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A B S T R A C T   

Harmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, 
Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional 
massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several 
ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae 
Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes 
of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish 
mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway 
in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium 
polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of 
the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North 
Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish 
linked to HAB events has been observed in estuarine waters associated with influx of water from the southern 
North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then 
such blooms have been observed in high cell densities in spring causing fish mortalities some years. Di-
noflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) 
in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish 
west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak 
coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among di-
noflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST 
concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review 
period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high 
potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated 
with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii 
and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP 
events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD), 
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has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate 
Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for 
Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at 
concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue 
mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudo- 
nitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of 
Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish 
were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are 
a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyano-
bacteria produce toxins, e.g. Nodularia spumigena, producer of nodularin, which may be a human health problem 
and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of 
seafood, socioeconomic well-being and ecosystem services. Increasing anthropogenic influence and climate 
change create environmental stressors causing shifts in the biogeography and intensity of HABs. Continued 
monitoring of HAB and phycotoxins and the operation of historical databases such as HAEDAT provide not only 
an ongoing status report but also provide a way to interpret causes and mechanisms of HABs.   

1. Introduction 

1.1. General background 

Harmful algal blooms (HABs) are observed globally and have severe 
effects on fisheries, aquaculture, tourism and recreation (Berdalet et al., 
2016; Hallegraeff, 2003). Harmful Algal Blooms can be split into six 
main categories based upon their deleterious environmental and/or 
human health effects: 1. those producing phycotoxins that accumulate in 
suspension-feeders such as bivalve shellfish; 2. those that cause damage 
to respiratory mechanisms (e.g., fish gills), and/or feeding responses via 
toxin transfer, and thus result in mortalities of fish and other marine 
fauna; 3. high biomass blooms that cause nuisance effects and/or result 
in oxygen depletion; 4. ecosystem disruptive blooms with multiple 
cascading effects on species interactions; 5. those that produce aero-
solized toxins affecting human respiratory health; and 6. localized 
blooms of harmful benthic or epiphytic microalgae, which differ from 
planktonic HABs in habitant, mechanisms and extent of harmful effects. 
Particularly for planktonic versus benthic HABs, the categories overlap 
to some degree, e.g., certain fish-killing species can produce potent 
targeted phycotoxins and/or harmful substances linked to mucus pro-
duction; both planktonic and epiphytic microalgae may produce aero-
solized toxins; and some types of phycotoxins (e.g., diarrhetic shellfish 
toxins, DST) are shared between benthic and planktonic species that are 
not ecologically or phylogenetically closely related. 

This article describes the history of the occurrence and effects of HAB 
categories 1–4 in the Norwegian Sea, Norwegian part of the Barents Sea, 
eastern North Sea, Skagerrak, Kattegat and Baltic Sea (Fig. 1). Related 
marine observations from the coasts of Norway, Sweden, Finland, 
Poland, Denmark, Germany, the Netherlands and Belgium are included. 
Phytoplankton have been studied in these seas since the 1800s, when 
pioneers such as Hans Christian Lyngbye (Lyngbye, 1819), Per Theodor 
Cleve (Cleve, 1897; Cleve, 1900), Kaarlo Mainio Levander (Levander 
1901), Hans Lohmann (Lohmann, 1908, 1911), Carl Hansen Ostenfeld 
(Ostenfeld, 1908), Haakon Hasberg Gran (Gran, 1902) and Torbjørn 
Gaarder (Gaarder and Gran, 1927) were active. More detailed in-
vestigations of phytoplankton taxonomy, diversity, ecology and bloom 
dynamics have continued since then, including reference to species now 
recognized as harmful. In 1962, the first multi-decadal monitoring of 
phytoplankton within this region was initiated at Helgoland in the south 
German Bight of the North Sea (Franke et al., 2004; Wiltshire et al., 
2010). In the late 1970s and the 1980s more systematic phytoplankton 
monitoring started in several other locations in northern Europe, pri-
marily as a way to investigate effects of eutrophication. After some 
dramatic HAB events in the 1980s, phytoplankton monitoring with a 
focus on harmful species became more commonplace. 

1.2. A brief history of harvesting and cultivation of bivalve molluscs in 
Northern Europe 

Oysters (Ostrea edulis L.), cockles (Cerastoderma edule L.) and other 
bivalve molluscs have been harvested for human consumption in 
Scandinavia since the Stone Age (roughly defined as 8,700–2,000 BCE). 
Archaeologists have found large deposits of shells in prehistoric middens 
called køkkenmøddingar (Andersen, 2000), but it is unknown if phyco-
toxins affected the prehistoric societies in the area. From the 1700s (and 

Fig. 1. Map of northeastern Europe with sea areas discussed indicated. 
Numbers indicate locations discussed in the text: 1. Tromsø, 2. Vestfjorden, 3. 
Trondheimsfjorden, 4. Sandsfjorden, 5. Flekkefjord, 6. Oslofjorden, 7. Aarhus 
Bay, Horsens fjord and Mariager fjord, 8. Laholm Bay, 9. Kiel Bight, 10. Wil-
hemshaven, 11. Scheveningen, 12. Gotland and 13. Åland. 
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possibly earlier) until the present, harvesting of various bivalve shellfish 
with rakes, grabs and dredges has been documented (Bratrein, 1988; 
Strand and Vølstad, 1997). Similarly, the cultivation of shellfish in our 
focus region can be traced back as far as 1765, when at least one oyster 
farm was operating in the Netherlands (Van Beneden and Van Iseghem, 
1866). The bivalve molluscs were used as bait for fishing and also for 
human consumption. 

1.3. Historic Shellfish Toxicity problems 

There is a report of apparent Paralytic Shellfish Poisoning (PSP) from 
Wilhelmshaven, Germany, on the coast of the Wadden Sea from 1885 
(Virchow, 1885). Other early reports come from Norway; PSP seems to 
have been common in Trondheimfjorden and Oslofjorden, with reports 
of human poisonings consistent with PSP in 1901, 1939, 1959, 1979, 
and 1981 (Egmond, 1993; Thesen, 1901). In the 1960s, the term 
“mytilotoxin” derived from the proximal source, the blue mussel 
(Mytilus edulis), was applied in Norway to refer to saxitoxin (STX), the 
base compound of the paralytic shellfish toxin (PST) group, in bivalve 
shellfish from Oslofjorden; the causative dinoflagellate species was 
called Gonyaulax tamarense Lebour at the time (Bøhle, 1965; Oftebro and 
Bøhle, 1965; Wiborg and Bøhle, 1968), but is likely referable to Alex-
andrium catenella (ribotype Group 1) in current nomenclature (John 
et al., 2014). In Belgium in 1938, a dinoflagellate identified as Pyrodi-
nium phoneus Woloszynskia & Conrad, 1939, but most plausibly refer-
able to A. ostenfeldii (Paulsen) Balech & Tangen, was associated with an 
apparent PSP event in which 4 people died after consuming cultivated 
mussels (John et al., 2014; Litaker et al., 2018). 

Diarrhetic shellfish poisoning (DSP) from consumption of cultured 
mussels was reported from the Netherlands as early as 1961 (Kat, 
1983a). Farming of blue mussels (M. edulis) started in Sweden in the 
1970s (Haamer, 1975), but it was not until 1983 that the first DSP cases 
occurred among people consuming mussels in Sweden. In 1984, the 
presence of Diarrhetic Shellfish Toxin (DST) was confirmed in blue 
mussels from Sweden (Edebo et al., 1988a; Edebo et al., 1988b; Haamer, 
1997) by mouse bioassays and fluorescence-derivatization liquid chro-
matography (LC-FD). Harvesting of bivalves increased in northern Eu-
ropean waters in the early 1980s; at this time, both DST and PST were 
detected in bivalve shellfish from the region, either by whole animal 
bioassays or LC-FD chromatographic methods, but high levels of these 
respective toxin groups were not usually found simultaneously (Kat, 
1983b; Langeland et al., 1984; Moestrup and Hansen, 1988; Tangen, 
1983). Since then, improved monitoring of phycotoxins in bivalve 
shellfish, by application of more advanced and standardized LC 
methods, cell-based and immunodiagnostic techniques, and most 
importantly the advent of liquid chromatography coupled tandem mass 
spectrometry (LC-MS/MS) methods for phycotoxins, has provided 
structural and quantitative confirmation of known and novel toxins in 
plankton and seafood matrices (Hallegraeff et al., 2004). For example, in 
northern Europe, the occurrence of amnesic shellfish toxins (AST) pro-
duced by the diatom Pseudo-nitzschia spp. (Lundholm et al., 2005) and 
azaspiracid shellfish toxins (AZA) from amphidomatacean di-
noflagellates (Azadinium spp. and Amphidoma languida Tillmann, Salas & 
Elbrächter) (reports of the ICES-IOC Working Group on Harmful Algal 
Bloom Dynamics available at www.ices.dk) are now routinely confirmed 
in monitoring programmes. 

1.4. Historic information on fish mortalities due to HAB 

Blooms of algae causing fish mortalities are known from northern 
Europe since 1966, when the dinoflagellate Karenia mikimotoi (Miyake & 
Kominami ex Oda) Gert Hansen & Moestrup (formerly known as Gyro-
dinium aureolum Hulburt) caused brown water and fish kills along the 
south coast of Norway (Braarud and Heimdal, 1970). Since then, 
prymnesiophytes and dictyochophytes are the predominant algal groups 
responsible for fish mortalities in the region. In 1988 a bloom of 

Prymnesium polylepis (Manton & Parke) Edvardsen, Eikrem & Probert 
caused fish mortalities and disrupted the ecosystem in the 
Kattegat-Skagerrak (Dahl et al., 2005; Dahl et al., 1989, Gjosaeter et al. 
2000). The bloom negatively affected the whole marine ecosystem, 
including plankton, benthic invertebrates, fish and macroalgae. Major 
fish mortalities caused by blooms of Chrysochromulina leadbeateri Estep, 
Davis, Hargreaves & Sieburth occurred in Northern Norway in 1991 and 
2019 (Eikrem and Throndsen, 1998; Johnsen et al., 1999; Karlsen et al., 
2019). The dictyochophyte Pseudochattonella spp. has caused fish mor-
talities in the Kattegat-Skagerrak area since 1998 (Edvardsen et al., 
2007). The harmful algal blooms and events have been recorded in 
monitoring programs and short-term scientific investigations. The aim 
of this review is to describe the different types of harmful algae and the 
harmful algal bloom events in a biogeographical and historical context 
and to describe the linkage between selected HABs and their ecological 
and societal effects in the chosen geographic area. 

2. Methods 

This article is partly based on reports of harmful algal bloom events 
to the IOC-ICES-PICES Harmful Algae Event Database, HAEDAT htt 
p://haedat.iode.org during the period 1987 to 2019 for northern 
Europe. In some rare cases, earlier historic events may be included, e.g., 
a HAEDAT-report on an event in Belgium from 1938. Observations of 
harmful algae events were entered or supervised by members of the 
ICES-IOC Working Group on Harmful Algal BloomDynamics (WGHABD) 
representing different countries. Unfortunately, not all countries in 
northern Europe have participated actively in the WGHABD, and annual 
national reports for HAEDAT may also be inconsistently entered. For 
example, for the Baltic Sea region, HAEDAT reports are missing from 
Russia and there are very few reports entered by Estonia, Latvia and 
Lithuania. These sporadic reports do not accurately reflect the number 
of HAB events in these countries and thus such reports were not included 
in this publication. 

The entries in HAEDAT are largely based on the national and 
regional monitoring programs listed in supplementary material Tables 1 
and 2. Methods for phytoplankton analysis are as described by Edler and 
Elbrächter (2010), Utermöhl (1958), Andersen (2010) and Dahl and 
Naustvoll (2010). The methods for analysis of phycotoxins in bivalve 
shellfish follows standards set by the European Union as described in 
Bresnan et al. (2021). 

It should be noted that sampling frequency and intensity differs 
among and within national and regional monitoring programmes, the 
methods applied to define events have been inconsistently updated since 
the inception of HAEDAT. An expanded definition of a HAB event is 
found in Bresnan et al. (2021). For phycotoxin producing taxa, a HAB 
event most often refers to a closure of a shellfish harvesting area due to 
phycotoxin concentrations above regulatory limits set by the European 
Union. The regulatory limits are described in Bresnan et al. (2021). A 
fish-killing event most often refers to finfish mortalities in aquaculture 
facilities due to a specific HAB, but, in some cases, mortalities of wild 
fish and other collateral damage to marine fauna are also recorded as 
marine mortality events. HAB events may also refer to high cell abun-
dances or water discoloration, etc., such that a management decision is 
triggered. A common management decision is a warning to the public by 
authorities, e.g. because of high biomass of potentially toxic cyanobac-
teria. A list of toxin-producing taxa observed in the regions addressed in 
this article is presented in Table 3. The list is based on IOC-UNESCO 
Taxonomic Reference List of Harmful Microalgae (Moestrup et al., 
2020). 

3. Fish-killing HAB-taxa and their effects 

3.1. General aspects 

The prymnesiophyte genera Prymnesium, Chrysochromulina, 
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dinoflagellate genera Akashiwo, Karenia, Karlodinium and dictyocho-
phyte genera Dictyocha (including Octonaria) and Pseudochattonella 
include most of the phytoplankton species that have caused fish mor-
talities in the region. Fish are killed by one or a combination of the 
following mechanisms: exposure to algal neurotoxins; gill irritation/ 
damage (either mechanically or via algal production of haemolytic 
substances); or asphyxiation caused by mucus impeding gill function or 
oxygen depletion of the surrounding seawater. In northern European 
waters, fish mortalities have been attributed to each of these mecha-
nisms, although usually based upon circumstantial evidence. Since 
2014, several fish kills (Salmo salar) in land-based recycling aquaculture 
systems have been caused by small thecate dinoflagellates, such as 
Pfiesteria shumwayae Glasgow & J.M.Burkholder and Luciella masanensis 
P.L.Mason, Jeong, Litaker, Reece & Steidinger (Moestrup et al., 2014), 
but it is not clear if these mortalities were due to defined toxins or more 
non-specific gill membrane-disruptive effects. The costs for fish mor-
talities due to harmful algae are summarised in Table 4. An increase in 
fish mortalities due to HABs seems to coincide with an increase in finfish 
aquaculture but correlations were not testable. 

3.2. Prymnesium and Chrysochromulina 

There are >20 species of Prymnesium and almost 50 species of 
Chrysochromulina described (Guiry and Guiry, 2020). All are primarily 
phototrophic flagellates belonging to the order Prymnesiales in the 
phylum Haptophyta. In general, prymnesiophytes are mixotrophic to 
some degree and several species are phagotrophic, catching prey using 
their haptonema. Electron microscopy is often needed to identify 
Prymnesium and Chrysochromulina taxa at the species level, based on the 
morphology of scales. In May-June 1988 a major bloom of P. polylepis 
developed in the Kattegat, the Skagerrak and the eastern North Sea 
(Dahl et al., 1989; Edvardsen and Paasche, 1998; Kaas et al., 1992; 
Lekve et al., 2006; Skjoldal and Dundas, 1991). The bloom was 
ecosystem disruptive and strongly affected plankton communities 
(Nielsen et al., 1990), as well as benthic flora and fauna, and killed both 
wild and farmed fish. Long term effects on coastal fish populations and 
the benthic communities were, however, not observed (Gjosaeter et al., 
2000). While the causes of the 1988 bloom are not fully resolved, un-
usually high N:P ratios of inorganic nutrients and a long period of high 
irradiance and calm weather may have contributed to the bloom 
development. 

In the second half of May 1991 a bloom of C. leadbeateri occurred in 
Vestfjorden and surrounding areas in northern Norway, causing salmon 
mortalities at several fish farms. Between early May and early June 
2019, C. leadbeateri again caused fish mortalities in the same area in 
Vestfjorden and further north near Tromsø. The direct costs for these fish 
mortalities due to Chrysochromulina are summarised in Table 4. In the 
1991 event, the total losses were 742 tons of salmon with an estimated 
value of 3.5 million $US (Aure and Rey, 1992; Rey, 1991). The economic 
impacts were far more extensive in 2019; more than 8.2 million farmed 
salmon died, representing a value of >100 million $US (Karlsen et al., 
2019). 

The flagellate Prymnesium parvum N. Carter has caused fish mortal-
ities worldwide (Edvardsen and Paasche, 1998). In Norwegian waters, 
P. parvum has been reported from Oslofjorden (Skagerrak) in the south 
to Svalbard in the north. However, blooms of P. parvum have only been 
reported from the Sandsfjorden system (in Ryfylke) in western Norway, 
where the salinity of the surface brackish layer is typically in the range 
of 4 to 7 during the summer. The first reported bloom in 1989 killed 750 
metric tons of caged salmon and trout, with a significant economic loss 
to the fish farming industry (Johnsen and Lein, 1989; Kaartvedt et al., 
1991) (Table 4). Blooms occurred also in subsequent years and as a 
result the number of fish farms in the area decreased considerably. 
Following a decrease in the occurrence of P. parvum in the early 2000s, 
in 2005, fish farming was reintroduced to the area. Then the blooms 
abruptly reappeared; in 2007 a toxic bloom of P. parvum killed 135 

metric tons of caged fish (Johnsen et al., 2010) (Table 4). Blloms of 
Chrysochromulina and Prymnesium caused mortalities of wild fish in in 
Kyrkfjärden, a small embayment with restricted water exchange, in the 
Archipelago of Stockholm, in 1991 and 1992. 

3.3. Pseudochattonella spp 

Pseudochattonella spp., heterokont flagellates belonging to the Dic-
tyochophyceae, have been widely observed on a global scale, including 
in the Kattegat-Skagerrak, Seto Inland Sea, Japan (Hara, 1994), New 
Zealand (MacKenzie et al. 2011) and in Chile (Mardones et al., 2019). 
Fish-killing Pseudochattonella blooms in northern Europe have a multi-
decadal history, although documentation is incomplete. For example, a 
fish kill in May 1979 in Loch Striven on the west coast of Scotland was 
attributed to unidentified “flagellate x” in a report (Tett, 1980); the 
drawing by M.R. Droop (Fig. 6) is similar to Pseudochattonella, but this 
association cannot be confirmed. The first bloom of Pseudochattonella sp. 
in the Kattegat-Skagerrak-eastern North Sea was registered in 1998 
(Aure et al., 2001; Waite and Lindahl, 2006). Just before the end of 
1997, a bloom of Pseudochattonella sp. was observed in Århus Bay, in the 
Danish part of the Kattegat (pers. comm., Helene Munk-Sørensen). 
Mortalities of wild fish (garfish Belone belone L., Atlantic mackerel 
(Scomber scombrus L.) and herring (Clupea harengus L.), as well as farmed 
salmon (Salmo salar L.) were reported in 1998. Since then, Pseu-
dochattonella has formed recurrent extensive blooms in the Kattegat and 
Skagerrak, causing fish mortalities. Initially, the causative species was 
referred to as Chattonella aff. verruculosa of uncertain taxonomic affili-
ation, then renamed Verrucophora (Edvardsen et al., 2007) for a short 
time, but is currently placed in the genus Pseudochattonella (Eikrem, 
2009) based upon morphological and molecular considerations. Two 
species of Pseudochattonella have caused fish mortalities in the 
Kattegat-Skagerrak area: P. farcimen (Eikrem, Edvardsen & J.Thrond-
sen) Eikrem and P. verruculosa (Y. Hara & M. Chihara) S. Tanabe-Hosoi, 
D. Honda, S. Fukaya, Y. Inagaki & Y.Sako. Since 1998, P. farcimen has 
been the dominant dictyochophyte bloom-former, with blooms occur-
ring in spring, just after the spring diatom bloom (Andersen et al., 2015; 
Eckford-Soper and Daugbjerg, 2016; Jakobsen et al., 2012). Blooms 
during 2001–2019 have caused mortalities of rainbow trout (Onco-
rhynchus mykiss Walbaum) in open water pen-based aquaculture fish 
farms in Denmark. The approximate total loss of fish in 2006, 2007 and 
2019 was 38, 68 and > 400 tonnes, respectively (see also Table 4). In 
addition to fish kills, observation of blooms of Pseudochattonella during 
early spring has delayed release of fish to the aquaculture sites in the sea 
in several years during the period 1998–2019 with resulting loss of 
production to the aquaculture industry. 

3.4. Dictyocha/Octactis/Vicicitus 

Dictyocha spp. are phototrophic flagellates with siliceous skeletons 
belonging to the class Dictyochophyceae; the genus was recently split 
into the genera Octactis and Dictyocha (Chang et al., 2017). In northern 
Europe, D. fibula Ehrenberg and O. speculum (Ehrenberg) F.H. Chang, J. 
M. Grieve & J.E. Sutherland (ex. Dictyocha speculum Ehrenberg) are 
commonly observed in phytoplankton monitoring programs during the 
autumn. A naked cell stage in the life cycle of Dictyocha/Octactis has 
been connected to fish mortalities (Henriksen et al., 1993; Jochem and 
Babenerd, 1989; Lømsland et al., 2010; Moestrup and Thomsen, 1990). 
Another fish-killing member of the order Dictyochales, Vicicitus globosus 
(Y. Hara & Chihara) F.H. Chang (ex. Chattonella globosa) (Chang, 2015; 
Chang et al., 2012) has been observed in the Skagerrak and the south 
and west coast of Norway (Lømsland et al. 2010). In HAEDAT, one fish 
kill affecting aquaculture, attributed to the naked form of O. speculum, 
was reported for 2004 in the Belt Sea in the southern Baltic, but no such 
incidents were recorded for the greater North Sea and adjacent coasts. 
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3.5. Karenia mikimotoi 

Karenia mikimotoi, a phototrophic dinoflagellate with unusual chlo-
roplasts of prymnesiophyte origin (Horiguchi, 2006; Tangen and 
Björnland, 1981; Zapata et al., 2012), is a widely distributed species in 
temperate waters and is well known as a major fish-killing species 
(Davidson et al. 2009, Silke et al. 2005). In northern Europe, 
K. mikimotoi was first known as Gyrodinium aureolum Hulburt but this 
was a misidentification. Later, this ”European fish-killing taxon” was 
assigned to Gymnodinium mikimotoi Miyake & Kominami ex Oda and/or 
Gymnodinium nagasakiense H.Takayama & M.Adachi. At present, 
K. mikimotoi is accepted as valid. When exposed to high concentrations 
of cultured cells of K. mikimotoi, mortalities of rainbow trout, Onco-
rhynchus mykiss, can rapidly occur (Mitchell and Rodger, 2007; Roberts 
et al., 1983). A putative toxic mechanism was proposed by Gentien and 
Arzul (1990), linked to the membrane disruptive potential of unusual 
fatty acid derivatives produced by K. mikimotoi, but this remains 
controversial. Blooms of K. mikimotoi have caused mortalities of fish and 
benthic invertebrates in northern Europe since 1966, when brown water 
and fish kills were observed along the south coast of Norway (Braarud 
and Heimdal, 1970). Blooms were extensive in Norway in the late 1970s 
and 1980s (Dahl et al., 1982; Dahl and Tangen, 1993; Tangen, 1977) but 
now appear to be more restricted in geographical extent. Further south, 
along the Swedish Skagerrak coast, sporadic blooms occurred in the 
1980s (Lindahl, 1983; Lindahl, 1986, Karlson, 1989), but are recently 
uncommon. Major blooms have also been reported from Scottish waters 
(Davidson et al., 2009), from Ireland (Raine et al., 2001; Silke et al., 
2005) and the English Channel (Barnes et al., 2015; Hartman et al., 
2014), particulary in periods of stratified water which apparently fa-
vours growth of K. mikimotoi. 

3.6. Karlodinium veneficum 

Karlodinium is a mixotrophic dinoflagellate genus with several fish 
killing members. Karlodinium veneficum (D.Ballantine) J.Larsen was re-
ported to cause mortalities of wild fish on the Swedish coast of the Baltic 
Proper in 2012, and on the Finnish coast of the Gulf of Finland in 2015, 
at a cell density of 14 × 106 cells L− 1. This small (<8–12 μm) athecate 
dinoflagellate is common in coastal aquatic ecosystems, but it frequently 
overlooked or misidentified. Karlodinium species can be identified by 
molecular techniques, such as for the Gulf of Finland event in 2015. 
Several toxic compounds (karlotoxins) have been characterized with 
haemolytic, ichthyotoxic, and cytotoxic properties (Place et al. 2012). 

3.7. Pfiesteria shumwayae and Luciella masanensis 

The dinoflagellates Pfiesteria shumwayae Glasgow & J.M.Burkholder 
and Luciella masanensis P.L. Mason, Jeong, Litaker, Reece & Steidinger 
caused mortalities of rainbow trout Oncorhynchus mykiss Walbaum in 
recirculation fish farms in Denmark in 2012 (Moestrup et al., 2014). 
Whereas fish mortalities due to P. shumwayae occurred at a brackish 
water farm, L. masanensis caused fish kills at a land-based farm using 
pumped seawater. Both dinoflagellate species are small and difficult to 
identify, with a complex cryptic life history, and therefore under-
reported, but likely occur in plankton or bottom waters in temperate 
areas throughout the world. 

4. Phycotoxin producing HAB-taxa and their effects 

4.1. Dinophysis and Prorocentrum species and Diarrhetic Shellfish Toxins 

In northern Europe, Diarrhetic Shellfish Toxins (DST) are produced 
by several Dinophysis species (Dahl and Johannessen, 2001) and by the 
benthic Prorocentrum lima (Ehrenberg) F. Stein. Other toxigenic mem-
bers of the genus Prorocentrum (e.g., P. concavum and P. hoffmannianum) 
are common in sub-tropical and tropical waters (reviewed in 

Durán-Riveroll et al. 2019), but these species are either extremely rare 
or do not occur in northern European waters. Prorocentrum lima is pri-
marily epiphytic, living on sandy or rocky substrates along shores, and 
attached to macroalgae and seagrass (e.g., Zostera marina). 

Dinophysis are planktonic, mixotrophic dinoflagellates with a com-
plex and diverse life history, alternative nutritional modes, variable 
pigmentation and photosynthetic mechanisms, and ecology and 
behaviour that resists generalization (reviewed by Reguera et al., 1995; 
Reguera et al., 2012). Three toxigenic Dinophysis species, D. acuta 
Ehrenberg, D. acuminata Claparède & Lachmann and D. norvegica 
Claparède & Lachmann, are most commonly reported in monitoring 
programmes in northern Europe. 

The cell “toxicity” (or toxin content) of Dinophysis cells has been 
shown to be highly variable and to depend on cell density (Lindahl et al., 
2007), and probably on nutritional mode as well. Dinophysis cells are 
capable, although apparently awkward, swimmers (Lassus et al., 1990; 
Smayda, 2010), and are often observed in dense subsurface layers in 
stratified waters, such as in subsurface layers in a Swedish fjord (Lindahl 
et al., 2007). Dinophysis species are sometimes infected by parasites, e.g. 
the dinoflagellate Amoebophrya Koeppen (Salomon et al., 2003) and 
Parvilucifera Norén & Moestrup (Lee and Park, 2017), but little is known 
about effects on cell toxicity. Heterotrophic dinoflagellates from the 
genus Fragilidium Balech ex Loeblich III feed on Dinophysis by engulf-
ment (Rodriguez et al., 2014), and hence could act as a DST vector in 
marine planktonic food webs. The heterotrophic dinoflagellate species 
Phalacroma rotundatum (Claparéde & Lachmann) Kofoid & J.R.Michener 
(syn. Dinophysis rotundata Claparède & Lachmann) is likely not a pro-
ducer of DST at least in North Atlantic waters (Cembella 1989, 
González-Gil et al. 2011, Pleasance et al. 1990), although it is a possible 
weak toxin vector via phagotrophy (González-Gil et al. 2011). This 
species remains on the IOC-UNESCO Taxonomic Reference List of 
Harmful Microalgae (Moestrup et al., 2020) based upon an early un-
confirmed report of species toxicity in Japan (Lee et al. 1989) but 
P. rotundatum is not included in Table 3 as it has not been associated with 
DST events in northern Europe. 

The DST group includes okadaic acid (OA) and >30 naturally 
occurring dinophysistoxin (DTX) analogues, but not all of them are 
diarrheagenic toxins or subject to regulation. Okadaic acid (OA), 
dinophysistoxin-1 (DTX1), and dinophysistoxin-2 (DTX2) are the 
dominant members of the DST group found in shellfish in northern 
Europe, but other analogues (e.g., acyl-esters) may also be present in 
Dinophysis and/or produced via biotransformation in shellfish (Blanco, 
2018; Durán-Riveroll et al., 2019). 

Macrocyclic lactone derivatives, such as pectenotoxins (PTX), pre-
viously considered to belong to the “DST group”, may be synthesized by 
various Dinophysis species, but they are not known to be associated with 
any Prorocentrum (Duran-Riveroll et al., 2019). Numerous PTX ana-
logues of uncertain specific toxicity often co-occur with true DSTs, and/ 
some can be produced by bioconversion in shellfish after ingestion of 
Dinophysis cells. PTXs are non-diarrheagenic, and no oral toxicity in 
mammals (including humans) has been identified, but they are included 
as emerging toxins in the “lipophilic toxins” fraction for the DSP mouse 
assay and LC-MS/MS analysis. PTX is included in the EU regulatory 
limits at present with a Toxicity Equivalency Factor (TEF) of 1, relative 
to OA. 

Harmful algal events related to DSTs are the most common events 
reported to HAEDAT for Sweden, Norway, Denmark, Germany, the 
Netherlands and Belgium (see Table 2). Nevertheless, Diarrhetic Shell-
fish Poisoning (DSP) incidents are rarely reported for the region; most 
recorded DSP events are referring to DST levels above the regulatory 
limit in bivalve shellfish and resulting closures of shellfish harvesting 
areas. At present the DST regulatory limit in Europe is 160 µg OA 
equivalents kg− 1 of shellfish flesh (EFSA, 2009b), and this appears to 
provide a margin of security, at least against acute human poisoning 
(DSP). Most likely, recent ongoing effective monitoring of the dinofla-
gellate producers of DST and toxin accumulation in shellfish has resulted 
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in precautionary closures of shellfish harvesting and thus prevented 
most potential DSP incidents. 

The risk of DSP remains the major phycotoxin-related problem in the 
Netherlands (van der Fels-Klerx et al., 2012), in Norway and in Sweden 
(Persson et al., 2020). Confirmed DSP events in the Netherlands were 
reported as early as 1961 (Kat, 1983a), and later in Sweden in 1983 
(Haamer, 1997; Krogh et al., 1985). The first confirmed DSP event in 
Norway occurred in 1984 (Dahl and Yndestad, 1985), although there are 
undocumented reports as early as 1870 and 1971 (see Table 1, and 
Tangen and Dahl 1999). DSP is also the main phycotoxin-related 
concern in Belgium, with events leading to shellfish closures in 2001 
and 2008. At Helgoland, in the German Bight, DST was found in the blue 
mussel M. edulis in 2000 (Klöpper et al., 2003), but was not related to 
harvestable shellfish or human illness. Dinophysis tripos Gourret was first 
recorded from the long-term Helgoland Roads in the southern North Sea 
in 2014 (Kraberg et al., 2019). This potentially toxigenic species has 
increased in cell abundance in Norway (Johnsen and Lømsland, 2010a) 
and Sweden (B. Karlson, unpublished) since 2014, but the associated 
DST risk has not been assessed. 

The annual concentrations of DST in bivalve shellfish have shown a 
decrease along the southern coast of Norway (Naustvoll et al., 2012) and 
along the Skagerrak coast of Sweden (Persson et al., 2020), in recent 
years. This coincides with a decrease in cell numbers of D. acuta reported 
from harmful phytoplankton monitoring programmes. In the late 1980s, 
the highest DST levels in M. edulis were observed in autumn (Edebo 
et al., 1988a; Edebo et al., 1991), but since then the peak in DST levels in 
this shellfish species has apparently shifted back from autumn towards 
summer (Naustvoll et al., 2012; Persson et al., 2020). In 2002, an un-
usual HAB event occurred in the Flekkefjord area in southern Norway. 
Cancer pagurus L., commonly known as the edible (or brown) crab, 
contained high levels of DST in the viscera, after feeding on mussels 
containing DST (Castberg et al., 2004; Torgersen et al., 2005). Humans 
were poisoned after eating these crabs, exhibiting characteristics of the 
DSP syndrome. 

4.2. Alexandrium spp. and Paralytic Shellfish Toxins 

Alexandrium are globally distributed and occur from polar seas 
(Okolodkov, 2005) to brackish tropical and subtropical lagoons (Lim 
et al., 2005) and seem to increase in their global distribution (Penna 
et al., 2015). Members of the dinoflagellate genus Alexandrium 
(reviewed by Anderson et al. 2012), such as Alexandrium minutum 
Halim, A. ostenfeldii, A. pacificum, A.catenella (Whedon & Kofoid) 
Balech, A. australiense Sh. Murray, and A. tamiyavanichi Balech (Murray 
et al., 2015a; Murray et al., 2015b), are major global producers of the 
neurotoxins responsible for paralytic shellfish poisoning (PSP), known 
as “saxitoxins” or PST. The dinoflagellates Gymnodinium catenatum H.W. 
Graham and Pyrodinium bahamense L. Plate also cause PSP incidents, but 
these species are absent from the northern European area reviewed 
herein. Several toxigenic Alexandrium species capable of producing PSP 
toxins are common in northern European waters; among them 
A. catenella, A. ostenfeldii, and A. minutum are the most prominent con-
tributors to PST in shellfish and have a long and well-described historical 
distributional record in the region. Biogeographical data for this genus 
and associated PST must be cautiously interpreted because of the 
frequent and even contradictory taxonomic and nomenclatural revisions 
of the genus within the last decade and difficulties in cross-referencing 
events to older species names. For example, the original taxon 
Gonyaulax tamarensis Lebour held to be responsible for PSP incidents in 
northern Europe, and later redescribed as Alexandrium tamarense (Leb-
our) Balech, 1995 (as cited in Table 3), is now considered to be 
non-toxigenic. Further redefinitions of Alexandrium taxa have been 
based upon combined morphological and molecular criteria (John et al. 
2014) with associated toxin composition (Cembella 2018). Following 
recent updates to the IOC-UNESCO Taxonomic Reference List of 
Harmful Microalgae (Moestrup et al., 2020), most PSP events in the 

Table 1 
Selected major harmful algal bloom events in the eastern North Sea area, the 
Norwegian Sea, the Barents Sea and the Baltic Sea.  

Year/period Syndrome/type 
of effect 

Taxa Sea area and 
description of 
event 

1854 Summer bloom 
of cyanobacteria 

cf. Aphanizomenon 
and/or Nodularia 

Surface 
accumulation near 
island of Gotland 
today attributed to 
cyanobacteria 
bloom 

1870 DSP Dinophysis (no 
confirmed 
observation) 

First recorded 
human DSP event, 
Sognefjorden, 
Norway 

1901 PSP Alexandrium (no 
confirmed 
observation) 

First documented 
PSP event in 
Norway (two 
deaths), 
Oslofjorden 

1938 PSP Alexandrium 
ostenfeldii 

First reported PSP 
event, Belgian 
coast 

1966-1998 and 
2020 

Fish mortalities Karenia mikimotoi (at 
first incorrectly 
identified as 
Gyrodinium 
aureolum) 

Skagerrak and the 
Kattegat (including 
the event in 
Limfjorden 2020) 

1980 - DSP Dinophysis spp. Skagerrak, 
Norwegian Sea, 
Barents Sea 

1980s - PSP Alexandrium spp. Skagerrak, 
Norwegian Sea, 
Barents Sea, 
documented PSP 
events from 
Skagerrak, 
Norwegian Sea, 
Barents Sea 

1988 Ecosystem 
disruptive 
bloom, 
including fish 
mortalities 

Prymnesium polylepis 
(syn. 
Chrysochromulina 
polylepis) 

Kattegat, 
Skagerrak, eastern 
North Sea 

1989, 1990, 
1991, 1995 
and 2007 

Fish mortalities Prymnesium parvum Ryfylke, Norway 

1990 Fish mortalities Prymnesium parvum Baltic Sea, 
Dragsfjärd, Finland 

1991 and 2019 Fish mortalities Chrysochromulina 
leadbeateri 

Northern Norway, 
Lofoten 
(Vestfjorden) and 
Tromsø area 

1998, 2001, 
(2004, 2006, 
2011), 2017, 
2019 

Fish mortalities Pseudochattonella 
farcimen and 
P. verruculosa 

Skagerrak-Kattegat 
(in 1998 also 
eastern North Sea), 
along Norwegian 
west coast 

2001 Shellfish 
mortalities 

Phaeocystis globosa North Sea, Eastern 
Scheldt, 
Netherlands 

1973–1985 
1985–2001 
2001–2017 

Foam on 
beaches 

Phaeocystis spp. Increasing trend in 
annual occurrence, 
but decreasing- 
stabilised trend in 
English Channel 

2001- Summer blooms 
of cyanobacteria 

Nodularia spumigena, 
Aphanizomenon 
flosaquae, 
Dolishospermum spp. 

Baltic Sea, along 
Polish coast 
(especially Gulf of 
Gdańsk) 

2005 ASP Pseudo-nitzschia 
seriata 

Kattegat – first AST 
event above 
regulatory level in 
Scandinavia 

2005- AZA Azadinium spp. Sporadic 
accumulation of 

(continued on next page) 
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greater North Sea region linked to the Norwegian Sea and 
Kattegat-Skagerrak reported in HAEDAT may be referred to A. catenella 
(ribotype Group 1), formerly known as A. fundyense sensu Balech 1995. 

Paralytic Shellfish Toxins (PST) are produced by marine di-
noflagellates belonging to three major genera and among about a dozen 
genera of freshwater and brackish water cyanobacteria; distribution and 
mode of action of such guanidinium toxins are reviewed by Durán-Ri-
veroll and Cembella 2017. PSTs are tetrahydropurine neurotoxins, the 
most potent being the carbamoyl derivatives saxitoxin (STX) and neo-
saxitoxin (neoSTX), that block conductance through sodium ion chan-
nels of nerve cells causing neuromuscular paralysis (Kao, 1993; Van 
Dolah, 2000). The accumulation of PSTs in marine species can cause the 
syndrome PSP in human consumers of seafood (Kao, 1993), and toxin 
transfer within marine food webs may lead to faunal mortalities and also 
have severe impacts on ecosystem function (Anderson and Garrison, 
1997; Llewellyn, 2006). 

In addition to the PSTs (“saxitoxins”), some Alexandrium species 
produce other bioactive compounds (“toxins”) such as the cyclic imines 
spirolides (SPX) or gymnodimines (GYM), and/or the polyether mac-
rolide goniodomins (GD). These compounds may play a defensive role in 
deterring grazers, as has been shown for saxitoxins and copepods 
(Selander et al., 2006; Wohlrab et al., 2010), or have other unknown 
ecological functions. None of these compounds are currently subject to 
regulatory limits within the EU, although they remain on the watch list 
as emerging or potential toxins. 

Reports of high PST concentrations in bivalve molluscs from north-
ern Europe are summarised in Table 5, see also Fig. 2. The first HAEDAT- 
report of a PSP event in Sweden is from 1987 when mussels (M. edulis) 
along the Swedish Skagerrak coast had PST levels above the regulatory 
limit (800 µg STXeq kg− 1) between late May and early July. Events with 
PST levels above the regulatory limit were also recorded in 1988 and 
1997. In these early cases, the toxin producer was reported as Gonyaulax 
excavatum (Braarud) Balech 1971, but is now considered as Alexandrium 
catenella (Kofoid) Balech in current nomenclature (Litaker et al. 2018). 
Subsequently, for the Skagerrak area there have been several reports of 

elevated levels of PST, e.g. 6.0 × 103 µg STX eq kg− 1 in 2010; the 
causative dinoflagellate was A. catenella (but reported as A. tamarense). 
In 2014, 2015 and 2017 PSP events for the Swedish Skagerrak coast with 
a maximum PST level of 3.6 × 10 µg STXeq kg− 1 were also reported in 
M. edulis. 

The first apparent PSP outbreak reported for Norway occurred in 
1901 causing two human deaths in Oslo due to consumption of 
contaminated shellfish (Tangen and Dahl, 1999; Thesen, 1901). The first 
HAEDAT-report of PST events, i.e. PST concentrations in bivalve mol-
luscs above regulatory limit, in Norway is from 1987. Since then, PST 
levels well above the regulatory limit have often been recorded in 
shellfish from the Norwegian Sea, e.g. in 2010 from the northern Nor-
wegian Sea (maximum: 17.7 × 103 µg STXeq kg− 1) and in 2011 from the 
southern Norwegian Sea (maximum: 12.5 × 103 µg STXeq kg− 1), with 
highest levels in shellfish from the Norwegian Sea in 2017 (maximum: 
5.8 × 104 µg STX eq kg− 1). The toxin producer was A. catenella (again 
reported as A. tamarense). Events in the Barents Sea were first reported in 
1996, with highest PST levels of 3.6 × 103 µg STXeq kg− 1 in 2017. 

4.3. Alexandrium pseudogonyaulax and associated cyclic imines and 
macrocyclic polyether toxins 

In view of its phylogenetic affinities, nutritional mode and toxigenic 
potential, Alexandrium pseudogonyaulax (Biecheler) Horiguchi ex K.Yuki 
& Y.Fukuyo in northern Europe is clearly distinct from the A. catenella/ 
tamarense and A. ostenfeldii/peruvianum species groups. Members of the 
A. catenella/tamarense group are more frequently PST producers, 
whereas A. ostenfeldii/peruvianum may produce PSTs and/or spirolides 
(SPX), respectively, in this region. Populations of A. pseudogonyaulax 
from the Kattegat-Skagerrak have recently been confirmed to produce 
the highly toxic macrolide polyether goniodomin A (GDA) (Krock et al., 
2018), known to be cytotoxic and circumstantially associated for de-
cades with fish mortalities. Perhaps all Alexandrium species are capable 
of limited mixotrophy, or at least heterotrophic assimilation of organic 
nutrients, but A. pseudogonyaulax exhibits a unique mucus trap feeding 
strategy (Blossom et al., 2017). Nevertheless, preliminary evidence 
suggests that GDA is produced endogenously by A. pseudogonyaulax 
rather than secondarily acquired via capture of toxigenic prey. 

In southern Norway A. pseudogonyaulax was first observed in 2001, 
but has become common since 2010. In Oslofjorden it is observed 
regularly in the summer, sometimes at “bloom” cell densities. Swimmers 
complain about skin discomfort when cell numbers are high. Since the 
first observation of a bloom in 2002, spatiotemporal distribution of 
A. pseudogonyaulax in Norway coincides with the pattern of occurrence 
along the Swedish west coast. Observations along the Swedish Kattegat- 
Skagerrak coast have shown an increase in cell abundance of 
A. pseudogonyaulax in summer. Analyses of long-term monitoring data 
from Limfjorden, Denmark confirmed a recent shift to 
A. pseudogonyaulax dominance over A. ostenfeldii. These new findings 
document that A. pseudogonyaulax has become a prominent member of 
the Alexandrium species community over the past decade within the 
region. To date, there are no records of fish mortalities or other HAB 
events linked to blooms of A. pseudogonyaulax, but goniodomins are not 
subject to routine analysis in toxin monitoring programs in Europe, in 
either shellfish or finfish, and the risk therefore cannot be reliably 
evaluated. 

4.4. Protoceratium reticulatum, Gonyaulax spinifera, Lingulodinium 
polyedra and associated yessotoxins 

Three of the four species of gonyaulacoid dinoflagellates (Order: 
Gonyaulacales) reported to produce ladder-frame disulphated polyether 
compounds known as yessotoxins (YTX) (Krock et al., 2008) are com-
mon in northern European coastal waters: Lingulodinium polyedra (Stein) 
Dodge (syn. Gonyaulax polyedra); Protoceratium reticulatum (Claparède & 
Lachmann) Bütschli (syn. Gonyaulax grindleyi; and Gonyaulax spinifera 

Table 1 (continued ) 

Year/period Syndrome/type 
of effect 

Taxa Sea area and 
description of 
event 

AZA in mussels and 
crabs in mid- 
Norway 
(Norwegian Sea) 

2009 Dog mortality Nodularia spumigena Baltic Sea, SW 
coast of Finland 

2012 PSP Alexandrium 
ostenfeldii 

First reported PSP 
event, Puck Bay 
(Southern Baltic, 
Poland) 

2014 Exceptional 
blooms of 
cyanobacteria 

Nodularia spumigena, 
Aphanizomenon 
flosaquae, 
Dolishospermum spp. 

Baltic Sea, Finnish 
sea areas 

2015 Fish mortalities Karlodinium 
veneficum 

Baltic Sea, 
Tammisaari, 
Finland 

2018 Exceptional 
blooms of 
cyanobacteria 

Aphanizomenon 
flosaquae, 
Dolishospermum spp., 
Nodularia spumigena 

Baltic Sea, Finnish 
and Swedish sea 
areas 

2018 AZA Azadinium spp. AZA levels above 
regulatory limit – 
first time from 
coast of Sweden 

2020 Associated 
human fatalities 

Phaeocystis globosa North Sea coast, 
Netherlands, 5 
persons carrying 
out water sports 
died.  
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(Claparède & Lachmann) Diesing). Cultured isolates of L. polyedra and 
P. reticulatum were first confirmed to be YTX producers in 2004 (Paz 
et al., 2004), and shortly thereafter Rhodes et al. (2006) confirmed that 
G. spinifera was also capable of YTX production. More recently, 
G. taylorii M.C.Carbonell-Moore was reported to be a producer of YTX in 
Chilean coastal waters (Alvarez et al., 2016), but this species is not 
knows as a toxic factor in northern European waters. 

The toxicology and mode of action of YTX in mammalian targets and 
cell lines have been described (Paz et al., 2008; Tubaro et al., 2010), 
although many uncertainties remain. YTX were long classified among 
the categories of toxins causing DSP. However, as YTXs do not induce 
diarrhoea, nor inhibit protein phosphatase 2A, unlike true DSP toxins, 
they were reclassified as toxin group separate from the DST complex 
(European-Commission, 2002). YTXs are subject to regulatory limits 
within Europe; advice about raising the YTX limit based upon new 

toxicological evidence was already provided in 2009 (EFSA, 2009c). 
Until 2013, the European regulatory limit was 1.0 mg YTX kg− 1 of 
shellfish flesh, when it was raised to 3.75 mg YTX kg1 (European--
Commission, 2013). High YTX levels have caused a few closures of 
shellfish harvesting in northern Europe, e.g. in western Sweden (Persson 
et al., 2014). 

There are no known cases of human poisoning induced by YTX, 
although YTX-contaminated shellfish, sometimes at high mass equiva-
lent levels well in excess of the European regulatory limit, are reported 
worldwide. No YTX toxin syndrome has been described or defined, and 
specific potencies of most YTX analogues are not known. In a study 
where the combined effects of okadaic acid (OA) and YTX were tested on 
mice, effects indicative of tumorigenic properties were noted (Franchini 
et al., 2005), indicating potential synergetic risk of chronic exposure 
from shellfish consumption. Subacute YTX-immunotoxicity was 

Fig. 2. The distribution of harmful algal events along the northern part of European Atlantic coast as reported to HAEDAT during the period 1987 to 2019. Size of 
circles represents the number of years of reported events. A. DST events due to Dinophysis spp., B. PST events due to Alexandrium spp C. AZA events due to Azadinium 
spp., D. AST events due to Pseudo-nitzschia spp. and E. Fish moratilities due to Karenia mikimotoi, Karlodinium veneficum, Chrysochromulina leadbeateri, Prymnesium 
parvum, P. polylepis and Pseudochattonella spp. F. Cyanobacteria events. 
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reported in experiments with rats (Ferreiro et al., 2017) suggesting that 
repeated exposure to low amounts of YTX might also pose a threat to 
human health, especially in immuno-compromised populations. 

YTXs were first reported from scallops, Patinopecten yessoensis, 
collected at Mutsu Bay in Japan (Murata et al., 1987), and are frequently 
detected in shellfish from Japan. On a global scale, YTX have been found 
in bivalve shellfish in many coastal locations around the world, 
including New Zealand (MacKenzie et al., 1998), China (Liu et al., 2017) 
and USA (California) (Armstrong and Kudela, 2006), usually coinciding 
with blooms of one or more of the causative dinoflagellate species. 
Within Europe, YTX are commonly detected in shellfish and long known 
from the northern Adriatic Sea (Ciminiello et al., 1997), Belgium 
(Orellana et al., 2017), France (Amzil et al., 2008) and Norway (Aasen 
et al., 2005; Lee et al., 1988; Miles et al., 2002; Samdal et al., 2004). 

4.5. Azadinium, Amphidoma and azaspiracids 

Members of the marine dinoflagellate family Amphidomataceae 
including the genera Azadinium and Amphidoma (Tillmann et al., 2012) 
have been recognized as producers of a unique group of lipophilic pol-
yether phycotoxins known as azaspiracids (AZAs). The consumption of 
AZA-contaminated seafood leads to Azaspiracid Shellfish Poisoning 
(AZP), a serious toxicity syndrome in humans, causing mainly gastro-
intestinal problems, such as cramps, vomiting, nausea and severe diar-
rhoea (Abal et al., 2017). It took over a decade to find and describe a 
small dinoflagellate (<20 μm) Azadinium spinosum Elbrächter et Till-
mann (Tillmann et al., 2009) isolated from the North Sea coast of 
Scotland as the first confirmed source organism for AZA. This species 
was subsequently found in Danish and Irish coastal waters (Salas et al., 
2011), and confirmed to be toxigenic. Since then intense research has 
led to the description of more than a dozen species of Azadinium and 
confirmed the worldwide distribution of this genus (Fabro et al., 2019; 
Rhodes et al., 2020). The capacity to synthesise AZA is now known for a 
number of Azadinium species, e.g., A. spinosum, A. poporum, A. dexter-
oporum (Krock et al., 2019). Azaspiracids are not only produced by 
Azadinium; the newly described Amphidoma languida, a morphologically 
and phylogenetically close relative of the genus Azadinium is also 
capable of AZA production (Krock et al., 2019). 

After the first poisoning incident in the Netherlands in 1995, linked 
to mussels harvested from the west coast of Ireland, AZA toxins were 
first isolated and structurally characterized from Irish shellfish (Ito et al., 
2000; Satake et al., 1998). Among species of Azadinium and Amphidoma 
languida more than 30 AZA analogues have been described (Hess et al., 
2014), and several species produce probable AZA analogues that remain 
to be structurally characterized and are of unknown toxicity. 

In HAEDAT for the period 1987–2019, seven reports of events 
related to AZAs for the coast of Norway, one each for Sweden and the 
Netherlands, and but none for Denmark, Germany and Belgium, were 
documented (Table 2). This scarcity of data reports on AZA may be 
partially due to the fact that AZA analysis by LC-MS/MS was introduced 
relatively recently to phycotoxin monitoring of bivalve shellfish for 

human consumption (e.g. for Sweden in 2009). It might also reflect that 
high magnitude toxigenic blooms of Azadinium (or Am. languida) are 
rather rare events or that the blooms are not persistent long enough to 
cause significant shellfish toxin levels. The small cell-size and incon-
spicuous morphological features may also lead to overlooking cryptic 
Azadinium species. Azaspiracids have, for instance, been found in mus-
sels collected in Belgian coastal waters (Orellana et al., 2017), yet none 
of the putatively associated Azadinium species have been observed. 

In seafood consumed in northern Europe, AZA toxins pose a major 
problem mainly for consumption of bivalve shellfish and certain crus-
taceans, such as crabs, that have accumulated these toxins as food chain 
vectors. In 2005 AZA was detected in the viscera of the edible (brown) 
crab, C. pagurus, in Norway and in the subsequent year two persons were 
hospitalised in Norway after eating crabs containing AZA. Accordingly, 
a regulatory limit of 170 µg AZA kg− 1 of crab viscera is applied in 
Norway. 

4.6. Pseudo-nitzschia and Amnesic Shellfish Toxins 

Amnesic Shellfish Toxins (AST), i.e. domoic acid (DA) and its isomers 
(EFSA, 2009a; Jeffery et al., 2004; Zabaglo et al., 2016), are produced by 
some members of the diatom genera Pseudo-nitzschia and Nitzschia. At 
present, more than two dozen species of Pseudo-nitzschia, as well as 
Nitzschia bizertensis Smida, Lundholm, Hlaili & Mabrouk and Nitzschia 
navis-varingica Lundholm & Moestrup, are known AST producers 
(Lundholm, 2020). Domoic acid production in the diatom Halamphora 
coffeaeformis (C.Agardh) Levkov has never been confirmed (Bates 2000) 
and is regarded as doubtful. Apart from DA, related analogues isodomoic 
acid A, B and C, have also been found in both Pseudo-nitzschia and 
Nitzschia species, with different combinations of toxins among strains 
and species (Hansen et al., 2011; Tan et al., 2016). 

Closures of shellfish harvesting due to AST above the regulatory level 
of 20 mg DA kg− 1 mussel meat are rare in northern Europe (Table 2), 
which is somewhat surprising because Pseudo-nitzschia species are 
ubiquitous and blooms are common in the area. The first documented 
toxic Pseudo-nitzschia bloom in Scandinavia with levels above the reg-
ulatory levels happened in 2005, in inner coastal waters of Denmark and 
the Kattegat (Lundholm et al., 2005). Another toxic bloom was noted 
after two silos containing nitrogen-containing liquid fertilizer collapsed 
in Fredericia harbour, Denmark; more than 2,750 tons of fertilizer 
leaked into inner Danish waters (Olesen et al., 2020). 

The toxin content of Pseudo-nitzschia cells in the area is similar to 
levels elsewhere in the world. Toxin levels in the generally highly toxic 
P. seriata is also high in Danish waters (up to 33.6 pg cell− 1) (Lundholm 
et al., 1994), but species such as P. calliantha and P. delicatissima are 
non-toxic or only slightly toxic (up to 0.22 pg cell− 1) (Lundholm et al., 
1997, Lundholm et al., 2003, Lundholm et al., 2006) as elsewhere in the 
world. 

The first overall distribution and diversity of Pseudo-nitzschia in the 
Skagerrak, the North Atlantic, and adjacent waters was reported by 
Hasle et al. (1996). Based on light and electron microscopy, she 

Table 2 
The number of harmful algal events in each country reported to the Harmful Algae Event Database (HAEDAT) from 1987 to 2019. Note: The table reflects observed 
events but also differences in the monitoring efforts and reporting procedures among countries. Reports from freshwater are not included in the table.  

Syndrome/effect Sweden Norway Denmark Germany Netherlands Belgium Finland Poland 

DSP 58 148 17 8 13 2 - - 
PSP 8 207 4 2 1 1 - 1 
AZP 1 7 - - 1 - - - 
ASP 1 15 2 - - - - - 
Aquaculture fish 1 10 6 - - - - - 
Natural fish 2 3 - 1 1 - 2 - 
Mass mortalities of fish or other marine organisms 2 15 4 1 2 1 1 - 
Cyanobacteria* 48 - - 7** - - 5 55  

* note that the basis for reporting of cyanobacteria events is not consistent between countries 
** see text for bloom in Wadden Sea 2012 
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Table 3 
Harmful algae and cyanobacteria of the IOC-UNESCO Taxonomic Reference List of Harmful Microalgae (Moestrup et al. 2020) observed in the Baltic Sea, 
Kattegat-Skagerrak, Eastern North Sea, Norwegian Sea and Barents Sea. Concerning the Baltic Sea, species that are routinely identified from the HELCOM COMBINE 
(HELCOM 2017) monitoring samples, and thus are in the HELCOM PEG Biovolume file (version 2020, annually updated Biovolume file is available through https://h 
elcom.fi/helcom-at-work/projects/peg/), are included.  

Syndrome/effect Class Baltic Other sea area Species and author 

ASP Bacillariophyceae X  Halamphora coffeaeformis 
(C.Agardh) Levkov, 2009 

ASP Bacillariophyceae X X Pseudo-nitzschia calliantha 
Lundholm, Moestrup & Hasle, 2003 

ASP Bacillariophyceae  X Pseudo-nitzschia cuspidata  
(Hasle) Hasle, 1993 

ASP Bacillariophyceae X X Pseudo-nitzschia delicatissima  
(Cleve) Heiden, 1928 

ASP Bacillariophyceae  X Pseudo-nitzschia fraudulenta  
(Cleve) Hasle, 1993 

ASP Bacillariophyceae  X Pseudo-nitzschia multiseries 
(Hasle) Hasle, 1995 

ASP Bacillariophyceae X X Pseudo-nitzschia pseudodelicatissima 
(Hasle) Hasle, 1993 

ASP Bacillariophyceae X X Pseudo-nitzschia pungens 
(Grunow ex Cleve) G.R.Hasle, 1993 

ASP Bacillariophyceae X X Pseudo-nitzschia seriata 
(Cleve) H.Peragallo, 1899 

Fish killer Prymnesiophyceae  X Chrysochromulina leadbeateri 
Estep, Davis, Hargreaves & Sieburth, 1984 

Fish killer Prymnesiophyceae X X Phaeocystis globosa 
Scherffel, 1899 

Fish killer Prymnesiophyceae X X Phaeocystis pouchetii 
(Hariot) Lagerheim, 1896 

Fish killer Prymnesiophyceae  X Prymnesium parvum 
N.Carter, 1937 

Fish killer Prymnesiophyceae X X Prymnesium polylepis 
(Manton & Parke) Edvardsen, Eikrem & Probert, 2011 

Fish killer, haemolytic Dinophyceae X X Amphidinium carterae 
Hulburt, 1957 

Fish killer, haemolytic Dinophyceae X X Amphidinium operculatum 
Claparède & Lachmann, 1859 

DSP Dinophyceae X X Dinophysis acuminata 
Claparède & Lachmann, 1859 

DSP Dinophyceae X X Dinophysis acuta 
Ehrenberg, 1839 

DSP Dinophyceae  X Dinophysis caudata 
Saville-Kent, 1881 

DSP Dinophyceae  X Dinophysis fortii 
Pavillard, 1924 

DSP Dinophyceae X X Dinophysis norvegica 
Claparède & Lachmann, 1859 

DSP Dinophyceae X X Dinophysis tripos 
Gourret, 1883 

PSP Dinophyceae X X Alexandrium minutum 
Halim, 1960 

PSP Dinophyceae X X Alexandrium ostenfeldii 
(Paulsen) Balech & Tangen, 1985 

PSP Dinophyceae X X Alexandrium pseudogonyaulax 
(Biecheler) Horiguchi ex K.Yuki & Y.Fukuyo, 1992 

PSP Dinophyceae X X Alexandrium tamarense 
(Lebour) Balech, 1995 

YTX Dinophyceae X X Gonyaulax spinifera 
(Claparède & Lachmann) Diesing, 1866 

YTX Dinophyceae X X Lingulodinium polyedra 
(F.Stein) J.D.Dodge, 1989 

YTX Dinophyceae X X Protoceratium reticulatum 
(Claparède & Lachmann) Bütschli, 1885 

Fish killer Dinophyceae X X Karenia mikimotoi 
(Miyake & Kominami ex Oda) Gert Hansen & Moestrup, 2000 

Fish killer Dinophyceae X X Karlodinium veneficum 
(D.Ballantine) J.Larsen, 2000 

DSP Dinophyceae X X Prorocentrum lima 
(Ehrenberg) F.Stein, 1878 

AZA Dinophyceae X X Azadinium spinosum 
Elbrächter & Tillmann, 2009 

Fish killer Raphidophyceae X X Fibrocapsa japonica 
S.Toriumi & H.Takano, 1973 

Fish killer Raphidophyceae X X Heterosigma akashiwo 
(Y.Hada) Y.Hada ex Y.Hara & M.Chihara, 1987 

Fish killer Dictyochophyceae X X 

(continued on next page) 
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identified P. pungens, P. multiseries, P. seriata, P. fraudulenta, P. heimii, P. 
delicatissima, and P. pseudodelicatissima. The species 
P. pseudodelicatissima was subsequently divided into several species, and 
in north European waters, the findings of P. pseudodelicatissima are now 
mainly assigned to P. calliantha (Lundholm et al., 2003), but 
P. pseudodelicatissima (Lundholm et al., 2010) and a taxon referred to P. 
cf. cuspidata have also been reported (Hostyeva et al. (2012). Apart from 
the above-mentioned taxa, P. americana has been seen in both Oslof-
jorden (Hostyeva et al. (2012) and in the sediment from Mariager Fjord, 
Denmark (Lundholm et al., 2010); P. granii (Hasle, 1964) and P. obtusa 
(Hasle and Lundholm, 2005) have also been found in colder Norwegian 
waters. 

Several chemical, physical and biological factors affect the produc-
tion of DA in Pseudo-nitzschia (see reviews by Bates et al., 2018; Lelong 
et al., 2012; Trainer et al., 2012). Silicate and phosphate depletion, and 
increasing concentrations of nitrogen, high irradiance and the presence 
of bacteria tends to enhance DA production. Changes in pH, CO2, salinity 
and temperature can affect toxin production, but presently no clear 
picture has emerged (Bates et al., 2018). Laboratory studies have pro-
vided most of this information, but e.g. depletion of silicate and phos-
phate as triggers for DA content agrees with field studies. The strongest 
inducers of DA biosynthesis are apparently depletion of silicate and 
phosphate, and in some circumstances the presence of copepods. Prox-
imity of copepods and their waterborne chemical cues known as cope-
podamides can enhance DA content in Pseudo-nitzschia species and even 
induce DA production in typically non-toxigenic species (Harðardóttir 
et al., 2019a; Harðardóttir et al., 2019b; Selander et al., 2019; Tammi-
lehto et al., 2015). Only herbivorous copepods induce such an effect, 
indicating that DA production is part of a defense mechanism in these 
diatoms (Lundholm et al., 2018). 

Domoic acid is a potent neurotoxin, responsible for causing severe 
neurological damage and even mortalities in human consumers of DA- 
contaminated mussels from Atlantic Canada. ASP has also caused 

deaths of marine mammals and marine birds via food chain transfer of 
DA, e.g. along the west coast of North America (De La Riva et al., 2009; 
McCabe et al., 2016; Scholin et al., 2000; Trainer et al., 2017). Another 
finding of particular concern is reports of DA being widespread in 
Alaskan mammals (Lefebvre et al., 2016). Apart from acute poisoning of 
marine mammals due to DA ingestion, a chronic poisoning syndrome 
has been reported (Brodie et al., 2006; Goldstein et al., 2008). DA is a 
stable secondary amino acid that can potentially stay in the food chain 
for weeks or months (Johannessen, 2000), in the sediments, DA may 
persist for years (Sekula-Wood et al., 2011). The toxin accumulates in a 
wide array of marine organisms, including transfer from copepods and 
krill, marine snails, cephalopods, and polychaetes to seabirds, fish and 
marine mammals (Bates et al., 2018). Domoic acid has e.g. been found in 
pelagic fish like anchovies (Lefebvre et al., 2002), indicating that 
although observations of DA above regulatory levels in bivalve shellfish 
are uncommon, the consequences of toxic blooms of Pseudo-nitzschia can 
be severe (Lefebvre and Robertson, 2010). 

Domoic acid contamination of king scallop (Pecten maximus) is 
frequent in northern European harvest areas for this species (Bogan 
et al., 2007; Husson et al., 2016; Rowland-Pilgrim et al., 2019). This is 
mainly due to the fact that P. maximus retains DA for an extraordinarily 
long time (at least several months) particularly in cold deep sediments 
(Blanco et al., 2002). If harvesting of P. maximus would increase e.g. in 
Sweden, it is likely that DA would pose a significant new monitoring 
challenge. 

Almost nothing is known about DA in marine animals in Scandina-
vian waters. In northern Europe, DA has been found in harbour seals in 
Scotland and was shown to affect their immune system (Jensen et al., 
2015). Exposure of the seals to DA and PST through contaminated prey 
are suggested to be an important factor for harbour seal decline in 
Scotland. 

Table 3 (continued ) 

Syndrome/effect Class Baltic Other sea area Species and author 

Pseudochattonella farcimen 
(Eikrem, Edvardsen & J.Throndsen) Eikrem, 2009 

Fish killer Dictyochophyceae X X Pseudochattonella verruculosa 
(Y.Hara & M.Chihara) S.Tanabe-Hosoi, D.Honda, S.Fukaya, Y.Inagaki & Y.Sako, 2007 

Cyanotoxins Cyanophyceae X  Anagnostidinema amphibium 
(C.Agardh ex Gomont) Strunecký, Bohunická, J.R.Johansen & J.Komárek, 2017 

Cyanotoxins Cyanophyceae X  Aphanizomenon flosaquae 
Ralfs ex Bornet & Flahault, 1886 

Cyanotoxins Cyanophyceae   Coelosphaerium kuetzingianum 
Nägeli, 1849 

Cyanotoxins Cyanophyceae X  Dolichospermum flosaquae 
(Brébisson ex Bornet & Flahault) P.Wacklin, L.Hoffmann & J.Komárek, 2009 

Cyanotoxins Cyanophyceae X  Dolichospermum lemmermannii 
(Richter) P.Wacklin, L.Hoffmann & J.Komárek, 2009 

Cyanotoxins Cyanophyceae X  Dolichospermum macrosporum 
(Klebhan) Wacklin, L.Hoffmann & Komárek, 2009 

Cyanotoxins Cyanophyceae X  Dolichospermum planctonicum 
(Brunnthaler) Wacklin, L.Hoffmann & Komárek, 2009 

Cyanotoxins Cyanophyceae X  Dolichospermum sigmoideum 
(Nygaard) Wacklin, L.Hoffmann & Komárek, 2009 

Cyanotoxins Cyanophyceae X  Dolichospermum spiroides 
(Klebhan) Wacklin, L.Hoffmann & Komárek, 2009 

Cyanotoxins Cyanophyceae X  Microcystis aeruginosa 
(Kützing) Kützing, 1846 

Cyanotoxins Cyanophyceae X  Microcystis flosaquae 
(Wittrock) Kirchner, 1898 

Cyanotoxins Cyanophyceae X  Microcystis ichthyoblabe 
(G.Kunze) Kützing, 1843 

Cyanotoxins Cyanophyceae X  Microcystis viridis 
(A.Braun) Lemmermann, 1903 

Cyanotoxins Cyanophyceae X X Nodularia spumigena 
Mertens ex Bornet & Flahault, 1888 

Cyanotoxins Cyanophyceae X  Planktothrix agardhii 
(Gomont) Anagnostidis & Komárek, 1988  
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5. Phaeocystis and noxious foam in nearshore waters and on 
beaches 

Phaeocystis spp. are small-celled (2-7 µm), bloom-forming prymne-
siophytes that are found all over the world (Baumann et al., 1994; 
Medlin and Zingone, 2007). Rapid cell growth typically follows an early 
silica-controlled spring bloom of diatom communities, resulting in 
dense, short-lived, nearly monospecific blooms of Phaeocystis colonies 
(Lancelot et al., 2005; Peperzak et al., 1998; Raabe et al., 1997). 
Phaeocystis can excrete up to 30% of its biomass as mucilage (Peperzak 
et al., 2000) and the production of exopolymeric particles in response to 
nutrient limitation has been reported (Mari et al., 2005). Some Phaeo-
cystis species possess the unique ability to form floating colonies made 
from hundreds of cells embedded in a polysaccharide gel matrix that 
may be induced or enhanced by grazing (Kornmann, 1955) or other 
physical disruption. When driven by high winds and/or wave activity, 
Phaeocystis blooms can yield thick foul-smelling foams or scums, espe-
cially in nearshore zones, thereby fouling adjacent beaches. 

Phaeocystis blooms are considered a nuisance due to the potential for 
various harmful impacts on the ecosystem, including: (1) reduced 
feeding by suspension-feeders (especially bivalve molluscs, such as 
mussels) and metazooplankton; (2) allelopathic interactions with di-
atoms, (3) toxic effects on larvae (e.g. cod), (4) reduction in the trophic 
efficiency of the food web (Leeuwe et al., 2007; Rousseau et al., 2000; 
Verity et al., 2007; Weisse et al., 1994). These potential impacts are 
often not measured and, hence, are not usually included in HAEDAT. 
Phaeocystis blooms are, however, notorious for mucilage problems in the 
North Sea (Lancelot, 1995). Large quantities of extracellular poly-
saccharides are released to the water column as the bloom wanes which, 
depending on currents and the prevailing meteorological conditions, can 
create thick odorous foams on nearby beaches (Blauw et al., 2010). The 
impact of these phenomena on beach recreation are not well known. 

Two of these species, P. globosa and P. pouchetii, are common in 
Belgian, Dutch, German (Wadden Sea) and Danish waters, as well as the 
Norwegian coast and Barents Sea, but are rarely seen in the Skagerrak- 
Kattegat (Henriksen, 2009; Schoemann et al., 2005). Dense spring 
blooms of these colony-forming species are a frequent occurrence in the 
nutrient-enriched coastal zones of the German Bight and southern North 
Sea since at least the 1970s (Bätje and Michaelis, 1986; Gypens et al., 
2007; Riegman et al., 1992; Veldhuis et al., 1986; Weisse et al., 1986). 

Phaeocystis is a major natural component of spring blooms in the 
Norwegian Sea, where such species bloom together with (or occasionally 
instead of) diatoms in northern Norway. In Norwegian waters, this 
genus has not been associated with faunal mortalities, toxicity or any 
other negative consequences, and is therefore not regarded as a HAB 
taxon. 

Because of the lack of evidence of an actual economic impact, 
Phaeocystis blooms are generally underreported in HAEDAT. To date, in 
northern Europe only a single case of demonstrable economic effects 
associated with algal-related beach foam has been entered into HAEDAT 
(DE-10-002): in July 2010, the beach area of Wilhelmshaven was 
temporarily closed by local authorities due to heavy fouling by foam 
associated with Phaeocystis. The only other HAEDAT-reported event 
associated with Phaeocystis from our area under review was a large-scale 
mortality of cultivated mussels that occurred in the Netherlands in 2001 
(NL-01-001), apparently caused by hydrodynamic transport of a 
Phaeocystis bloom, followed by sedimentation, anoxia, and finally 
shellfish mortalities (Peperzak and Poelman, 2008). Most Phaeocystis 
blooms, however, pass without any apparent issue. 

In a study carried out in Belgium, fishermen and tourists were asked 
about their perceptions of Phaeocystis blooms. Neither of these groups 
perceived Phaeocystis blooms to be a major nuisance. Economic losses 
were considered as very limited (Rousseau et al., 2004), but an eco-
nomic analysis indicated that among tourists, there is a willingness to 
pay to reduce adverse effects of eutrophication that might be associated 
with such blooms (Stolte et al., 2004). 

Foam is most likely to form at the end of blooms (i.e., when high 
biomass begins to decline), as colonies disintegrate due to lack of light or 
sufficient nutrients (nitrogen and phosphate). Protein release is trig-
gered by cell death, often caused by virus infections. Phaeocystis globosa 
produces dimethyl sulfoniopropionate (DMSP), which can be converted 
extracellularly into dimethyl sulfide (DMS) (Stefels et al., 2007) and 
released in seawater. DMS is emitted from the sea to the atmosphere 
under turbulent conditions. This volatile substance smells unpleasant, 
and may account for some of the foul odor associated with decaying 
Phaeocystis blooms. 

In the Dutch monitoring program “Monitoring Waterstaatkundige 
Toestand des Lands (MWTL)” of the Dutch Water authority Phaeocystis 
has been monitored since 1990. In general, along the Dutch coast, 
chlorophyll concentrations, an index of phytoplankton biomass, have 
declined during the period of 1990 to 2016. These monitoring data were 
analysed for OSPAR (data 1990–2014 and 1990–2016) (OSPAR ICG-Eut 
18/3/2(L) to test the hypothesis that Phaeocystis is an indicator for 
eutrophication. This analysis showed that nutrient concentrations have 
declined over time, but the cell abundance of Phaeocystis and annual and 
spatial variability could not be explained by the ambient nutrient levels 
nor light conditions. 

In May 2020, a fatal incident occurred in Scheveningen, the 
Netherlands, where five persons carrying out watersports died. The local 
weather conditions seemed to have induced foam accumulation. The 
estimates of the maximum thickness of the foam layer vary, from a few 
meters, based on foam residues (van Wezel, 2020) to 2.5 to 3 m (Phil-
ippart et al., 2020). This incident coincided with a bloom of Phaeocystis 
globosa but the direct association with these human mortalities is 
uncertain. 

6. Selected high biomass algal blooms causing harmful events 

6.1. Noctiluca – water discoloration - red water 

Noctiluca scintillans (Macartney) Kofoid & Swezy is a large (up to 2 
mm cell diameter) heterotrophic dinoflagellate well known globally to 
produce dense aggregations of bioluminescent cells. Depending upon 
the pigmented endosymbiont, Noctiluca blooms may be either vivid 
green or brick red-orange to the naked eye. In northern Europe, espe-
cially in the North Sea, Noctiluca frequently forms high cell-density 
surface, exclusively of the red-orange type. Elbrächter and Qi (1998) 
reported fish mortalities along the German North Sea coast due to ox-
ygen deficiency caused by a dense bloom of N. scintillans. Toxin pro-
duction has never been reported for N. scintillans but there is evidence 
that high release of ammonia by high-biomass blooms may cause 
localized ecosystem disruptive effects (Baliarsingh et al., 2016). 

6.2. Lepidodinium spp. – water discoloration - green water 

Lepidodinium chlorophorum (M.Elbrächter & E.Schnepf) Gert Hansen 
and L. viride are dinoflagellates with green chloroplasts originating from 
the Chlorophyceae (Hansen et al., 2007). Lepidodinium chlorophorum and 
L. viridae are difficult to discriminate under the light microscope, and 
hence may have been erroneously reported from northern Europe in 
some cases. In August 1990 green water coinciding with a bloom of 
Lepidodinium viride M.Watanabe, S.Suda, I.Inouye, T.Sawaguchi & M. 
Chihara was observed at Helgoland in the Wadden Sea. Cell densities 
reached 6.5 × 106 cells L− 1. In September to November 2018 a bloom of 
Lepidodinium cf. chlorophorum caused green water along the east coast of 
Jutland, Denmark. The western Kattegat (Aarhus Bay and the Horsens 
fjord) and the Little Belt was affected. Cell densities of L. cf. chlor-
ophorum reached 2.4 × 106million cells L− 1 and chlorophyll fluores-
cence measurements indicated maximum chlorophyll concentrations of 
68 µg L− 1. Bathing was not recommended at the east coast of Jutland 
south of Djursland. No direct harmful effects were observed but the 
degradation of the bloom may have resulted in oxygen deficiency. 
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6.3. Tripos Bory (syn. Ceratium) – water discoloration - brown water 

Observations of brown water associated with high cell abundances of 
Tripos furca (Ehrenberg) F.Gómez, T. fusus (Ehrenberg) F.Gómez, T. 
lineatus (Ehrenberg) F.Gómez and T. muelleri Bory have been reported 
from the Kattegat, Skagerrak and the Norwegian west coast. Tripos spp. 
have not been reported to produce toxins (Moestrup et al., 2020), but 
may cause harmful effects in high cell densities. Blooms of Tripos spp. in 
Laholm Bay on the Swedish coast of the Kattegat have resulted in low 
oxygen conditions in near bottom water (Granéli et al., 1989). 

6.4. Coscinodiscus and mucilage-related harmful events 

Coscinodiscus wailesii Gran & Angst is a large (cell diameter up to 500 
µm) centric diatom, occasionally associated with harmful but not toxic 
events in northern Europe. C. wailesii can produce mucus that clogs fish 
nets and other fishing equipment. This species is likely to have been 
introduced to northern Europe; the species was first observed in the 
English Channel in 1977 when mucilage attributed to C. wailesii hin-
dered trawling (Boalch and Harbour, 1977). Coscinodiscus wailesii has 
subsequently become a significant component of the phytoplankton in 
the northeast Atlantic (Edwards et al., 2001; Laing and Gollasch, 2002; 
Rick and Dürselen, 1995). Blooms of diatoms producing mucilage have 
caused problems in the Adriatic Sea (Alcoverro et al., 2000), off the US 
east coast (Mahoney and Steimle, 1980) and in Japan (Fukao et al., 
2012; Fukao et al., 2009) but reported occurrences from northern 
Europe are uncommon and poorly documented. Accumulation of 
mucilage has been observed in western Sweden and Norway; this may be 
attributable to C. wailesii, but has not been confirmed (L.J. Naustvoll 
unpublished; B. Karlson unpublished). Another diatom, Coscinodiscus 
concinnus W.Smith, caused discoloration of the water and formed a thick 
(>20 cm) oily layer on the sea surface in the North Sea in the 
south-western part of Doggerbank in May 1947. The oil adhered to birds 
feathers and resulted in bird mortalities (Tåning, 1951). 

6.5. Emiliania huxleyi – high densities cause fish fleeing from fjords 

Emiliania huxleyi (Lohmann) W.W.Hay & H.P.Mohler is a prymne-
siophyte with calcareous scales. This species is an important primary 
producer in the oceans and plays a central part in the global carbonate 
cycle (Thierstein and Young, 2013). Blooms of E. huxleyi are frequently 
observed in the Barents Sea, the Norwegian Sea and the North Sea, and 
adjacent waters including the Kattegat and the Skagerrak. This species is 
not typically considered to be harmful, but fish has been observed to flee 
Norwegian fjords when E. huxleyi blooms occur. This is likely due to the 
fact that visual predators have difficulties finding prey during the 
reduced water transparency conditions during blooms. 

6.6. Peridinium cf. quadridentatum or cf. Blixaea quinquecornis 

Peridinium quadridentatum (F.Stein) Gert Hansen (syn. Peridinium 
quinquecorne Abé) is a phototrophic dinoflagellate with chloroplasts of 
diatom origin (Horiguchi and Pienaar, 1991; Horiguchi and Takano, 
2006). Peridinium quadridentatum was associated with a fish kill in the 
Red Sea (Alkawri et al., 2016). In June 2007 a swimmer bathing at the 
public beach at Askimbadet outside Gothenburg, Sweden noticed feel-
ings of paralysis, and sensation of numbness, stinging needles and 
burning on her skin. Symptoms remained the next day. Other swimmers 
were also affected, but less so. Phytoplankton sampling revealed a 
dinoflagellate identified as Peridinium quenquecorne by light microscopy, 
at a cell abundance of 2.4 × 106 cells L-1. Scanning electron microscopy 
of samples from the same geographical area collected in 2018 revealed 
the presence of Blixaea quinquecornis (Abé) Gottschling (M. Hoppenrath, 
pers. comm.). Peridinium quadridentatum and B. quinquecornis have a 
similar appearance under the light microscope and there may have been 
a misidentification in 2007. 

6.7. Nodularia spumigena and other filamentous cyanobacteria 

Blooms of cyanobacteria are common in the brackish water Baltic 
Sea (Kahru and Elmgren, 2014; Olofsson et al., 2020). The history of 
cyanobacteria blooms in the Baltic was reviewed by Finni et al. (2001). 
Surface accumulations of putative cyanobacteria were observed in 1854 
at the island of Gotland in the Baltic Proper, but no harmful effects were 
reported (Lindström, 1855). Molecular analysis of sediment has shown 
N. spumigena to have been present in the Baltic for thousands of years 
(Ceglowska et al., 2018). 

Harmful algal events associated with cyanobacterial blooms are re-
ported within the brackish waters of the Baltic but few events have been 
recorded from the coastal waters of the Atlantic. Events in the Baltic Sea 
were reported almost every year for the period 1987-2019. The distri-
bution of events is shown in Fig. 2. The majority of events are reported 
from Sweden where multiple methods are applied to define events. 
Reports also come from the coast of Finland and Poland, as well as the 
Baltic coast of Germany, but different criteria are used to define cya-
nobacterial events (see Section 2). Recent data from Russia, Estonia, 
Latvia and Lithuania are lacking, but it is unlikely that this reflects the 
current status of cyanobacterial bloom. A number of cyanobacterial 
species are recorded in the Baltic, with the majority of the visible surface 
blooms formed by three filamentous, nitrogen-fixing taxa: Nodularia 
spumigena Mertens ex Bornet & Flahault, Aphanizomenon flosaquae Ralfs 
ex Bornet & Flahault and Dolichospermum spp. N. spumigena, producer of 
the cyanotoxin nodularin (NOD), is common in the whole Baltic Proper, 
in the Gulf of Finland and nowadays also in the Bothnian Sea. Surface 
accumulations of filamentous cyanobacteria were also observed in the 
Kattegat in 1997, 2006, 2018 and in 2020. Beach fouling occurred along 
the coast of Halland, Sweden. The filaments were most likely trans-
ported to this area from the Baltic Sea through the Öresund strait. The 
transport of N. spumigena in summer 2018 was described by Carlsson and 
Rita (2019). In 2012 an unusual and massive bloom of N. spumigena was 
observed in the western Wadden Sea along the coast of Ostfriesland 
(Lower Saxony), Germany. This bloom caused heavy localized beach 
fouling but was not analysed for toxins and was not associated with 
other harmful algal events. 

While NOD has been recorded in biota from the Baltic (fish, shellfish) 
there has yet to be a management action or record of human illness 
associated with cyanotoxins in seafood. NOD-related poisoning of dogs 
after drinking contaminated water have been reported (Algermissen 
et al. 2011, Simola et al. 2012). Accumulation of a high cyanobacterial 
biomass in bathing waters has resulted in beach closures due to human 
health concerns, as recommended in the Bathing Water Directive (2006/ 
7/EC). These beach closures impact the tourism industry in these local 
areas and are the main human impact of cyanobacterial blooms in the 
Baltic Sea. The potentially microcystin (MC) -producing Dolichospermum 
spp. occur throughout the Baltic Sea, but are more common in the lower- 
salinity (north and east) basins. Microcystins, mainly produced by 
freshwater cyanobacteria, have also been recorded in brackish waters 
and estuaries where the presence of the toxin producers, Dolicho-
spermum, Microcystis and Planktothrix have been recorded (Karlsson 
et al., 2005, Halinen et al., 2007, Chernova et al., 2019). The highest 
concentrations of dissolved MCs to date (up to 49 μg L− 1) were reported 
from the Russian easternmost part of the Gulf of Finland (Chernova 
et al., 2019) but are not recorded in the HAEDAT database. The most 
common bloom-forming cyanobacterium in the Baltic Sea, Aphanizo-
menon flosaquae, is not considered a toxin producer. It is harmful in the 
sense that it causes strong accumulations of biomass affecting leisure 
activities and tourism. Cyanobacteria blooms also produces noxious 
odours, particular upon decay of high biomass accumulations. 

The occurrence of the acute neurotoxic alkaloid, anatoxin-a (AN-a) is 
limited to coastal waters in the Baltic. So far, species of Dolichospermum 
and Oscillatoria as well as Aphanizomenon flosaquae (most likely of 
freshwater origin) have been indicated as potential AN-a producers in 
the Baltic Sea (Rantala-Ylinen et al. 2011; Chernova et al. 2019). To date 
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no harmful events have been associated with this toxin. BMAA (β 
-methylamino-L-alanine), a widely occurring cyanobacterial neuro-
toxin, has also been found in cyanobacterial samples from the Baltic Sea 
and from many other water bodies, including Florida Bay and the 
Mediterranean Sea (Lance et al. 2018). However, due to analytical 
challenges, the real health risk associated with human exposure to the 
toxin is difficult to assess. 

7. Societal impacts of HABs 

The societal impacts of HABs are highly context-specific and relate to 
the HAB species and impact areas in question and the ways affected 
regions and stakeholders understand, anticipate, communicate and 
respond to HAB risks. Impacts may include both direct and indirect 
economic (market) impacts, as well as intangible, or non-economic 
impacts (Adams and Larkin, 2013). As in other regions, the 
socio-economic impacts of HABs in the North, Norwegian, Barents and 
Baltic Seas can be broken down into those associated with loss or hin-
drance of seafood production, human health consequences, costs of 
monitoring and deleterious effects on tourism and recreation in coastal 
zones. These interactions can be multifaceted and synergistic, with ef-
fects as follows on: i) Shellfish – negative human health impacts (illness 
or deaths resulting from consumption of toxin contaminated shellfish), 
as well as economic impacts from precautionary closure of shellfish 
farms and recalls of shellfish products; ii) Farmed and wild fish, through 
direct fish mortalities and sub-lethal impacts on farmed fish production, 
health and welfare costs and losses to affected producers, harvesters and 
communities; and iii) Exploitation and use of beaches and nearshore 
zones, including harvesting activities, tourism, recreation, and food 
gathering practices, through closures of beaches and shellfish harvesting 
areas. 

The HAB species/genera of major concern for the greater North Sea 
region and Norwegian Sea with respect to these defined socioeconomic 
impacts on shellfish production and consumption, are mainly species of 
Alexandrium, Dinophysis, Azadinium. and Pseudo-nitzschia. In these cases, 
human health implications are linked to consumption of toxic shellfish 
(both farmed and wild harvested), and economic impacts result from 
shellfish farm or harvesting area closures and recalls of toxic shellfish. 
With respect to the socioeconomic effects related to fish production and 
harvesting, the major culprits are phytoflagellates belonging to the 
prymnesiophytes, and to a lesser extent the dinoflagellates and dictyo-
chophytes. P. polylepis has caused large-scale ecosystem disruptions and 
mortalities of wild and farmed fish in the Kattegat-Skagerrak region; 
Pseudochattonella has been responsible for periodic mortalities of farmed 
fish in southern Norway and in Denmark, and likely affected farmed fish 
health via sub-lethal impacts; C. leadbeateri has been associated with 
infrequent mass mortality events of farmed fish in northern Norway. In 
the North Sea and adjacent waters, socioeconomic impairment of 
enjoyment and exploitation of shoreline and beach areas, have been 
primarily linked to Phaeocystis. This prymnesiophyte is capable of pro-
ducing large amounts of mucilaginous foam which accumulates on 
German and Dutch beaches along the Wadden Sea coast, causing major 
short-term impacts on tourism and recreational activities. 

All of these HABs have the highest socioeconomic impacts and effects 
on coastal communities, because coastal areas are where fish and 
shellfish aquaculture, wild harvesting of seafood species and tourism 
and recreation activities are dominant. The affected and concerned 
stakeholders in these regions include the general public, relevant au-
thorities engaged in public health, fisheries, aquaculture, food safety, 
water quality management, coastal and marine (hazard) planning and 
management, environmental monitoring, as well as commercial aqua-
culture and fisheries industry representatives, researchers, knowledge 
brokers and public interest organizations. 

7.1. Effects on fish farms and fisheries 

Harmful Algal blooms (HABs) negatively impact finfish most directly 
via fish mortalities that can have major socio-economic consequences 
for affected aquaculture producers and regions, but they can also cause 
sub-lethal effects such as decreased growth rates, and increased sus-
ceptibility to diseases and parasites in farmed fish, which remain under- 
reported (Davidson et al., 2020). Wider societal impacts linked to loss of 
jobs and incomes in land-based processing and related service industries 
may also occur. HABs causing large fish kills may also contribute to 
supply volatility that affects retail and final consumer prices, though the 
evidence of this in the Norwegian/North Sea region is scarce. When 
assessing the impacts of HABs on fish farming, the costs to be considered 
include expenses for HAB mitigation measures, such as communication 
and coordination of emergency measures during a HAB event, increased 
logistical and clean-up up associated with handling large quantities of 
dead fish, emergency or contingency measures, such as moving fish to 
new locations and undertaking precautionary slaughtering of fish, as 
well as the costs of monitoring, research and development underpinning 
preventative measures (Anderson et al., 2000; Chávez et al., 2019). 
Experiences from the C. leadbeateri bloom in northern Norway 2019 
indicate that it is also important to consider risk transfer measures such 
as insurance held by independent aquaculture companies, and 
“compensatory” measures that governments and authorities may intro-
duce in the wake of major HAB events aimed at reducing the total 
economic impacts, in order to better understand the “net” societal im-
pacts of fish-killing bloom events. The economic impacts of HABs for 
finfish aquaculture can moreover change greatly over time due to 
structural changes that shift the exposure of particular regions, com-
panies or types of production to HAB events. For example, in southern 
Norway, a large part of the finfish aquaculture industry closed down 
after the major 1988 Prymnesium polylepis bloom that killed both wild 
and farmed fish as well as effecting wider ecosystems in the 
Kattegat-Skagerrak. Fish cages and other equipment were moved to the 
west coast of Norway in the wake of the event. In May 2019, an 
extensive bloom of C. leadbeateri occurred in parts of Nordland and 
Troms counties, northern Norway (Karlsen et al., 2019). The event 
resulted in the loss of 14 500 tonnes of Atlantic Salmon in Nordland and 
Troms Counties (Table 4), representing approximately 6.5% of the total 
biomass in the region, and 2% of the biomass at national level (Mar-
thinussen et al., 2020). This resulted in a reduction of nearly a quarter of 
the combined slaughtering potential of the affected companies at the 
time of the event. The direct and indirect gross economic effects of the 
2019 bloom have been estimated at between 2.3 and 2.8 billion NOK 
(Marthinussen et al., 2020). These costs include, in addition to the value 
of lost fish, substantial clean-up costs and lost future profits for affected 
companies, as well as estimated knock-on effects for the land-based 
processing and service supply industries and lost tax revenues level 
(Marthinussen et al., 2020). 

7.2. Effects on mussel farmers and collectors 

Reported effects of HABs on mussel farmers in Norway, Denmark and 
Sweden relate mainly to the economic and reputational costs associated 
with periodic shellfish closures due to the presence of Dinophysis spp. 
and Alexandrium spp., and more rarely caused by Pseudo-nitzschia and 
Azadinium species. Wider societal impacts linked to loss of jobs and in-
comes in land-based processing and related service industries may also 
occur (Pérez Agúndez et al., 2013) though the size of the shellfish in-
dustry in these countries is very small compared to other shellfish pro-
ducing regions in Europe, hence the total impacts of HABs are difficult to 
assess. Interviews with stakeholders in Norway and Sweden conducted 
within the European CoCliME project indicate that for individual 
shellfish producers and harvesters, the economic impacts of HAB events 
depend on the time of year, the amount and type of product affected, and 
the extent to which producers and harvesters have effective risk 
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mitigation measures in place to deal with HABs. The main strategy that 
consulted shellfish producers employ to deal with HABs and other 
environmental risks involves diversifying the location of production 
sites (maintaining harvesting and production licences in different areas), 
and in some cases, the types of species produced or marketed. Over-
stocking is also employed, for example keeping twice as many mussels as 
needed, in case they are killed by a disease, adverse environmental 
conditions, or predators. Maintaining stock of different age classes 
across locations is also employed in some cases to prevent disruptions in 
harvesting. 

7.3. Effects on tourism and recreational activities 

Blooms of Phaeocystis create foam on beaches in the North Sea. 
Nowadays the public in Belgium and the Netherlands seems to perceive 
this as a normal situation. If this is the case, recreational activities and 
tourism are likely not strongly affected. However, the loss of human life 
in connection with foam on the beach at Scheveningen in 2020 (Table 1) 

may have changed the perception. Turbid waters due to phytoplankton 
blooms (e.g. of cyanobacteria, Lepidodinium, etc.) is likely to deter 
swimmers from going into the water. Recurrent blooms would affect 
tourism. In the Baltic Sea region, warnings of cyanobacteria blooms 
from the Marine Information Centres in Sweden and authorities in 
Finland and Poland attract attention from the public and the media. In 
Poland, closures of beaches due to high abundance of cyanobacteria and 
the detection of cyanotoxins are common some years. This is likely to 
affect tourism but the authors are not aware of any quantitative in-
vestigations of effects. The authors know of no attempts to investigate 
the economic consequences in a quantitative way. Swimmers may be 
directly affected by the dinoflagellates A. pseudogonyaulax and 
P. quadridentatum by skin irritations as described above. These events 
have been rare and are likely to have no or very small effects on tourism. 
Harvesting (digging) of clams along the North Sea coast is common, 
whereas it is rare or unknown for Norway, Sweden and the Baltic Sea 
coast. Economic effects of HABs on primarily recreational clam digging 
activities is not known. 

8. Discussion 

Harmful algal bloom events along the coasts of northern Europe are 
frequent today but they also have a long history. Clearly, the socioeco-
nomic costs are substantial and have increased throughout the past three 
decades reviewed with access to HAEDAT. The massive blooms causing 
fish mortalities have high direct short-term costs that are fairly easy to 
quantify (Table 4). Longer term effects, e.g. the costs for reduced 
customer interest in fish is more difficult to quantify. The total costs for 
making sure that fish mortalities are minimized, i.e. enhanced moni-
toring, early warning systems for HABs and costs for mitigating effects 
are difficult to quantify. This also applies to HABs affecting harvesting of 
bivalve shellfish, e.g., primarily mussels, scallops and oysters in north-
ern Europe, and the related costs. We have not attempted to summarise 
costs for sampling and analyses of bivalve shellfish, sampling and ana-
lyses of harmful algae, managing data and visualising and presenting 
results to stakeholders. Rough empirical estimates do indicate that such 
costs are would be lower than those incurred for human health care due 
to ingestion of toxins, loss of income by the aquaculture and fisheries 
industries and the whole value chain of companies and stakeholders 

Table 4 
Estimated amount and cost of fish kill damage for selected blooms of fish killing taxa.   

Prymnesium polylepis Prymnesium parvum Chrysochromulina leadbeateri Pseudochattonella spp. Reference 

Sweden 1988 100 tonnes 
USD 1 million    

Skjoldal and Dundas 1991 

Norway 1988 800 tonnes 
USD 9 million    

Skjoldal and Dundas 1991 

Norway 1989  750 tonnes 
USD ~9 million   

Johnsen and Lein, 1989; Kaartvedt et al., 1991 

Norway 1991   742 tonnes 
USD ~3.5 million  

Aure and Rey, 1992; Rey, 1991 

Norway 1995  50 tonnes 
USD 0.3 million    

Norway 1998    350 tonnes 
USD 1.4 million 

Aure et al. 2000, 2001 

Norway 2001    1100 tonnes 
USD 3.5 million 

Naustvoll et al. 2002 

Denmark 2006    38 tonnes 
USD 0.5 million 

This publication 

Denmark 2007    70 tonnes 
USD 0.8 million 

This publication 

Norway 2007  135 tonnes 
USD no estimate   

Johnsen et al., 2010 

Denmark 2017    25 tonnes 
USD 0.3 million 

This publication 

Norway 2019   14 500 tonnes 
> USD 100 million  

Karlsen et al., 2019 

Denmark 2019    > 400 tonnes 
USD 1.4 million 

This publication  

Table 5 
Maximum PST levels in mussel meat of M. edulis in selected years. The EU 
regulatory limit is 800 STXeq kg− 1 of mussel meat.   

µg STXeq kg− 1 

Sweden 1987  
Skagerrak coast 800 
Norway 1987 

Southern and western coasts 
First closures of harvesting 

Denmark 1987 
Limfjorden 

400-200 

Norway 2010 
Norwegian Sea coast 

17700 

Norway 2011 
Norwegian Sea coast 

12500 

Denmark 2016 200-720 
Norway 2017 

Norwegian Sea coast 
58000 

Norway 2017 
Barent Sea coast 

3600 

Sweden 2017 
Skagerrak coast 

3600  
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involved. Costs associated with cyanobacterial blooms are also sub-
stantial, but less targeted to the seafood industry and human health 
aspects. Tourism is primarily affected by these blooms but the ecosystem 
and ecosystem services are also impacted in a way that is more difficult 
to quantify. 

8.1. Trends 

The long-term monitoring data of harmful algae and of phycotoxins 
in bivalve shellfish in marine and brackish waters in northern Europe 
show incremental but measurable changes. These include an increase in 
the abundance of some nitrogen-fixing cyanobacteria in the Baltic Sea as 
observed in water samples analysed by microscopy (Olofsson et al. 
2020) and also from satellite observations of near surface accumulations 
of filamentous cyanobacteria (Kahru and Elmgren 2014). The dataset on 
harmful algal events in HAEDAT is at present not suitable to detect 
trends of changes in the frequency or extent of cyanobacterial blooms, 
because it is not a true time-series record of the magnitude and fre-
quency of blooms. More consistent reporting is needed. 

An observed increase in the number of mortalities of farmed fish due 
to HABs coincides with an increase in the number of fish farms along the 
coasts. This does not mean that the fish farms cause the blooms of fish 
killing HAB organisms but rather that the blooms of HAB species are 
observed in connection with the fish mortalities. Blooms of 
C. leadbeaterii have had the largest direct impact on the aquaculture 
industry in northern Europe. The blooms in northern Norway in 1991 
and 2019 resulted in substantial losses for the fish farmers (Table 4). 
These harmful blooms were observed with long time intervals with no 
harmful blooms in between, and thus no trends are evident. One has to 
keep in mind that the monitoring effort has not been consistent. Moni-
toring of fish-killing HAB species was absent for a long time in northern 
Norway. The blooms of Pseudochattonella in the Kattegat and the Ska-
gerrak show a different pattern compared to the blooms of 
C. leadbeaterii. These blooms are recurrent events right after the diatom 
spring bloom causing mortalities of farmed fish, mainly in the Danish 
part of the Kattegat. At present there are no, or very few, fish farms along 
the Swedish coast of the Kattegat and the Skagerrak. If such farms were 
established, they would likely be affected by Pseudochattonella blooms. 
The same applies to the Norwegian Skagerrak coast. Here most fish 
farms were moved or shut down after the bloom of Prymnesium polylepis 
in 1988. 

The most common reports to HAEDAT in northern Europe are clo-
sures of bivalve shellfish harvesting areas due to concentrations of 
phycotoxins in bivalve shellfish above regulatory levels. Diarrhetic 
Shellfish Toxins (DST) produced by Dinophysis species are most common 
in the Skagerrak area. Here a decrease in the cell abundance of D. acuta, 
especially in autumn, co-occurs with a decrease in total DST levels in 
blue mussels (M. edulis). This also applies to southern Norway. The DST 
problem did not go away; instead, DST levels in summertime due to 
D. acuminata has increased. Blooms of Alexandrium and resulting high 
levels of PSTs in bivalve shellfish are rare events in the Skagerrak and 
the Kattegat but remain common along the west coast of Norway. There 
are also observations of Alexandrium in the Baltic Sea, e.g. at Åland 
(Kremp et al. 2009), in the Stockholm archipelago and at the coast of 
Poland, but these have not affected aquaculture. No trend related to PST 
is obvious from the HAEDAT reports, the phycotoxin data sets or from 
the phytoplankton monitoring data. Azadinium, Amphidoma and AZA are 
recent observations in northern Europe and no trends are yet observed. 
Azadinium is difficult to identify with the light microscope or even using 
calcofluor staining and fluorescence microscopy (Andersen, 2010). 
Thus, the present data may include misidentifications of Azadinium as 
Heterocapsa and other small thecate dinoflagellates. Introducing 
methods such as metabarcoding (Hu et al 2016, Gran-Stadniczeñko, 
2019, Stern et al. 2018) and qPCR (Hatfield et al. 2019, Ruvindy et al. 
2018, Wietkamp et al. 2020) in monitoring programs would be useful in 
this context. This also applies to Pseudo-nitzschia taxa which are difficult 

to identify to the species level using light microscopy. There are very few 
HAEDAT reports of events due to Pseudo-nitzschia in northern Europe 
and no trends were observed. A toxic Pseudo-nitzschia bloom may have 
severe effects if shellfish with high AST levels reach consumers.The 
potential problem is large because Pseudo-nitzschia blooms are frequent 
and toxigenicity of blooms is often uncertain for northern Europe. 

8.2. Drivers 

Changes of environmental conditions in the sea due to climate 
change are affecting the biogeography and seasonal distribution of 
phytoplankton. The increase in the abundance of Alexandrium pseudo-
gonyaulax and Dinophysis tripos in the Kattegat and the Skagerrak are 
likely examples of this. Longer time series are needed to verify the recent 
observations. The nitrogen fixing (diazotrophic) filamentous cyano-
bacteria in the Baltic Sea have a competitive advantage compared to 
other phytoplankton when concentrations of dissolved inorganic nitro-
gen is low and there is phosphate available. This has resulted in an in-
crease in cyanobacterial blooms in the Baltic Sea. It also means that 
nitrogen originating from N2 gas in the air is introduced into the Baltic 
Sea system, a form of natural eutrophication that is an effect of nutrients 
introduced anthropogenically. Nitrogen fixation is more metabolically 
costly at higher salinities and although the diazotrophic cyanobacteria 
from the Baltic Sea may grow in the Kattegat and the Skagerrak their 
competitive advantage is lost. 

Most of the phycotoxin-producing phytoplankton only constitute a 
small part of the phytoplankton biomass. Many of the species are mix-
otrophic. This implies that dissolved inorganic nutrient concentrations 
may not directly limit the growth of these species. However, there may 
be indirect effects. For example, Dinophysis feeds on the ciliate Meso-
dinium rubrum, which in turn steals its chloroplasts from the cryptophyte 
Teleaulax amphioxeia. If T. amphioxeia is favoured by high nutrient 
concentrations Dinophysis may be favoured indirectly. Pseudochattonella- 
blooms were not observed in the Skagerrak and the Kattegat before 
1998. The blooms are now common in this area and Pseudochattonella is 
also observed in the Southern Baltic Proper, but not in bloom abun-
dances. It is possible that Pseudochattonella was introduced to the area, e. 
g. by ballast water. 

8.3. Future scenarios 

Climate change, introduction of non-indigenous taxa and eutrophi-
cation/urbanisation are likely to change the distribution and frequency 
of HAB events in northern Europe. An increased water temperature 
(Høyer and Karagali 2016) will result in changed biogeography of HAB 
taxa and also in different seasonal distribution. HAB taxa today found 
only in southern Europe may become established in northern Europe. 
Candidates include Ostreopsis ovata Y.Fukuyo, a benthic species 
observed in the Mediterranean, but now also in the Bay of Biscay, pro-
ducing aerosolised toxins at the coasts during windy conditions. Another 
potentially invasive candidate is Karenia papilionacea A.J.Haywood & K. 
A.Steidinger, a fish-killer today found in the Bay of Biscay, but could 
likely thrive further north. Due to transport of phytoplankton and their 
resting stages in ballast water there are many more candidates world--
wide. Stratification of the water column may change due to changes in 
temperature, salinity and wind speed. 

A projected increase in strength of stratification in large parts of the 
North Sea and the Baltic Sea between the periods 1970–1999 and 
2070–2099 (Gröger et al. 2019) may favour some HAB taxa, e.g. 
Dinophysis spp., that thrive at the pycnocline and form thin layers. 
Climate change driven ocean temperature rises could intensify the dis-
tribution and frequency of Alexandrium blooms by an earlier and 
enhanced cyst formation and higher cyst deposition with 
temperature-regulated life cycle transformations (Warns et al., 2013). 
Freshening of surface waters could affect Alexandrium blooms and toxic 
outbreaks by modifying the patterns of water column stratification. High 
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cell abundances of both A. ostenfeldii and A. pseudogonyaulax along the 
coast of Denmark at brackish salinities and high water temperature 
suggests that the composition of Alexandrium species may be changing in 
response to climatic conditions in the area. Furthermore, cyst and toxin 
records of the species in Kiel Bight suggest a potential spreading into the 
brackish Baltic Sea, where Alexandrium might expand and form blooms 
under future ocean warming scenarios (Kremp et al., 2019). Di-
noflagellates typically benefit from stratified and low nutrient condi-
tions since these lead to the exclusion of non-motile competitors and 
allow motile dinoflagellates to actively aggregate. Alexandrium blooms 
are commonly associated with stratified water (Brandenburg et al., 
2017; Fauchot et al., 2005; Murray et al., 2015a). 

Urbanisation and increased agricultural intensity are global trends 
that often leads to eutrophication. Nutrient input to coastal waters af-
fects phytoplankton in general and favour some HAB taxa. Changed 
nutrient ratios may have direct effects. An increase in phosphate will 
favour nitrogen fixing cyanobacteria in brackish waters. In the eutro-
phicated Baltic Sea nutrient input has been reduced since the 1980’s but 
the concentrations of inorganic nutrients have not changed much (Sar-
aiva et al. 2019). Climate change is likely to have an effect on rainfall 
and on nutrient input to the Baltic Sea. Model studies, using combina-
tions of climate change and a reduction of nutrient input (the Baltic Sea 
Action Plan), show that the reduction of nutrient input will have a larger 
effect on future conditions than the climate (Saraiva et al. 2019). A 
decrease in silicate input to coastal waters (Burson et al. 2016) may 
favour non-siliceous plankton, e.g. Phaeocystis, and the relative abun-
dance of diatoms may decrease. Changed nutrient ratios also affect toxin 
production as discussed above in the Pseudo-nitzschia section. Urbani-
sation and climate change also result in the construction of harbours and 
other facilities such as dikes and sea gates along the coasts. Inside these 
artificial enclosures water conditions are often calm and here several 
HAB species are likely to thrive. 

For millennia coastal and shelf sea regions in northern Europe have 
provided a key supply of seafood, socioeconomic well-being and 
ecosystem services, such as natural recreational facilities. Increasing 
anthropogenic influence and climate change create environmental 
stressors, causing shifts in the biogeography and intensity of HABs. In 
turn, this threatens the future well-being of coastal populations and 
ecosystem stability. Continuing historical databases such as HAEDAT 
provide not only an ongoing status report but also provide a template for 
interpretation of causes and mechanisms of HABs. Review of the data 
sources on HAB events, as provided herein, can also assist in developing 
monitoring. 
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