for the crop growth

parameter, assumed to be constant across all environments,

and g∗_LUEmax
𝑖

the residual of the genetic effect for LUEmax.

An expansion of the genetic and residual approach as shown in

Equation 7 can be inserted in Equation 5 for each of the phys-

iological parameters. Before inserting the component traits as

defined in Equation 7, the mean and variance of the compo-

nent traits were scaled to comply with the specifications given

in Table 1.

Boxplots for one random realization of the simulated yields

across environments (500 × 36 table) can be found in Supple-

mental Figure S1. These simulated data were subjected to an

extensive study of GEI and QEI. For each environment, the

realized average yield was calculated and subsequently a nor-

mally distributed error was added to the yields such that the

coefficient of variation became 10%. This in an attempt to add

a realistic nongenetic error variance.

2.5 Sensitivity analyses

When dealing with a simulation model comprising multi-

ple parameters, sensitivity analysis is typically used to ascer-

tain the absolute and relative importance of the individual

parameters. Here, the sensitivity of yield to the parameters

was accomplished by applying multiple statistical methods

for investigating two-way tables of genotype × environment

means: factorial regression (van Eeuwijk et al., 1996), addi-

tive main effects and multiplicative interaction (AMMI) anal-

ysis (Gauch, 1988; Gollob, 1968; Mandel, 1969), and prin-

cipal component analysis, or GGE (genotypic main effects

and GEI) analysis (Yan & Kang, 2002). An overview of these

techniques is presented in Malosetti et al. (2013), Rodrigues

(2018), van Eeuwijk (1995), and van Eeuwijk et al. (2016),

and their application in this paper is briefly presented below.

2.6 Factorial regression

Factorial regression can best be understood as the imposition

of contrasts on the levels of the row and column factor in a

two-way table (Denis, 1988; van Eeuwijk et al., 1996,2016).
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We can use contrasts in the direction of the genotypes to par-

tition the original variation between genotypes in a part due

to a contrast and a residual. This is valid for both the genotype

main effect and the GEI. Our intention is to use yield compo-

nents to define contrasts on the genotypes. As the yield com-

ponents were generated to be uncorrelated, the interpretation

of the decomposition of genotype main effect and GEI is rela-

tively straightforward. For the environments, we can focus on

the parts of the environmental main effect and the GEI that can

be attributed to the initial four environment condition gener-

ating factors: country, temperature, CO2, and radiation.

2.7 Bilinear models: AMMI and GGE

As a follow up on the above sensitivity analyses by facto-

rial regression, where we used explicitly defined covariates

or contrasts, we also studied the series of simulated yields

for the 500 backcross lines in 36 environments with explo-

rative linear-bilinear techniques (Gauch et al., 2008, 2011;
Paderewski et al., 2011; Paderewski & Rodrigues, 2014; van

Eeuwijk et al., 2016). These techniques combine additive and

multiplicative terms. Well-known representatives of this class

of models are (a) the model underlying principal compo-

nents analysis (PCA) of the genotype × environment table,

also called GGE biplot model (see Yan and Kang, 2003), and

(b) the AMMI model, which is a combination of ANOVA for

the genotypic and environmental main effects and PCA for the

residuals from additivity (Gauch, 1988, 1992; Gollob, 1968;
Mandel, 1969). Useful generalizations of the AMMI model

have also been proposed by Rodrigues et al. (2014, 2016),

Assis et al. (2018), and Paderewski and Rodrigues (2018). The

GGE model is

𝑦𝑖,𝑗 = μ + 𝐸𝑗 +
𝑁∑

𝑛 = 1
𝑏𝑖,𝑛𝑧𝑗,𝑛 + ε𝑖,𝑗 (8a)

whereas the AMMI model can be written as

𝑦𝑖,𝑗 = μ + 𝐺𝑖 + 𝐸𝑗 +
𝑁∑

𝑛 = 1
𝑏𝑖,𝑛𝑧𝑗,𝑛 + ε𝑖,𝑗 (8b)

where 𝑦𝑖,𝑗 is the yield of genotype 𝑖 in environment 𝑗, μ is the

grand mean, 𝐺𝑖 are the genotype mean deviations (genotype

means minus the grand mean), 𝐸𝑗 are the environment mean

deviations, 𝑏𝑖,𝑛 and 𝑧𝑖,𝑛 are the genotypic and environmen-

tal parameters (scores) for the 𝑛th multiplicative interaction

term (i.e., the genotype and environment principal component

scores and loadings for PCA axis 𝑛), 𝑁 is the number of inter-

action principal component (IPC) axes retained, and ε𝑖,𝑗 is a

residual. In the GGE model, the genetic main effects and GEI

are modeled simultaneously as a sum of multiplicative terms,

whereas in the AMMI model only the GEI is modelled multi-

plicatively.

2.8 QTL analysis

For the QTL analysis we used the mixed model QTL frame-

work described in several papers (Boer et al., 2007; Malosetti

et al., 2004, 2013) as implemented in GenStat (Boer et al.,

2015; Payne et al., 2011). The major point of interest was

whether QEI for yield could be detected and whether we could

interpret this QEI in terms of QTLs for the underlying phys-

iological parameters. The QTL model that we applied used

explicit marker-derived information to describe the GEI in

terms of QTLs in their dependence on the environments (i.e.,

the QEI). The inclusion of this marker information, genetic

predictors, allows testing whether the phenotypic trait (e.g.,

yield) is affected by the DNA variation at a particular genome

position, and whether this effect depends on the environment.

The genotype × environment two-way table of means is first

described by an ANOVA model with a GEI term, (GE)𝑖,𝑗 ,
whereafter the sum of genotypic main effect and GEI is mod-

eled in terms of QTLs with environment-specific effects in a

mixed linear model definition following Boer et al. (2007):

𝑦𝑖,𝑗 =
(
μ + 𝐸𝑗

)
+
[
𝐺𝑖 + (GE)𝑖,𝑗

]

=
(
μ𝑗
)
+

(
𝑃∑

𝑝 = 1
𝑥𝑝,𝑖α𝑝,𝑗 + ε𝑖,𝑗

)
(9)

where μ𝑗 is the intercept for each environment, 𝑥𝑝,𝑖 is derived

from marker genotype information for genotype 𝑖, α𝑝,𝑗 the

QTL allele substitution effect for environment 𝑗, 𝑃 is total

number of QTLs underlying 𝑦𝑖,𝑗 (e.g., yield), and ε𝑖,𝑗 follows

a multivariate normal distribution with zero mean vector and

a given variance-covariance (VCOV) matrix. The choice of

the best VCOV structure was done following the procedure

described in Malosetti et al. (2004) and Boer et al. (2007).

3 RESULTS

3.1 Factorial regression analysis

Table 4 shows the results of various types of factorial regres-

sion on the simulated genotype × environment tables of

means. For the genotype main effect in yield, we see that the

variation in LUEmax was dominant (i.e., the most explanatory

covariable), whereas 𝑊 , FTFmax, and FDMC contributed to

a lesser extent to differences in genotypic means. For the GEI,

𝑊 seems the most important genotypic variable, followed by

LUE.



RODRIGUES ET AL. 9Crop Science

F I G U R E 3 GGE (genotypic main effects and genotype ×
environment interaction) biplot for one random realization of yield

(from samples of genotype specific parameters) of the two-way table

with 500 genotypes and 36 environments. The abscissa shows the

Principal Component 1 (PC1) scores, and the ordinate shows the PC2

scores. The 36 environments are marked by their code names (e.g.,

NL1-370-15 represents a Dutch environment with the lowest yearly

average radiation in the considered historical period [NL1],

CO2 = 370 μmol mol−1, and daily average temperature of 15 ˚C). The

first and second axes explain a total of 87.72%. The different sections of

the plot define various type of crossover interactions. See text for more

details

For the environmental main effects (i.e., the differences

between the environments as averaged across genotypes),

country was the most important factor, probably because of

the differences in length of the season and the differences in

level and dynamics of radiation between Spain and the Nether-

lands. Temperature and CO2 were about half as important

as country, whereas radiation differences (low, average, and

high radiation levels within country) were again about half the

effect of temperature and CO2, and about a quarter of that for

country. Interactions between environmental factors were not

found to add substantially to the average differences between

environments. For environmental variables that describe GEI,

it is mainly temperature that had influence, whereas country

(i.e., season length and radiation record) also had influence,

but three times less than temperature. Other factors or inter-

actions could be ignored.

3.2 GGE and AMMI analysis

Figure 3 shows the GGE biplot for the simulated virtual phe-

notype (i.e., yield), from one run of 500 genotypes grown

in 36 environments (Supplemental Figure S1). The variation

due to environments follows principally from temperature dif-

ferences, in correspondence with the results of the factorial

regressions. The longer vectors for the Netherlands and for

high [CO2] environments indicate that proportionally more

variance is explained in the biplot for these environments,

compared with the Spanish and the low-[CO2] environments.

The longer duration of the Netherlands environments would

allow a greater expression of yield differences between geno-

types. Similarly, high-[CO2] environments, which generated

greater yield differences, also have longer vectors. The near-

orthogonal relationship between the 15 and 25 ˚C environ-

ments indicates that genotype performance was almost uncor-

related between these two types of environments. Zones of

cross over interactions between temperature regimes occurred

in the Sectors II, III, IV and V. Sector VI shows genotypes that

were above average in yield everywhere, Sector I shows geno-

types that were below average everywhere. Sector II shows

genotypes that were below average in 20 ˚C, but above aver-

age at 25 ˚C, Sector III shows genotypes that were below aver-

age at 15 ˚C, but above average at 20 ˚C. In a similar way, the

Sectors IV and V can be interpreted in terms of cross over

interactions.

The interpretation of GGE and AMMI biplots is very sim-

ilar. Figure 3 shows that cross over interactions can be gener-

ated for the complex trait (yield) from a set of component traits

without GEI. The axes of the AMMI2 biplot (Supplemental

Figure S2) can be interpreted as a function of temperature and

radiation for IPC1 (interaction PC1) and as a function of radi-

ation, CO2 and country for IPC2 (interaction PC2). The envi-

ronments appear as three diagonal bands in the plot, with from

left to right diagonals for 25, 20, and 15 ˚C. Supplemental

Figure S2 thus endorses the results from the factorial regres-

sion analysis and the GGE biplot analysis (Table 4, Figure 3),

both emphasizing the dominant role of temperature. Besides

temperature, also country plays an important role, as shown

by the factorial regression as well, with Spanish environ-

ments being located in the upper right corner of the plot and

Dutch environments in the left and lower parts. Carbon diox-

ide pushes environments to the lower left of the plot within

the diagonal groups defined by the temperatures, less than

what the factor country does, but more than what radiation

does.

Table 5 gives a summary ANOVA table for simulated

yield analysed with the AMMI2 model. The ranges for the

proportions of variance explained by genotypes, environ-

ments, and GEI were [0.30; 0.36], [0.55; 0.64], and [0.12;

0.14], respectively. In the simulated phenotypic data, the

GEI was responsible for 29.0% (mean value for the 10

runs, with values between 28.1 and 29.7%) of the geno-

type related sum of squares (SS; i.e., GGE). The first

two IPCs were responsible for 16.0% of the GGE SS

(Table 5).
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T A B L E 5 ANOVA for yield from the additive main effects and multiplicative interaction (AMMI) model with two interaction principal

components. In the column for the sum of squares (SS), the mean values of 10 independent runs of our simulation model are reported, and in parens

the range (minimum and maximum). For the mean squares (MS), only the values associated with the mean SS are reported. The grand (yield) mean

is 20.014 kg m−2

Source df SS (in 103) MS
Total 17,999 1,274.9 (1133.5; 1331.8) 70.83

Genotypes 499 400.5 (377.2; 427.5) 802.69

Environments 35 727.6 (719.9; 737.0) 20,788.28

GEI 17,465 163.1 (159.2; 170.4) 9.34

IPC1 533 52.5 (49.5; 57.3) 98.45

IPC2 531 37.9 (35.6; 41.2) 71.42

Residual 16,401 72.7 (71.7; 74.1) 4.43

Note. GEI, genotype × environment interaction; IPC, interaction principal component.

T A B L E 6 Quantitative trait locus (QTL) effects and (standard errors) on simulated yield for 10 QTLs as detected in a genome wide QTL scan

(chr. 2–11) for several subsets of environments. The influence of the QTL increases with the absolute value of the QTL effects. The last column has

the mean standard error (SE) for each environmental group

Parameter Variablea LUE B FTF FDMC W LUE LUE W LUE Z
Chromosome 2 3 4 5 6 7 8 9 10 11 SE
SP 4.46 0.87 3.85 −3.70 −1.72 3.49 3.91 −1.58 4.29 1.68 0.86

NL 6.84 1.05 6.41 −5.82 −2.10 5.70 5.90 −1.78 6.68 2.68 0.71

CO2 = 370 μmol mol−1 5.10 0.80 4.65 −4.14 −1.40 4.12 4.44 −1.17 5.07 1.97 0.85

CO2 = 1,000 μmol mol−1 6.20 1.12 5.62 −5.39 −2.42 5.07 5.36 -2.19 5.89 2.38 0.73

T = 15 ˚C 4.56 1.45 4.62 −3.88 0.25 4.21 3.91 1.04 4.66 3.47 0.62

T = 20 ˚C 6.77 1.11 6.29 −5.86 −1.06 5.67 6.05 −0.86 6.69 1.97 0.84

T = 25 ˚C 5.62 0.32 4.49 −4.55 −4.92 3.90 4.75 −5.22 5.10 1.09 0.89

SP, temp. = 15 ˚C 3.58 1.23 3.46 −3.01 0.20 3.18 3.10 0.83 3.74 2.78 0.68

SP, temp. = 20 ˚C 5.28 0.98 4.58 −4.39 −1.37 4.08 4.69 −1.33 4.98 1.44 0.91

SP, T temp. = 25 ˚C 4.52 0.39 3.52 −3.71 −3.98 3.20 3.94 −4.24 4.15 0.81 0.97

NL, temp. = 15 ˚C 5.55 1.66 5.77 −4.75 0.31 5.23 4.71 1.25 5.58 4.16 0.55

NL, T temp. = 20 ˚C 8.26 1.24 8.00 −7.32 −0.75 7.26 7.42 −0.39 8.39 2.51 0.76

NL, temp. = 25 ˚C 6.71 0.24 5.47 −5.39 −5.87 4.61 5.56 −6.21 6.06 1.37 0.80

aNL, the Netherlands; SP, Spain.

3.3 QTL analyses

We have chosen one run (one seed) out of the 10 runs for the

model in Equation 5 for illustration of a QTL analysis, other

runs produced comparable results.

A preliminary analysis of the VCOV structure was carried

out in order to model the genetic variances and correlations

across environments. Following the procedure described by

Boer et al. (2007) and Malosetti et al. (2004), both Akaike

information criterion (AIC) and Schwarz information crite-

rion (SIC, also known as Bayesian information criterion) indi-

cated the best model to be the factor analytic with two multi-

plicative terms (FA2).

The genetic architecture used in this study comprised 11

QTLs for yield components (Table 3, Figure 2).

The results from the QTL analysis on simulated yield, using

composite interval mapping (Zeng, 1994), and the factor ana-

lytic model with two multiplicative terms as VCOV structure,

are presented in Table 6 and Figure 4. As shown there and in

Supplemental Table S1, 10 out of the 11 simulated QTLs for

yield components were found back as yield QTLs in many of

the environments, often showing QEI, variations across envi-

ronments for the QTL effect size.

We can observe QEI related to country for the yield QTL

associated with LUEmax (chr. 2, 7, 8, and 10), FTFmax (chr. 4),

and FDMC (chr. 5), when changing from Spanish to Dutch
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F I G U R E 4 Genome quantitative trait locus (QTL) scan for the yield data. The top panel presents the profile expressed as −log10(P) values for

a test on the presence of a QTL effect in any environment. The red horizontal line is the 5% genome wide significance threshold. The bottom panel

depicts the environment specific QTL effects with environment labels (left-hand side). The green line in the first row of the bottom panel summarizes

the profile of top panel. For the subsequent lines corresponding to QTL tests for individual environments, blue represents an increasing effect of the

allele of the reference parent, whereas red shows a decreasing effect. Higher intensity points to stronger effects, whereas lighter indicates weaker

effects

locations. This finding is in agreement with the factorial

regressions in Table 4 and the AMMI biplot (Supplemental

Figure S2), where the IPC2 is a function of the country.

For 𝑊 (chr. 6 and 9) and 𝑍 (chr. 11), we also clearly

observed QEI in yield related to daily average temperature.

The yield QTL following from the QTL for 𝐵 on chr. 3 had

a consistent effect across environments. No yield QTL was

found corresponding to 𝐾 (chr. 1).

Table 6 compares the yield QTL substitution effects for

each of the QTLs in relation to country, CO2 level, temper-

ature level, and the combination of country and temperature.

The effects in Table 6 can be interpreted as averages across

the 36 environment-specific QTL effects obtained from the

initial multi-environment QTL analysis. The differences in

QTL effects between Spain and The Netherlands are not that

large, and comparable with the differences induced by tem-

perature. Carbon dioxide differences cause even smaller QTL

effect differences. Largest QTL effect differences occur as a

consequence of the combined effect of country and tempera-

ture, especially at 20 ˚C.
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When considering the subsets of environments categorized

by temperature in Table 6, it is clear that the yield QTL effects

induced by the component QTLs for LUEmax, FTFmax, and

FDMC present a curvilinear trend across temperature levels,

whereas the remaining QTLs have a linear trend.

We conclude that the patterns observed in the QEI for yield,

follow from the expression of QTLs for components, and can

be understood in terms of the nature of the underlying yield

components and their interaction with specific environmen-

tal factors. The QTL analyses in Table 6 are in good agree-

ment with the factorial regressions in Table 4 and the GGE

and AMMI biplots in Figure 3 and Supplemental Figure S2.

4 DISCUSSION

4.1 The importance of studying and
understanding the GEI and QEI in simulation
studies

Genotype-to-phenotype crop growth models have been

widely used to study and understand the behavior of plant

growth and development along the growing season. These

studies focus mostly on the analysis of GEI and QTLs and,

sometimes, on the analysis of QEI (see Section 1 for exam-

ples). In this paper, however, we conduct an extensive sta-

tistical analysis of GEI and QEI to understand the relation

between the physiological parameters and the yield pheno-

type. Another approach in the same spirit was presented by

Letort et al. (2008), but only one environment was consid-

ered by these authors. In a large simulation study of sorghum

“genotypes” grown in 600 dryland environments, Hammer

et al. (2006) demonstrated how the magnitude of the yield

QTL effects was related to the relative importance of each of

four genotype-specific parameters controlling crop maturity,

transpiration efficiency, stay-green, and utilization of carbo-

hydrate reserves.

As in many engineering areas of research, simulation stud-

ies and synthetic data are powerful tools for complementing

real world questions—in this case, questions related to breed-

ing programs. Their use opens the possibility of controlling

all the input parameters to better “model” the reality (Chap-

man et al., 2002; Hammer et al., 2006). The current simula-

tions show how to obtain insight in the factors determining

a complex trait like yield by using additional genotypic and

environmental (covariate) information in the analysis of mul-

tiple environment data for the complex trait. A QEI analysis

for yield using information on yield components and environ-

mental characterizations allows the partial unravelling of the

genotype-to-phenotype function and the genetic architecture

involved. Bustos-Korts, Boer, et al. (2019) and Bustos-Korts,

Malosetti, et al. (2019) simulated wheat (Triticum aestivum
L.) data using the Agricultural Production Systems sIMula-

tor (APSIM) to study, among other things, the possibilities to

increase prediction accuracies in multi-trait genomic predic-

tion. This work is reminiscent of the work presented in this

paper on pepper.

4.2 Simulated GEI and QEI generated with
a crop growth model and analyzed by statistical
models

The integration of statistical genetics and crop growth mod-

eling for reliable and robust prediction of phenotypic traits,

on the basis of genotypic-specific and stable physiological

parameters and environmental characterizations, is the object

of extensive research in plant sciences (see Section 1). A chal-

lenge in the application of these models is to obtain realistic

estimates for the parameters for a large set of genotypes.

In this study, we considered a parsimonious crop growth

model with a small number of parameters and determined to

which extent complex GEI in yield could be generated and

whether such GEI could be modeled and interpreted in terms

of underlying yield components by a set of statistical models

developed to analyze patterns in GEI and QEI. Despite its sim-

plicity, the crop growth model simulated GEI and QEI, includ-

ing crossovers (Figure 3), for yield. While focusing on GEI in

yield (cf., QEI), Chapman (2008) demonstrated for sorghum

[Sorghum bicolor (L.) Moench] simulations with four traits in

30 environments (including drought), that a biplot approach

could be used to interpret GEI resulting from relative changes

in biomass at different times during a season. Chapman (2008)

also demonstrated that the biplot for GEI of simulated final

yield was far more complex than that for final biomass, which

also showed the statistical complexities that are generated by

the (physiological) processes transforming biomass into yield.

It needs to be admitted here that GEI and QEI with

crossovers could only be obtained by “penalization” of yield

components in relation to environmental factors (e.g., higher

fruit abortion at higher temperatures, drought influence, pests,

etc.); as is the experience of breeders, stress impacts are

responsible for much of the observed GEI and QEI.

4.3 Benefitting from pleiotropy of QTLs for
yield and yield components

Yield QTLs were detected at the exact same place where the

underlying yield component QTLs were allocated in the simu-

lation. These QTLs were detected in final yield data. Breeders

search for yield QTLs that are stable across environments (i.e.,

QTLs that are well described by QTL main effects). The yield

QTLs induced by the QTLs for LUEmax were clearly the most

important ones in our simulations, followed by FDMC and

FTFmax (Table 6, Supplemental Table S1, and lower panel of
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Figure 4). In real conditions, a multi-trait multi-environment

QTL analysis for yield and yield components will identify

yield QTLs that are pleiotropic with LUEmax, FDMC, and

FTFmax. Yield QTLs corresponding to 𝑊 showed QEI with

higher −log10(P) values at higher temperatures, whereas the

yield QTL corresponding to 𝑍 had lower −log10(P) values at

higher temperatures (Figure 4, Table 6). The yield QTLs cor-

responding to the components K and B were not consistently

detected and apparently less crucial for yield. This is apparent

in Table 6 and Supplemental Table S1 and in the lower panel

of Figure 4. At the environmental side, we observed the lack

of importance of CO2 for GEI in final yield.

At the level of overall GEI as analyzed by factorial regres-

sion and AMMI, the main environmental driver for GEI was

temperature and, to a lesser degree, country (total radiation

over growing season), whereas on the genotypic side, varia-

tion in the yield components W and LUEmax was identified as

inducing GEI. When we look at the nature of the QTLs that

were identified (i.e., the yield components to which the QTLs

corresponded), it comes as no surprise that the QTL for W
was strongly expressed and easily identified as a yield QTL.

Similar, the QTLs for LUEmax were expected to be picked up

by QTL analysis for yield. It is less evident why the QTLs

for FDMC, FTFmax, and Z are also strongly expressed along-

side the QTLs for W and LUEmax, whereas the QTLs for K
and B have no or a minor effect on yield. What breeders can

learn from this is that yield improvement in tomato (Solanum
lycopersicum L.) for Dutch and Spanish growing conditions

will not benefit from attention for K and B.

For the QEI, the QTLs for LUEmax, FTFmax, and FDMC

had the strongest expression at the intermediate temperature

of 20 ˚C, whereas W was strongest at 15 ˚C and Z at 25 ˚C.

The pattern of temperature dependence for all these major

yield QTLs was only slightly modified by Country (Table 6,

Figure 4, Supplemental Table S1). From the structure of the

crop growth model, it is not straightforward to predict which

yield components will cause QEI and GEI and how QTL

expression will vary with environmental conditions. A priori,

it seems hard to define an environmental dependence signa-

ture for a yield QTL that would allow the identification of

the underlying yield component QTL. The only way to cre-

ate insight in environmental dependence patterns for QEI as

occurring in yield QTLs because of yield components inter-

acting with the environment is by running crop growth sim-

ulations for many forms of genetic diversity combined with

specified environmental diversity. Such simulations may lead

to the formulation of environmental expression keys for yield

components in QTL analyses for yield. Closely related to the

development of such QEI environmental expression signa-

tures is the work on environmental characterization by crop

growth simulation, where the correlation structure of yield

and yield components is used to define the class of environ-

mental (stress) conditions that is pertinent to a set of yield tri-

als (Bustos-Korts, Boer, et al., 2019; Bustos-Korts, Malosetti,

2019; van Eeuwijk et al., 2019). In the latter work, the impor-

tance of the inclusion in the analysis of the dynamics of the

yield components during the growing season is emphasized.

In the current study, these dynamics were not considered.

For breeders, the identification of underlying physiological

parameters and their QTLs as being responsible for GEI and

QEI in yield can assist in developing more efficient strategies

for the improvement of yield. For example, if a crop growth

model with a limited number of environment-independent

physiological parameters can predict yield under GEI, it sug-

gests that it could be sensible to develop phenotyping tech-

niques to cheaply assess or approximate those parameters,

whereas genomic prediction techniques may help to produce

predictive models for the same parameters as functions of

marker profiles. The integrated use of statistical genetic mod-

eling and crop growth modeling in combination with mod-

ern phenotyping, genotyping, and envirotyping techniques to

arrive at a new generation of predictive models for yield was

foreseen by Cooper et al. (2014). Recent papers showing the

possibilities of such a hybrid approach to predictive modeling

are Messina et al. (2018), Millet et al. (2016, 2019), and van

Eeuwijk et al. (2019). The current paper provides an illustra-

tion of how synthetic yield data generated by a crop growth

model and analyzed by statistical models can help to develop

a framework for quantifying the importance of yield compo-

nents and their QTLs for improvements of yield under GEI.
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