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A B S T R A C T   

A challenge in modern farming is to find a sustainable way of achieving sufficient production. Precision in 
dosage, timing and allocation of water, biocides, fertilizer and other inputs is essential, as are such management 
actions as harvesting, pruning and weeding. Despite the increasing availability of sensor and actuator technol-
ogies, decision-making is still largely left to the farmer. This is creating a strong demand for support in opera-
tional management. 

This paper presents an overview of methods involving the use of technology and data to develop model-based 
management support and automation for productive and input-efficient farming. For each method, the main 
advantages and drawbacks relating to typical farm characteristics are discussed and summarized. Three case 
studies are presented, to illustrate the design steps involved in developing a model, observer and controller. The 
overall design procedure is summarized in a flowchart, and serves as a basic guide for method selection and 
model development.   

1. Introduction 

During the 1950s and 1960s, farming was intensified in order to meet 
the growing demand for food in the developing world after the Second 
World War. The main mission of this ‘Green Revolution’ was food se-
curity, and its objective was to achieve sufficient production rates at 
affordable costs. The intensification of food production was made 
possible by extensive research and development on high-yielding crop 
varieties, agrochemicals (biocides, chemical fertilizer), mechanization, 
breeding and controlled water supply. The Green Revolution arguably 
saved billions of people from starvation, while increasing human pros-
perity tremendously. At the same time, however, it was accompanied by 
serious adverse consequences for human health and the environment 
(Mason 2003; Innes 2013), due to the large-scale use of fossil fuels, fresh 
water, fertilizer, pesticides and antibiotics. Moreover, there has been a 
decrease in the availability of resources, including arable land (Oliver 
et al., 2013a,b), oil reserves, phosphates (for fertilizer) and fresh water. 
Another resource that is becoming increasingly scarce in the primary 
food production sector is human labour (Development 2019). Further-
more, the intensification of livestock farming using inexpensive, 

affordable production systems is often in conflict with requirements 
relating to animal welfare and health (Berckmans, 2014). Combined 
with a rapidly growing world population (which is projected to increase 
from 7 billion in 2011 to an estimated 9 billion by 2050), modern 
farming in its current form is unsustainable in terms of resource avail-
ability, human health, animal health and the ecological carrying ca-
pacity of the planet (Pimentel and Giampietro 1994). A green 
engineering approach that can help to minimize labour input, pollution, 
waste, animal discomfort and the depletion of resources (Dorf and 
Bishop 2011) is needed. ‘Precision farming’ (also known as ‘intelligent 
farming’, ‘site-specific farming’ or ‘smart farming’) is one such 
approach. 

1.1. Precision farming 

Modern, large-scale farms are characterized by the uniform appli-
cation of inputs. For example, in the field, it is common practice to 
distribute water, fertilizer and pesticides uniformly, regardless of vari-
ations in soil properties, crop density or crop needs. In greenhouse 
cultivation, it is common practice to maintain constant indoor 
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temperature levels day and night. In dairy farming, cows are usually fed 
rations based on an average cow and a specific average daily production, 
and they are milked at fixed time intervals. 

Precision farming is a means of primary food production through 
precisely controlled input and management actions, along with precise 
monitoring (also known as state observation), which is enabled by 
technological solutions (Auernhammer 2001; Day 2005). All 
precision-farming operations (input, actions, monitoring) incorporate 
one or more levels of precision, in terms of dosage, timing or spatial 
allocation (e.g. by location, group or individual). Within the wide range 
of available precision-farming applications, three main domains of 
application can be distinguished. These domains are described below. 

Precision agriculture (PA). This concerns open-field systems for 
crops like maize, grain and potatoes. The objective within this domain is 
to increase resource efficiency in arable farming by applying inputs 
according to site-specific crop demands (Oliver et al., 2013a,b). This is 
accomplished through the precise management of inputs (e.g. water, 
fertilizer, pesticides) and actions (e.g. weeding, harvesting). Examples of 
PA include controlled-drip irrigation (Prathyusha and Suman 2012), 
automated seeding, the precise application of manure and pesticides, 
and robotic weed control (Slaughter et al., 2008). 

Precision horticulture (PH). This concerns open systems (e.g. or-
chards) and protected systems (e.g. greenhouses, vertical farms). The 
objective of PH is to exercise precise control over inputs for crops (e.g. 
climate and light conditioning, water, fertilizer). Actions (e.g. pruning, 
harvesting) are performed according to the status of individual plants or 
fruits (e.g. amount of leaves, ripeness) through technological solutions, 
like robotic harvesting (Hemming et al., 2014). 

Precision livestock farming (PLF). This concerns production systems 
for animals (e.g. cattle, poultry, fish (Føre et al., 2017)) and algae. The 
objective of PLF is optimize resource efficiency and animal welfare 
(Berckmans, 2017). Inputs (e.g. feed, antibiotics, veterinary treatments) 
are applied according to the needs of individual animals. Examples of 
PLF technologies include robotic cow milking, livestock health moni-
toring (Berckmans, 2014), automated monitoring and control of broiler 
growth (Aerts et al., 2003), the feeding of individual cows (Halachmi 
et al., 1998), indoor climate conditioning, automated incubators for egg 
hatching and the camera-based estimation of animal weight (Song et al., 
2018). 

The fine-tuning of inputs based on the time-dependent, location- 
specific and individual needs of crops and animals can yield consider-
able savings in resources. The following are several examples:  

• PA: Precise dosage control based on crop monitoring resulted in 
fertilizer savings of 23%, while improving grain yield by 4% (Zhang 
et al., 2002).  

• PH: In greenhouse cultivation, time-dependent climate control based 
on fluctuations in outdoor climate has been associated with savings 
of up to 47% in heating energy (van Beveren et al., 2015a,b).  

• PLF: The optimization of milking intervals for individual cows has 
been associated with increases of up to 25% in milk production 
(André et al., 2010). 

One functionality that is common to all domains of precision farming 
is pest management. In an extension to primary food production, post- 
harvest management, precision technology is employed in such opera-
tions as automated quality monitoring, selection, packaging and air 
conditioning during storage and transport of produce. 

In addition to uniform input, risk avoidance can lead to the over- 
application of inputs. Variable circumstances (e.g. weather, soil prop-
erties, disease load and the physical condition of animals and crops) 
make it challenging to make precise estimates of how much input is 
needed and how the amount of input is linked to the risk of under- 
application. The easiest way to decrease the risk of production loss 
due to pests or malnutrition is to make slight increases in the minimal 
dosages of pesticides, fertilizer and other inputs (Stuart et al., 2014). 

Given that risk mitigation is rarely balanced rationally (Kahneman 
2003), however, farmers tend to have excessive risk-avoidance attitudes 
(Anderson and Dillon 1992). Uncertainty about how much input is 
actually needed, combined with the tendency to avoid production-loss 
risks, can lead to severe over-application. For example, worldwide irri-
gation efficiency is estimated to be only 37%, thus implying a loss of 
63% due to runoff and drainage (Wallace 2000). Possible ecological 
consequences of such inefficiency include the massive use of fresh water 
from rivers and aquifers, and the leaching of chemicals and nutrients 
into groundwater due to drainage. 

1.2. Automation 

One way to improve labour efficiency is to automate the operational 
management loop (also known as the cyber-physical management cycle 
(Verdouw et al., 2013)). Automation can also help to avoid unnecessary 
risk mitigation by human operators, and it can serve as a reliable means 
of precision management, making it possible to attain a predefined level 
of product quality and harvest timing. As illustrated in Fig. 1, four stages 
of automation have been identified: traditional management by hand, 
manual control, supervised control, fully automatic control. As the 
management loop advances towards automatic control, farmers receive 
more support from and become more reliant on technology and auto-
mation. In traditional farming systems, farmers perform all management 
tasks themselves, both physically (in terms of perception and actuation) 
and mentally (e.g. making decisions on input management). In manually 
controlled system, farmers perform all of the decision-making them-
selves, assisted by actuation and, possibly, sensing technology (e.g. 
soil-moisture sensors, irrigation devices). This type of control is typical 
of developing countries. In supervised control systems, farmers are 
assisted by low-level controllers that operate autonomously according to 
the settings and set-points specified by the farmers (e.g. water dispensers 
that keep soil water near the desired level). These systems also allow 
farmers to utilize sensor information on system states of interest (e.g. 
soil water content) and to anticipate future events (e.g. precipitation) 
based on forecasts. This type of control is typical of high-tech agricul-
tural systems in developed countries. In automatically controlled sys-
tems, farmers are no longer involved in the management loop. Examples 
of such systems include milking robots, feeding systems and autono-
mous climate-control systems. 

It must be noted that supervised and automatic control are not al-
ways clearly separate classes. For example, in many automatically 
controlled systems, farmers are still able to overrule automated man-
agement actions or change system settings or set-points. Furthermore, 
automatic control is not always preferred over supervised control, for at 
least two reasons: 1) farmers prefer to remain involved in high-level 
management, and 2) for some applications, control algorithms that 
outperform farmers have yet to be developed. 

1.3. Decision support 

Decision support can be provided in three different forms.  

• Observation of the current state of the system, to help farmers take 
appropriate action. Computers may be used to help provide di-
agnoses by observing the current state of particular systems (e.g. the 
climate inside a greenhouse, the water level in the soil, the health 
status of an animal).  

• Prediction of how the process will respond to input, and of the 
corresponding performance. For example, predictions concerning 
yield or energy requirements can assist in the selection of appro-
priate climate set-points in greenhouse management.  

• Control algorithms that schedule input under specific management 
objectives (e.g. high yield, low resource use). They can be used to 
achieve fully automated processes or to provide advice. 
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In some respects, these types of support are cumulative. Observations 
of current system states (e.g. indoor greenhouse climate, animal health 
status) can provide the initial conditions for model predictions con-
cerning how those states would develop under different forms of input 
management. Subsequently, control algorithms employ model pre-
dictions to optimize input management. Fig. 2 provides a closer view of 
the supervised control scheme depicted in Fig. 1. More specifically, it 
illustrates the role of prediction, observation and control advice as a 
form of decision support. The diagram shows two feedback loops: a low- 
level management loop with input consisting of the machine settings 
and set-points to be tracked (as provided by users), and a high-level 
management loop, in which users are supported. In the high-level 
management loop, user support consists of automatically generated 
state observations, predictions of system response or control advice 
concerning input management (e.g. advice on climate set-points). De-
cision-support systems can use sensor information about current states 
(e.g. the climate inside and outside a greenhouse) or forecasts (e.g. 
weather or market prices) in order to optimize input scheduling in 
anticipation of future events. 

Within this framework, this paper discusses methods of observation, 
prediction and control. The methods are based on a systems approach, 
using systems models. Various methods are addressed separately in the 

following sections. Case studies on three different farm management 
applications were conducted, one for each section. The actual case 
studies are included in the Supplementary Material. 

2. Building a systems model 

Farming systems generally involve many components in complex, 
dynamic interaction with each other, thereby forming intricate inter-
action networks. These components are subject to the influence of 
multiple inputs, some of which are controlled, while others are not. A 
systems model creates structure by describing the components as pro-
cess variables and by describing their dynamic responses to changes in 
input. As described in Section 2.1, a predictive-systems model can be 
designed to improve input scheduling in scenario studies, in which the 
insight obtained into the system’s input response contributes to the 
development of practical management guidelines. For example, this has 
been done within the context of greenhouse crop cultivation (Vanthoor 
et al., 2011), pest management (Mul et al., 2017) and irrigation sched-
uling (Mondaca-Duarte et al., 2020). As described in Section 2.2, the 
structure of a systems model can be extended with additional equations 
that describe relationships between states and that measure output, 
input and state constraints, as well as performance and systematic dis-
turbances. This extended structure forms a foundation for 
state-estimation methods and control methods, as described in Sections 
3 and 4. 

2.1. Predictive model 

This section provides a brief overview of the key elements that make 
up a predictive systems model. Such a model can be derived in several 
different ways, depending on the type of information available. A first- 
principle model (also known as a mechanistic, white-box or process- 
based model) is composed of underlying biological, chemical or phys-
ical principles (Keesman 2011). Examples of first-principle models 
comprise crop and animal responses to nutrients and environment, fluid 
dynamics (e.g. to describe climate dynamics in greenhouses and barns or 
to describe fluid transport in algae reactors), actuator dynamics (e.g. in 
greenhouse technology, irrigation and harvesters), population dynamics 
(e.g. for fish and pests) and classical mechanics (e.g. to describe the 
motion of tractors, robots and drones). Descriptive models (also known 
as black-box or non-mechanistic models) are generic models that are not 

Fig. 1. Illustrative flow diagrams of four stages of 
automation in operational farm management. 1. 
Traditional farming: Farmers perform all physical 
tasks manually and make actuation decisions, based 
on their own perceptions. 2. Manual control: Farmers 
are assisted by actuation technology and, possibly, 
sensor technology. The actuation devices are oper-
ated manually. 3. Supervised control: Low-level con-
trol is performed automatically, with farmers making 
high-level control decisions on settings and set-points. 
Farmers may be informed by sensor information on 
current system states (e.g. soil-water content) and, 
possibly, by forecasts, in order to anticipate future 
events (e.g. weather changes). 4. Automatic control: 
A closed control loop is formed by connecting actu-
ation and sensing technologies through a high-level 
controller. This configuration does not necessarily 
require any farmer involvement.   

Fig. 2. Illustration of decision support for operational management with su-
pervised control. Two feedback loops are shown: a low-level management loop 
(with a low-level controller) with input consisting of the set-points provided by 
users, and a high-level management loop, in which users make decisions on 
settings and set-points based on sensor information, forecasts and decision 
support (observation, prediction or control advice). The decision-support sys-
tem may use both sensor information and forecasts. 
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derived from first principles, but that describe processes based on data. 
Examples of descriptive models include linear regression models, neural 
networks, and auto-correlation models (e.g. ARX, NARX, ARMAX (Chen 
and Zhao 2014)). 

In this overview, we make no assumptions concerning the type of 
models used for the model-based observation and control methods. 
Although the models can be either mechanistic or non-mechanistic, they 
are all assumed to have structures as described in this section. 

2.1.1. Input-state dynamics 
Farming processes are characterized by a dynamic-input response. 

For example, the effect of irrigation input on crop growth is not imme-
diate, but may span several days or even weeks. This makes the sched-
uling of input over time a non-trivial problem. In addition to the inputs 
that are controlled, other inputs might not be able to be controlled but 
should be anticipated (e.g. precipitation, solar radiation). 

In a predictive-systems model, the process dynamics and various 
types of input are formulated systematically. One core principle of sys-
tems theory is that each system has a specific boundary, input and state. 
The system boundary is determined by defining the state variables 
within the system and the input variables that enter the system from 
outside and that affect the state dynamics. A general formulation to 
describe the input-state dynamics in a continuous form is as follows: 

dx(t)
dt

= f (x(t), u(t), ε(t), θ, t). (1) 

In this equation, x(t) is the state vector that changes over time (t), 
with some initial condition x(0) = x0. The state vector can contain 
variables like temperature and humidity, although it could also include 
spatial information to make the model specific to a given site (e.g. a 
temperature variable subdivided into temperature at various locations). 
The time derivative of the state equals f , a non-linear function describing 
the interaction between states and how the states respond to the input. 
The rates of change and the strengths of the interactions are represented 
by the values of the model parameters in vector θ. The control input u(t)
can be manipulated, and it is used to control the state dynamics. The 
external (i.e. uncontrollable) input ε(t) can often be observed and, in 
some cases, its dynamics can be predicted, but it cannot be manipulated. 
The final argument of function f is time t, which acts as an independent 
variable representing changes in system response over time (e.g. 
changes in biological development stages) that have not already 
emerged from the modelled state interactions. 

2.1.2. Model complexity 
Organisms (e.g. animals and crops) are inherently complex. Within 

an organism, physiological, chemical and physical processes at the level 
of tissues, cells and molecules form extensive interaction networks that 
govern input responses that are almost always non-linear (e.g. doubling 
a feed ration does not generally double milk production). Whereas 
physical processes (e.g. mass and heat transfer) are often relatively 
linear, while the chemical processes underlying physiological input re-
sponses (e.g. photosynthesis, food digestion) are typically non-linear. 

Model complexity is a design aspect that poses an important trade- 
off. Very simple models are easy to derive, and they require little 
computational effort for control design. At the same time, however, 
over-simplification may introduce model errors that have a negative 
influence on the accuracy of predictions. Although the development of 
more advanced, more complex models may improve prediction accu-
racy, it may also require considerable experimental and field work, 
knowledge acquisition and modelling expertise. Not all state estimators 
and control algorithms are designed to address high levels of model 
complexity. Furthermore, increasing complexity usually increases 
computational demand. Another possible drawback of high model 
complexity has to do with the large number of parameters, which in-
creases the likelihood that the values of some parameters will be difficult 
to determine. 

2.1.3. Parameter estimation 
When a parameter value is unknown or uncertain, a common solu-

tion method is to estimate the maximum likelihood value based on 
available data. The likelihood of a parameter (vector) θ is obtained by 
comparing the predicted model state at discrete time instances (short-
hand notation x(θ)k) with a time-series dataset of measured state xdata,k. 
In this calculation, k is an index representing discrete time instances (t =

kΔt, with Δt representing the time-step size, and k = 1…n). Assuming 
that the measurement errors are modelled by additive Gaussian white 
noise with covariance matrix Rk, 

xdata,k = x(θ)k + vk (2)  

with vk ∼ N(0,Rk) (N denotes a normal distribution). The likelihood 
function of parameter vector θ is then as follows: 

L(θ|xdata) ∼ exp
∑n

k=1
−

1
2

ΔxT
k R− 1

k Δxk, (3)  

where Δxk = xdata,k − x(θ)k. The maximum likelihood is obtained by θML, 
the value of θ that maximizes (θ|xdata). 

Many optimization algorithms are available for retrieving θML. For 
relatively simple models where y is a linear function of θ (e.g. a linear 
regression model), the maximum likelihood can be computed directly 
through least-squares estimation. In general, θML is approximated 
through iterative algorithms that evaluate multiple parameter values 
and compare their likelihoods. Two classes of algorithms can be 
distinguished: gradient-based algorithms and evolutionary algorithms. 
Gradient-based algorithms search the parameter space by following a 
path along which the objective function L has the strongest increase 
(gradient). Examples include the Newton-Raphson and the Levenberg- 
Marquardt (Kelley 1999) algorithms. The advantage of these methods 
is that the use of gradients reduces the number of iterations required, 
thereby increasing computational efficiency. This is a crucial advantage, 
especially for complex models with large integration times, given the 
need to integrate the model for each iteration in order to obtain L. One 
possible drawback is that, when multiple local optima exist, there is no 
guarantee that the global optimum will be found. Evolutionary algo-
rithms use a population of candidates for θML, the values of which evolve 
through some stochastic evolutionary process. This stochasticity, com-
bined with the use of multiple candidates, increases the likelihood of 
finding the global optimum. One general drawback of evolutionary al-
gorithms is that they tend to require a relatively high number of model 
integrations. Parameter estimation is a well-established discipline, with 
many good textbooks available for interested readers. 

2.2. Additional equations for observation and control methods 

This section describes additional equations that are useful for making 
predictive models compatible with the observation and control methods 
described in Sections 3 and 4. 

2.2.1. Output dynamics 
Sensing technology enables automated and dynamic measurements 

of system states that are of interest. It is important to note, however, that 
not all states can be measured directly. For example, the measurement of 
animal stress by sampling blood cortisol levels is an invasive method 
that is not very practical. In such cases, indirect measurements are 
performed. The sensor measurements y are related to the state vector 
through the following output equation: 

y(t)= g(x(t), θ), (4)  

where g is a function depending on the state vector x and some of the 
parameters contained in vector θ. For example, an output function can 
relate a cow’s resilience against disease to measured body temperature, 
lying time and eating patterns (van Dixhoorn et al., 2018). 
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Fig. 3 shows a flow diagram of a system model, represented by 
Equations (1) and (4). The input-state-output structure makes it possible 
to close the management loop by applying a controller that connects the 
measured output to the control input. 

2.2.2. Constraints 
System states may attain critical points at which the system becomes 

fragile, meaning that its dynamic response can become highly sensitive 
to slight changes in input. At critical points, a state can shift to an un-
desired steady state. Organisms can attain a multitude of steady states 
(e.g. healthy and sick, vegetative and generative, alive and dead, fresh 
and spoilt). In animals with low resilience, an increase in stress or dis-
ease load (e.g. from over-stocking) can have a major impact on health 
(van Dixhoorn et al., 2018), growth and milk or egg production. In 
crops, a combination of large amounts of sun and low water supply re-
sults in wilting or even death. If the interactions underlying such tipping 
events are not modelled explicitly, it is important to identify the con-
straints of state and input under which a process should be operated in 
order to avoid them. 

Another constraint is actuation capacity, which is almost always 
bounded. For example, the capacity of an air heater and the maximum 
rate of a harvester depend on type of equipment used, and they are al-
ways limited to some level. Although some control algorithms assume 
that both positive and negative actuation is possible, this is not always 
the case. For example, an irrigation system can apply water, but it 
cannot extract it. To describe the constraints on x(t) and u(t) that are 
needed in order to avoid unwanted steady states or the exceedance of 
input capacity, constraints are introduced in the form of a given set (b) of 
algebraic inequalities: 

b(x(t), u(t)) < 0. (5)  

2.2.3. Performance 
Sustainable farming is characterized by inherently conflicting ob-

jectives (typically, high production rates vs low input use). The impor-
tance of all objectives should be carefully balanced in order to arrive at 
suitable control advice. To this end, the model can be extended with a 
performance measure (usually referred to as a performance criterion), J, 
which can be described as some function h depending on state, input, 
and time: 

J = h(x(t), u(t), t). (6) 

More specific formulations of J are presented in Sections 3 and 4. To 
make input selection straightforward, performance is usually repre-
sented by a scalar value. When there are multiple performance objec-
tives, the variables corresponding to these objectives can be assigned 
weights according to their importance (e.g. performance equals the 
production rate minus 3 times the input rate). The objectives are rep-
resented mathematically by various indicators, such as energy effi-
ciency, health deficiency (van Dixhoorn et al., 2018), the animal 

comfort index (Fournel et al., 2017) and the damage rate during fruit or 
egg transport (van Mourik et al., 2016). 

2.2.4. Disturbances and errors 
Farming systems are affected by disturbances from outside the sys-

tem, as well as by errors from within the system, which lead to uncer-
tainty in observations and predictions. Consequently, this may lead to 
severe performance loss. 

A disturbance can be seen as an unforeseen variation or fluctuation 
of factors coming from outside the system that affects the dynamics of the 
system and the certainty with which they can be predicted (Dorf and 
Bishop 2011). Examples of disturbances include unexpected fluctuations 
in weather, pest occurrence and disease load. Disturbances related to 
sensing technology include incoming sunlight and dust particles in the 
air (Sanderink et al., 2017). Economic disturbances (e.g. in commodity 
or product prices) constitute a somewhat different category, which can 
also affect the performance J. Due to their often-stochastic nature, the 
uncertainty that disturbances cause is also referred to as stochastic un-
certainty (Walker et al., 2003). 

An error can be regarded as a factor from within the system that causes 
its dynamics to deviate from expectations. Errors related to biophysical 
system properties include unexpected developmental changes, biolog-
ical variations between individual plants and animals, and spatial var-
iations in air conditions and soil properties. Errors related to sensing and 
actuation technology include those occurring due to poor sensor or 
actuator calibration, wear and tear, signal delay (Jawad et al., 2017) and 
spatial variations (e.g. temperature sensors located in cold areas). In 
control engineering, errors in sensor signals and actuators are referred to 
as noise (Dorf and Bishop 2011). 

For purposes of observation and control, the uncertainty caused by 
disturbances and errors is commonly modelled as stochastic noise. The 
following is an example of discrete time process with stochastic noise: 

xk+1 = fk(xk, uk, εk, θ) + wk. (7) 

At each time instance k, the state noise wk consists of independent 
draws from some distribution D: wk ∼ D(0,Qk), with Qk the covariance 
matrix describing the statistical interdependency between individual 
noise signals. In this example, the noise is assumed to be additive 
(because of the + sign). The representation of stochastic, additive noise 
in state dynamics as well as in the output equation 

yk = g(xk, θ) + vk, (8)  

with vk ∼ N(0, Rk), is a standard way of modelling uncertainty for 
model-based filtering and model-predictive control. Methods like Kal-
man filtering and LQG feedback control are based on white noise 
entering the system. When the state noise is not white in terms of fre-
quency, but exhibits auto-correlation, this can be modelled by repre-
senting white noise entering the system and adding a pre-filter within 
the system (see Section 3.1) that transforms the noise before it enters the 
state dynamics. 

3. State observation 

The ability to observe a system state (e.g. greenhouse climate, animal 
condition, crop state) is of great importance to precision management. 
The prediction accuracy of future state trajectories depends largely on 
the accuracy of the current state estimate. Current states can be esti-
mated with models, through the use of sensing technology or through a 
combination of these methods. Several different methods are discussed 
in this section. 

3.1. Data-based state estimation 

System states can be estimated according to data streams obtained 
with sensor technology. Three common methods for this purpose are 

Fig. 3. Flow diagram of a controlled input-state-output system. The dynamics 
of state x are influenced by controlled input u and by uncontrolled input ε. The 
blue box contains the real-life process, including actuation dynamics, which are 
represented by an input-state model, as well as sensor measurements, repre-
sented by an output model. The borders of the box denote the system boundary. 
With this input-state-output structure, the controller connects the measured 
output to the control input, thereby closing the management loop. 
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frequency-based filtering, soft sensing and machine learning. 

3.1.1. Frequency-based filtering 
One common way of filtering out sensing noise (see Equation (8)) 

involves frequency-based filtering. If it can be safely assumed that the 
sensing errors are in a different frequency range than the true dynamics, 
the errors can be filtered out based on their frequencies. For example, a 
low-pass filter passes the low-frequency dynamics in the sensor signal 
and filters out high-frequency dynamics associated with sensor noise. A 
high-pass filter does the opposite. A band-pass filter passes signals only 
within a certain bandwidth. For example, low-pass filters have been 
employed in order to smooth climate-sensor data in greenhouses 
(Rodríguez et al., 2015). A band-pass filter has been employed for 
automated crop-row location and tracking (Hague and Tillett 2001). 

3.1.2. Soft sensing 
In addition to sensing errors, limited observability can occur because 

the states of interest cannot be measured directly, or because direct 
measurements are too costly or time-consuming. In such cases, indirect 
measurements are performed. When an output function (Equation (4)) is 
available and invertible, the state can theoretically be estimated from 
the sensor measurements, applying the following conversion: 

y(t)= g(x(t)), into x(t)= g− 1(y(t)), (9) 

This method is also known as soft sensing. A calibration curve that 
relates humidity (x) to measured electrical conductance (y) is an 
example of state estimation through an inverted output function. When 
y consists of multiple sensor signals, finding the relationship between 
the signals and the state of interest is done in a process known as sensor 
fusion. One example of sensor fusion involves finding the relationship 
between soil properties using a combination of spectroscopy, electro-
magnetic induction and ground-penetrating radar (Mahmood et al., 
2012). One important challenge is to identify which data streams 
contain relevant information, and how to combine them. 

3.1.3. Machine learning 
In many cases, no output equation is available. Measured traits, such 

as the shape (Song et al., 2019), colour (Kurtulmus et al., 2011), odour 
(Mottram 2016) and behaviour (Berckmans, 2014) of vegetables, fruits 
or animals, are usually difficult to relate mechanistically to such states as 
ripeness, freshness, condition and health. Data-based models can be 
used to classify system states (e.g. a plant inside the cropping system is 
either a weed or not a weed; a crop is either fresh or spoilt; an animal 
either is or is not in good health). Various classification models for 
data-based machine learning have been developed, including logistic 
regression, support-vector machines and linear and quadratic discrimi-
nant analysis. One advantage of these models is that they do not require 
knowledge on the mechanics underlying specific processes. At the same 
time, however, this feature also prohibits the analysis of how underlying 
mechanics affect the system (e.g. for error analysis and in design 
studies). Furthermore, training sets must be carefully selected, and the 
systems should be tested on independent test sets or through 
cross-validation in order to prevent over-fitting. 

For high-dimensional data (e.g. imaging data), it is even more 
challenging to link states to sensor measurements. One standard 
approach involves abstracting the data in order to obtain a lower- 
dimensional representation. In image processing, this is known as 
feature extraction, which consists of a series of image-processing steps 
(Gonzalez et al., 2004). The features form an abstract representation of 
the image data (e.g. the colour, shape and texture of tomatoes in an 
image), which might be indicative of the ripeness stage. One common 
approach involves using manually designed feature extractors with a 
machine-learning approach, as process-based models are often inca-
pable of estimating states from these abstract features. The relationships 
are too complex to be modelled from first principles. Instead, 

machine-learning methods can unravel the relationships based on a set 
of training examples (e.g. images of tomatoes with associated ripeness 
values). One disadvantage of this approach is that the feature extractors 
are still designed manually. Recently developed deep-learning methods 
are able to address this by presenting an end-to-end learning approach, 
in which the state can be estimated directly by deep neural networks 
based on the raw images (Goodfellow et al., 2016). These networks 
optimize both feature extraction and state estimation within a single 
common framework based on a large training set. The deep-learning 
approaches have been shown to outperform classical image processing 
in many domains, including agriculture (Kamilaris and Prenafeta-Boldú 
2018). In this paper, we focus on process-based methods. For additional 
background information on machine learning, see Friedman et al. 
(2001). 

3.2. Data assimilation 

Sensor information can be combined with model predictions in a 
process known as data assimilation. The reasoning behind this process is 
that both model predictions and measurements contain errors. The 
merging of model and sensor information results in higher estimation 
accuracy than is possible with measurements or predictions alone. 

3.2.1. Static filter 
One basic method of data assimilation involves estimating the state 

of interest by weighing the state prediction according to the model, x, 
with the measured state (assuming for now that the state can be directly 
measured), y, with weighting factors based on the uncertainty with 
which the state is predicted (σ2

x) and the uncertainty of the measurement 
(σ2

y ). This results in the following estimator (Gelb 1974): 

x=
σ2

yx + σ2
xy

σ2
x + σ2

y
. (10) 

The weighting factors can be interpreted intuitively. For example, if 
the measurement is highly uncertain, σ2

y is large, and x therefore receives 
a higher weight. The denominator acts as a normalization term, such 
that all weights add up to 1. This method is suitable for estimating the 
state once (e.g. when x is the outcome of a dynamic process). 

3.2.2. Dynamic filter 
When the state is tracked over time, the estimation problem becomes 

more challenging, as the estimated state should be updated repeatedly 
according to new measurements. A dynamic filter operates in a contin-
uous loop, using the measured input and output of the process to make a 
state estimation x̂(t). Fig. 4 shows a flow diagram of a dynamic state 
filter. Several dynamic filters are discussed in the following sub-sections. 

3.2.3. Kalman filter 
Perhaps the best-known model-based dynamic filter is the Kalman 

filter, the design of which is based on Equations (7) and (8). The as-
sumptions for a standard Kalman filter are that the state function f and 
output function g are linear, and that state and output noise is white and 
normally distributed. Under these assumptions, the filter produces a 

Fig. 4. Flow diagram of a model-based filter for data assimilation. The upper 
box represents the real-life process. The filter is based on a systems model. 
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maximum-likelihood state estimate, x̂k, together with its probability 
distribution, as represented by its covariance. The state estimate mini-
mizes the expected root mean squared error between the estimated and 
actual state. The estimated state becomes the starting point for the 
model prediction at the next time instance. To estimate the state, the 
algorithm weighs the measurement and its uncertainty, vk, against the 
model prediction based on the current state estimation and state noise, 
wk, in a manner similar to Equation (10). In addition, however, it con-
siders the uncertainty associated with the previous state estimation, and 
updates it accordingly. Consequently, greater uncertainty in a state 
estimation calls for the assignment of greater relative weight to the 
sensor measurement at the next time instance, and vice versa. This pre-
vents unwanted bias effects. For example, if the model has a small 
positive bias, each new state estimate will be slightly too high and, over 
time, the model state will tend to drift away from the true state. Due to 
the increasing discrepancy between measurements and predictions, 
however, the state uncertainty—and thus the model-prediction uncer-
tainty—will increase, thereby reducing the weight of model predictions. 
As a result, the filter tends to drive the state estimates back towards the 
sensor measurements. 

One straightforward way to estimate the covariance matrix Q in 
Equation (7) is to assess the error between model predictions and 
measurements over a series of time. This method nevertheless requires 
the state to be directly measurable. The covariance matrix R in Equation 
(8) can be estimated based on the differences between output and model 
predictions, if accurate values for state and input are known, or it can be 
based on factory specifications about the accuracy of the sensor. The 
reliable estimation of Q and R imposes several requirements on state 
measurements. If these requirements cannot be met, autocovariance 
least-squares methods can be employed (Rajamani 2007). 

One strong assumption on which the Kalman filter algorithm is based 
is that the noise is white. More specifically, the algorithm is based on the 
assumption that signal errors are not auto-correlated and that all fre-
quencies are attained in a uniform manner. Although the invalidity of 
this assumption does not necessarily mean that the Kalman filter will not 
work (Julier et al., 2000), such issues should be approached with 
caution. If non-whiteness forms a bottleneck to filter performance, 
pre-filtering can be employed. In pre-filtering, the model is extended 
with augmented model states that transform white noise into coloured 
noise, which subsequently enters the process dynamics and output 
measurements (Salzmann et al., 1991). 

Kalman filters can be used in a wide range of farm-management 
tasks, including the estimation of greenhouse climate and crop states 
(López-Cruz et al., 2017; van Mourik et al., 2019), location estimations 
for agricultural vehicles (Gartley and Bevly 2008), health monitoring in 
dairy cattle (De Mol et al., 1999) and water-level monitoring in fish 
farms (Ullah and Kim 2018). State estimation by Kalman filtering also 
forms a part of the LQG control algorithm (Section 4.1.4). 

3.2.4. Extended and unscented Kalman filter 
One key assumption is the linearity of the state dynamics and output 

function. The extended Kalman filter was designed to address non- 
linearity, by linearizing f and g at each state update (Grewal and 
Andrews 2014). Such linearization is required in order to compute the 
propagation of state uncertainty in a straightforward and computa-
tionally efficient manner. The extended filter also introduces lineariza-
tion errors, however, as well as errors relating to the assumption of 
symmetric error distributions. The unscented Kalman filter was 
designed to circumvent these types of errors (Julier et al., 1995). This 
filter uses a sampling method that retains the non-linear transformation 
f intact (unscented) by sampling the state covariance with a few sam-
pling points (i.e. sigma points). The unscented Kalman filter also con-
tains three design parameters that can be adjusted to address state 
probabilities that are not normally distributed. 

3.2.5. Particle filter 
All of the aforementioned Kalman filters assume that the states have 

unimodal distributions. This assumption is not always realistic. Consider 
the following example. To estimate its location, an autonomous vehicle 
uses a model based on wheel-rotation speed and steering action, with 
GPS as a location sensor. When the vehicle is in front of a tree, it may 
assign high probability densities to several locations that are close to 
trees on the orchard map, while assigning low probabilities to locations 
between trees. This results in a multimodal density of location proba-
bility. This state cannot be represented using a Gaussian distribution, as 
is the case with the Kalman filter. The particle filter therefore represents 
the state estimation with a large number of weighted particles, thus 
allowing multi-modal probability-density functions. This comes at the 
cost of computation, however, as it requires the transformations f and g 
to be computed for each particle at each state update. The computa-
tional demand thus depends largely on the number of particles used and 
the computational demand for evaluating the functions f and g. For 
example, particle filters have been designed for localization within such 
repetitive environments such as orchards (Bayar et al., 2015) and barns 
(Vroegindeweij et al., 2016). 

3.2.6. Dual estimation 
Similar to online state estimation, model parameters can be adjusted 

online as well. The difference between this method and the parameter 
estimation described in Section 2.1.3 is that online state estimation is 
performed on a single system or subject, whereas parameter estimation 
often uses experimental data on a large number of subjects. The simul-
taneous estimation of parameters and states is known as dual estimation 
(Liu and Gupta 2007), and it has been used for estimating greenhouse 
climate (Speetjens et al., 2009) and soil moisture (Lü et al., 2011). 
Another online adaptation method is Bayesian forecasting (West and 
Harrison 2006), which estimates current states and parameters, in 
addition to predicting future states according to Bayesian principles. 
Although the basic principles are similar to those underlying Kalman 
filtering, Bayesian forecasting is more extensive (e.g. due to the use of 
discount factors that assign higher weight to current data than to older 
data). One potential drawback of dual estimation stems from the addi-
tional flexibility introduced by parameter adaptation. More specifically, 
although it decreases bias, it may increase variance in model predictions 
and controller performance, up to the point of instability (Rohrs et al., 
1985). The bias-variance trade-off is a well-known design principle in 
statistical learning (Friedman et al., 2001). 

3.3. Summary 

The main advantages and disadvantages of the state-observation 
strategies discussed above are summarized in Table 1. Different 
methods are associated with different advantages relating to model re-
quirements, the necessity of addressing non-linearity, multimodality 
and non-Gaussian error distributions. They are also associated with 
possible disadvantages relating to assumptions concerning error prop-
erties and computational costs. The optimal choice of filter therefore 
depends on the particular observation problem at hand, as well as on the 
key advantages and disadvantages and how they weigh against each 
other. For example, if a process model is non-linear and exhibits a non- 
Gaussian state distribution, a particle filter might be preferred. If sim-
ulations are computationally demanding, however, the need for a more 
time-efficient method might outweigh the choice of a particle filter. 

4. Control design 

Using a systems model, a controller can be designed to determine the 
input that would optimize performance through precise timing and 
dosages of inputs and actions. Two different means of control can be 
distinguished: feedback control (in which control actions are based on 
current and past system states) and model predictive control (in which 
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control actions are based on both current states and expected future 
events). 

4.1. Feedback control 

The aim of feedback control is to steer the state in order to track a 
reference signal. For example, climate variables in a greenhouse should 
be close to a set-point chosen by the grower, or a vehicle should follow a 
set path. The design of signal-tracking control focuses on minimizing 
tracking errors (the difference between a state and a desired set-point), 
attenuating disturbance and maintaining stability in the process dy-
namics (Dorf and Bishop 2011). The basic structure of feedback control 
consists of a system that is connected to a controller through sensors and 
actuators. The controller receives sensor information about the state or 
states of interest, and these measurements are compared to the reference 
signal that the system state is intended to track. The difference between 
the measured signal and the reference signal is used to compute the 
subsequent control actions. This is usually done in a continuous fashion, 
forming a closed feedback-control loop (Fig. 5). 

One general benefit of a feedback-control loop is the ability to react 
directly to tracking errors. A feedback controller adjusts the input based 
on the current state and, in some cases, on the past state trajectory (using 
integrating action; see Section 4.1.1). It nevertheless does not anticipate 
future events (this is done in model predictive control; see Section 4.2). 
The types of feedback control that are most relevant to farming opera-
tions are discussed below. 

4.1.1. Proportional-integral-derivative control 
Proportional-integral-derivative (PID) controllers are perhaps the 

most commonly used control algorithms in operational farm manage-
ment. Examples include path tracking and suspension control (Yu et al., 
2004) for autonomous vehicles; climate control in greenhouses (Li et al., 
2018) and barns (Niu 2014); depth control in soil measurements 
(Mouazen et al., 2005); and water-pressure control in irrigation systems 
(Goodchild et al., 2018). In the abbreviation PID, the P stands for pro-
portional action (a direct response on the tracking error), the I stands for 
integrating action (the adjustment of input based on the history of the 
tracking error) and the D stands for derivative action (the response to the 
trend in the tracking error). A PID controller can be expressed as follows: 

u(t)=Pe(t) + I
∫t

0

e(τ)dτ + D
de(t)

dt
, (11)  

where e(t) = r(t) − x̂(t) is the tracking error, with the reference value 
r(t) representing the desired set-point trajectory and x̂(t) representing 
the estimated current state. 

The proportional action (first term), provides a controller input u(t), 
which is aimed at steering the system state towards the desired set-point. 
Proportional action alone, however, may result a steady-state offset for 
the state. 

The integrating action (middle term) enables the controller to 
attenuate low-frequency errors and disturbances that cause an offset in 
the state. For example, consider a heating system that should keep the 
temperature inside a greenhouse at 20 ◦C. Suppose that, due to an 
actuator error, the room is not sufficiently heated, and the temperature 
reaches only 15 ◦C. This means that the state has an offset of 5 ◦C, which 
may be somewhat decreased, but not completely eliminated, by the P 
action. The offset will result in a steady increase in the integral term over 
time. Consequently, the heating input will increase and the offset will 
ultimately disappear. One possible disadvantage is that the integral term 
may respond slowly to changes in tracking error or lead to instability. 

The derivative action (last term) is proportional to the changes in 
tracking error, and it typically speeds up the system response. Caution is 
needed, however, as the derivative term can be highly sensitive to 
violently fluctuating derivatives due to noisy measurements. These 
fluctuations might cause violent input dynamics that, in turn, might 
have a negative influence on stability, actuator wear and tear, and 
resource efficiency. These fluctuations can be attenuated by first 
filtering the tracking error with a low-pass frequency filter. The trade-off 
is that a low-pass filter delays the signal. In addition, it is important to be 
careful not to filter out true signal information. 

A controller with proportional, integral or derivative action (or some 
combination thereof) can be tuned by loop-shaping techniques that 
balance sensitivity to tracking errors (with typically low-frequency dy-
namics) with robustness against input disturbances (with typically high- 
frequency dynamics) using frequency analysis tools (e.g. the Bode plot 
and Nyquist diagram). Bode/Nyquist-based techniques can also be 
employed to design controllers with additional robustness against non- 
linearities and modelling errors. One important advantage of PID con-
trollers is their simplicity: they can be tuned according to measured 
input-output response, without the use of a process model. For example, 
this can be done for a system with single input and single output ac-
cording to the Ziegler-Nichols tuning rules. 

One possible disadvantage of PID control is reduced performance 
due to the simplification of assumptions concerning the actuators. In 
Equation (11), the controller assumes that actuation can be performed 
either continuously or at every discrete time instance. It is important to 
note, however, that this is not always the case. For example, it might be 
possible to irrigate a field only once every three days, as there is only one 

Table 1 
Various filtering strategies for state estimation, together with possible advantages and disadvantages with respect to Precision Farming applications.  

Method Advantages Disadvantages 

Data-based in general No process model required Sensor errors not compensated 
Frequency-based filter Simple error model required Overlapping frequency regions of errors and true dynamics cause filter errors 
Soft sensing States estimated through indirect measurements Not designed to deal with noise 
Machine learning No output equation required Error analysis is difficult 

Data assimilation in general Integrates model with sensor data, addresses noise Systems model required 
Static filter Indirect measurements Not designed for dynamic processes 
Kalman filter Dynamic process Linearity, white noise and Gaussian distribution assumed; unimodal likelihood 
Extended + unscented 
Kalman filter 

Approximates non-linear dynamics Extra computational costs from linearization, white noise and Gaussian distribution 
assumed; unimodal likelihood 

Particle filters Deals with non-linearity and multi-modality, non- 
Gaussian distributions 

High computational costs 

Dual estimation Estimates parameters and states simultaneously Additional variance and possible instability  

Fig. 5. Flow diagram of a feedback controller. The process state or states of 
interest are measured and compared to the reference signal. Based on the dif-
ference, the controller steers the state by adjusting the control variable u(t). 

S. van Mourik et al.                                                                                                                                                                                                                            



Environmental Modelling and Software 139 (2021) 105031

9

sprinkler system that is used on multiple fields. 
Another assumption is that actuators can dose gradually. In practice, 

however, most lamps, fans and heaters can only be switched on or off. 
One possible solution in the case of an on-off actuator is to allow the 
controller to be switched on or off at a high frequency, while controlling 
the percentage of ‘on’ time with a PID controller (PWM-pulse width 
modulation). For example, one such controller was designed for a 
temperature-controlled food-storage room (Mourik et al., 2010). 

As indicated in Equation (11), u(t) is a symmetric function of e(t). 
The input can thus be either positive or negative, depending on the sign 
of the tracking error. In reality, however, input can often only be added, 
and not subtracted (as is the case for irrigation water or pesticides). This 
can result in a problem known as wind-up. For example, if the soil- 
moisture level is too high, a controller can do nothing but wait until 
enough water has evaporated or drained. In the meantime, however, the 
integral term will have accumulated to a high value. For this reason, 
even after the water level has dropped, the high integral value will 
prevent the controller from taking action. Such integral wind-up 
behaviour has been well-documented, and various anti-wind-up ap-
proaches have been described in the literature (Azar et al., 2015). 

Equation (11) applies no constraints on the input and state. A ‘soft 
constraint’ may be imposed by choosing the values for P, I and D in such 
a way that the input or state will seldom, if ever exceed a certain 
maximum or minimum value. It is possible to tune PID by loop-shaping 
(and not only by model-free empirical tuning). This can be done even for 
systems with multiple inputs and multiple outputs (Xiong et al., 2007). 
In addition, some PID design algorithms take input efficiency into ac-
count as control objective (Comasòlivas et al., 2012). 

4.1.2. Feedforward control 
Given that feedback control acts upon tracking errors caused by 

disturbances that affected the process dynamics at some time in the past, 
in principle, it will always lag behind. Feedforward control acts directly 
upon those disturbances by measuring them online and determining the 
required control input based on a model. Feedforward control is often 
used in combination with feedback control. One advantage of feedfor-
ward action is that it gives the controller the opportunity to react to 
disturbances immediately, rather than awaiting a system response and 
then acting upon it. Especially for systems with a slow response (e.g. in 
crop or animal development), feedforward control may offer a valuable 
solution in disturbance attenuation. One possible drawback is that the 
disturbances must be measured online. Such measurements can be costly 
or difficult to realize, and they are subject to measurement errors. In 
addition, the influence of the disturbances on the measurements of in-
terest must be modelled. The added value of feedforward control 
therefore depends largely on the quality of the error-response model, 
measurement accuracy and response time. 

4.1.3. LQR control 
The linear quadratic regulator (LQR) is designed with the use of a 

linear model of the system. Under the assumptions that state dynamics 
are time-invariant, undisturbed, without external input and linear, 
model (1) is approximated as follows: 

dx(t)
dt

=Ax(t) + Bu(t), (12)  

where the matrices A and B form a linearized version of function f . The 
control problem is commonly formulated as minimizing the perfor-
mance criterion J, which indicates how well the management objectives 
(e.g. tracking error and low input costs) are met over a time period 
ranging from 0 to T, 

J = x(T)
′

Sx(T) +
∫T

0

x(t)
′

Vx(t) + u(t)
′

Wu(t)dt. (13) 

The criterion J makes it possible to design a controller that can weigh 
the costs of tracking errors against the costs of input use (the minimi-
zation of these variables usually results in a trade-off). The form of J is 
quite specific; it is quadratic (i.e. it consists of matrix-vector combina-
tions, all of which yield quadratic terms) and time-invariant. The first 
term on the right represents the value associated with the state at end 
time T (e.g. produce value at harvest). The contribution of each state 
within the state vector x(T) is weighed by matrix S. The second term is 
an integral containing the running costs associated with tracking errors 
(i.e. deviations of x from 0, weighted with matrix V) and the costs of the 
control input (weighted with matrix W). As with PID control, soft con-
straints can be imposed on the input and state by tuning the values of V 
and W. 

Under the assumptions that the states can be observed and that the 
feedback is of the form u(t) = − K(t)x(t), with K(t) as the feedback-gain 
matrix, the optimal input trajectory is computed by solving the ‘Ricatti 
equations’ (Kalman 1960). These equations can be solved relatively 
quickly through computation, as compared to the 
dynamic-programming method required for non-linear, time-variant 
control problems (see Section 4.2.3). In addition to this computational 
advantage, another important benefit of LQR is that it is an optimal 
feedback controller, in the sense that it has an explicit performance 
criterion and it achieves optimal performance. One potential drawback, 
however, is that this optimum can be achieved only under quite strong 
assumptions: linear input-output response, time invariance, symmetric 
input, input that can be steered continuously over time and in dosage, no 
influence from external input, and performance that is represented by 
quadratic functions of tracking errors and input. Caution is advised 
when modelling performance with quadratic functions. Although eco-
nomic costs often have a linear relationship with input (doubling the 
input doubles the input costs), the relationship between set-point de-
viations and the costs associated with spoilage or production loss may be 
exponential (e.g. bacteria growth in dairy products depends exponen-
tially on temperature (Phillips and Griffiths 1987)). 

The feedback mechanism in LQR offers some extent of robustness 
against undesired state deviations by actively steering them back to-
wards the set-point. This robustness is limited, however, as there are no 
errors or disturbances in Equation (12) for which the controller is 
explicitly designed. Moreover, there is no integrating action (as in PID 
control) to compensate for offset in tracking error. Performance in 
practical situations is therefore heavily dependent on the validity of the 
assumptions. Examples of LQR applications include greenhouse climate 
control (Gutiérrez-Arias et al., 2015) and dust control in animal housing 
(Liao and Feddes 1993). 

4.1.4. LQG control 
Linear quadratic Gaussian (LQG) control is an extension of LQR. This 

extension is explicitly designed to address uncertainty in state and 
output measurements. For this, the process dynamics of (12) are 
extended with an output equation, as well as with state and output noise 
(see also Equations (7) and (8)), 

dx(t)
dt

=Ax(t) + Bu(t) + w(t) y(t) = Cx(t) + ν(t). (14) 

As with LQR, the control action consists of state feedback, u(t) = −

K(t)x(t), which optimizes performance with respect to the criterion 

J =E

⎡

⎣x(T)
′

Sx(T)+
∫T

0

x(t)
′

V(t)x(t)+ u(t)
′

W(t)u(t)dt

⎤

⎦. (15) 

Solving for the state estimate and optimal input requires solving two 
matrix Riccati equations (consisting of differential equations in contin-
uous time and difference equations in discrete time). The main differ-
ences between the LQG and LQR control problems are that, in the LQG 
problem, the performance criterion is minimized with respect to the 
expectancy (E) of the costs, and the state is estimated through Kalman 

S. van Mourik et al.                                                                                                                                                                                                                            



Environmental Modelling and Software 139 (2021) 105031

10

filtering (see section 3.2.3). Furthermore, the weights are time- 
dependent, which may facilitate the imposition of soft constraints with 
regard to the timing of input (e.g. when input can be applied only at 
specified times). Input is more likely to occur during these intervals if W 
is small during designated time intervals and large elsewhere. 

Despite the fact that LQG addresses stochastic state and output noise, 
it has no stability margin. In other words, it cannot guarantee any stable 
robustness against model errors, in the sense that bounded input results 
in bounded output (Doyle 1978). For this reason, small model error 
could potentially result in ever-growing oscillations in input and state. 
Examples of LQG control include heating and ventilation control in 
greenhouses (El Afou et al., 2013) and active suspension control for 
agricultural vehicles (Bo and Fan 2004). 

4.1.5. Threshold control 
Some actuators cannot provide continuous dosage, but can only be 

switched on or off. In on-off control (also known as bang-bang control), 
the timing of switching is optimized. This type of control type was 
developed for such purposes as the application of crop nutrients (Hooper 
1988). 

One very basic but commonly used type of on-off control is threshold 
control (also known as hysteresis control). In this type of control, a 
control action is performed each time a state reaches an upper or lower 
boundary. For example, when the temperature in a food storage room 
gets too high, a cooler switches on for some period of time. When the 
temperature gets too low, a heater turns on. This method of control may 
result in typical saw-tooth state dynamics within a ‘hysteresis band’, as 
illustrated in Fig. 6. 

One main advantage of threshold control is its simplicity: no model is 
required. In addition, a threshold controller can be developed relatively 

easily for systems with asymmetric actuation abilities. For example, an 
irrigation system can apply water to the soil, but not extract it. A 
threshold-irrigation controller was developed, that triggered irrigation 
events based on crop-water status (Thompson et al., 2007). 

Threshold control is subject to several possible disadvantages. If a 
system has a slow input response, the thresholds could be violated. For 
example, if irrigation is stopped right at the moment at which the soil 
water reaches a threshold value according to an underground sensor, 
water will continue to trickle down through the soil, and the water 
content will increase a bit further. Furthermore, threshold control does 
not infer high precision. The state is located somewhere between two 
boundaries, but it does not follow a precise trajectory. Precision can be 
increased by bringing the upper and lower boundaries closer together to 
create a narrow state bandwidth. This might increase the likelihood of 
threshold violation, however, and it could cause the state to ‘bounce’ 
between the upper and lower bounds. For example, with the context of 
heating and cooling, this could cause a heater and a cooler to work 
against each other, thereby wasting energy. 

4.1.6. Summary 
Several strategies are available for feedback control, each with its 

own assumptions and properties. The main advantages and disadvan-
tages of these strategies with respect to operational farm management 
are summarized in Table 2. As in the selection of a suitable state filter, 
the choice of a feedback controller depends on the particular control 
problem at hand, as well as on the key advantages and disadvantages, 
and the trade-offs between them. 

4.2. Model predictive control 

When future circumstances are known, or at least forecast, it may be 
worthwhile to anticipate them through input scheduling. For example, if 
the weather will be warmer tomorrow than it is today, lowering the 
greenhouse temperature today could save a considerable amount of 
heating energy, while maintaining an acceptable average temperature. 
Model predictive control (MPC) is the class of control methods for input 
scheduling while taking future changes into account. We start by 
describing the concept of finite horizon control. 

4.2.1. Finite horizon control 
In the finite-horizon form of model predictive control, the input is 

scheduled for a fixed period of time [0,T]. This is known as open-loop 
control, in contrast to closed-loop control (Section 4.1), as there is no 
feedback based on state measurements to close the management loop. 
The control problem consists of minimizing the performance criterion 
for any admissible input u(t). The performance can be formulated as 
follows: 

Fig. 6. Illustration of temperature dynamics with threshold control through 
heating and cooling actions. Each time the state reaches an upper or lower 
boundary, a control action takes place. This keeps the state within a 
desired region. 

Table 2 
Various feedback-control strategies, along with their possible advantages and disadvantages with respect to operational farm management.  

Method Advantages Disadvantages 

Feedback control in general Robust against disturbances Does not anticipate future events. Most methods do not explicitly consider hard state or input 
constraints, and most assume continuous actuation, gradual dosage and symmetric actuation 

PID control (no model required) 
Proportional control (P) Very simple tuning Steady state offset in tracking error 
P + Integrating action (I) No steady-state offset in tracking error Slow control response 
P + I + Derivative control 
(D) 

Accelerates control response Sensitive to measurement noise 

Model based (model required) 
Feedforward control 
(extension to feedback) 

Anticipates slow system response Sensitivity to model errors and sensor errors 

Linear Quadratic Regulator Tracking quality weighed against input 
efficiency 

Linear time invariant (LTI) system, and quadratic costs. Not designed to address errors or 
disturbances. (LQR) 

Linear Quadratic Gaussian Designed for noisy state and output Dynamic 
performance weights 

LTI system. No guarantee of robustness against model errors. 
(LQG, extension to LQR) 

Threshold control No model required. Designed for on-off 
actuation, hard input and state constraints 

Low tracking precision, threshold violations when input response is slow, no explicit cost 
criterion  
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J =F(x(T)) +
∫T

0

L(x(t), u(t), t)dt. (16) 

The function F represents the costs associated with the state at end 
time T, and function L represents the running costs associated with input 
and with state dynamics. In addition, J can be minimized under time- 
dependent boundary conditions of input and state, b(x(t), u(t), t) < 0. 
The control problem of minimizing criterion J can be seen as a gener-
alization of the LQR problem, as both the system model and the per-
formance criterion can be non-linear and time-varying. Given that the 
model includes external input ε(t), minimizing J implies that the input is 
optimized while anticipating future external input dynamics. 

Solving this control problem can be quite challenging. In the 1950s, 
Pontryagin and Bellman developed algorithms to design optimal input 
trajectories that minimize J under the constraint b < 0 by solving the 
Euler-Lagrange equations. Although the optimization problem can be 
solved analytically for some simple cases, a numerical solution is usually 
required (e.g. through dynamic programming; see Section 4.2.3). 

Potential disadvantages of finite-horizon optimal control include the 
fact that it is not designed to attenuate any errors or disturbances. As a 
result, the exact value of ε(t) is assumed to be known in advance. In the 
absence of feedback, forecast errors may cause the realized state tra-
jectory to deviate from the predicted trajectory. 

Regardless of its potential disadvantages, finite-horizon optimal 
control is a valuable tool for determining the potential added value of 
precision management in terms of timing and dosage. Comparing the 
theoretical optimal performance to the performance currently obtained 
in practice can provide a considerable amount of information about the 
potential gains to be realized with precision management. In greenhouse 
research, finite-horizon optimal control has been employed to investi-
gate the energy-saving possibilities of precisely controlling the timing 
and dosing of inputs like heating and ventilating (van Straten et al., 
2010). In the performance criterion, x(T) represents the end state of the 
crop, and L(u) represents the running costs for climate management. 
Other research applications for finite-horizon optimal control include 
manure spreading (Krishnan et al., 2006), robotic harvesting (Van 
Henten et al., 2009) and pest management (Vincent 1975). 

4.2.2. Receding horizon control 
Receding horizon control is an extension of finite-horizon control. In 

this model, both the state and the prognosis on external input are 
updated regularly and used to compute new input schedules. Thereafter, 
the time horizon is extended such that the time window across which the 
input is optimized shifts forward, while maintaining the same length. 
Receding-horizon MPC is quite popular in research on farm operations. 
Example applications include trajectory planning for moving agricul-
tural machines (Coen et al., 2008), greenhouse climate control (El 
Ghoumari et al., 2005), irrigation (McCarthy et al., 2014), and 
agro-robotics (Kayacan et al., 2015). An extensive review on MPC ap-
plications in agriculture is provided in Ding et al. (2018). 

The updates come at a price in terms of computation, as each update 
requires a recalculation of the optimal input. Given the high computa-
tional cost of solving the Euler-Lagrange equations, they may allow only 
a low update frequency. To avoid slow computations, the state dynamics 
can be linearized, thereby yielding the aforementioned Riccati equa-
tions, which can be solved much faster. This nevertheless comes at the 
expense of possible linearization errors. Another, increasingly popular 
approach is ‘Explicit MPC’, in which the optimization problem is solved 
offline for a range of operating points, and multi-parametric program-
ming is used to express the optimal control actions as explicit functions 
of the states. In most cases, the end results resemble a look-up table. 
Although this method drastically reduces online computation re-
quirements, it does not always guarantee that all constraints have been 
satisfied. For additional information on this point, see Alessio and 
Bemporad (2009) and Diangelakis et al. (2019). 

The regular updating of open loop-control is known as open-loop 
feedback. Although the regular updating of states and forecasts does 
provide some robustness (in the sense that it can correct for errors and 
disturbances), it does not provide any integrating action (as is the case 
with PID control). For example, consider a heating system that is sup-
posed to achieve a room temperature of 20 ◦C, but that has an offset of 
5 ◦C due to actuator bias. The MPC algorithm described above will not 
learn from any past ‘mistakes’, and it will therefore continue recalcu-
lating its actions in the same way, thus preserving the offset. Possible 
options for addressing model offset include i) applying integrating ac-
tion (Section 4.1.1) and ii) adapting the model parameters based on 
output response (Sections 2.1.3 and 3.2.6). Several methods have been 
developed in order to improve MPC performance. One example is tube 
MPC (Langson et al., 2004), in which a feedback controller is imple-
mented to keep the state within a bounded area (tube) of the optimal 
trajectory calculated by MPC. 

The basic MPC algorithm is designed to optimize performance in a 
deterministic manner, without taking performance uncertainty into ac-
count. By comparison, stochastic MPC is a method for mitigating per-
formance risks associated with errors and disturbances. 

4.2.3. Stochastic model predictive control 
Stochastic model predictive control, or stochastic MPC, is based on 

the assumption that the state dynamics are disturbed by noise (Equation 
(7)). 

The control problem consists of optimizing the input trajectory uk, 
with respect to the cost criterion (Bertsekas 1995): 

J =E

[

F(xn)+
∑n− 1

k=0
Lk(xk, uk, εk)

]

. (17) 

This criterion is similar to the one used in Equation (16), with the 
difference that, in this criterion, the expectancy of the costs is minimized. 
Furthermore, the formulation of J can be adapted in such a way that the 
variance of the costs J are included as well (Horwood 1996). Given that 
a decrease in variance implies a decrease in the risk of very high costs, 
this is also known as risk-sensitive control. 

The concept of stochastic MPC has been employed within the context 
of irrigation optimization (Zavaleta et al., 1980), crop harvesting 
(Alvarez and Shepp 1998), greenhouse crop production (Mourik et al., 
2016) and fish harvesting (Braumann 1999). 

One important issue in stochastic MPC is computational demand. 
The difficulty in solving the control problem resides in the fact that there 
is no single optimal trajectory uk. As time proceeds, the realizations of 
noise wk will change the course of any state trajectory xk that was 
planned beforehand. As a result, for each time instance k, the optimal 
choice of uk will depend on the particular state at that time, xk, such that 
uk = u(xk, k). Optimization across all possible state realizations over 
time poses a computational challenge. Suppose that a state is discretized 
into m parts, and time into n parts. For a single state model, there are 
thus nm possible state trajectories. A basic crop model with only one state 
variable, which is very coarsely discretized with m = 10 possible states 
and only n = 10 time instances, already has 10 billion possible state 
trajectories. A powerful method for overcoming this computational 
burden is dynamic programming (Bertsekas 1995). The method is based 
on the notion that the optimal control problem is solved backwards, by 
computing the minimal costs Jk(xk) for each time and state, starting with 
k = n. Therefore, Jn(xn) = Fn(xn) is solved first for all possible xn. The 
process is then repeated for k = n − 1 down to 1: 

Jk(xk)= min
ukεUk(xk)

E
[

Lk(xk, uk, εk)+ Jk+1

(

x̂k+1

)]

, (18)  

where Uk(xk) is the admissible region of control (comparable to the 
previously mentioned constraint b(x(t),u(t)) < 0). The first term on the 
right of Equation (18) represents control costs between time instance k 
and k+ 1, and the second term represents the costs associated with the 
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newly predicted state x̂k+1, which was already computed. This process 
of backward recursion reduces the computational load from nm to only 
m × n cost optimizations. As the number of states increases, however, 
computational complexity can still increase quite rapidly. If each state is 
discretized into m parts, optimizing for a model with d states requires 
md × n cost optimizations. In order to achieve further reductions in 
computational time, approximative algorithms such as limited look- 
ahead policies and rollout algorithms have been developed (Bertsekas 
1995). In addition to high computational demand, another potential 
disadvantage of this method is the assumption of white noise. Although 
white noise can be transformed into auto-correlated noise, it requires 
extending the number of states d and, consequently, the computational 
load. 

4.2.4. Summary 
The most important advantage of MPC over feedback control is the 

ability to anticipate changes in external input (not to be confused with 
disturbances). In addition, MPC is quite flexible, as it was designed for 
non-linear, time-varying systems and boundaries on input and state. It is 
nevertheless subject to potential disadvantages as well. The changes in 
external input must be predicted, thereby introducing forecast errors 
that may have a negative influence on performance. The control actions 
are based on model predictions, which makes the performance more 
reliant on model predictions than on feedback control, which increases 
the impact of modelling errors. Taken together, the choice for MPC 
instead of a feedback or feedforward controller requires balancing their 
general advantages and disadvantages. The main advantages and dis-
advantages of the MPC methods discussed in this section are summa-
rized in Table 3. 

5. Discussion and conclusions 

Most of the observation and control methods discussed in this 
overview have been designed according to a systems model. A model- 
based approach requires some level of investment in model develop-
ment. The benefit of such approaches is that they allow the a priori 
analysis of how an observer or controller will perform (i.e. before 
applying it in reality) and of what might be needed in order to improve 
the performance. For example, in the case study for Section 3 (see 

Supplementary Material), increased prediction accuracy is needed. In 
this section, we discuss the relationships between the methods discussed 
in this paper, as well as the types of tasks and skills that they can serve. 
We then present a design procedure based on these methods. 

5.1. Relationship between tasks, methods and cognitive skills 

The role of farmers has evolved through advances in technology and 
machine intelligence. In high-tech farms, the eyes, ears and noses of 
farmers are replaced by sensors and cameras, and their hands and tools 
are replaced by actuators. Their brains, which perceive and process in-
formation in order to take operational management decisions is assisted, 
or even replaced, by machine intelligence. 

The methods discussed in this paper can be linked to several essential 
cognitive skills that make up the machine intelligence required to sup-
port farmers. The systems model represents the knowledge that is 
needed in order to fulfil the task of predicting how a system will respond 
to input. Such knowledge can be seen as a cognitive skill for model- 
based observation and control. The cognitive skills, and their relation-
ships to the types of methods discussed in this paper are summarized in 
Table 4. 

Multiple types of methods are available for each task. As demon-
strated by the illustrative case studies, however, despite a multitude of 
methods (and types of methods), not every management task constitutes 
a problem with a straightforward solution. This is because the properties 
of the methods often do not fully match the management objectives. For 
example, the case study on feedback control indicates that LQG control 
unintentionally punishes good behaviour (in that case, by bringing the 
mite population below the critical level), whereas a threshold controller 
involves the undesired trade-off between respecting the state constraint 
and maximizing input efficiency. In the MPC case study, prediction 
uncertainty prohibited any guarantee about keeping the state con-
strained within acceptable bounds. In general, it is very rare for a 
method to satisfy all of the desired objectives and to comply with all 
constraints. 

Another reason that method selection is not a straightforward pro-
cess is the fact that it is very rare for all of the assumptions on which a 
method is based to be realistic. Dynamics are rarely linear, noise is 
seldom white and it is only in exceptional cases that perceived costs are a 
quadratic function of state and input. Although several methods have 

Table 3 
Various model predictive control (MPC) strategies, along with their possible advantages and disadvantages with respect to operational farm management.  

Method Advantages Disadvantages 

MPC in general Optimizes performance by anticipating future events. Designed for non-linear, time- 
varying systems, and boundaries on input and state 

No integrating action, sensitive to forecast errors 
and model prediction errors 

Finite horizon control Exact optimal performance Not designed to address disturbances and errors 
Receding horizon (extension to 
finite horizon) 

Addresses errors in state and forecast through state and forecast updates Not designed explicitly for errors and disturbances 
Computation- intensive 

Stochastic MPC (extension to 
receding horizon) 

Explicitly addresses uncertainty in state dynamics; risk-sensitive Highly computation- intensive  

Table 4 
Link between cognitive skills required for prediction, observation and control, and the types of methods discussed in this paper.  

Task Cognitive skills Method types 

Prediction Prediction of system response Systems modelling (Section 2) 
Awareness of uncertain outcomes Noise modelling (Section 2.2.4) 
Learning from experience Parameter estimation (Section 2.1.3) 

Observation Observe states of interest State observation (Section 3) 
Control Definition of goals/objectives Performance modelling (Section 2.2.3) 

Retrieval of information on current state See: Method types for Observation 
Prediction of system response See: Method types for Prediction 
Awareness of state and input constraints Constraint modelling (Section 2.2.2) 
Response to changes in state Feedback control (Section 4.1) 
Response to changes in circumstances Feedforward control (Section 4.1.2) 
Advance planning, anticipation of future events Model predictive control (Section 4.2) 
Advance planning, anticipation of uncertain future events Stochastic control (Section 4.2.3)  

S. van Mourik et al.                                                                                                                                                                                                                            



Environmental Modelling and Software 139 (2021) 105031

13

been designed under the assumption that no uncertainty exists, uncer-
tainty is a prominent characteristic of almost all farming systems. In 
other words, there is always some gap between theory and practice. This 
does not mean, however, that these methods have no validity, or that 
they will automatically yield poor performance. Whether a violated 
assumption will be a true disadvantage depends on the extent to which 
its violation will have a negative influence on predictions, observations 
or control actions, as well as on how these aspects will ultimately result 
in the loss of performance. Assessing the relationship between the 
theory-practice gap and performance loss is an important frontier in the 
science of biosystems engineering. 

5.2. Selection and design procedure 

Various types of methods for each management task are displayed in 
Table 4. Each type comprises multiple methods, each of which has a 
unique set of properties and underlying assumptions. Whether these 
aspects translate into advantages or disadvantages depends on the type 
of system and the circumstances under which it is operated. Farming 
systems vary widely with regard to configuration, technology, produc-
tion process and environmental circumstances. For engineers, therefore, 
selecting and designing the right methodology is likely to be a complex 
task. One important challenge thus involves the configuration of a se-
lection and design procedure as a form of support for engineers. 

The outline of this overview paper suggests a configuration for a 
basic selection and design procedure (Fig. 7). The first step involves 
building a systems model based on the available technology and system 
properties, and subsequently designing an observer and then an auto-
matic controller. The design or choice of a model depends on relevant 
system characteristics (e.g. available sensing and actuation technology, 
external input, state dynamics, constraints and noise) and performance 
objectives, as well as on the requirements posed by the subsequent 
design of an observer and controller. For example, a given observer may 
require a linear model, and a given controller may require a noise model. 
Conversely, the choice of an observer depends on the type of systems 
model available (e.g. in terms of accuracy or the availability of an output 
equation), and the choice of controller depends on type of model 
available (e.g. whether performance is quadratic), as well as on the 
observer (e.g. the states that can be observed). In principle, therefore, 
the procedure for designing and selecting the right methodology is not 
sequential, but iterative. 

The three circles depicted in Fig. 7 can be linked to the various 
sections of this paper. The systems-model design steps are discussed in 
Section 2, the observer design methods are discussed in Section 3 and 
the control design methods are discussed in Section 4. The associated 
advantages and disadvantages are summarized in Table 1, Table 2 and 
Table 3. 

Many other relevant methods exist that could complement the 
overview presented here, including H2 and H∞ feedback control, multi- 

agent control, adaptive control, model selection and approximation, and 
reinforcement learning. An interesting avenue for follow-up research 
could thus be to add to the list of methods, in order to compile an 
elaborate yet comprehensive guide that is accessible to a broad group of 
engineers. 

6. Summary 

This introductory overview explains the need for sustainable 
farming, the role of precision technology in modern farming and the 
demand for automation and decision support. Within this context, it 
clarifies the role of state observation and control methods in automation 
and decision support. This is followed by an overview of the basic re-
quirements of a systems model, which provides the foundation for 
model-based observation and control methods. The overview subse-
quently shifts to a presentation of commonly used observation and 
control methods, along with a discussion and summary of the advan-
tages and disadvantages of each method. The methods are then linked to 
specific management tasks and associated with the cognitive skills that 
are required in operational farm management. Finally, we present a 
procedural outline for method selection and design, which could serve 
as a basic guideline to support farming engineers. The procedures of 
model design and method selection (for state estimation methods, 
feedback control, and model predictive control) are illustrated with case 
studies (Supplementary Material). 

The main outcomes emerging from this overview are as follows: 

1. Prediction, observation and control are essential features for opera-
tional management support in farming systems (Section 1). More-
over, the required cognitive skills that make up the machine 
intelligence required for automation and decision support are linked 
to the methods discussed in this paper (Section 5.1).  

2. Each method presented in this paper has a unique set of possible 
advantages and disadvantages (Table 1, Table 2, Table 3). This has 
the following implications:  
o Farming systems are highly varied in terms of design, technology, 

location and performance objectives, and these variations trans-
late into a specific set of errors, disturbances, constraints and 
performance criteria under which each system is operated. The 
selection of the best method, or combination of methods, thus 
requires an assessment for each particular case, based on weighing 
the advantages and disadvantages of each candidate method. 

o Many of the advantages and disadvantages stem from a gap be-
tween reality and the theoretical assumptions underlying the 
methods. It is quite common for one or more assumptions on dis-
turbances, dynamics, performance or other aspects to deviate from 
reality (as illustrated by the case studies), thus possibly resulting in 
a loss of performance in practice. The relationship between this 
theory-reality gap and possible performance loss therefore con-
stitutes an important aspect of biosystems engineering.  

3. In theory, the procedure of designing and selecting the model, 
observer and controller is not sequential, but iterative. This stems 
from the fact that model selection depends on observer requirements, 
while observer selection depends on model properties. Similar de-
pendencies exist between observer and controller, as well as between 
controller and model (Fig. 7). 
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