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Abstract 

Comprehensive metabolomic and lipidomic mass spectrometry methods are in increasing 

demand, for instance in research related to nutrition and aging. The nematode C. elegans is 

a key model organism in these fields, due to the large repository of available C. elegans 

mutants and their convenient natural lifespan. Here, we describe a robust and sensitive 

analytical method for the semi-quantitative analysis of >100 polar (metabolomics) and >1000 

apolar (lipidomics) metabolites in C. elegans, using a single sample preparation. Our method 

is capable of reliably detecting a wide variety of biologically relevant metabolic aberrations in, 

for instance, glycolysis and the TCA cycle, pyrimidine metabolism and complex lipid 

biosynthesis. In conclusion, we provide a powerful analytical tool that maximizes metabolic 

data yield from a single sample. 
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Introduction 

Considerable advances in high-performance liquid chromatography (HPLC), mass 

spectrometry (MS), nuclear magnetic resonance (NMR) make it possible to reliably detect 

tens of thousands of compounds1. Additionally, semi-automatic annotation of metabolites 

and data analysis tools have greatly improved the quality and robustness of metabolomic 

platforms, allowing for an improved sample throughput and ease of data analysis and 

interpretation2. As a consequence, metabolomic analysis has seen a surge in popularity over 

the last decades and the importance and intricacies of metabolism in health and disease are 

becoming increasingly evident2. In turn, this has prompted increased demand for reliable 

and robust metabolomic methods for polar and apolar metabolite analyses in model 

organisms and human tissues3.  

For many years, Caenorhabditis elegans nematodes have been used intensively to investigate 

genetics, development, as well as aging. C. elegans is a versatile model system as genetic 

influences can be tested with relative ease due to the availability of large repositories of 

mutants as well as RNAi libraries. Moreover, genetic reference populations have been 

generated for C. elegans in which natural genetic variation is present at a level similar to the 

human population4. This way, meaningful data on population genetics and gene-by-

environment interactions can be obtained using for instance dietary interventions5,6. More 

recently, C. elegans has become a relevant model to investigate metabolism, since 

metabolism was identified as a key regulator of traits such as aging7-9. Metabolic network 

models for C. elegans were recently constructed10,11 and a curated consensus is currently 

being assembled in a European-led consortium12. The success of such endeavors relies 

heavily on accurate and robust metabolomics methods13. 

Metabolite measurements in mammalian tissues are commonplace1,14,15, however, in C. 

elegans they are sparsely applied16. Methods for C. elegans metabolite analyses are 

predominantly based on gas chromatography-MS (GC-MS)17,18 and nuclear magnetic 

resonance (NMR) spectroscopy16,18,19. Drawbacks of these approaches include the need for 
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large quantities of worms and a limited number of metabolites that can be quantified (Table 

1). Recent developments using targeted metabolomics with LC-MS allow for the 

measurement of hundreds of metabolites, including fatty acids and amino acids, in a sample 

of around 2,000 worms20,21.  

Although these methods are useful when focusing on specific metabolite classes, they rely 

on separate extraction procedures for both polar and apolar metabolites in biological 

replicates making it less suitable for screening purposes. Previously, an integrated omics 

method employing both LC-MS/MS and GC-MS using derivatizations has been used on 

bacteria, urine, cell cultures, mouse tissue and plant leaves to detect 51 polar metabolites 

and 84 lipid species22. Hence, we set out to develop a comprehensive omics protocol for C. 

elegans, combining our previously reported metabolomics and lipidomics methods into a 

unified extraction, a variation of the popular Folch or Bligh and Dyer liquid-liquid extraction 

(LLE) method 23, and reliant exclusively on LC-MS for analysis24,25.  

This type of LLE is a user-friendly and highly effective laboratory staple, capable of isolating 

both the metabolome and lipidome of C. elegans. This quality is not a given for extractions, 

as endogenous metabolites span a wide range of physicochemical properties, making it 

difficult to extract a large range of the metabolome with a single solvent. Additionally, polar 

solvents typically lack the ability to precipitate interfering proteins in biological samples, 

making a simple water extraction of polar metabolites impractical. An elegant way to remedy 

these issues, is to use a liquid-liquid extraction like the Bligh and Dyer method. In this case, 

a highly apolar solvent, e.g. chloroform, is used to precipitate protein and facilitate the 

breakdown of biological organization, while a polar solvent is added to extract polar 

metabolites in a separate layer. This type of extraction also doubles as a separation step, 

removing apolar compounds from the polar layer (and vice versa), thereby reducing ion 

suppression effects during MS analysis. Interestingly, this type of two-phase extraction was 

first applied for extracting lipids in the (predominantly) chloroform phase23. We used such a 
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two-phase extraction on C. elegans to perform both metabolomics and lipidomics in a single 

sample.  

The method presented here provides a detailed step-by-step protocol for sample collection 

and processing, metabolite extraction, annotation, and relative quantification in C. elegans. 

We demonstrate that metabolomic and lipidomic analysis can be performed on a single 

sample using a single extraction protocol, reducing sample preparation and throughput time 

without compromising metabolite identification. Additional benefits include a reduction in the 

required number of C. elegans cultures, as well as a significant reduction in waste. With this 

protocol we can semi-quantitatively measure >100 polar and >1000 apolar metabolites, from 

all major metabolite classes in a sample of approximately 2000 worms. Moreover, this 

method can be easily adapted for other model systems, cells, and tissues. 

Results 

Validation of polar metabolite (metabolomics) analysis in C. elegans 

In order to enable validation, we used C. elegans pellets from biological replicates containing 

different numbers of worms and extracted polar metabolites from the upper phase of the liquid-

liquid extraction (Figure 1A). Polar metabolites were separated using a variation of Hydrophilic 

Interaction Liquid Chromatography (ZIC-cHILIC) and measured using a Q Exactive Plus 

Orbitrap mass spectrometer. For each of the annotated polar metabolites, we determined their 

linear response since loss of linearity of the MS response is a good measure of bias in sample 

preparation or analysis (Table S1). Four example metabolites, i.e. pyruvate, cytidine 

monophosphate (CMP), adenosine triphosphate (ATP), and nicotinamide adenine 

dinucleotide (NAD+) show strong linearity across the range of worms before applying 

normalization for internal standard (Figure 1B-E, Table S1). We then established which 

internal standards to use for each metabolite (Table S2). Selection of the internal standard 

was based on the combination of the lowest coefficient of variation for biological replicates 

after correction with IS (analyte peak area divided by IS peak area), and highest Pearson 

correlation coefficient after correction across the number of worms (Figure 1F-I). Applying 
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these internal standards for the data normalization led to even better linearity of for pyruvate, 

CMP, ATP, and NAD+ (Figure 1J-M, Table S2).  

Altogether, we established optimal internal standard conditions for each of the polar 

metabolites and found that each of these can be reliably measured in a sample of ~2000 

worms. Subsequently, we determined the analytical repeatability of our method using a 

repeated injection of a pooled sample throughout the analytical run. For each metabolite 

measured in these samples, a relative standard deviation (RSD) was calculated (Table S1). 

99% of polar metabolites had an RSD <30 between different extractions, while  97% of polar 

metabolites had an RSD <30 when repeatedly injecting a pool of those samples, indicating 

that our method is highly robust.  

Validation of the apolar metabolite (lipidomics) analysis 

Instead of a dedicated single-phase extraction we reported before24, we now used the “left-

over” apolar phase from our two-phase extraction on biological replicates to analyze lipids 

(Figure 2A,  Table S3). Lipids were separated using both a normal-phase (NP) and reversed-

phase (RP) chromatography method and measured on a Q Exactive Plus mass spectrometer. 

Additionally, a pooled sample was injected 10 times.  

The lipidome is an enormously diverse class of metabolites with widely varying polarities. For 

instance, at the apolar end of the spectrum, triacylglycerols (TGs) consist of a glycerol 

backbone and three fatty acids tails. Due to these uniformly apolar qualities, TGs of any chain 

length partition almost exclusively to the chloroform phase during the two-phase extraction. 

This results in a linear relationship between the number of worms and the measured 

abundance of TGs (Figure 2B). A similar pattern is observed for other major lipid classes 

containing multiple acyl side chains, such as diacylglycerols (DGs), phosphatidylinositols 

(PIs), cardiolipins (CLs), phosphatidylserines (PSs), and phosphatidylglycerols (PGs) (Figure 

2C-G). Sphingomyelins (SMs) have a different basic structure, but also contain two alkyl 

moieties (the sphingosine backbone and the N-acyl group), resulting in good linearity (Figure 
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2H). Finally, while the most abundant PL class phosphatidylcholines (PCs) has two acyl 

groups and is extracted in the apolar phase, it has a lower r2 of 0.667 (Figure 2I). This is due 

to its high abundance, saturating the detector at higher worm numbers. Indeed, when 

considering linearity for ≤4000 worms, the r2 for PC is 0.832 and even goes up to r2=0.902 

when analyzing up to 2000 worms. It is therefore advised to use ≤4000 worms in order to 

accurately measure PCs. Phosphatidylethanolamines (PEs) show the same trend though to a 

lesser extent (Figure 2J).  

At the other end of the lipid polarity spectrum are lysolipid species such as 

lysophosphatidylcholine (LPC), lysophosphatidic acid (LPA), lysophosphatidylethanolamine 

(LPE), and lysophosphatidylglycerol (LPG), each containing only a single fatty acid side chain 

(R1), and a polar head group. Similar to PC, LPC abundance is high and its detection reaches 

a plateau at higher worm numbers (Figure 2K). When including all data points, up to 8000 

worms, the r2  is 0.430, but this improves (r2 = 0.872) when including ≤2000 worms. Other lyso-

phospholipids are poorly detected in the chloroform phase of the current two-phase method, 

resulting in loss of linearity (Figure S1A-C). Interestingly, despite containing two fatty acid side 

chains, phosphatidic acid (PA), and bis(monoacylglycero)phosphate (BMP) show r2’s of 0.785 

and 0.667, respectively (Figure S1D-E). Due to these complex lipid properties relating to 

solubility, it is likely that these lipids are (partly) extracted to the polar phase during the two-

phase liquid-liquid extraction. The final solvents of the metabolomics and lipidomics method 

are incompatible in the UPLC and none of these lipid species were measurable using the ZIC-

cHILIC platform. However, we performed our two-phase extraction on 2000 control worms and 

analyzed both phases using the lipidomics solvents and analytical platform. When plotting the 

abundance of lyso-lipid internal standards in each of the layers compared to their non-lyso 

counterparts (Figure S1F) we clearly observed that the LPG internal standard partitions almost 

completely to the polar layer. The internal standard of LPA, LPE and LPC also show partial 

solubility in the polar phase (Figure S1F).  
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This effect is reflected in the relative standard deviations (RSD) when comparing the one-

phase to the two-phase extraction. Using a one-phase extraction on five biological replicates, 

85% of lipid species showed an RSD <30. When using the two-phase extraction on five 

biological replicates, 69% of detected lipid species showed an RSD <30. Repeated injections 

of a pooled sample of both of these experiments showed an RSD <30 in 94% lipid species for 

the one-phase method, while showing the same for 89% of species in the two-phase extraction 

(Table S3).  To explore these partitioning effects on the detected lipidome in more detail, we 

made a direct comparison between the detected lipidome of the one-phase extraction20 and 

the new two-phase extraction of samples containing ~2000 worms from the exact same 

biological experiment. When plotting all the individual lipid species, we observed that for most 

lipids the measured abundance is highly similar between the one-phase and the two-phase 

extraction (Figure 2L), suggesting that there was no significant loss of these lipid species in 

the polar extraction phase. However, around 9% of the species that are normally detected 

using the one-phase extraction are not detected when applying the two-phase method, most 

strikingly the entire LPE class (Figure S1B). On the other hand, 10% of the lipids were only 

detected in the two-phase extraction, such as some BMPs and other low-abundant lipids 

(Figure 2L). Possibly, these low-abundant lipids are not detected with the one-phase extraction 

due to suppression effects in the MS. In conclusion, despite the loss of some polar lipid 

species, including the whole LPE class, there were some low abundant lipid species only 

recovered using the two-phase extraction. Most importantly, the vast majority of major lipid 

classes are detected equally well with the two-phase extraction compared to the one-phase 

extraction.  

Polar and apolar metabolites change upon knockdown of metabolic genes in C. elegans  

In order to test how well our method was able to pick up biologically relevant differences, we 

first targeted four different metabolic pathways using RNAi against either enzymes or other 

factors known to affect metabolic pathways in C. elegans (Table S4). 
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The first gene targeted was the pyruvate dehydrogenase alpha subunit (pdha-1), which is part 

of the complex that is responsible for converting pyruvate into acetyl-CoA. Since acetyl-CoA 

feeds into the TCA cycle it links glycolysis to the TCA cycle, and RNAi of this enzyme is 

expected to affect both of these pathways. Indeed, worms treated with pdha-1 RNAi show 

many significant changes in metabolite abundance (Figure 3A). A five-fold increase was 

observed for pyruvate in these worms compared to worms treated with an empty vector, and 

a two-fold increase was observed for alanine, which is an amino acid that can be formed from 

pyruvate (Figure 3B). On the other hand, a significant decrease was observed for all TCA 

cycle intermediates we measured, including: (iso)citrate, α-ketoglutarate, succinate, fumarate, 

malate and oxaloacetate (Figure 3B). This is in line with a reduced availability of acetyl-CoA 

that can enter the TCA cycle.  

The next enzyme we targeted was dihydropyrimidine dehydrogenase (dpyd-1) involved in 

pyrimidine base degeneration. DPYD-1 is important for nucleic acid metabolism as it catalyzes 

the reduction of uracil and is involved in the degradation of the chemotherapeutic drug 5-

fluoroacil (5-FU). In this dpyd-1 RNAi condition we also found many significant metabolite 

changes compared to worms treated with empty vector (Figure 3C). We observed an almost 

five-fold accumulation of uracil, accompanied by a small increase of UMP which can be 

alternatively metabolized from uracil (Figure 3C-D). DPYD-1 is also involved in ß-alanine 

biosynthesis26. In line with this, a strong reduction of ß-alanine was observed in the dpyd-1 

RNAi treated worms (Figure 3C-D) again reflecting the knockdown of this enzyme on the 

metabolite level. 

We next set out to establish biological validation of our lipidomics analysis. With RNAi, we 

targeted an enzyme involved in fatty acid elongation, elo-2 (Figure 4A). When exploring the 

lipid profile of worms using our method, we could distinguish the control worms from the elo-

2 RNAi-treated worms, as shown with PCA analysis (Figure 4B). In order to visualize effects 

on the lipid elongation, we then plotted carbon chain length versus the total number of double 

bonds in those chains for individual lipid classes. For instance, TGs in elo-2 RNAi-treated 
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worms showed a marked decrease of lipids with long carbon chains and accumulation of lipids 

with shorter carbon chains regardless of the number of double bonds (Figure 4C). The same 

was observed for PCs, DGs (Figure 4D-E) and other lipid classes (Figure S2). Our data 

confirm that elongation of carbon chains in fatty acids is inhibited when elo-2 is knocked down 

in C. elegans, which leads to widespread changes across the lipidome. 

Finally, we targeted mdt-15, a subunit of the Mediator complex. Rather than acting on fatty  

acid elongation, mdt-15 transcriptionally regulates fatty acid desaturases including fat-2, fat-

5, fat-6 and fat-7 (Figure 4F)27,28. The PCA analysis shows clear separation of the control 

worms from the mdt-15 RNAi treated worms based on their lipid profiles (Figure 4G). When 

plotting carbon chain length versus the number of double bonds, we observed a strong 

decrease of lipids with multiple double bonds and accumulation of lipids with ≤1 double bond, 

irrespective of the carbon-chain lengths (Figure 4H, Figure S3). This shift towards saturated 

TG species in worms treated with mdt-15 RNAi is in line with the previously described 

regulation of mdt-15 on fatty acid desaturation enzymes27,29. 

Together, these four different RNAi conditions affecting distinct metabolic pathways and 

metabolite classes illustrate that our method can adequately pick up relevant biological 

differences. 

Metabolic diversity in a C. elegans reference population 

Our method also allows for the exploration of the natural variation of metabolite abundances 

occurring due to the differences among genetic backgrounds. To demonstrate this, we turned 

to recombinant inbred lines (RILs) derived from wild-type worm strains N2 and CB48564,30. 

RILs are genetic mosaics of the parental strains N2 and CB4856. We reasoned that the 

sensitivity of our approach could reveal the genome’s more subtle influences due to naturally 

occurring polymorphisms affecting the metabolome. Therefore, we proceeded to perform the 

current metabolomics method on two parental wild type strains (N2 and CB4856) and eight 

different RIL strains resulting from the genetic cross (Figure 5Aa, Table S5). Metabolic profiling 
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revealed the underlying diversity of metabolites present in the different genetic backgrounds 

(Figure 5B). To explore this in a more systematic manner, we calculated the broad-sense 

heritability (H2) for each metabolite, for both parental and offspring strains8. Broad-sense 

heritability serves as an indication for the percentage of variance for a given metabolite that is 

explained by genetics. Plotting broad-sense heritability for the parental versus offspring strains 

illustrates where new combinations of alleles may have severe effects on distinct metabolic 

profiles and thus indicate genetic complexity of the trait (Figure 5C).  

Assessing heritability in this manner, we observed metabolites for which parental strains 

possessed a low heritability score and their offspring possessed a high heritability score, 

indicating that there may be multiple loci of opposing effects regulating the metabolite’s 

abundance. For example uracil, phosphoenolpyruvate, methionine, and xanthosine, exhibited 

such patterns (Figure 5D-G). Conversely, we also observed metabolites for which the parental 

strains possessed a high heritability score and the offspring possessed an equal or lower 

score, which likely indicates that there may be few, or even just a single locus affecting the 

metabolite’s abundance. Examples of these included acetyl-CoA, tryptophan, glutamate, and 

NAD+ (Figure 5H-K). 

Performing metabolomics and lipidomics on the same samples enables data integration from 

both techniques. To illustrate, we performed cross-correlations between polar metabolites and 

lipid classes and visualized these in a correlation matrix (Figure 5L). For example, we identified 

metabolites that correlated with cardiolipin (CL), which is an important component of the inner 

mitochondrial membrane31. We found that abundance of CL correlated significantly with NAD+ 

(Figure 5M), which governs mitochondrial function through its role as an enzyme cofactor as 

well as being a substrate for sirtuins32,33. Likewise, CL significantly correlated with acetyl-CoA 

(Figure 5N), which is in line with its role in acetyl-CoA synthesis34. These correlations are an 

example of how metabolomics and lipidomics data can be integrated and explored to gain 

deeper insight into their cross-talk and interrelations.  
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Discussion 

Changes in metabolism are increasingly recognized as valuable markers of, as well as causal 

contributors to ,the development of metabolic disease and aging. Increasingly comprehensive 

methods for the analysis of both polar (metabolomics) and apolar (lipidomics) metabolites 

have proven essential in these fields. Thus far however, these omics methods required 

dedicated sample preparation, and thus a separate sample, for metabolomics and lipidomics 

respectively. Here, we report a method that uses both the polar (metabolomics) and apolar 

(lipidomics) layer of a two-phase liquid-liquid extraction and analyzes these using high 

resolution MS methods, providing an elegant way of exploring a large range of the 

metabolome and lipidome in a single sample, covering >1100 annotated metabolites of 

different classes. We show here that this method is robust and sensitive enough to analyze a 

wide variety of metabolic pathways using both metabolomics and lipidomics, and capable of 

reliably pinpointing metabolic aberrations in these pathways. 

Biologically relevant differences in central carbon as well as lipid pathways could be 

determined in detail. The effects of pdha-1 inhibition using RNAi was reflected throughout the 

TCA cycle, and the inhibition caused a decrease of acetyl-CoA and an accumulation of its 

precursor, pyruvate. Additionally, the pyruvate accumulation was accompanied by a metabolic 

diversion leading to higher alanine abundance and reduced levels of TCA intermediates. 

Together, this comprehensive profiling provides a more detailed picture of the metabolic state. 

For instance, changes in less directly related metabolites were also seen, like the increase of 

histidine abundance. In this way, basic profiling of metabolic changes following pdha-1 

inhibition might uncover new (genetic) factors that contribute to metabolic adaptation in these 

circumstances. Such information is not only valuable for research in C. elegans per se, but 

could also be used to study processes where PDH is involved such as the aberrant preferential 

activation of glycolysis in cancer cells35 or the regulation of brown adipose tissue metabolism36. 

This is also the case for the metabolite changes observed upon dpyd-1 RNAi in context to the 

chemotherapeutic drug 5-FU and for instance its toxicities in patients with DPYD variants37.  
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Similarly, when knocking down elo-2 using RNAi, robust changes were observed in the total 

chain length of almost all lipid classes. Knockdown of mdt-15 led to significant changes in the 

degree of saturation of a wide variety of lipid species. Combined, this shows that our method 

provides an exceptionally detailed view on complex lipid composition, which can be useful for 

the identification and study of disorders related to the lipidome.  

RILs were used to illustrate that our method is capable of picking up not just large metabolic 

defects caused by knockdown of a single gene, but also more subtle metabolic effects in a 

non-interventional population harbouring genetic variation. While our study is not large enough 

to parse out the complexity of the underlying genetic traits, we clearly show both convergent 

and divergent patterns of inheritance, as expected based on population genetics. Future 

studies using the full panel of RILs will allow the reconstruction of genetic complexity that 

causes individual metabolic variation, and enable studying gene-by-environment interactions, 

i.e. which genes render the organism susceptible to environmental disturbances.  

We also used the RILs to highlight examples of direct integration of lipidomic and metabolomic 

data. These multi-omics comparisons are aided by using our method, as both datasets 

originate from the same material, eliminating the noise of inherent biological differences when 

independent worm cultures are prepared. Integrating metabolomics and lipidomics data can 

be important, as polar and lipid pathways are interconnected and often converge in meaningful 

ways. As an example, we showed that the mitochondrial lipid CL correlates with the 

abundance of polar metabolites with important roles in mitochondrial function such as NAD+ 

and acetyl-CoA across the RIL panel. Such integration based on population data can support 

new hypotheses and its validation in natural populations. 

On the technical side, the use of a diverse selection of internal standards allows for meaningful 

semi-quantitative comparisons between sample groups. Due to the ubiquitous and essential 

nature of many of the metabolites analyzed here, this dual extraction method can be 

developed to aid metabolomics and lipidomics in a wide variety of matrices. This is especially 
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useful when the amount of available material is limited and two separate extractions might not 

be feasible, such as with human biopsy material or rare cell populations. When applying the 

current method to a new matrix, we strongly advise to perform a range-finding experiment to 

determine a sample quantity where most of the analytes of interest are in the linear range of 

the extraction and MS, as well as appropriate internal standards.  

While the aforementioned considerations are important for all metabolite extraction methods, 

one of the main limitations of this method is that some polar lipid species are not ending up in 

the apolar layer but in the polar layer and are therefore not measured in lipidomics. When 

specifically interested in such polar lipid species, a dedicated one-phase lipidomics extraction 

yields a better result20. In conclusion, the currently presented method is capable of robustly 

analyzing a broad range of the metabolome and lipidome, and detecting biologically relevant 

differences while requiring only a single small sample.  

 

Methods 

Worm growth conditions for RNAi experiments and Recombinant Inbred Lines (RILs)  

Worm experiments were performed on independent biological replicates unless stated 

otherwise. N2 worms and RIL strains were cultured at 20°C on nematode growth medium 

(NGM) agar plates seeded with OP50 strain Escherichia coli. For RNAi knockdown 

experiments, we seeded 2000 synchronized eggs per 10cm NGMi plate (containing 2 mM 

IPTG) with a bacterial lawn of either E. coli HT115 (RNAi control strain, containing an empty 

vector) or pdha-1, dpyd-1, elo-2 or mdt-15 RNAi bacteria. Similarly, for the parental strains 

(N2 and CB4856) and eight different offspring (RILs strains WN038, WN105, WN106, WN128, 

WN134, WN152, WN153, WN186), 2000 synchronized eggs were seeded per 10cm NGM 

plate, with a bacterial lawn of E. coli OP50. After 48 hours, the synchronous population at L4 

larval stage was washed off the plates in M9 buffer and the worm pellet was washed with 

dH2O for three times and then collected in a 2 ml Eppendorf tube and snap frozen and stored 
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at -80ºC. Worm pellets were freeze-dried overnight and stored at room temperature until 

extraction. 

Two-phase extraction 

In a 2 mL tube, the following amounts of internal standard dissolved in water were added to 

each sample of freeze dried worms for metabolomics: adenosine-15N5-monophosphate (5 

nmol), adenosine-15N5-triphosphate (5 nmol), 13C6-fructose-1,6-diphosphate (1 nmol), 

guanosine-15N5-monophosphate (5 nmol), guanosine-15N5-triphosphate (5 nmol), 13C6-glucose 

(10 nmol), 13C6-glucose-6-phosphate (1 nmol), 13C3-pyruvate (0.5 nmol). In the same 2 mL 

tube, the following amounts of internal standards dissolved in 1:1 (v/v) methanol:chloroform 

were added for lipidomics: Bis(monoacylglycero)phosphate BMP(14:0)2 (0.2 nmol), Cardiolipin 

CL(14:0)4 (0.1 nmol), Lysophosphatidicacid LPA(14:0) (0.1 nmol), Lysophosphatidylcholine 

LPC(14:0) (0.5 nmol), Lysophosphatidylethanolamine LPE(14:0) (0.1 nmol), 

Lysophosphatidylglycerol LPG(14:0) (0.02 nmol), Phosphatidic acid PA(14:0)2 (0.5 nmol), 

Phosphatidylcholine PC(14:0)2 (0.2 nmol), Phosphatidylethanolamine PE(14:0)2 (0.5 nmol), 

Phosphatidylglycerol PG(14:0)2 (0.1 nmol), Phosphatidylserine PS(14:0)2 (5 nmol), Ceramide 

phosphocholine SM(d18:1/12:0) (2 nmol) (Avanti Polar Lipids, Alabaster, AL). 

After adding IS mixes, a 5 mm steel bead and polar phase solvents (for a total of 500 µL water 

and 500 µL MeOH) were added and samples were homogenized using a TissueLyser II 

(Qiagen) for 5 min at a frequency of 30 times/sec. Chloroform was added for a total of 1 mL to 

each sample before thorough mixing. Samples were centrifuged for 10 minutes at 14,000 rpm. 

Of the two-phase system that was now created with protein precipitate in the middle, the top 

layer containing the polar phase was transferred to a new 1.5 mL Eppendorf tube. The bottom 

layer, containing the apolar fraction, was transferred to a 4 mL glass vial. The protein pellet in 

between the two layers was dried and subsequently dissolved in 0.2 M NaOH for quantification 

using a PierceTM BCA Protein Assay following product protocol. 
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One-phase lipidomic extraction 

In a 2 mL tube, the following amounts of internal standards dissolved in  1:1 (v/v) 

methanol:chloroform were added to each sample: Bis(monoacylglycero)phosphate 

BMP(14:0)2 (0.2 nmol), Cardiolipin CL(14:0)4 (0.1 nmol), Lysophosphatidicacid LPA(14:0) (0.1 

nmol), Lysophosphatidylcholine LPC(14:0) (0.5 nmol), Lysophosphatidylethanolamine 

LPE(14:0) (0.1 nmol), Lysophosphatidylglycerol LPG(14:0) (0.02 nmol), Phosphatidic acid 

PA(14:0)2 (0.5 nmol), Phosphatidylcholine PC(14:0)2 (0.2 nmol), Phosphatidylethanolamine 

PE(14:0)2 (0.5 nmol), Phosphatidylglycerol PG(14:0)2 (0.1 nmol), Phosphatidylserine 

PS(14:0)2 (5 nmol), Ceramide phosphocholine SM(d18:1/12:0) (2 nmol) (Avanti Polar Lipids, 

Alabaster, AL). After adding the IS mix, a steel bead and 1.5 mL 1:1 (v/v) methanol:chloroform 

were added to each sample. Samples were homogenized using a TissueLyser II (Qiagen) for 

5 min at 30 Hz. Each sample was then centrifuged for 10 min at 14,000 rpm. Supernatant was 

transferred to a 4 mL glass vial. 

 

 

Metabolomics  

After the polar phase was transferred to a new 1.5 mL tube, it was dried using a miVac vacuum 

concentrator at 60°C and processed as reported before24. The residue was dissolved in 100 

µL 6:4 (v/v) methanol:water. Metabolites were analyzed using a Thermo Scientific Ultimate 

3000 binary UPLC coupled to a Q Exactive Plus Orbitrap mass spectrometer. Nitrogen was 

used as the nebulizing gas. The spray voltage used was 2500 V, and the capillary temperature 

was 256 °C. S-lens RF level: 50, Auxilary gas: 11, Auxiliary gas temperature 300 °C, Sheath 

gas: 48, Sweep cone gas: 2. Samples were kept at 12°C during analysis and 5 µL of each 

sample was injected. Injection order for samples was random, with an injection of a pooled 

sample every ten injections. Chromatographic separation was achieved using a Merck 

Millipore SeQuant ZIC-cHILIC column (PEEK 100 x 2.1 mm, 3 µm particle size). Column 

temperature was held at 30°C. Mobile phase consisted of (A) 1:9 (v/v) acetonitrile:water and 
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(B) 9:1 (v/v) acetonitrile:water, both containing 5 mmol/L ammonium acetate. Using a flow rate 

of 0.25 mL/min, the LC gradient consisted of: 100% B for 0-2 min, reach 0% B at 28 min, 0% 

B for 28-30 min, reach 100% B at 31 min, 100% B for 31-32 min. Column re-equilibration is 

achieved by increasing the flow rate to 0.4 mL/min at 100% B for 32-35 min. MS data were 

acquired using negative ionization in full scan mode over the range of m/z 50-1200. Data were 

analyzed using Thermo Scientific Xcalibur software version 4.1.50. All reported metabolite 

intensities were normalized to appropriate internal standards, as well as total protein content 

in samples, determined using a PierceTM BCA Protein Assay Kit. Metabolite identification has 

been based on a combination of accurate mass, (relative) retention times and fragmentation 

spectra, compared to the analysis of relevant standards. Metabolomics data from these 

experiments can be found in Table S1, Table S2, Table S4 and Table S5, as well as in the 

MetaboLights online database under the following code: MTBLS2370. 

Lipidomics 

After the solvents containing the lipids were transferred to a 4 mL glass vial, they were 

evaporated under a stream of nitrogen at 45°C. The residue was dissolved in 150 μL of 1:1  

(v/v) chloroform:methanol. Lipids were analyzed using a Thermo Scientific Ultimate 3000 

binary UPLC coupled to a Q Exactive Plus Orbitrap mass spectrometer. Nitrogen was used 

as the nebulizing gas. The spray voltage used was 2500 V, and the capillary temperature was 

256 °C. S-lens RF level: 50, Auxilary gas: 11, Auxiliary gas temperature 300 °C, Sheath gas: 

48, Sweep cone gas: 2. For normal phase separation, 2 μL of each sample was injected onto 

a Phenomenex® LUNA silica, 250 * 2 mm, 5µm 100Å. Injection order for samples was random, 

with an injection of a pooled sample every ten injections. Column temperature was held at 

25°C. Mobile phase consisted of (A) 85:15 (v/v) methanol:water containing 0.0125% formic 

acid and 3.35 mmol/L ammonia and (B) 97:3 (v/v) chloroform:methanol containing 0.0125% 

formic acid. Using a flow rate of 0.3 mL/min, the LC gradient consisted of: 10% A for 0-1 min, 

reach 20% A at 4 min, reach 85% A at 12 min, reach 100% A at 12.1 min, 100% A for 12.1-

14 min, reach 10% A at 14.1 min, 10% A for 14.1-15 min. For reversed phase separation, 5 
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μL of each sample was injected onto a Waters HSS T3 column (150 x 2.1 mm, 1.8 μm particle 

size). Injection order for samples was random, with an injection of a pooled sample every ten 

injections. Column temperature was held at 60°C. Mobile phase consisted of (A) 4:6 (v/v) 

methanol:water and B 1:9 (v/v) methanol:isopropanol, both containing 0.1% formic acid and 

10 mmol/L ammonia. Using a flow rate of 0.4 mL/min, the LC gradient consisted of: 100% A 

at 0 min, reach 80% A at 1 min, reach 0% A at 16 min, 0% A for 16-20 min, reach 100% A at 

20.1 min, 100% A for 20.1-21 min. MS data were acquired using negative and positive 

ionization using continuous scanning over the range of m/z 150 to m/z 2000. Data were 

analyzed using an in-house developed metabolomics pipeline written in the R programming 

language38. In brief, it comprises the following five steps: (1) pre-processing using the R 

package XCMS, (2) identification of metabolites, (3) isotope correction, (4) normalization and 

scaling and (5) statistical analysis14. All reported lipids were normalized to corresponding 

internal standards according to lipid class, as well as total protein content in samples, 

determined using a PierceTM BCA Protein Assay Kit. Lipid identification has been based on a 

combination of accurate mass, (relative) retention times, and the injection of relevant 

standards. Lipidomics data from these experiments can be found in Table S3, Table S4 and 

Table S5, as well as in the MetaboLights online database under the following code: 

MTBLS2370. 

Heritability estimation of RILs and integration of metabolomics and lipidomics  

Broad-sense heritability (H2) was calculated as described before8. Briefly, using an ANOVA 

explaining the metabolite variation over the offspring strains, the broad-sense heritability was 

calculated as H2 = Vg /(Vg+Ve), where H2 is the broad-sense heritability, Vg is the variance 

attributed to genetics and Ve is the variance attributed to other factors (e.g. measurement 

uncertainty or other biological factors). Significance of the heritability was calculated by 

permutation, where the trait values were randomly assigned to strains. Over these permutated 

values, the variance captured by strain and the residual variance were calculated. This 

procedure was repeated 1000 times for each trait. The obtained values were used as the by-
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chance distribution, and an FDR = 0.05 was taken as the 50th highest value. In the parental 

strains the broad-sense heritability was calculated as H2 = 0.5Vg /(0.5Vg+Ve), The factor 0.5 

corrects for the overestimation of the additive variation in inbred strains39. The same 

permutation approach as for the broad-sense heritability was applied, taking the FDR = 0.05 

threshold as significant. An H2 above the FDR value indates there is only a 5% chance the 

result is a false-positive. 

Cross comparison between metabolites and lipids were performed as follows: Individual 

metabolite abundances were used. Lipid class abundances were calculated by summing the 

abundances of each lipid species from a given lipid class. These were cross-correlated using 

the imgCor function from the mixOmics package v6.6.240 in R. Association and significance 

between lipids and metabolites was tested for using Pearson's product moment correlation 

coefficient. Visualization of data was performed using ggplot241. R v3.4.3 and Bioconductor 

v3.5 were used in these analyses. 
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Figures 

 

Fig. 1 | Validation and linearity of metabolites extracted from polar phase.  

a, Internal standard (IS) was added to C. elegans pellet and using a two-phase extraction the 

upper polar phase was processed for ZIC-cHILIC. Linearity of four example metabolites b, 

Pyruvate, c, CMP, d, ATP, and e, NAD+ shows r2 >0.98. For f, Pyruvate, g, CMP, h, ATP, and 

i, NAD+ the best IS was determined per metabolite by plotting Pearson’s correlation coefficient 

against coefficient of variance. Linearity of j, Pyruvate k, CMP l, ATP, and m, NAD+) after 

correction for their best IS shows r2 >0.99. Data points represent mean +/- SD with n=4 

biological replicates.  
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Fig. 2 | Validation of lipids extracted from apolar phase and comparison of two-phase 

vs. one-phase lipid extraction.  

a, IS was added to C. elegans pellet and using a two-phase extraction the lower apolar phase 

from the same sample was processed for lipidomics normal phase (NP) and reversed phase 

(RP). Linearity of b, TGs c, DGs d, PIs e, CLs f, PSs g, PGs h, SMs I, PCs j, PEs and k, LPCs 

l, Comparison of relative abundances (log1p) from one-phase extraction vs. two-phase 

extraction. Data points represent biological replicates with n=4.   
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Fig. 3 | Metabolite changes in worms treated with either pdha-1 RNAi or dpyd-1 RNAi. 

a, Heatmap of metabolite changes sorted on FDR of pdha-1 RNAi treated worms compared 

to control worms treated with an empty vector. b, RNAi of the pdha-1 enzyme metabolizing 

pyruvate into acetyl-CoA, providing the primary link between glycolysis and the tricarboxylic 

acid (TCA) cycle, results in significant increases of pyruvate and alanine and significant 

decrease of TCA cycle intermediates (iso)citrate, α-ketoglutarate, succinate, fumarate, malate 

and oxaloacetate. c, Heatmap of metabolite changes sorted on VIP-score of dpyd-1 RNAi 
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treated worms compared to control worms treated with an empty vector. d, RNAi of the dpyd-

1 enzyme, catalyzing uracil which ultimately ends in β-alanine (via 5,6-dihydruracil and N-

carbamyl-β-Alanine), results in significant upregulation of uracil and UMP and significant 

downregulation of β-alanine. Data points represent biological replicates with n=5-6 and 

significance (p < 0.05) was tested with Student’s t test.  
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Fig. 4 | Phospholipid changes in worms treated with either elo-2 RNAi or mdt-15 RNAi. 

a, RNAi of elo-2 which has fatty-acid elongase activity in worms, is expected to increase 

carbon-chain length of phospholipids. b, PCA analysis showing clear distinction between elo-

2 RNAi treated worms and control worms (n=6 biological replicates). c, Changes in the 

triacylglycerol (TG) composition of elo-2 RNAi versus empty vector controls shows significant 
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decrease of phospholipids with long carbon chain length (>55) and significant increase of TG 

species with short carbon chain length (<55). A similar pattern was observed in other 

phospholipid species such as d, PC and e, DG. f, RNAi of mdt-15, a transcription factor 

upregulating fat-2, fat-5, fat-6 and fat-7, affects the level of unsaturation, i.e. carbon-chain 

double bonds. g, PCA analysis showing clear distinction between mdt-15 RNAi treated worms 

and control worms. h, Changes in phospholipids of the triacylglycerol (TG) species shows 

significant decrease of lipids with >2 double bonds and increase of PL with <2 double bonds. 
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Fig. 5 | Natural diversity of metabolite abundances in Recombinant Inbred Lines (RILs) 

a, RILs strains selected for analysis b, Heatmap showing RILs and metabolites showing 

diversity in metabolite levels present between the different strains (n=5-6). c, broad-sense 

heritability (H2) of offspring versus parental lines. Heritability indicates the percentage of 

variance for a given metabolite that is explained by genetics. Examples diverse heritable 

outcomes include: d, uracil (offspring H2 0.794, FDR < 0.05; parental H2 0.131, FDR not 

significant) e, phosphoenolpyruvate (offspring H2 0.721, FDR < 0.05; parental H2 0.088, FDR 
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not significant)  f, methionine (offspring H2 0.892, FDR < 0.05; parental H2 0.006, FDR not 

significant) g, xanthosine (offspring H2 0.843, FDR < 0.05; parental H2 0.000, FDR not 

significant) h, acetyl-CoA (offspring H2 0.228, FDR not significant; parental H2 0.392, FDR < 

0.05)i, tryptophan (offspring H2 0.252, FDR not significant; parental H2 0.521, FDR < 0.05) j, 

glutamate (offspring H20.310, FDR not significant; parental H20.361, FDR < 0.05) k, 

NAD+(offspring H2 0.486, FDR not significant; parental H2 0.319, FDR < 0.05). l, Cross-

correlation matrix between polar (blue) metabolites and apolar (grey) lipid classes, highlighting 

the range of strong positive correlations (red) to strong negative correlations (blue) between 

all metabolites and lipid classes. m, Example of correlation between apolar cardiolipins (CL) 

and polar NAD+ (Pearson’s r=0.75, p=3.3e-11), parental lines and strains color coded as 

highlighted in the legend. n,  example of apolar cardiolipins (CL) and polar acetyl-CoA 

(Pearson’s r=0.65, p=5.7e-8).  
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Table 1. Comparison of commonly used metabolomics methods for C. elegans 

Type of 
approach 

Metabolites 
detected 

Metabolite type Required # of 
worms 

Year  

GC-MS ~100 Polar 120,000 2013 42  
GC-MS 186 Polar Unknown 2015 43  
NMR 45 Polar ~8,000  2017 44 
NMR 17 Polar 200,000 2019 45 

LC-MS 18 Polar  
(Amino Acids) 

2,000 2017 20 

LC-MS 105 Polar 2,500 2019 21 

LC-MS 82 Apolar 
(Spingolipids) 

750 mg  
(no amount 
specified) 

2019 46 

LC-MS Untargeted  
(~3000 features) 

Apolar (Lipids) 8,000 2019 47 

LC-MS 44  Apolar  
(Fatty Acids) 

2,500 2017 20 

LC-MS ~600 Apolar 
(Phospholipids) 

2,000 2017 20 

LC-MS/ 
GC-FID/ 
GC-MS/ 
NMR 

67 
 

Fatty acids + 
Amino acids + 
Polar 

~8000 2012 48 

LC-MS >1100  Polar + Apolar 2,000 This protocol 
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Figure S1 

Fig. S1 | Validation of lipids extracted from apolar phase on the polar side of the lipid 
spectrum. Linearity of a, LPAs b, LPEs c, LPGs d, PAs e, BMPs. Chemical structure of the 
classes are depicted on the right of each graph. f, Partitioning of internal standards into apolar/polar 
phase. Internal standards of lyso-lipid species LPG, LPA, LPE, LPC partially go to the polar phase, 
while non-lyso counterparts stay in the apolar phase. 

Disease Models & Mechanisms: doi:10.1242/dmm.047746: Supplementary information
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Figure S2 

Fig. S2 | Phospholipid changes in all classes in worms treated with elo-2 RNAi.  Changes in the 
composition of almost all classes shows significant decrease of phospholipids with long carbon-chain 
length and significant increase of species with short carbon-chain length.  

Disease Models & Mechanisms: doi:10.1242/dmm.047746: Supplementary information
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Figure S3 

Fig. S3 | Phospholipid changes in all classes in worms treated with mdt-15 RNAi. Changes in 
phospholipids of many species shows significant decrease of lipids with >2 double bonds and 
increase of PL with <2 double bonds. 

Disease Models & Mechanisms: doi:10.1242/dmm.047746: Supplementary information
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Table S1

Click here to Download Table S1

Table S2

Click here to Download Table S2

Table S3

Click here to Download Table S3

Table S4

Click here to Download Table S4

Table S5

Click here to Download Table S5
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