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ABSTRACT Growth models describe body weight
(BW) changes over time, allowing information from
longitudinal measurements to be combined into a few
parameters with biological interpretation. Nonlinear
mixedmodels (NLMM) allow for the inclusion of random
factors. Random factors can account for a relatively large
subset of the total variance explained by bird-specific
measurement correlation. The aim of this study was to
evaluate different NLMM using birds from 2 heritage
chicken lines; New Hampshire (NH) and Brown Leghorn
(BL). A total of 32 birds (16 mixed sex birds from each
strain) were raised to 17 wk of age. After 12 wk, half were
continued on ad libitum (AL) feed intake, and half were
pair-fed, using a precision feeding system; they were
given 95% of theAL intake of a paired bird closest in BW.
Residual feed intake (RFI) of birds, as an indicator of
production efficiency, was increased in pair-fed BL birds
as a result of minor feed restriction. Growth data of the
birds were fit to a mixed Gompertz model with a variety
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of different bird-specific random coefficients. The model
had the form: BW 5 Wm! exp2exp2bðt2tinf Þ ; where Wm
was the mature BW, b was the rate of maturing, t was
age (d), tinf was the inflection point (d). This fixed-effects
model was compared with NLMM using model
evaluation criteria to evaluate relative model suitability.
Random coefficients, Wmu w N(0,VWm) and
bu w N(0,Vb), were tested separately and together and
their differences, for strains, sex, and feeding treatments,
were reported as different where P � 0.05. The model
with both random coefficients was determined to be the
most parsimonious model, based on an assessment of
serial correlation of the residuals. NLMM coefficients
allow stochastic prediction of the mean age and its
variation that birds need to achieve a certain BW,
allowing for unique new decision support modeling
applications; these could be used in stochastic modeling
to evaluate the economic impact of management
decisions.
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INTRODUCTION

Heritage chickens are important for breeders and
industry to protect valuable genes and traits over the
long term. However, 50% or more of the genetic diversity
is absent in commercial pure lines (FAO, 2007; Muir
et al., 2008). Therefore, preserving potentially valuable
genes by conducting research with heritage breeds is
important. Changes in live weight and proportional
growth of body components as affected by genotype
and environmental factors are defined as growth, while
those changes appearing in growth over time are defined
as growth curves (Camdeviren and Tasdelen, 2002).
Growth curves are widely used for mathematical descrip-
tion of growth in which growth parameters can be inter-
preted in a biological context (Kahm et al., 2010; Narinc
et al., 2014a). Growth curves can be used to describe
genetic potential of growth, estimating daily nutrient
requirements for different ages and genetic groups,
improving efficiency of livestock production, detecting
a measurable growth trait, getting information about
the health status of farm animals, determining the
most suitable slaughtering age, and evaluating the effect
of selection programs on the parameters of a growth
curve (Lopez et al., 2000; Schinckel et al., 2005; Narinc
et al., 2014b). Analyzing and interpretation of growth
parameters should be carefully considered because pre-
cise growth models can help develop strategies ensure
that animal production is efficient and cost-effective.
Growth models describing genotype-specific growth
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curves can be used to dynamically estimate daily
nutrient requirements at different ages, resulting in
matching nutrient supply to the nutrient requirement.
Robust ability to predict the growth pattern of individ-
ual birds is necessary to optimize poultry production sys-
tems. The Gompertz growth function describes a general
sigmoidal growth curve and has been used for fitting the
body weight (BW) data of different animal species with
a large range in body size (chickens: Aggrey, 2002; pigs:
Schinckel and Craig, 2002; and dairy cattle: Perotto
et al., 1992). The Gompertz growth function is usually
estimated once per genotype (multiple animals), such
that a common mature weight (Wm) is estimated for
each genotype, and a random error (eit) is associated
with each individual bird i at age t in the model, which
is assumed to be independent and normally distributed
with mean of zero and a constant variance s2. Since
there is no random effect associated with Wit (weight
of bird i at age t) in this model, it is a fixed-effect model.
The outcome of such models would be imprecise as they
would not account for individual variation in growth
rates and mature body sizes, which we know exist in
populations (Wang and Zuidhof, 2004).

Growth data usually consist of repeatedmeasurements
over time on the multiple subject(s). Although longitudi-
nal data provide more information than cross-sectional
data, some challenges, such as heterogeneity of variance
and correlated errors of measurement, are associated
with their analysis (Gibbons et al., 2010). For instance,
heavier birds are typically heavier at multiple adjacent
measurement points over time, and this will increase het-
erogeneity and autocorrelation issues in growth data.
Mixed-effects regression models, which are widely used
for analysing longitudinal data, are quite robust to the
various violations frommodeling assumptions such as ho-
mogeneity of variance and lack of autocorrelation among
data. Furthermore, in contrast to traditional regression
techniques, mixed-effects models are able to estimate
fixed and random parameters simultaneously, which
result in more accurate estimation for fixed parameters
and their standard errors (Jiang and Li, 2010). Although
several nonlinear mixed models (NLMM) have been used
to model growth data (Schinckel et al., 2005; Aggrey,
2009; Karaman et al., 2013), the effect of accounting for
individual sources of variation in growth models on the
estimation accuracy of growth parameters has not been
fully investigated and to our knowledge is mostly new
to the poultry science literature.

Efficiency of production is increasingly important
with escalation of feed costs and demands to minimize
the environmental footprint. In this regard, improved
growth models as well as precision feeding (PF) would
offer an opportunity to match nutrient supply to
nutrient requirements of individual birds; this would
result in improved production efficiency (Zuidhof,
2020). Residual feed intake (RFI) is a biological indica-
tor of energetic efficiency and defined as the difference
between observed and predicted feed intake based on
energy requirements for production and maintenance
(Luiting, 1990; Kennedy et al., 1993). It has been
reported that feed restriction improved production
efficiency by lowering RFI (Metzler-Zebeli et al., 2019).
Therefore, we hypothesized that minor feed restriction
(feeding at the 95% of the ad-lib counterpart) would
reduce RFI, thereby increasing production efficiency.
The objectives of the current study were 1) to evaluate

different nonlinear mixed models with and without in-
clusion of random coefficients to account for knowable
individual sources of variation using birds from 2
heritage chicken lines; 2) to obtain estimated values for
random coefficients of growth parameters including
growth rate and mature BW; 3) to investigate the effect
of minor feed restriction on production efficiency.
MATERIALS AND METHODS

The animal protocol for the study was approved by
the University of Alberta Animal Care and Use Commit-
tee for Livestock (AUP00000121) and followed the
Canadian Council on Animal Care Guidelines and
Policies (CCAC, 2009).

Study Design

The current experiment consisted of a 2 ! 2 ! 2
factorial arrangement of treatments, with 2 heritage
strains, New Hampshire (NH) and Brown Leghorn
(BL), 2 sexes (male and female), and 2 feeding levels
(ad libitum (AL) and restricted in which they were given
95% of the AL intake of a paired bird closest in BW).
Each bird was an experimental unit.

Birds, Housing, and Management

A total of 32 birds (16 mixed-sex birds from each
strain) were kept in an environmentally controlled facil-
ity at a stocking rate of 6.0 birds per m2 from hatch to
17 wk of age. The birds were housed in a single pen
containing 4 precision feeding stations. All birds on
both treatments were fed individually by a PF system
(Zuidhof et al., 2017) that could apply the feeding treat-
ments to each individual bird. Therefore, every bird was
an experimental unit. Room temperature was
maintained at 33�C during the first 2 d, and from day
3 onward temperature was gradually reduced to 20�C
by week 5. A commercial standard mash starter diet
was provided from 1 to 28 d of age, followed by a
mash developer diet from 28 to 119 d of age. The ME
(kcal/kg), CP, and digestible Lys were 2,800, 19.00,
and 1.00% for the starter, and 2,980, 16.45, and 0.75%
for the developer, respectively. Water was provided AL
throughout the experiment. At 25 d of age each individ-
ual bird was equipped with a wing band containing a
radio frequency identification (RFID) transponder to
be recognized by the PF system. Body weight and feed
intake data were recorded by the PF system for each in-
dividual bird throughout the experiment. Pair feeding
was done from 12 to 17 wk of age. At 12 wk of age
feed-restricted birds were paired with a bird closest in
BW (23 6 14.6 g difference in BW of 2 pair birds),



RANDOM COEFFICIENTS IN GROWTH MODELS 3
and pair-fed at 95% of the AL intake of its match. Pair
feeding was implemented using the PF system software.
Therefore, PF system was able to identify the birds’
RFID and then provide the right amount of feed based
on the treatment of the bird.

The Nonlinear Mixed-Effect Gompertz
Model

Four Gompertz functions were evaluated. The
following fixed-effects model was the basic model:

BW 5Wm!exp2exp
2bðt2tinf Þ

[1]

Where Wm was mature BW; b was rate of maturing; t was
age (d); and tinf was inflection point (d).
Models with inclusion of random coefficients, either

Wmu or bu for individual Wm and b respectively, were
considered in models 2 and 3:

BW 5 ðWm1WmuÞ!exp2exp
2bðt2tinf Þ

[2]

WmuwNð0;VWmÞ

BW 5Wm!exp2exp
2ðb1bu Þðt2tinf Þ

[3]

buwN ð0;VbÞ
Finally, the model with inclusion of both random

coefficients (Wmu and bu) is shown in model 4:

BW 5 ðWm1WmuÞ!exp2exp
2ðb1bu Þðt2tinf Þ

[4]

WmuwNð0;VWmÞ

buwN ð0;VbÞ
The estimated fixed-effect parameters were Wm, b,

and tinf; these were population-level estimates of mature
BW, rate of maturing, and inflection point, respectively.
The random-effect parameters were Wmu and bu, and
these accounted for bird-specific variation in mature
BW and rate of maturing, respectively.

Calculation of Residual Feed Intake

Observed energy intake was calculated by multiplying
the observed daily feed intake (g) by the dietary energy
content (kcal/g). Predicted energy intake was estimated
using an empirical energy intake model and accounted
for energy used for maintenance and BW gain. A
nonlinear model of ME intake as a function of metabolic
BW and average daily gain (ADG) was used to estimate
RFI, which is shown in model 5 (Romero et al., 2009).

MEI5 a!BWb 1 c!ADG!BWd1ε [5]
Where MEI was ME intake (kcal/d); a was estimated
maintenance requirement or the average total heat
production from 8 to 17 wk of age (kcal/kgb); BW was
body weight (kg); c (kcal/g) was the coefficient repre-
senting energy requirement for gain (ADG, g/d); b and
d were exponents for BW to calculate the degree to
which BW affected the energy cost of maintenance and
gain, respectively; ε was residual or unexplained error.

Then RFI was calculated as

RFI5 observed MEI� predicted MEI

Statistical Analysis

BW measurements were fit to the fixed-effects model
[1] and random-effects models [2, 3 and 4] using the
NLMIXED procedure in SAS (Version 9.4, SAS
Institute Inc., Cary, NC, 2012). The NLMIXED proced-
ure was used to fit the energy partitioning model (equa-
tion [5]) as well. The energy initial values of covariance
parameters for running PROCNLMIXEDwere obtained
from covariance matrix of individual parameter esti-
mates. Under normality assumptions, minimized value
of22 log-likelihood and the Akaike information criterion
(AIC), Bayesian information criterion (BIC), and cor-
rected version of AIC (AICC), provided by the software,
were used for the evaluation of alternative models in
terms of their fitting performance (Akaike, 1974;
Schwartz, 1978). The criteria were computed as follows:

AIC 5 2f ðbqÞ12p

AICC 5 2f ðbqÞ1 2pn
n2p21

BIC 5 2f ðbqÞ1p logðsÞ
where f was the negative of the marginal log-likelihood
function, bq the vector of parameter estimates, p was the
number of parameters, n was the number of observations,
and swas the number of subjects. Lower values of these sta-
tistics reward preferred goodness of fit of the model to the
data among alternative models, rewarding a more accurate
explanation of variance. Adding more parameters into the
model penalizes the fit statistic. For example, AIC will in-
crease by 2 for every additional parameter (p) estimated.
Growth parameters and their relevant random coefficients
were estimated using the Dual Quasi-Newton optimization
technique (Al-Baali and Fletcher, 1985). For models con-
taining random effects, the Adaptive Gaussian Quadrature
method was used as an integration method. A K-fold cross-
validation method was used to evaluate the predictive per-
formance of the models. The data set was randomly parti-
tioned into 5 (K 5 5) mutually exclusive equal subsets
using the SURVEYSELECT procedure of SAS, and the
procedure was repeated 10 times. Each time, K-1 subsets
were used as a training set and one subset was used for
testing. The R-square of the relationship between observed
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and predicted BW; the mean absolute error (MAE); the
mean square error (MSE); and the root mean square error
(RMSE) were calculated as cross-validation statistics for
the testing data (Yang and Huang, 2014). Cross-
validation statistics were computed as follows:

MAE5
1
n

Xn
i51

jyi2 byij
MSE5

1
n

Xn
i51

ðyi2byiÞ2

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i51

ðyi2byiÞ2s

where yi was the i
th BW observation, byi was the predicted

value for the ith BW observation, and n was the number of
observations.

For nonlinearmixedmodels, SAS provides no straight-
forward way to assess the serial correlation of the resid-
uals. To get insight into the residual serial correlation,
Figure 1. Residuals for a) fixed-effects growth model [1] BW 5Wm! exp
maturing random coefficient (bu); c) nonlinear mixed-effects growth model [
effects growth model [4] including both Wmu and bu, for mixed-sex New Ha
we plotted the lag residuals vs. residuals for each model
and conducted a regression analysis to compare R-square
and regression coefficients of the models (Gooijer and
MacNeill, 1999). Three-way analyses of variance were
conducted on growth random coefficients (Wmu and
bu) using the MIXED procedure of SAS, with the feed
allocation treatment, sex, and strain as sources of varia-
tion. RFI was analyzed as a four-way ANOVA using
MIXED procedure in SAS where feed allocation treat-
ment, sex, strain, and period (pre-pair-feeding and pair-
feeding) were considered as source of variations. Pairwise
differences between means were determined with the
PDIFF option of the LSMEANS statement and were re-
ported as different when P � 0.05. Trends were reported
where 0.05 , P � 0.10.
RESULTS

Model Comparison

Figure 1 illustrates the residuals for fixed-effects and
random-effects models. Inclusion of random effects
accounted for bird-specific variation in Wm and b
2exp2bðt2tinf Þ ; b) nonlinear mixed-effects growth model [2] including rate of
3] including mature BW random coefficient (Wmu); d) nonlinear mixed-
mpshire and Brown Leghorn heritage birds.



Table 1. Estimated growth parameters, standard errors, and model selection criteria from fixed- and mixed-effects growth models for mixed-sex New Hampshire and Brown Leghorn heritage
birds.

Model 1 Model [1] Model [2] Model [3] Model [4]

Parameter 2 Estimate SEM Pr . jtj Estimate SEM Pr . jtj Estimate SEM Pr . jtj Estimate SEM Pr . jtj
Wm 1.98 0.0505 ,0.001 1.97 0.097 ,0.001 2.94 0.029 ,0.001 1.99 0.105 ,0.001
B 0.027 0.0009 ,0.001 0.027 0.0001 ,0.001 0.017 0.0006 ,0.001 0.027 0.0004 ,0.001
s2

e 0.053 0.0013 ,0.001 0.0019 4.8E-5 ,0.001 0.0049 0.0001 ,0.001 0.001 2.5E-5 ,0.001
s2

Wm - - - 0.2985 0.075 0.004 - - - 0.34 0.087 0.004
s2

b - - - - - - 1.2E-5 4.6E-6 0.013 5.8E-6 2.34E-6 0.10
sWmb - - - - - - - - - 20.00042 0.00029 0.15

Model fitting statistics3

22log-likelihood 2263 210,733 27,714 212,679
AIC 2255 210,723 27,704 212,665
AICC 2255 210,723 27,704 212,665
BIC 2230.7 210,716 27,697 212,655

Cross-validation statistics4

MAE 0.1565 0.0304 0.0565 0.0183
MSE 0.0548 0.0019 0.0049 0.0010
RMSE 0.2342 0.0439 0.0705 0.0317
R-square 0.824 0.993 0.984 0.996

1Model [1]: Fixed-effects model BW 5Wm! exp2exp2bðt2tinf Þ . Model [2]: Mixed-effect model including a random effect (Wmu) forWm.Model [3]: Mixed-effect model including a random effect (bu) for b. Model [4]:
Mixed-effects model including random effects (Wmu and bu) for both Wm and b.

2Wm5mature BW; b5 rate of maturing; s2
e 5 residual BW variance; s2

Wm 5 the individual variance in mature BW; s2
b 5 the individual variance in rate of maturing; sWmb5 individual covariance between

random effects.
3AIC 5 Akaike information criterion; BIC 5 Bayesian information criterion.
4MAE 5 Mean absolute error; MSE 5 Mean square error; RMSE 5 Root mean square error; R-square 5 Coefficient of determination of observed BW with predicted BW by the testing model in a k-fold cross

validation.
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Table 2. Regression analysis for lag-residual vs. residual for fixed- and random-effect growth models for mixed-sex New Hampshire
and Brown Leghorn heritage birds.

Model 1 Model [1] Model [2] Model [3] Model [4]

Parameter Estimate SEM Pr . jtj Estimate SEM Pr . jtj Estimate SEM Pr . jtj Estimate SEM Pr . jtj
Intercept 0.00038 0.0004 0.35 0.0003 0.0004 0.35 0.0005 0.0004 0.19 0.0004 0.003 0.29
Slope 0.97 0.0017 ,0.001 0.84 0.0091 ,0.001 0.91 0.0058 ,0.001 0.71 0.012 ,0.001
R-square 0.98 0.72 0.88 0.51

1Model [1]: Fixed-effects modelBW 5Wm! exp2exp2bðt2tinf Þ ; Model [2]: Mixed-effectmodel including a random effect (Wmu) for mature BW(Wm);
Model [3]: Mixed-effect model including a random effect (bu) for rate of maturing (b); Model [4]: Mixed-effects model including random effects (Wmu
and bu) for both mature BW (Wm) and rate of maturing (b).
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resulted in reduced bias (systemic error) in prediction of
individual BW through increasing the homogeneity of
residual variation. This confirms that the random
effects accounted for a considerable amount of variation
in the dependent variable. Estimates of nonlinear
Gompertz growth parameters obtained with fixed and
mixed-effects models along with model selection criteria
are presented in Table 1. The residual variance
decreased for models [2], [3], and [4] as compared with
model [1] by 90.7, 96.4, and 98.1%, respectively, which
indicated that more variation was accounted for. By
incorporating a random effect into the fixed-effects
model, part of the error variation (s2

e) was partitioned
into bird-specific variation in Wm (s2

Wm in model [2])
and b (s2

b in model [3]), resulting in a lower residual
variance for the models [2] and [3]. Further decline in
the residual variance of model [4] was a result of further
partitioning the error variation into individual differ-
ences in mature BW (Wm), the rate of maturing (b),
and their covariance (sWm,b). The fitting criteria infer
that model [4] was the preferred model because it
diverted appropriate bird-specific variation from the
residual error term. The log-likelihood, Akaike and
Bayesian information criteria were all lower in model
[4] compared with other models. Cross-validation statis-
tics summarizing the predictive performance of the
models is presented in Table 1. The coefficient of deter-
mination (R2) for random-effects models [2, 3, and 4]
was higher than that for the fixed-effect model [1]. Model
Table 3. Estimated mature BW 1 random coefficient (W
ficient (b1 bu) for strain, sex, and treatments by growthm
rate of maturing for mixed-sex New Hampshire and B
restricted feed intake pair-fed treatments.

Parameter1 Population average

Average devia

Strain2

BL NH

Overall Wm (kg) 2.00
Wmu 20.299 0.46
SEM 0.106 0.0490 0.04
P-value ,0.001

Overall b 0.0273

bu 20.00034 0.00
SEM 0.00046 0.00062 0.00
P-value 0.48

1Wm: mature BW (Wm); Wmu: random coefficient for Wm
2BL: Brown Leghorn; NH: New Hampshire.
3AL: Ad libitum; Res: Feeding level; AL: Ad libitum; Res: Re

paired bird closest in BW.
[4] had the highest coefficient of determination
(R2 5 0.996) indicating that 99.6% of the variation in
predicted BW of the testing data was explained by the
observed BW data. Furthermore, model [4] had the
lowest MAE, MSE, and RMSE among the models.
Therefore, for the current data set, model [4] should be
considered the model of choice to predict growth.
Table 2 shows regression analysis of lag residual

against residual for all models used in this trial to assess
the serial correlation of the residuals. The coefficient of
determination (R2) for random-effects models [2, 3,
and 4] was lower than that for the fixed-effect model
[1], with the lowest one for model [4] (R2 5 0.51), which
means that only 51% of the variation in lag-residual in
model [4] was explained by the residual. In other words,
it showed a low degree of the relationship between
adjacent residual and residual, which was preferred.
Therefore, it could be concluded that including both
random effects of mature BW (Wmu) and rate of
maturing (bu) in model [4] reduced autocorrelation bias
in longitudinal growth data.
Estimated Growth Parameters

Table 3 shows the estimated mature BW and rate of
maturing along with their relevant random coefficients
for model [4]. Overall Wm and b estimates for both the
fixed and random-effects models were similar
(Wm5 2.006 0.106 and b5 0.02736 0.00046) because
m 1 Wmu) and rate of maturing 1 random coef-
odel [4] including random effects of mature BWand

rown Leghorn heritage birds under ad libitum and

tion of random coefficient from the population average

Sex Treatment3

Female Male AL Res

8 20.324 0.493 0.246 20.077
62 0.0413 0.0533 0.0455 0.0497

,0.001 ,0.001

028 0.00028 20.00035 20.00117 0.0011
058 0.00052 0.00067 0.00057 0.00063

0.47 0.014

; b: rate of maturing; bu: random coefficient for b.

stricted from 12 to 17 wk of age at 95% of the AL intake of a



Table 4. Residual feed intake of mixed-sex New Hampshire and
Brown Leghorn heritage birds under ad libitum and restricted feed
intake pair-fed treatments prior to and during pair feeding.

Effect RFI (kcal/d)1 SEM

Period
Pre-pair-feeding 17.200 2.833
Pair-feeding 24.878 3.609

FL2

AL 12.660 4.050
Res 20.338 4.445

Sex
Male 13.564 4.758
Female 21.241 3.678

Strain3

BL 20.728 4.367
NH 13.050 4.134

P-value
Period ,0.0001
FL 0.045
Sex 0.025
Strain 0.035
FL ! Sex 0.055
FL ! strain 0.372
Strain ! Sex 0.380
FL ! Period 0.447
Strain ! Period 0.951
Sex ! Period 0.765
FL ! Strain ! Sex 0.390
FL ! Strain ! Period 0.008
FL ! Sex ! Period 0.812
Sex ! Strain ! Period 0.042
FL ! Sex ! Strain ! Period 0.839

1RFI: Residual feed intake.
2FL: Feeding level; AL:Ad libitum; Res: Restricted from 12-17 wk of age

at 95% of the AL intake of a paired bird closest in BW.
3BL: Brown Leghorn; NH: New Hampshire.
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the expected means of the mixed effect model were the
same as that of the fixed-effect model and the data
were balanced for all birds. The values for random coef-
ficients of the growth parameters were bird-specific and
should be interpreted such that Wm for the BL strain
was 0.299 kg less than the overall mean Wm (2.00 kg),
or 2.00–0.299 5 1.701 kg; correspondingly, Wm for the
NH strain was 2.00 1 0.468 5 2.468 kg, and so on for
all effects tested. Within the NH strain, the random
coefficient for mature BW (Wmu) was greater for males,
Figure 2. Interaction effect of feeding level, strain, and period (Panel a), a
Brown Leghorn heritage birds under ad libitum and restricted feed intake pa
AL: Ad libitum; Res: Restricted from 12 to 17 wk of age at 95% of the AL int
shire. 2F: Female; M: Male. The authors declare no conflict of interest.
and for the AL treatment, and within the BL strain, Wm
was greater for males and the AL treatment.
Production Efficiency

Residual feed intake data, as a sense of production ef-
ficiency, are presented in Table 4. An interaction effect
was seen among feeding level, strain, and period
(P 5 0.008; Figure 2). The RFI was decreased with
age for all groups, that is, the birds became more efficient
as age advanced. Residual feed intake of the AL NH
birds decreased in the second period, while there was
not same decrease in RFI for feed-restricted group dur-
ing the second period. However, minor feed restriction
decreased RFI in BL strain, indicating an increased effi-
ciency. The interaction effect among sex, strain, and
period (P5 0.042) indicated greater efficiency for female
BL and male NH during the second period as age
advanced. There was a trend to reduced RFI for
restricted fed males compared with AL males
(P 5 0.055).
DISCUSSION

The pair-feeding results indicated a sex and strain-
dependent effect of a minor feed restriction on
production efficiency. In this regard, the results of other
research (Mebratie et al., 2017) showed a clear sex by
genotype interaction in broilers, which indicated that
the male BW records had a considerably larger residual
environmental variance than female records, which
means female records are more informative than male
records. Overall, minor feed restriction increased
production efficiency, but this was not confirmed for
NH strain in the current study.

In this study, a nonlinear mixed-effects growth model
was developed for growth data of NH and BL birds. The
growth model with 2 random parameters for Wm and b
was found to be the most parsimonious model based on
fit statistics, and further analysis showed that it reduced
autocorrelation bias in longitudinal growth data. The
mixed-effects model provided an estimation of random
nd sex, strain, and period (Panel b) on RFI value of New Hampshire and
ir-fed treatments. 1FL: Feeding level; AL: Ad libitum; Res: Feeding level;
ake of a paired bird closest in BW; BL: Brown Leghorn; NH: New Hamp-

mailto:Image of Figure 2|eps
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coefficients for growth parameters of different subsets of
the population. Mature BW (Wm) and rate of maturing
(b) could be used in genetic selection programs. These
random coefficients could be used as a tool in different
scenarios of poultry production system such as stochas-
tic prediction of BW of individuals at any age to better
match nutrient supply to nutrient requirements, and
to predict and evaluate the economic impact of manage-
ment decisions on designing target growth curves,
breeding programs, and nutritional management
decisions.
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