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Abstract

Alternaria species are well-known aggressive pathogens that are widespread globally and warmer temperatures caused by cli-
mate changemight increase their abundancemore drastically. Early blight (EB) disease, causedmainly by Alternaria solani, and
brown spot, caused byAlternaria alternata, aremajor concerns in potato, tomato and eggplant production. The development of
EB is strongly linked to varieties, crop development stages, environmental factors, cultivation and field management. Several
forecasting models for pesticide application to control EB were created in the last century and more recent scientific advances
have included modern breeding technology to detect resistant genes and precision agriculture with hyperspectral sensors to
pinpoint damage locations on plants. This paper presents an overview of the EB disease and provides an evaluation of recent
scientific advances to control the disease. First of all, we describe the outline of this disease, encompassing biological cycles of
the Alternaria genus, favorite climate and soil conditions as well as resistant plant species. Second, versatile management prac-
tices to minimize the effect of this pathogen at field level are discussed, covering their limitations and pitfalls. A better under-
standing of the underlying factors of this disease and the potential of novel research can contribute to implementing
integrated pest management systems for an ecofriendly farming system.
© 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Early blight (EB), caused by Alternaria species, is one of the major
diseases in the production of tomato (Solanum lycopersicum),
potato (Solanum tuberosum) and other plants, and is most preva-
lent on unfertilized or otherwise stressed plants. Infection by this
polycyclic disease led to production losses of 35–78% in tomato
and 5–40% in potato, respectively.1 In North America, the annual
cost for fungicide application is estimated to be $21.4 to $44.8mil-
lion.2 Alternaria species are among the few pathogens that can
sporulate when exposed to several short-wet periods alternating
with dry periods.3 Phytotoxic metabolites are produced such as
alternariol, altersolano, altertoix, macrosporin and solanpyrone.4–6

6 Dark brown to black lesions with concentric rings in the senes-
cing leaves of potato and tomato are common symptoms, and
others are stem lesions and fruit rots. Alternaria species are abun-
dant in agricultural soils globally7 and it is considered to be one of
the most aggressive soil-borne pathogens in the world.8 Further-
more, increasing attention has been paid to these species nowa-
days since warmer temperatures due to climate change can
favour an increase in their hotspots over the world.8 Alternaria
species cause not only plant disease but also exhibit harmful
effects on human and animal health. More than 70 toxins

produced by the mycotoxin of Alternaria are found in a wide
range of food and animal feed products in many countries.
The genus Alternaria is divided into 24 sections based onmolec-

ular and morphological traits.9 While A. solani is the most recog-
nized causative agent of EB, other species, including A. alternata,
A. arborescens and, A. porri, are also found on leaflets with symp-
toms of early blight in potato10 as well as A. linariae and
A. grandis in tomato.11–13 A. solani is equally aggressive on both
crops, while A. tomatophila is highly aggressive to tomato but

* Correspondence to: K Jindo, Agrosystems Research, Wageningen University &
Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands. E-mail: keiji.
jindo@wur.nl

a Agrosystems Research, Wageningen University & Research, Wageningen,
The Netherlands

b Field Crops, Wageningen University & Research, Lelystad, The Netherlands

c Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Brazil

d Department of Crop Cultivation and Farming System, College of Agronomy,
Sichuan Agricultural University, Chengdu, China

© 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

1

https://orcid.org/0000-0001-6963-355X
mailto:keiji.jindo@wur.nl
mailto:keiji.jindo@wur.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/


weaker on potato.14 It was reported15 that A. solani is more sup-
pressed than A. alternata by fungicides of demethylation inhibi-
tors, the quinone outside inhibitors, a dithiocarbamate and a
carboxylic acid amide. Some fungicides used for late blight
(LB) control are applicable for EB, but not vice versa.16 EB infection
has been the subject of the research over 100 years, but until now
only a limited number of review papers regarding EB infection
have been published5,6,17 and they focus mainly on screening
methods and genetics of resistant varieties. However, holistic
information about not only underlying factors of the infection
but also practical modern strategies at field level to minimize
the damage has not been reported. The present work aims to
examine a wide range of themes related to EB, and special atten-
tion is given to the practical methods and strategies in green-
house or open-field conditions to minimize fungicide use for an
environmentally benign integrated-pest management (IPM)
approach against EB.

2 HOST–PATHOGEN–ENVIRONMENT
INTERACTION
The disease triangle is a bedrock illustrating the factors involved
in the emergences and severity of plant disease. The triangle con-
sists of (i) a susceptible host, (ii) a favourable environment for the
development of the disease and (iii) a virulent pathogen (Fig. 1). A
better understanding of each component allows us to set up
more practical strategies for pest management. What environ-
mental factors favour spore germination and dispersion of EB?
What kind of underlying factors in the plant can induce resis-
tance? How can the population of pathogens be decreased?
Breaking down the complexity of the plant pathogen in nature
by using the triangle method enables us to answer these
questions.

2.1 Biological cycle and climate factors
The optimum temperature for EB epidemics is in the range of
20–30 °C.18 As few as 3 hours of continuous leaf wetness between
21 and 25 °C is sufficient for EB lesion formation19 and at 24 ± 2 °
C, the infection appears within 4–6 h of leaf wetness.20 There is
variability with different geographic regions, with an optimal tem-
perature in temperate regions of 22–28 °C, while themost conidia
production under tropical conditions occurs at 29–35 °C.21 Radia-
tion affects the germination of the spores. The light range

between 300 and 500 nm appeared to be responsible for inhibi-
tion in germination meanwhile wavelengths above 750 nm do
not postpone germination.22 The conidiophores are formed
under high humidity and light, whereas conidial formation is
favoured by alternate high and low humidity in the dark. Conidia
disperse from the soil surface and fall on leaves and infect them.
The primary factors for disseminating conidia are rain, wind and
insects.19,21 Relative humidity (RH) is also a crucial parameter for
the biological cycle of Alternaria species. At high humidity on leaf
surfaces, especially after dew, conidial initiation occurs. A duration
of 4–6 hours of leaf wetness after inoculation with conidia is suffi-
cient to ensure the onset of EB.20 The link between lower temper-
ature and higher RH during the night is favourable for the
development of sporulation18; the new spores are released during
the day when the temperature increases.
An interrupted wet period (IWP) plays an essential role in the

biological cycle of A. solani and A. alternata. Unlike other fungi,
germinating spores of these fungi can survive dry conditions
and after rewetting of the leaf the germination process recom-
mences. A. solani can produce seven times more conidia under
IWP than during a continuous wetting period of the same dura-
tion.23 This unique characteristic enables it to adapt to different
regions such as the northwest of Spain, where alteration in air
humidity occurs frequently.

2.2 Dispersal pattern
Compared to P. infestans, the dispersal range of Alternaria solani is
limited to within the proximity of the field, whilst dispersal dis-
tances of hundreds of metres or kilometres is the case for
P. infestans.24 The reduction in the spore density of A. solani starts
at a distance of 400 m and from 600 m further away the initial
population of EB at crop emergence is negligible.25 A. alternata
achieves longer dispersal distances than A. solani, showing seven
times higher aerial conidial concentration than A. solani, probably
due to the smaller spores.26 New infections of A. alternata in a field
probably come from locations surrounding the field, whereas the
localized canopy of host plants within a field is the primary source
of A. solani conidia.
The unique characteristic of this pathogen is that when RH and

wet leaf surface are high, along with prolonged leaf wetness
(>12 h) and lower wind speed, the spore dispersion is dimin-
ished.27 By contrast, when wind speed is high, together with less
wet leaf surface, spore catches increase.21 In another report,28 a

Figure 1. Two contrasting cases of disease triangles illustrating host genotypes, pests and environments for pest management against early blight.
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strong correlation was found between dispersal and conditions
favourable for sporulation in Alternaria spp. The spores of Alter-
naria spp. belong to aeroallergens and a daily average of the
spore concentration (100 m−3) has been widely accepted in aero-
biological research as a relevant threshold for respiratory allergy
risk.29

Pathogen-induced foliar damage at the early bulking stages of
potato results in more significant yield loss than during potato
tuber maturation and late bulking. The importance of fungicide
disease management at early bulking growth stage is highlighted
in themeta-analysis work after gathering data from 23 trials.30 The
impact of EB severity at early bulking on relative yield loss was
32% in comparison with that at tuber maturation-late bulking,
which was 19% of relative yield loss. There is another report on
a crop loss model by this disease using yield loss as a function
of disease severity.31

2.3 Susceptibility to EB infection and protection
mechanism of wild genotypes
The epidemic development of EB varies mostly depending on the
type of plant cultivar.5,6 Ideally, the later thematurity time, the less
susceptible the cultivar is to Alternaria infection.32 This is related
to the fact that early maturity cultivars have a trait of determinate
growth and have no ability to sprout new foliage continuously,
consequently retaining older and senesced foliage on the plant,
which is where lesions of EB start to appear. By contrast, the
delayed fruit initiation occurs in late-maturing varieties, and rela-
tively young leaves grow continuously during the cropping sea-
son.5 The older or senesced foliage is a hotspot of EB. Incidence
of EB is closely related to the nutrient contents in plant tissue
and sugar; alkaloid contents and phenols are the primary chemi-
cal compounds that trigger the infection.5 A plant enriched with
glucose could inhibit the production of cell-wall-degrading
enzymes by A. solani.33–35 By contrast, alkaloids, which play an
essential role as antimicrobial and antifeedant compounds,36

have been found in laboratory assays to prevent the growth of
A. solani in potato leaves. Phenols are involved as secondary
metabolite compounds for the plant protection system. Plants
resistant against EB have reportedly contained a high content of
phenols along with the activities of defence-related enzymes
including phenylalanine ammonia-lyase (PAL) peroxidase, chiti-
nase and polyphenoxidase, which increase strength to the host
cell wall, resulting in the inhibition of pathogen invasion.37–39

Wild genotypes of potato and tomato in the Solanum genus,
originally from South America, are a beneficial resource of germ-
plasm resistance to EB disease.40–42 The genotypes that belong
to S. habrochaites and S. arcanum were found to be moderately
or highly resistant to EB.5,43 The resistant wild-type cultivars
strongly activate several pathways of plant response, including
glycol-alkaloid, flavonoid and lignin biosynthesis by up-regulating
gene expressions.44 However, some others have a wide range of
variations in the magnitude of resistance, including S. arcanum,
S. peruvianum, S. neorickii, S. chilense and S. habrochaites. This het-
erogeneity within the same genotype could be related to local
adaptations to EB.45

2.4 Molecular research
The species S. lycopersicum is susceptible to numerous diseases.
However, many resistance genes have already been identified in
genotypes of wild or domesticated species and crossed into com-
mercial genotypes. It is estimated that most cultivars have resis-
tance to a minimum of six diseases in the case of pure lines and

up to 10 diseases in hybrids.46 A classic example of durable resis-
tance is to the fungus Verticillium (Ve). The approach of using a Ve-
resistant locus was introduced more than 60 years ago in com-
mercial cultivars and is present in many tomato cultivars on the
market.47 Using this technique, research has been developed for
more stable and efficient resistance to EB in tomatoes and
potatoes.6

Susceptibility genes can also affect the degree of resistance
against EB disease in addition to resistance genes.48 The resis-
tance to EB can be achieved by regulating the expression of sus-
ceptibility genes in plants using the method of silencing
genes.49 The sequencing and resequencing associated with tran-
scriptomics and metabolomics may enable the identification of
genes responsible for the most efficient and long-lasting resis-
tance to EB. In addition, the method of DNA editing techniques
(CRISPR/CAS9) is a clear-cut approach to create commercial and
highly resistant genetic material, and the use of CRISPR/CAS9 for
resistance to A. alternata has recently been published.50–52

Quantitative trait loci (QTLs) and marker-assisted selection can
facilitate the identification and characterization of resistant/sus-
ceptible genes, and this technique enables the transfer of the
resistant genes to commercial varieties more quickly and effi-
ciently. Some wild species that can be crossed with
S. Iycopersicon have QTLs associated with resistance to EB.53,54

By contrast, the classical breeding method requires more time
and has some constraints, such as dependency on the donor par-
ent of the resistance gene, that may require the use of a third
genotype for transferring the gene of interest. Some species have
fruit characteristics that are very different from commercial toma-
toes and potatoes. Some wild species are self-incompatible as
S. arcanum,55 which remains with green color at maturity stage,
not producing lycopene or being highly pubescent like
S. habrochaites.56,57 Thus, methods such as marker-assisted selec-
tion can accelerate the development of new cultivars resistant to
Alternaria spp. Using QTL technologies, more than 30 resistance
cultivars with EB resistance genes in tomatoes were found.6 Other
approaches for Alternaria species such as next-generation
sequencing technologies58 and the semi-nested PCR-based
method59 are also attractive tools.
Metabolomics technology is an emerging tool used extensively

in the pathogenic research field to identify toxic compounds in
host plant cells induced by microorganisms. Metabolomic
research related to A. alternata showed that chlorogenic acid is
a metabolic acid with higher quantity in the resistant genotype
compared to the susceptible. Chlorogenic acid was inoculated
into in vitro cultures of A. alternata and the contents of alternariol,
alternariol monomethyl ether and tenuazonic acid were analyzed.
At 4 days after inoculation, chlorogenic acid almost wholly inhib-
ited the synthesis of mycotoxins due to the presence of alternar-
iol. A direct effect of chlorogenic acid on these mycotoxins
could help to explain the mechanism of fungus infection.60

As the disease is greatly influenced by environmental condi-
tions, it is believed that more comprehensive research associating
resistance to EB with concomitant resistance to abiotic factors is
desirable.

2.5 Soil
Soil is an essential biosphere for the development of EB in the bio-
logical cycle. In general, infected plant debris on the soil surface
carries over the disease to the following season, mainly when
the soil is dry. Hence, soil moisture and temperature are crucial
components of survival. A. solani can overwinter with/without a
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host in the range of −3.3 to 21.2 °C. This fungus can survive in soil
from the previous cropping season over 8 months, but not
16 months. Under these circumstances, crop rotation is recom-
mended. An optimal interval for the rotation is 2 years for
potato,61,62 while 3- to 5-year crop rotation is recommended for
tomato.5 The underlying reasons for the difference in the duration
was not found in the literature.
Plants exposed to nutrient starvation are more susceptible to

infection. Nitrogen is vital for EB resistance, and several previous
works highlight the importance of nitrogen supply. It is reported63

that nitrogen content and the area under the disease progress
curve (AUDPC) have a significant correlation with potato starch
yield. By contrast, a potato plant with lower nitrogen has more
chance of becoming infected by A. solani. High nitrogen content
in plant tissues may prolong vegetative growth and delay ripen-
ing, which results in less vulnerability to EB infection. Nitrogen
input directly affects healthy leaf area duration and absorption
of the radiation, but does not affect the resistance against EB once
it appears, implying that adequate application at the right time
needs to be implemented.64 It is also recommended to apply
the nitrogen fertilizer at two or three different timings rather than
make a one-time application as this allows an increase in potato
yield.63–65 However, the yield would be reduced if application
was split more than four times because the limited nitrogen sup-
ply at each application is the defining factor rather than the
appropriate timings.66

Unlike nitrogen, phosphorous and potassium are not consid-
ered as essential factors for EB infection. By contrast, several
micronutrients such as boron and zinc are important for plant
resilience against Alternaria species given that deficiencies of
these nutrients create leaky and unstable cell membranes in
plants, releasing a massive number of organic compounds from
cells, which could be a suitable food source for Alternaria spe-
cies.67 In particular, the importance of zinc for plant protection
against EB is highlighted in several scientific reports: zinc inter-
venes with the synthesis of activating metabolic reactions, pro-
duction of chlorophyll and carbohydrate, and the synthesis of
tryptophan, which converts later to auxin. The content of organic
carbon in the soil does not affect EB infection.68

Soil texture is essential for control of fungi infection. After heavy
rainy days, necrotic EB lesions appear, especially in sandy soils,31

and this tendency is also confirmed in the case of Belgium potato
regions after 2-year trials.69 An underlying factor of this result
could be nutrient deficiency. The interlink between rotation dura-
tion and soil texture should be highlighted as shorter rotation
occurs in a sandy region, in contrast to clay soil, which gives pota-
toes more chance to become infected by EB. There is a report on
increased susceptibility of crops grown in sandy soils under plant-
parasitic nematode attack of about 200 infective juveniles of a
root-knot nematode, Meloidogyne incognita, per plant, which
eventually caused severe damage in plant growth and chlorophyll
content.70 In general, except for the stem nematode Ditylenchus
dipsaci, the nematode population is higher in coarse-textured soil
such as sandy soil compared with clay soil, and this might partly
affect EB depending on the crop host suitability and nematode
densities at planting.64,71

There is an interaction between Alternaria species and other
microorganisms. Burkholderia bacteria have a co-habitant rela-
tionship with A. alternata under nutrient-limited conditions, using
multiple substrates provided by the fungi which attenuated the
starvation response observed when these bacteria are grown
alone.72 Concomitantly, this symbiotic mechanism can also limit

the phytopathogenic activity of Alternaria species,72,73 meaning
that Burkholderia can play a role as a biological agent of Alternaria
species.49,74 Rhizobacteria in the soil are known as a pathogen
control. However, 59% of rhizobacteria failed to enhance resis-
tance against EB.75 Concerning the interaction of A. solani with
other fungi groups, it is reported that Arsenicum album, Nitricum
acidum and Staphysagaria can inhibit the mycelium growth of
A. solani under in vivo conditions.76 A reduction in soil extracellular
and intracellular enzymes (e.g. dehydrogenase, phosphatase,
⊎-glucosidase and urease) is observed in fungus-infected soil,
implying that pathogens probably change the redox activity of
plants by nutrient leaching, resulting in altered soil enzyme
activity.77

2.6 Functions of existing forecast models and the
limitations of model usages
Decision support systems (DSS) for proper pest management with
fungicides to minimize the damage from EB infection have been
developed for over 40 years. Several simulation models were
implemented in the 1970 and 1980s, and the most recognized
ones are FAST (Forecasting Alternaria Solani on Tomatoes), TOM-
CAST (Tomato Disease Forecast) and EPIDEM (Alternaria solani
on tomatoes and potatoes). To modify and update, other derivate
models have been created as decision support78–80 (e.g. CU-FAST,
PA-FAST, NJ-TOM-CAST, WISDOM and Plant-Plus).

2.6.1 FAST model
The FAST DSS, known as a long-run product, was created for fore-
casting EB in tomato and then adjusted to potato field condi-
tions.81 It comprises two empirical submodels to determine
periods when environmental conditions are favourable for EB dis-
ease development.82,83 One submodel includes leaf wetting time
and mean air temperature, and the second submodel contains
the daily severity-rating (R), estimated by three environmental
parameters: (i) mean air temperature for the past 5 days,
(ii) hours of RH higher than 90% for the past 5 days and (iii) total
rainfall for the past 7 days. This model enables the following three
indicators to be forecast: (i) total of all severity disease values
(TS) since the initial stage of the growing season, (ii) 7-day cumu-
lative severity value (CS) and (iii) 5-day cumulative rating value
(CR), calculated by totalling R values for the past 5 days. Based
on the two threshold options of CS and CR values, this support
model has successfully reduced the application frequency while
the blight severity remained at the same magnitude with the
commercial schedule.19,84

2.6.2 TOM-CAST model
TOM-CAST is another long-run DSS which has a much simpler
approach to facilitate implementation than the FAST model.
Using a small component of the FAST model (hourly leaf wetness
and temperature), disease severity values (DSVs) are deter-
mined.82 The value range of the DSVs15–20 defines the pest control
schedule. Subsequent treatment is conducted with a pesticide,
originally arranged with chlorothalonil. Other work81 demon-
strated the performance of TOM-CAST for six other fungicides
comparing with a weekly schedule, highlighting the marketable
yield with this model. The limitation of TOM-CAST is the fact that
it is not a maturity-based model; no variable related to plant
growth is included. Tuning DSVs to adjust to local conditions
and varieties is challenging, requiring data from trials done over
several years to find the optimal DSV values.85 To improve this
model, a new model, the modified-TOMCAST model, was created
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by complementing the DSS with a crop maturity module.86,87 This
updated model is useful to adjust the variability of different varie-
ties in crop growth until maturation by changing the thresholds of
the model at different crop stages. However, it should be
highlighted that there exist some limitations of using these
models. For instance, the IWP is not taken into consideration as
a component of the model.23,27 Also, rigorous calibration and val-
idation of temperature intervals are required for different crop-
ping conditions, such as semi-arid and irrigated systems.

2.6.3 Pitfalls of forecast model application
The pitfall of using these models with fungicides is the ability of
microorganisms to avoid sensitivity to the chemicals. Indeed,
many different types of fungicides are used for EB, including
(i) maneb, mancozeb, difenoconazole, boscalid, fluopyram, bosca-
lid, fluopyram and chlorothalonil in the EU,15 (ii) boscalid and fluo-
pyram in North America,88,89 and (iii) difenoconazole and
ethylhydrogen-phosphate in Asia.90 However, the high genetic
diversity of A. solani enables it to adapt to fungicides and shift
the population towards more resistant isolates.15,91–94 Fungicide
resistance against quinone outside inhibitor (QoI) was described
first in the USA92,93 and a decade later in Germany,95 while resis-
tance against succinate dehydrogenase inhibitors (SDHIs) was
found in Idaho. Among 39 strains of A. solani collected in 2009,
only three strains were resistant to SDHIs and all to azoxystrobin.
A year later, 57% of the isolates were resistant to boscalid.96 In a
survey in the USA in 2010 and 2011, approximately, 80% of all
A. solani assayed were found to have some level of resistance to
boscalid, with about 5% and 75% of the population moderately
resistant (to concentrations of 5–20 μg mL–1) and highly resistant
(>20 μg mL–1) to the fungicide. Nearly 99% of all boscalid-
resistant isolates possessed the F129L mutation in the cytro-
chrome b gene, responsible for QoI resistance, indicating that an

A. solani population with dual fungicide resistance predominates
in the states surveyed.94 In Belgium, 83 A. solani and
53 A. alternata isolates were collected during 2014 and 2015 to
assess the prevalence of SDHI mutants. The isolates were
screened for the presence of amino acid substitutions in the dif-
ferent subunits of the succinate dehydrogenase gene (SdhB, SdhC
and SdhD). The isolate screening revealed that mutations causing
a reduced sensitivity towards SDHIs were widespread in the Bel-
gian Alternaria population: 70% of the A. solani and 41% of the
A. alternata isolates possessed one or more mutations.97

3 PRACTICAL STRATEGIES
The durability of host resistance is affected by the evolutionary
potential of the pathogen and the inoculum pressure. The resis-
tance genes in the plant coevolve with those of the pathogen's
virulence, implying that consecutive cultivation of the same culti-
vars is not appropriate. The importance of proper pest manage-
ment has to be considered for (i) minimization of the disease on
crop leaves, (ii) decrease of potential inoculum in the field and
its product, including mycotoxins, and (iii) avoiding the fate of
breaking genetic resistance. Elimination of weeds as such as
S. nigrum and S. carolinense, considered potential inoculum
sources of Alternaria spp., can reduce the risk of sporulation.46 In
addition, elimination of senescent leaves, apical pruning and ver-
tical support favour radiation in the canopy and increase ventila-
tion, which reduces water film on the leaf blade and eliminates
contaminated debris and senescent leaves with greater suscepti-
bility to the pathogen.
IPM is a holistic approach for sustainable agriculture. It relies on

the type of cropping system, geography and development stage
of plants, which are discussed in subsequent sections. It is
reported6 that EB can be controlled by three measures: fungicide
treatment, use of resistant cultivars and cultural practices. The first

Figure 2. Different practices of pest management against early blight disease.
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two measures are described above; in this section, the feasible
practices for IPM are addressed (Fig. 2). The following agronomic
practices can minimize or prevent possible damage caused by EB.

3.1 Rotation
First and foremost, crop rotation is an essential practice to mini-
mize the possibility of the onset of EB infection, given that contin-
uous potato production in the same field over 2–3 years is risky.98

Two years without potatoes is the minimum interval to delay the
onset of EB in the potato field.99 Rotation is an efficient practice
not only for reducing pests and diseases but also for balancing soil
nutrients, thus effectively improving the physical and chemical
properties of soil and regulating soil fertility. However, there exist
a couple of pitfalls in the practice: (i) the production schedule
needs to be changed every year to increase land utilization and
(ii) there is a possible reduction in economic return over several
years due to less potato production, which is valuable as a cash
crop for farmers.

3.2 Intercropping
The inhibition of the conidial movement of fungi results from the
fact that the intercrop provides a physical barrier and microcli-
mate modification to reduce conidial germination and develop-
ment. Marigold is a recognized plant for the protection against
Pratylenchus penetrans and a lower population of this nematode
affects crop resistance to infection by pathogens such as
A. solani.100 Olfactory species [e.g. marigold (Calendula officinalis)
and onion (Allium cepa)] are thought to be used for intercropping
due to an antimicrobial allelopathy effect. However, intercropping
will increase the difficulty of mechanical harvesting. In addition,
the morphological characteristics and fertilizer requirements of
intercropping crops and the cropping growth period needed to
be taken into account.

3.3 Mulching and cover cropping
Mulching and cover cropping are also useful practices for reduc-
tion in EB infection.101,102 Disease incidence of foliar and fruit rot
pathogens can be reduced by creating a physical barrier to keep
fruit from coming into direct contact with soil and disrupting
the rain splash distribution of inoculum of soil-borne fruit.
Another hypothesis of reduction in splash dispersal is believed
to be that (i) sensor wetness duration of the crop is reduced by
mulch and (ii) soil particle dispersal is reduced. Moreover, mulch-
ing with plastic material is also effective for the prevention of soil
evapotranspiration.19 Disadvantages of plastic mulching are cost
and the need to use ecofriendly plastic.

3.4 Ultraviolet radiation
Blocking ultraviolet (UV) radiation by mesh or plant cover can
retard the development of EB infection. Sporulation is affected
by radiation exposure since the conidiophores are formed under
high humidity and light.103 It is worth mentioning that the UV
blocking method can delay not only disease progression of EB
but also other diseases caused by other pathogenic
microorganisms.104

3.5 Irrigation
The water regime is interlinked with EB germination. It is reported
that sprinkler irrigation systems reduce disease incidence com-
pared with furrow application, which creates excessive water con-
dition in the field.105,106 The change inmicroclimate conditions by

irrigation reduces the incidence of this disease more in compari-
son with rainfed water systems.98

3.6 Nanoparticles
Application of nanoparticles is an attractive tool to enhance plant
protection against EB.107–110 Selenium, copper, silica and silver are
the candidates for this method, which increases the antioxidant
enzymes in plant tissues. Other work77 has demonstrated the
impact of biosynthesized silver nanoparticles in reducing EB and
increasing plant growth as well as photosynthesis. Finding an
optimal dose of a nanoparticle is a crucial point for
implementation.

3.7 Plant growth promoting rhizobacteria, biological
agents and mycorrhiza
An ecofriendly biological control is useful to minimize EB emer-
gence. A versatile series of different antagonistic agents for con-
trol of A. solani and A. alternata, or plant growth promoting
reagents (PGPRs), have been reported as biological agents of
EB. Streptomycetes spp. are antagonists that reduce spore germi-
nation, mycelial growth and sporulation of EB.111 Regarding the
Ascomycetes group, Trichoderma species, such as Trichoderma har-
zianum and Trichoderma viride, are recognized PGPRs and biolog-
ical agents against EB.112–115 Pretreatment of potato tubers with
Trichoderma decreased the infection of new-crop tubers.115 It is
presumed that Trichoderma has three strategies to enhance pro-
tection: (i) it is involved in the phytohormonal mechanisms of
auxin and ethylene, (ii) it reduces gene expressions of some pro-
teins involved in pyruvate kinase biosynthesis and (iii) it increases
antioxidant enzymes in plant tissues.116

Additionally, rhizobacteria are a practicable microorganism
group for protection against A. solani.75,111,116–122 Bacillus
sp. show antifungal activity by releasing Indole-3-acetic acid
(IAA) and lytic enzymes and triggers for plant protection mecha-
nisms.120,123 The combined application of PGPRs (e.g. Bacillus sub-
tilis and Trichoderma) can strengthen the plant defence system by
inducing these plant hormones as well as enhancing antioxidant
enzymes including peroxidase and polyphenol oxidase.116,124,125

Mycorrhiza reduces susceptibility to A. solani.116 Plant hormone
signalling pathways (e.g. the jasmonic and salicylic acid pathways)
and enzymatic activities related to phenol compounds63 are acti-
vated by mycorrhiza. Supplying phosphorous by mycorrhiza
interaction is not essential for the enhancement of the protection
system against EB.126 Interestingly, mycorrhiza can mediate
plant–plant communication between healthy plants and
pathogen-infected tomato plants63 with the induction of defence
signals such as peroxidase, polyphenol oxidase, chitinase,
⊎-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase.
Inoculation of a local biological agent against EB is a recom-

mended approach. As an example, the inoculation of Macrole-
piota sp., belonging to the Basidiomycete family, is useful not
only for biological control against A. solani but also for the
enhancement of plant growth.

3.8 Treatment with organic products or biostimulants
Using organic materials and biostimulants for plant protection is
also reported for pest management against EB. Biopolymers of
sodium alginate,127 extract of seaweed,128 the neem tree129 and
the artemisia tree130 were tested to protect plants from infection
by EB. Other biostimulants such as humic acid, chitosan and thia-
mine have also been examined.131,132 The induction of antifungal
enzymes and regulation of gene expression for defence systems
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involved with plant hormones are the underpinning factors for
the reduction in the infection.127

3.9 Precision agriculture
Precision agriculture is an emerging approach that enables
farmers to improve accuracy and reduce costs by a pinpoint appli-
cation of crop protection agents using technologies such as
hyperspectral imaging by drones and robotics. These technolo-
gies might also help to identify nutrient and water stress in the
potato plant, which affects susceptibility to EB. DSS can be useful
for forecasting the date of exceeding control thresholds and fun-
gicide application. Using mathematical models, the time require-
ment for the processing of the data analysis can be minimized.
The model FAST, for instance, is a forecast system for A. solani
on tomato. BSPcast is a model derived from FAST by adapting it
to the aetiology and epidemiology of S. vesicarium on pear. The
model TOM-CAST was also derived from FAST as a weather-timed
fungicide spray forecast, and its potential to reduce spray applica-
tions has been tested. Many papers on the detection of EB by
hyperspectral images have been published.133–137 The wave-
lengths of 715133 and 750 nm,133 which belong to the range of
near-infrared, are the most discriminative range of the spectrum
for disease classification. Different algorithms based on deep-
learning and machine-learning are applied for image processing
techniques, and the accuracy of the models for disease detection
of EB and LB in tomato leaves varies between 76% and 98%.123 To
increase the accuracy, the following points should be considered:
(i) larger dataset size, (ii) higher spatial resolution or a broader
spectral range and (iii) more advanced image-processing tech-
niques. Overall, precision agriculture is a promising and condu-
cive approach to protecting the environment and reducing
production costs while reducing the use of fungicides and
fertilizers.

4 FUTURE APPROACH
Novel technologies and agronomical practices can mitigate the
damage of EB by making tomato and potato production more
sustainable. Due to the intertwined complexity of EB disease,
the idea of using one specific approach as the 'silver bullet’ solu-
tion should be avoided (e.g. application of biological control with-
out knowing soil fertility or fungi gene editing without
considering field practices). By contrast, a multidisciplinary
approach across different scientific domains from laboratory to
field experiments can help us to understand more about underly-
ing factors and allow us to co-design IPM with other stakeholders
(e.g. farmers, seed distributors, fungicide companies). Further
investigation should be conducted to determine an economic
assessment of combined applications.
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