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Background
The goal of gene banks is to secure genetic resources for research and breeding now and 
in the future. In 2009, gene banks worldwide maintained an estimated 7.4 million acces-
sions, 1.4 million more than in 1996 [1]. Roughly 30% of this increase is accounted for 
by the increased interest in crop wild relatives (CWR), which include the progenitors of 
domesticated crops as well as species closely related to them. The use of crop wild rela-
tives to improve crop yield, pest and disease resistance, and tolerance for biotic and abi-
otic stress is well established, with important examples dating back more than 60 years 

Abstract 

Background:  To address the need for easy and reliable species classification in plant 
genetic resources collections, we assessed the potential of five classifiers (Random 
Forest, Neighbour-Joining, 1-Nearest Neighbour, a conservative variety of 3-Nearest 
Neighbours and Naive Bayes) We investigated the effects of the number of accessions 
per species and misclassification rate on classification success, and validated theirs 
generic value results with three complete datasets.

Results:  We found the conservative variety of 3-Nearest Neighbours to be the most 
reliable classifier when varying species representation and misclassification rate. 
Through the analysis of the three complete datasets, this finding showed generic value. 
Additionally, we present various options for marker selection for classification taks such 
as these.

Conclusions:  Large-scale genomic data are increasingly being produced for genetic 
resources collections. These data are useful to address species classification issues 
regarding crop wild relatives, and improve genebank documentation. Implementation 
of a classification method that can improve the quality of bad datasets without gold 
standard training data is considered an innovative and efficient method to improve 
gene bank documentation.

Keywords:  Plant genetic resources, Species classification, Machine learning, Crop wild 
relatives, Gene bank documentation, Genomics

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

van Bemmelen van der Plaat et al. 
BMC Bioinformatics          (2021) 22:173  
https://doi.org/10.1186/s12859-021-04018-6

*Correspondence:   
artur.vanbemmelen@wur.nl 
Centre for Genetic Resources, 
Wageningen University 
and Research, P.O. Box 16, 
6700 AA Wageningen, The 
Netherlands

http://orcid.org/0000-0003-3450-2343
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04018-6&domain=pdf


Page 2 of 18van Bemmelen van der Plaat et al. BMC Bioinformatics          (2021) 22:173 

[2]. Since the introduction of marker assisted breeding and more advanced technologies, 
the use of crop wild relatives has only intensified [3].

The increased interest in a broad range of crop wild relatives also necessitates exper-
tise in species identification, as the distribution of misidentified plant materials can 
have significant adverse effects on the subsequent use. Traditionally, species identifica-
tion has been the domain of taxonomists, who identify species based on morphologi-
cal features. This is a time-consuming task, while limited morphological variation may 
still cause unreliable identifications [4, 5]. In addition to initial misclassifications, gene 
bank documentation may contain errors due to complicated accession histories involv-
ing exchanges among institutions and multiple rounds of regeneration. As a result, mis-
taken identities in genetic resources collections are not uncommon. Therefore, efficient 
methods to identify and correct species misclassifications would be very helpful to gene 
banks.

The need for easy and reliable species identification is not restricted to gene banks. 
It has existed for much longer, in disciplines ranging from ecology to food fraud detec-
tion [6], and gave rise to the conception of DNA barcoding in 2003. DNA barcoding 
is a taxonomic method that uses variation in the mitochondrial gene cytochrome c 
oxidase I (cox1) for species identification [7]. Since the first publication, DNA barcod-
ing has received wide support for its straightforward approach and efficacy in both the 
identification of biological specimens and the discovery of species [8, 9]. However, some 
criticisms have been levelled at the method as well, directed at its departure from clas-
sic taxonomy by using genetic distance measures instead of character based identifica-
tion, the lack of an objective set of criteria to delineate species when using these distance 
measures, and whether using only the cox1 gene is really sufficient [10].

Although cox1 has been shown to be successful in identifying species of butterflies, 
birds, bats, fish, and mosquito [11–15], cox1 shows insufficient variation to distinguish 
species in various other groups, such as vascular plants, fungi, invertebrates, reptiles and 
amphibians [16–19]. An alternative to cox1 in these groups remains elusive, but it is evi-
dent that the species resolution of DNA barcoding benefits from including additional 
loci in the analyses to increase the number of divergent sites [20, 21].

Still, the literature addressing the methodological shortcomings of DNA barcoding is 
valuable and very informative. The classification performance of many candidate meth-
ods has already been analyzed and compared in DNA barcoding, such as such as Neigh-
bour-Joining (NJ), k-Nearest Neighbours (k-NN), Classification and Regression Trees 
(CART), Random Forest, kernel methods, Naive Bayes classifiers, Repeated Incremental 
Pruning to Produce Error Reduction (RIPPER) [22], Support Vector Machines (SVMs), 
BLOG [23], and DNA-BAR [24–28]. The overlap of candidate methods between stud-
ies, however, is sparse. We selected a variety of methods from a pool of successful can-
didate methods, and aimed for diversity in methodology. This resulted in the selection 
of Random Forest, NJ, k-NN (at k = 1 and k = 3), and Naive Bayes. The first three were 
the most promising methods in the comparison study of Austerlitz et al. [26], whereas 
Naive Bayes was one of the best performers in the study of Weitschek et al. [27]. These 
methods broadly constitute three types of approaches: distance methods (k-NN), phylo-
genetic methods (NJ), and supervised machine learners (Random Forest, Naive Bayes). 
In these comparisons, NJ will be representative of the commonly used methodology to 
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correct misclassifications in diverse datasets, as these are currently based on phyloge-
netic analysis.

In this paper, we depart from the single gene approach of DNA barcoding strategies 
and instead employ SNPs from throughout the genome. This will benefit gene banks in 
three ways. Firstly, methods will be more generalizable across species as there will be 
more variation to utilize in species delineation. Secondly, the methods will be applicable 
to a broader range of genotyping datasets, including non-sequencing methods such as 
AFLPs. Thirdly, in their criticism of DNA barcoding, many have pointed out that any 
method relying on a single gene will encounter a problem in detecting and classifying 
hybrid introgressions [29–31], information which will be of interest for germplasm end-
users. Although our datasets don’t include enough confirmed hybrid accessions, we 
expect that genome-wide approaches will be more successful in identifying the major 
donor species of a hybrid.

For the vast majority of crop wild relatives, a verified genomic dataset with which to 
train classification models is lacking. For a select number of crops, the creation of such 
a dataset will only be a matter of time, but for most crops the economic incentive is 
lacking. In the short- and long-term, the genetic resources community would therefore 
benefit from a classification strategy that does not require a perfectly classified training 
set, but will instead work with datasets as they are available for genetic resources col-
lections, i.e. mostly verified but misclassifications may be present. If the development of 
such a strategy is successful, the genomic data that are already available can immediately 
be used to improve the classification accuracy of the collection.

There are a number of difficulties to this development. Firstly, there are multiple data-
set characteristics that have been shown to impact classification success in DNA barcod-
ing [26], such as the number of species, their respective speciation time, and the number 
of accessions per species. These characteristics will likely also affect our classification 
models. Supervised learners in particular (e.g. Random Forest and Naïve Bayes) may 
need more accessions per species to perform well. To test at what point, if any, machine 
learners are no longer recommended, curated datasets are created to study the effect of 
the number of accessions per species on the performance of classifiers.

Secondly, classification models should be able to learn from bad training data, i.e. 
training data with misclassifications. To determine which classifiers (if any) are most 
suited to work with imperfectly classified data, we simulated different misclassification 
rates. Comparison between the applied misclassification rate and the classification suc-
cess of classifiers should reveal whether the classifiers succeeded in improving the qual-
ity of the dataset.

Thirdly, a rather severe imbalance in species representation is found in CWR datasets. 
Wild relatives that will readily exchange genes of interest with their cultivated counter-
parts (species belonging to the primary gene pool) are much higher represented in data-
sets than wild relatives from the secondary and tertiary gene pool, as these datasets are 
usually generated for breeding purposes. To determine how well our results translate 
to such datasets, we tested the classifiers on three complete datasets, and used cross-
validation on the supervised machine learners to how much of their initial success may 
be due to over-fitting.
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The goal of this work is to lay the basis for curators of genetic resources to discover 
possible misclassifications in genotyped collections, regardless of species, inclusion 
of wild relatives, or genotyping method. This will improve the quality of collections at 
minimal cost, and contribute towards making bioinformatics more accessible to genetic 
resource specialists.

Results
Performance on curated datasets

To determine if classifiers can improve the quality of a bad training dataset, they were 
trained on curated Helianthus datasets with varying rates of artificially induced misclas-
sifications. They then classified these curated datasets. To examine the impact of spe-
cies representation on this process, the number of representatives per species was also 
varied. Through 5,000 repetitions of artificially induced misclassifications in different 
curated datasets, the best classifiers for each of these datasets were identified (Table 1).

When the species representation exceeded 4, Random Forest was the best classifier. 
When species representation was lower, Naive Bayes performed markedly better than 
Random Forest. Overall, 3-NN showed the best performance (median prediction accu-
racy of 0.94 vs Random Forest’s 0.92). Random Forest and 3-NN have proven them-
selves adept at improving the quality of a bad dataset, and to provide a significant 
improvement over NJ, the method that represents the current methodology to address 
misclassifications.

Regardless of the quality of the curated datasets, NJ was outperformed. With more 
optimal datasets, specifically datasets including 10 accessions per species and a misclas-
sification rate of 6.25%, NJ struggled to improve the quality. Random Forest and 3-NN, 

by comparison, reduced the misclassification rate in these datasets to a median of 2%. 

Table 1  Median prediction accuracy in the 15 × 5,000 curated Helianthus datasets

Classifiers are Random Forest (RF), Naive Bayes (NB), Neighbour-Joining (NJ), 1-Nearest Neighbour (1-NN), and 3-Nearest 
Neighbours (3-NN) respectively. For each parameter combination, the highest median score is presented in bold

Accessions per species Misclassification rate 
(%)

RF NB NJ 1-NN 3-NN

6.25 0.63 0.88 0.81 0.81 0.75

2 12.50 0.56 0.75 0.75 0.75 0.63

18.75 0.50 0.69 0.69 0.69 0.63

6.25 0.84 0.97 0.91 0.78 0.97
4 12.50 0.81 0.88 0.84 0.75 0.94

18.75 0.78 0.81 0.78 0.69 0.88
6.25 0.96 0.96 0.96 0.94 0.96

6 12.50 0.94 0.85 0.92 0.88 0.94
18.75 0.90 0.77 0.88 0.81 0.88

6.25 0.95 0.88 0.94 0.83 0.98
8 12.50 0.94 0.81 0.89 0.78 0.95

18.75 0.92 0.70 0.84 0.72 0.91

6.25 0.98 0.88 0.93 0.91 0.98
10 12.50 0.96 0.75 0.89 0.85 0.94

18.75 0.96 0.65 0.85 0.79 0.89

Median 0.92 0.81 0.88 0.79 0.94
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With less optimal datasets, in this case 4 accessions per species and a misclassification 
rate of 12.50%, 3-NN reduced the misclassification rate to a median of 6%, a marked 
improvement. In contrast, NJ actually increased the misclassification rate of these data-
sets and output data with a median misclassification rate of 16%.

In all cases, the classifiers showed reduced performance as misclassification rate rose. 
Yet surprisingly, the misclassification rate appears to have little influence on the best 
classifier. Exceptions were observed for datasets with 4 or 8 accessions per species, but 
the difference in prediction accuracy was only minimal in these cases. It is possible that 
this effect (or lack thereof ) is caused by the procedure used to induce misclassifications. 
Because accessions to misclassify were selected just as randomly as the species to mutate 
their identity to, all species were affected by these artificial misclassifications at similar 
rates. This random misclassification effect should be much easier for classifiers to miti-
gate than the more structural nature of misclassifications one would expect when two or 
more morphologically similar species are systematically confused.

Performance on complete datasets

To test whether the conclusions of the curated datasets would hold and would show 
generic value, we compared the performance of the classifiers on three unmodified 
complete datasets. For this purpose, we acquired an unbiased estimate of prediction 
accuracy of the supervised machine learners we acquired an unbiased prediction esti-
mate through leave-one-out cross-validation or bagging. The distance-based methods 
classified the data as before. Additionally, classification performance was quantified by 
prediction accuracy per species [see Additional file 1]. These tables show 3-NN as the 
best performing classifier. The performance of 3-NN is consistent with the results of the 
curated datasets. As expected based on the results of the curated datasets, the perfor-
mance of Random Forest improved when species were represented by more accessions. 
The overall difference between RF, NJ, and 1-NN, however, appears slight.

Perhaps most surprising result is the extreme poor performance of Naive Bayes. It per-
formed best in the resequenced tomato dataset, in which its correct classifications con-
sist almost exclusively of the species with the largest representation, S. lycopersicum and 
S. habrochaites. Conversely, it misclassified every single one of the 100 H. annuus acces-
sions, which suggests that species representation is not solely at the root of the poor 
performance.

As expected based on the curated datasets, Random Forest performed best on the 
AFLP tomato dataset, which contained the fewest species represented by 4 or less acces-
sions. There was no difference between the out-of-bag prediction accuracy, and the 
fraction of accessions that was correctly classified. This is unsuprising with forests with 
10,000 trees in with relatively small datasets.

Discussion
The aim of this research was to identify the most reliable methods for genome-wide 
species classification of imperfectly classified datasets. We used methods that previ-
ously proved successful in DNA barcoding and invesigated their performance under 
varying rates of misclassification and species representation on genome-wide SNPs 
We then assessed their performance on three complete datasets. Here we reflect on the 
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methodology used in this research, as well as specify the methodologies we recommend 
to the genetic resources community.

Simulated misclassifications

To determine the effect of misclassification rate on classifier performance, misclassifica-
tions were simulated by randomly changing an accessions’ species to a random different 
species from the same dataset. This resulted in a reduced performance for all classifiers 
as the misclassification rate rose, yet surprisingly, the misclassification rate appeared to 
have little influence on the best classifier. Exceptions were observed for datasets with 4 
or 8 accessions per species, but the difference in prediction accuracy was only minimal 
in these cases. It is possible that this effect (or lack thereof ) is caused by the method 
used to induce misclassifications. Accessions to misclassify were selected randomly, and 
as such, all species were affected by these artificial misclassifications at similar rates. This 
effect might be much easier for classifiers to mitigate than the more structural nature of 
misclassifications one would expect when two or more morphologically similar species 
are systematically confused.

Validity of outlier detection methods

For the curation of the Helianthus datasets, potential misclassifications in a subset of 
sunflower species were identified based on either their outlying position in the neigh-
bour-joining tree [Additional file 2], or their relatively small proximity to others of their 
class in a Random Forest [see Additional file  3]. We reexamined these potential mis-
classifications using the complete sunflower dataset. For this, we compared a priori 
classifications, and predictions of both Random Forest and 3-NN, the most reliable clas-
sification methods.

The performance of the Random Forest outlier detection method was unexpectedly 
poor, as only two out of six (max148 and niv07) accessions marked as outliers were actu-
ally re-classified by Random Forest and 3-NN. Comparison of suspected outliers with 
non-outliers revealed that considerably fewer reads were generated for outliers (median 

Table 2  Confusion matrix of H. petiolaris and H. neglectus in the sunflower dataset

Confusion matrix showing fractionally how often H. petiolaris and H. neglectus are classified as themselves, as each other, 
and as other species by Random Forest (RF), Naive Bayes (NB), Neighbour-Joining (NJ), 1-Nearest Neighbour (1-NN), and 
3-Nearest Neighbours (3-NN)

RF NB NJ

A priori classification H. pet H. neg Other H. pet H. neg Other H. pet H. neg Other

H. petiolaris (n = 18) 1.00 0.00 0.00 0.00 0.00 1.00 0.94 0.06 0.00

H. neglectus (n = 19) 0.11 0.84 0.05 0.00 0.00 1.00 0.05 0.84 0.11

1-NN 3-NN

A priori classification H. pet H. neg Other H. pet H. neg Other

H. petiolaris (n = 18) 0.11 0.00 0.89 1.00 0.00 0.00

H. neglectus (n = 19) 0.00 0.53 0.47 0.05 0.89 0.05
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1.0 million vs 2.4 million). This strongly suggests Random Forest used the number of 
imputed values to distinguish outliers from non-outliers. We used the most common 
allele at each locus to impute missing values, which in this case is likely the allele belong-
ing to Helianthus annuus, which is represented by the vast majority of the accessions 
(Table  2). This way, we likely introduced Helianthus annuus alleles in accessions that 
were not Helianthus annuus, which led to their relative dissimilarity to others of their 
species. Interestingly, Random Forest was robust enough to confirm the a priori classi-
fications despite this unfortunate artefact of the imputation method. This finding shows 
both the robustness of Random Forest classification, but also the sensitivity of the Ran-
dom Forest outlier detection technique. Still, we do not recommend using Random For-
est outlier detection technique for datasets with missing values imputed using the most 
common allele at each unknown locus, because the combination seems especially prone 
to false positives.

The performance of NJ-based outlier detection fared much better. All accessions 
marked as outlying, with the exception of pet02, were found to be a different species 
by Random Forest and 3-NN classification. At first glance [see Additional file 1] pet02 
seems distant from the cluster of other Helianthus petiolaris, but rotation of subtrees 
could position it much closer. How close is close enough to not be considered an outlier? 
This is a technique that uses human judgment, and this accession shows that interpreting 
phylogeny through trees can be rather tricky. Instead of this technique, we recommend 
using classification methods as outlined in the section "Practical Recommendations".

Challenges in species classification

Some of the species represented in the datasets are notably harder to classify than oth-
ers with similar species representation, tomato species S. corneliomulleri and S. peru-
vianum senso stricto in particular. Nearly all classification mistakes involving these 
species, mixed up the two (Table 3). These are two of four species into which S. peru-
vianum sensu lato was recently split [51, 52]. Peralta et  al. describe their approach 

Table 3  Confusion matrix of S. peruvianum and S. corneliomulleri in the AFLP dataset

Confusion matrix of the AFLP tomato dataset, showing fractionally how often S. peruvianum and S. corneliomulleri are 
classified as themselves, as each other, and as other species by Random Forest (RF), Naive Bayes (NB), Neighbour-Joining 
(NJ), 1-Nearest Neighbour (1-NN), and 3-Nearest Neighbours (3-NN)

RF NB NJ

A priori classification S. per S. cor Other S. per S. cor Other S. per S. cor Other

S. peruvianum (n = 12) 0.92 0.08 0.00 0.00 0.00 1.00 0.75 0.25 0.00

S. corneliomulleri (n = 4) 1.00 0.00 0.00 0.00 0.25 0.75 0.50 0.50 0.00

1-NN 3-NN

A priori classification S. per S. cor Other S. per S. cor Other

S. peruvianum (n = 12) 0.75 0.25 0.00 1.00 0.00 0.00

S. corneliomulleri (n = 4) 0.75 0.25 0.00 0.25 0.67 0.25
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towards this delineation as combining morphological, molecular, and ecological data, as 
well as having relied on clear morphological discontinuities to define entities. However, 
none of the strict consensus trees, based on either GBSSI gene sequences, AFLP data, 
or morphological characters presented by Peralta et al. [52] show delineation between 
these two species. This finding has since then been reproduced several times [43, 53, 54]. 
Moreover, no significant difference between the environments S. corneliomulleri and S. 
peruvianum s.s. inhabit was found either [55]. This lack of delineation clearly affected 
distance-based methods 1-NN and NJ, whereas 3-NN appears a bit more succesful. Per-
alta et  al. cite incomplete lineage sorting as explanation, a characteristic which would 
indeed foil distance-based methods such as phylogenetic trees, but should have left a 
supervised machine learner like RF mostly unaffected. Random Forest, however, was not 
able to distinguish these species any better than 3-NN.

Conversely though similarly, a recent study on gene flow between sunflower species 
H. petiolaris and H. neglectus found it was unlikely that these two populations represent 
two distinct isolated gene pools [56]. The authors argued therefore that the populations 
currently recognized as H. neglectus, do not warrant recognition as a distinct species but 
should instead be recognized as a subspecies of H. petiolaris. Despite this finding, RF, 
NJ, and 3-NN distinguished H. petiolaris and H. neglectus with success (Table 2).

While the sample sizes of this experiment are insufficient to draw conclusions, these 
findings suggest it might be fruitful to use classification methods alongside statistical 
methods when testing whether populations possess distinctive qualities.

The variable success of Naive Bayes

When comparing Table 4 with Table 3, it is evident that the prediction success of Naive 
Bayes is highly variable. Comparison of its performance on Solanum lycopersicum 
(Additional file 4) and Helianthus annuus (Additional file 5) suggests that this variabil-
ity is not solely due to species representation. Rish et al. (2001) show that Naive Bayes 
reaches its best performance in two opposite cases: completely independent features and 
functionally highly dependent features [57]. These cases might translate to these optimal 
cases: classification of a trait unrelated to lineage (completely independent), or classifica-
tion in species with very low intraspecific diversity (highly dependent). This hypothesis 
would be consistent with a good classification performance on S. lycopersicum, as the 
accessions that represent it are all cultivated material and have very low diversity, and a 
bad performance on Helianthus annuus, the progenitor of cultivated sunflower, which 
has one of the highest rates of genetic diversity among wild sunflowers [58].

Table 4  Prediction accuracy per complete dataset.

The supervised machine learners (RF and NB) have been crossvalidated as described in the Methods section. The best 
performance for each dataset is presented in bold

RF OOB NB LOO NJ 1-NN 3-NN

Resequenced sunflower 0.86 0.07 0.91 0.81 0.96
AFLP tomato 0.92 0.14 0.84 0.86 0.95
Resequenced tomato 0.85 0.75 0.85 0.88 0.94
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Options for marker selection

There are no definite guidelines on how best to select markers from resequenced data 
sets and reduce them to a computationally more manageable number. We briefly tested 
two different strategies, namely (1) applying a strict filter to select only what one would 
perceive as high quality markers, and (2) randomly thinning the markers to a desired 
number. In the resequenced tomato data set, we found that filtering the markers (as 
opposed to thinning) led to a great decrease in classifier performance (median predic-
tion accuracy across classifiers of 0.91 vs. 0.73). In the resequenced sunflower dataset we 
found that the effect was opposite (0.82 vs. 0.90). By testing both strategies and choos-
ing the marker selection with the best results, we were able to achieve good prediction 
accuracy for all complete datasets. We therefore believe these strategies to be sufficiently 
sound for use in species classification. These strategies can be implemented using com-
mand line variant filtering tools such as VCFTools or Plink (which are very fast but cur-
rently only available on Linux or MacOS), or on Windows machines using R [59, 60] or 
Python[61].

Additionally, other options exist for marker selection, including using only variant sites 
present in orthologous genes [41], variant-pruning based on linkage disequilibrium [58], 
or even reference free comparisons [62–65]. Reference free strategies are expected to be 
less successful as genome coverage drops and will require the raw sequence reads (fastq 
files) instead of variant call files, but may otherwise be very effective in species lacking 
a reference genome. Among reference free methods, DiscoSNP++  [65] in particular 
prides itself on its user-friendliness, as it needs relatively little RAM memory and com-
putational time, and could therefore be run on a desktop computer. Overall, the choice 
for any particular method may be constrained by user expertise, computational capacity, 
sequencing depth and quality, and the availability of a suitable reference genome.

Conclusions
Gene banks play a crucial role in securing genetic diversity for research and breeding, 
now and in the future. The collection and correct classification of crop wild relatives is 
an important aspect of this work. Classifying accessions based on morphological fea-
tures alone, however, is time-consuming and error prone. As collections of crop wild 
relatives are increasingly genotyped and sequenced, this creates an excellent opportunity 
for gene banks to improve the quality of their documentation by identifying and cor-
recting misclassifications. Gold standard datasets, however, are lacking for many crops 
and crop wild relatives. As such, the ambitious premise of this work was to find the best 
method for species classification, regardless of species, inclusion of wild relatives, or 
genotyping method, while working with imperfectly classified datasets.

We found that a conservative variety of 3-Nearest Neighbours is particularly suited to 
improve the quality of a bad dataset, and is a significant improvement over Neighbour-
Joining, which represents the current phylogenetic methodology to address misclassi-
fications. Based on its performance on the three complete datasets, we feel confident 
that this variety of 3-Nearest Neighbours will reliably perform well on a large variety of 
datasets.

There are still more avenues to explore regarding the use and improvement of 
bad training data in species classification tasks, but based on this research, we have 
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formulated practical recommendations that can be used immediately by curators of 
genetic resources collections.

Furthermore, based on these findings and recommendations, a simple software tool 
could be developed to assist plant genetic resources curators in identifying potential 
misclassifications, using the current classifications and genomic data. Such a tool could 
eventually be developed further to study other descriptors, such as disease susceptibil-
ity, and to predict the likelihood of accessions being resistant and the likelihood of the 
prediction being correct. This has the potential to increase the quality of gene bank doc-
umentation tremendously, and thus increase the value of these priceless plant genetic 
resources.

Methods
To identify the flaws of various classification methods, we used curated but highly 
diverse datasets of sunflower. We artificially varied species representation (number of 
accessions per species) and misclassification rate (fraction of misclassified accessions) 
in these data sets, and used five different classification methods to correct the misclas-
sifications introduced. We then verified the generic value of these methods by applying 
them to three complete datasets.

Classification methods

We selected classification methods based on their success in DNA barcoding stud-
ies, and aimed for diversity in methodology. This resulted in the selection of Random 
Forest, NJ, k-NN, and Naive Bayes. The first three were the most promising methods 
in the comparison study of Austerlitz et  al. [26], whereas Naive Bayes was one of the 
best performers in the study of Weitschek et al. [27]. These methods broadly constitute 
three types of approaches: distance methods (k-NN), phylogenetic methods (NJ), and 
supervised machine learners (Random Forest, Naive Bayes). In these comparisons, NJ 
will be representative of the commonly used methodology to correct misclassifications 
in diverse datasets, as these are currently based on phylogenetic analysis.

As genebanks often work with species for which there are currently no gold stand-
ard classified datasets, the aim of this research is to find classification methods that can 
learn from bad training data, in such a way that they can improve the quality of the same 
data by reducing the number of misclassifications. We use a curated dataset with artifi-
cially introduced misclassifications to verify if models can actually improve the quality of 
the data, or if the models will output the same or even worse quality data when working 
with a bad training dataset.

Random forest

Random Forest is an algorithm that combines hundreds or thousands of decision trees, 
trains each one on a slightly different set of observations through bootstrapping, and 
splits each decision node based on a random subset of features (e.g. molecular mark-
ers). The forest will classify new samples by funneling them down all decision trees, and 
adopting the classification proposed by the majority of the trees [32]. This averaging of 
predictions (called bagging, or bootstrap aggregating), combined with the bootstrapping 
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of the observations improves the stability and accuracy of predictions, and helps to avoid 
over-fitting.

To implement the Random Forest algorithm, R package ranger [33] was used. This 
package is true to the original algorithm, but boosts computational efficiency through 
parallel processing. ranger was run with replacement with 10,000 trees, the default mtry 
value of √p, and the gini impurity split rule. Samples were classified by ranger internally, 
by only using the trees each sample was out of bag for. This means that each sample was 
effectively classified by 0.368 × 10,000 = 3,680 trees, hence the high number of trees ini-
tially chosen.

Because Random Forest does not allow for any missing data, values were imputed with 
the na.roughfix function from R package RandomForest [34]. This method replaces the 
missing allele at each site with the most common one. Although this imputation method 
is not very sophisticated, it is very fast, makes no assumptions about the data, and works 
independently of any class information.

Neighbour‑joining

Neighbour-Joining (NJ) is a phylogenetic clustering method that constructs a tree from 
a distance matrix [35]. This method was implemented using the functions dist.gene and 
nj from R package APE [36], and additionally a script to classify the samples based on 
the constructed NJ tree. This script was based on the description of Austerlitz et al., in 
their paper comparing various classification methods for DNA barcode analysis [26]. 
The distance matrix was computed with dist.gene with pairwise deletion enabled. With 
this option, dist.gene constructs a distance matrix by determining the number of diver-
gent sites through pairwise comparison, and discarding the markers for which data of 
one or both samples is missing. The classification script reads the NJ tree and assigns the 
query sample the majority species of the smallest subtree it occurs in. If no majority is 
found, the process is repeated with the second-to-one smallest subtree the query occurs 
in. If no majority species emerges in this subtree either, the query is determined to be 
ambiguous.

k‑nearest neighbours classification

We used two different Nearest Neighbours strategies, which vary in k number and dis-
tance measure. The first strategy is 1-Nearest Neighbour (1-NN), which assigns the 
query sample to the species of the most similar sample within the examined dataset. 
This strategy causes a problem when two nearest neighbours don’t share the same iden-
tity. Take, for example, a case of 2 neighbouring samples that are the same species, one a 
priori classification may be correct, and the other incorrect. 1-NN will assign the correct 
identity to the misclassified sample, but then go on and assign the incorrect identity to 
the other sample.

Nevertheless, we included 1-NN to put the results of other classification methods into 
perspective, because we consider a method that cannot outperform 1-NN unsuitable for 
implementation. To our knowledge, there is no R package that offers nearest neighbour 
classification with built-in leave-one-out cross-validation, so a custom function was 
written that computes the distance matrix only once, and then classifies the accessions 
while ignoring each query sample’s a priori classification. Distance between samples was 
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determined by APE’s dist.gene function with pairwise deletion enabled. dist.gene per-
forms a pairwise comparison for all samples and presents a conservative estimate of the 
number of divergent sites by ignoring all sites with missing values for one or both sam-
ples. The most similar sample is then selected and its species identity is assigned to the 
query sample.

The second strategy is a conservative variety of 3-Nearest Neighbours (3-NN), which 
includes the query sample itself among the three selected neighbours. The inclusion of 
the query sample amoung the neighbours increases the burden of evidence to overturn 
the a priori classification, as only one neighbour is needed to confirm it, while two are 
needed to overturn it in a majority vote. Simultaneously, this decreases the bare mini-
mum of accessions a species needs for unambiguous classification from 3 to 2. If there 
are ties for the third nearest sample, all candidates are included in the vote. If no major-
ity is reached, the sample is classified as ambiguous. 3-NN was implemented using the 
knn function from R package class, using k = 3, l = 2, and use.all = TRUE. This function 
uses Euclidian distance to determine similarity instead of the number of divergent sites, 
as used for 1-NN and NJ. Because this function does not allow missing data, missing 
data were imputed in the same manner as for Random Forest.

Naive bayes classifier

The Naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem. Bayes’ 
theorem describes the probability of example E being a member of class C, based on 
prior knowledge of prediction features that might be related to this class. For exam-
ple, if cancer is related to age, then with Bayes’ theorem, a person’s age can be used to 
more accurately assess the likelihood of them having cancer, compared to assessing the 
probability of cancer without this knowledge. The "naive" aspect of this classifier results 
from its assumption that each predictor is independent from all others. In our study, 
this amounts to disregarding linkage between markers. The independence assumption 
of Naive Bayes is rarely warranted, but works surprisingly well in practice. Zhang (2004) 
explored potential causes of this paradox and showed that Naive Bayes does not need 
true independence of predictors to perform optimally, but rather demands an even dis-
tribution of dependencies in classes, or dependencies that cancel each other out [37]. 
In DNA barcode classification, Naive Bayes has been found successful [25]. The authors 
claim that ignoring dependence between predictors can lead to poorly estimated class 
probabilities, but will still result in correct classifications if the correct group is the most 
probable. The Naive Bayes model was created with the naiveBayes function from R pack-
age e1071 [38], using a value of 1 for Laplace smoothing. Predictions were made using 
the predict function from e1071. The Naive Bayes classifier does not require missing data 
to be absent, but performs much better with a well-imputed dataset. Missing data were 
therefore handled in the same manner as for Random Forest, i.e. by imputing the most 
common allele at each site.
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Selected datasets

The datasets selected for the evaluation of classification methods were chosen based on 
their high number of crop wild relatives included, as well as their respective differences 
in species representation. The characteristics of the datasets are summarized in Table 5.

The dataset chosen to create the curated datasets is a resequenced sunflower data-
set [39], which includes 22 wild sunflower species. Of these species, 8 are represented 
by 10 or more accessions. The median number of accessions per species is 6.5. To sim-
plify analyses and boost computation speed, the variant sites were filtered for > 80% call 
rate, > 1% minor allele frequency, no indels, and a minimum of 200,000 reads per acces-
sion using VCFTools version 0.1.15 [40]. Additionally, individual genotypes were filtered 
to remove calls with < 5 reads. After filtering, 15,285 out of 545,531 sites, and 280 out of 
288 accessions remained.

The tomato dataset was resequenced with a mean coverage of 36-fold, and includes 
accessions from 13 different species [41]. The dataset also contains raw reads and variant 
call files from accessions that were excluded from the original publication. These were 
excluded when further analysis revealed admixed ancestry (R Finkers, personal commu-
nication, February 7, 2019). We choose only to use the accessions of which the species 
identity was verified, and merged all single sample files using VCFTools. Due to the high 
coverage of this dataset, it was especially important to reduce the number of variant 
sites for computational efficiency. To reduce the number of variant sites to a maximum 
of 100,000, we briefly tested two strategies namely (1) applying a strict filter (> 80% call 
rate, > 1% minor allele frequency, and no indels, which kept 1.9 million out of 71.1 mil-
lion variant sites) and subsequently randomly thinning to 100,000 using Plink2.0 [42], 
and (2) randomly thinning on all unfiltered 71.1 million variant sites using Plink2.0. We 
found that, for this dataset, median prediction accuracy markedly improved across clas-
sifiers (0.91 vs. 0.73) when applying the second strategy versus the first one. We therefore 
proceeded with this dataset using strategy 2. The resequenced tomato dataset includes 
13 different species and features a major class imbalance, with 50 out of 80 accessions 
belonging to Solanum lycopersicum. Among the species with less representation are S. 
corneliomulleri and S. galapagense, both represented by 1 accession, and seven more 
species that are represented by 2 accessions. This leads to a median species size of only 2.

The distribution of species in the AFLP tomato dataset by Zuriaga et al. is less extreme 
[43]. It includes 14 different species, and 3 hybrid accessions. S. pimpinellifolium is rep-
resented by 26 accessions, and S. galapagense by 2. The other species lie somewhere in 
between (median = 9). The AFLP marker data were received from Zuriaga upon request. 

Table 5  Characteristics of the datasets used to compare the classifiers.

In dataset of the 100 Tomato Genome Sequencing Consortium et al., we only included accessions of unadmixed ancestry. 
The number of markers listed is the number remaining after filtering

Crop Type Accessions Species Markers Reference

Sunflower Resequenced 287 21 15,285 Baute et al. [39]

Tomato AFLP 210 16 219 Zuriaga et al. [43]

Tomato Resequenced 80 13 100,000 100 Tomato Genome Sequencing Consor-
tium et al. [41]
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We received present/absent scoring for 245 markers in Genetix format, a format actually 
designed for diploid data. Thirteen of these markers had heterozygous data, which is odd 
because AFLPs are dominant. Zuriaga agreed these were erroneous, but retrieving the 
data as used for analysis 10 years ago proved difficult (personal communication, June 27, 
2019). We removed all markers with heterozygous data, as well as another 13 markers 
with a minor allele frequency below 1%. This resulted in 219 markers for analysis.

The accession numbers of the accessions used, their a priori classifications, and the 
predictions of all classifiers for the resequenced tomato dataset, the sunflower dataset, 
and the AFLP tomato dataset can be found in Additional files 4, 5, and 6, respectively.

Treatment of curated sunflower dataset

The number of informative SNPs present in a given genomic dataset may vary greatly 
depending on genotyping technique, data processing, and not in the least, crop proper-
ties. To investigate the effects of species representation and misclassification rate (and 
isolate them as much as possible), we selected a single expansive dataset to artificially 
vary species representation and misclassification rate.

Firstly, the accessions of all species with less than 10 accessions were removed. The 
remaining material was imported into R [44]. To avoid the confounding effect of a priori 
misclassifications, the dataset was screened for outliers using two very different tech-
niques: visual inspection of a neighbour-joining tree and a Random Forest-based outlier 
detection method [45]. For the latter, functions randomForest and outlier from R pack-
age Random Forest were used. First Random Forest was run with ntree = 50,000 and 
proximity set to TRUE to obtain a proximity matrix of the data. This matrix describes 
the similarity of two individuals by counting how often they land in the same terminal 
node in a tree. With this matrix and the original classifications, the outlier function then 
determines which individuals have small proximities to all other cases in their class, rela-
tive to the proximities these cases have to each other.

Visual inspection of the neighbour-joining tree revealed 4 potential misclassifications 
accessions (Additional file  2). Using the recommended threshold of 10, the Random 
Forest outlier detection method flagged 6 accessions as potential outliers (Additional 
file 3). These accessions were all excluded from further analysis, as were the remaining 
H. exilis accessions because their group size dropped below 10. After this selection, 199 
accessions from 8 species remained. From this material, 10, 8, 6, 4, and 2 samples were 
randomly selected from each species. These populations were used to examine model 
performance under varying numbers of species representation.

Simulation of misclassifications

The goal of this part of the research is to determine which methods are most suited to 
correct misclassifications in genomic datasets, without the use of a gold standard data-
set. To simulate these misclassifications, the species names of 6.25%, 12.5% and 18.75% 
of the samples were randomly altered to a random different species name from the data-
set. These random alterations were introduced 5,000 times for each misclassification 
rate and each species representation. Each time, classifiers made predictions based on 
the same sets of a priori (mis)classifications. A total of 75,000 datasets were analyzed, 



Page 15 of 18van Bemmelen van der Plaat et al. BMC Bioinformatics          (2021) 22:173 	

comprising 5 different levels of species representation, 3 rates of misclassification and 
5,000 replications.

Classifier comparison on curated datasets

To quantify classifier performance, we used prediction accuracy. Prediction accuracy is a 
simple and intuitive metric, defined as the number of correct predictions, divided by the 
number of samples. Ambiguous predictions were excluded from the calculation. It must 
be noted however, that prediction accuracy as a summary metric must be treated with 
caution, as this metric is very sensitive to strong variation in the number of accessions 
per species. Good alternatives to prediction accuracy in imbalanced datasets are Mat-
thews correlation coefficient (for binary predictions) and the lesser known RK statistic 
(for multiclass predictions) [46, 47]. In this case we were able to use prediction accuracy 
because we consistently represented all species by the same number of accessions in the 
curated datasets.

To test the null hypothesis that all classifiers show identical performance under all cir-
cumstances, prediction accuracies were grouped by misclassification rate and sample 
size, and tested using Friedman Aligned Ranks. Like the Friedman test, this is a non-
parametric test that makes no assumptions about the distribution or variance of the 
data, and hence was considered appropriate to test the null hypothesis [48]. Friedman 
Aligned Ranks has been shown to perform better than the Friedman test when the num-
ber of classifiers is low, i.e. no more than 4 or 5 [49]. To correct for multiple testing, each 
p-value was corrected with the Finner test. This test has greater power than the conserv-
ative Bonferroni-Dunn test, and similar power to Holm, Hochberg, Hommel, Holland, 
and Rom, while having a simpler design [49]. If the adjusted p-value was below 0.05, 
it was followed up by a multiple comparison with the classifier with the highest mean 
accuracy as control. These statistical tests and comparisons were performed in R, using 
R package scmamp [50] which has been especially developed for statistical comparison 
of multiple algorithms.

Classifier comparison on complete datasets

For the comparison of the complete datasets, we also used prediction accuracy. To pre-
vent bias towards classifiers that perform well on large classes, we not only looked at the 
overall prediction accuracy, but also at the performance per species. Prediction accuracy 
per species is defined as the number of correct predictions per species, divided by total 
number of accessions belonging to the species. Ambiguous predictions, as are some-
times made by NJ and 3-NN, are again excluded from the calculation. The complete 
datasets are used without any modification, as their purpose is only to confirm whether 
the conclusions of the curated datasets hold, and appear generalizable. For the super-
vised machine learners (RF and NB) we acquired an unbiased estimate of prediction. We 
used the out-of-bag prediction accuracy for Random Forest as estimate, and used leave-
one-out as a sampling strategy for Naive Bayes.
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