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Abstract
Bursts of drinking water pipes not only cause loss of drinking water, but also
damage below and above ground infrastructure. Short-term water demand forecast-
ing is a valuable tool in burst detection, as deviations between the forecast and
actual water demand may indicate a new burst. Many of burst detection methods
struggle with false positives due to non-seasonal water consumption as a result of
e.g. environmental, economic or demographic exogenous influences, such as
weather, holidays, festivities or pandemics. Finding a robust alternative that re-
duces the false positive rate of burst detection and does not rely on data from
exogenous processes is essential. We present such a burst detection method, based
on Bayesian ridge regression and Random Sample Consensus. Our exogenous
nowcasting method relies on signals of all nearby flow and pressure sensors in
the distribution net with the aim to reduce the false positive rate. The method
requires neither data of exogenous processes, nor extensive historical data, but only
requires one week of historical data per flow/pressure sensor. The exogenous
nowcasting method is compared with a common water demand forecasting method
for burst detection and shows sufficiently higher Nash-Sutcliffe model efficiencies
of 82.7% - 90.6% compared to 57.9% - 77.7%, respectively. These efficiency
ranges indicate a more accurate water demand prediction, resulting in more precise
burst detection.
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1 Introduction

Water distribution networks form an extensive and complex underground infrastructure, coping
with a water demand that changes over time and per location. Due to this complexity, optimal
management and operation of the distribution network is a challenging task. Suboptimal
management has wide ramifications, such as faster deterioration of pipes, insufficient water
pressure, increased burst frequency and higher operational costs (Billings and Jones 2008;
Kozłowski et al. 2018). Forecasting water demandwill help optimize networkmanagement and
facilitates fault detection (Brentan et al. 2017). Water demand forecasting is challenging, since
water consumption depends on many environmental, economic, and demographic factors with
temporal and spatial variation (Hutton and Kapelan 2015b). One high priority use of short-term
water demand forecasting is burst detection. Burst detection methods are typically based on
detecting significant deviations between measured and predicted water demand. Convention-
ally, the measured water consumption in a District Metering Area (DMA) is compared to a
forecast based on historical measurements of water consumption on e.g. the same day in the
week and the same time on that day. Significant deviations between the forecasted and the
current water consumption indicate a burst, if a suitable and accurate forecasting method is used
(Hutton and Kapelan 2015a). The most frequently used methods for water demand forecasting
are based on univariate time series models, such as autoregressive moving average (ARMA)
models (Hutton and Kapelan 2015b). ARMA models are suitable for short-term forecasts of
water demand, as these models are strong in capturing the specific periodic patterns of water
consumption. However, water demand is not only a function of periodic water consumption,
but is also influenced by exogenous processes, such as holidays, festivals, the weather,
pandemics, or other non-periodic deviations in water consumption. Ordinary ARMA models
do not take into account these exogenous processes, resulting in an increased false positive rate
of burst detection (Billings and Jones 2008). In order to take into account exogenous processes,
(multiple) (non-)linear regression or exogenous ARMAmodels were used, under the condition
that extensive data on each of these exogenous processes are available (Adamowski et al. 2012;
Papageorgiou et al. 2015; Froelich 2016; Candelieri 2017).

Recent methods make use of neural networks (NN) or other supervised machine learning
methods, or hybrid methods that combine NN with univariate/regression forecasting models
(Babel and Shinde 2011; Bai et al. 2014; Xu et al. 2018; Pacchin et al. 2019). Similar to
exogenous ARMAmodels, these methods are capable of incorporating exogenous data and boast
reliable forecasts, but require extensive historical data for training and are accompanied by large
forecast uncertainties, which cannot always be quantified (Hutton andKapelan 2015b; Anele et al.
2017). Although powerful, even these NN and hybrid models still require identification of all
relevant exogenous processes with corresponding data. Identifying the many environmental,
economic and demographic exogenous processes that influence drinking water demand as well
as collecting all the corresponding data, might not be realistic or feasible for most water
distribution companies. A method that does not depend on data of exogenous processes would
be invaluable to water demand forecasting and would greatly improve burst detection precision.

Up to now, data of exogenous processes for water demand forecasting was obtained from
external sources (such as weather institutes or statistical agencies). However, the multitude of
installed pressure and flow sensors in the network present a new, internal data source. These
sensors can all be considered as real-time exogenous factors, as they reflect all of the
exogenous processes, without having to identify what is the underlying cause of these
processes. Hence, instead of using a short-term forecast of water demand based on forecasted
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exogenous processes, a water demand nowcast per sensor or DMA water balance based on
exogenous flow and pressure sensors within the distribution network can be used. Where
forecasting water consumption typically relies on the seasonal nature of collective human
water consumption, water demand nowcasting not solely accounts for seasonal water con-
sumption, but also various other water demand patterns caused by exogenous processes, such
as weather, holidays, or valve position changes.

This observation becomes especially relevant regarding burst detection. When solely
forecasting the seasonal water consumption, significant deviations between the forecasted
and the measured water demand will contain many false positive burst alarm caused by
non-seasonal water demand due to exogenous processes. Nowcasting water demand at a
specific location and based on exogenous sensors will result in a significantly reduction of
the false positive rate, as not only seasonal water demand, but also diverging water demand
due to exogenous processes can be taken into account. Consequently, when the nowcast
deviates from the measured water demand at a specific location, a burst alarm is triggered.

When investigating the measurements of a flow sensor situated close to a burst, the sensor
will record a corresponding water demand pattern. However, since most exogenous flow and
pressure sensors used in the nowcasting of this sensor will not detect this local burst, the
nowcast will reflect the normal diurnal water demand pattern. The resulting difference between
measured and nowcasted water demand will thus signal that a bursts has occurred. However, if
a more widespread event, such as a holiday, causes a non-diurnal water demand pattern in the
investigated sensor, most exogenous sensors will also show a similar pattern. Therefore the
nowcasted and measured water demand will not deviate, and this event will thus not trigger a
burst warning. The nowcasted water demand based on sensors in proximity as exogenous
regressors will more accurately reflect actual water demand compared to water consumption
forecasts based on exogenous methods, and thus allows for robust, high certainty and high
precision burst detection, without needing vast historical data sets.

The objective of this study was to investigate and evaluate a water demand nowcasting
method based on exogenous data from sensors in proximity to the nowcasted sensor or water
balance. Our exogenous water demand nowcasting method is compared with a univariate
water demand forecasting method that does not depend on data of exogenous processes and is
based on RANdom SAmple Consensus (RANSAC) weighted linear regression using up to
20 weeks of past flow measurements (Fischler and Bolles 1981). The water demand nowcast is
constructed from the signals from multiple flow and pressure sensors in the distribution
network as exogenous factors in a RANSAC Bayesian ridge regression model (MacKay
1992). A 95% prediction uncertainty interval is determined for both methods, to evaluate
the uncertainty of the forecasted and nowcasted water consumption. Where other methods
reduce exogenous false positives by finding sensor signals with a relatively high distance
compared to the signal of other exogenous sensors (Wu et al. 2018), exogenous nowcasting
uses the nowcast’s uncertainty interval to determine burst occurrence. Three data sets were
subjected to the forecasting and nowcasting methods, after which the model efficiency scores
were calculated in order to evaluate their performance.

2 Materials and Methods

The exogenous nowcast method and the univariate forecast method were applied to a DMA
water balance (data set DMA1), a city-wide sub-DMA water balance (data set DMA1.1) and a
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single flow sensor (data set Q1) (Fig. 1), sampled each five minutes from 01/06/2017 up to 01/
11/2019, except for DMA1.1, which was sampled from 22/02/2018 up to 01/11/2019, since
this DMA was not operational before this date. All data sets were provided by the Dutch
drinking water company Vitens. DMA1 is situated in a mainly rural area with a population of
more than 100,000 inhabitants spread over 800 km2. DMA1.1 covers the largest city within
DMA1 of more than 30,000 inhabitants and sensor Q1 is located near one of the water
production facility within DMA1. For the exogenous nowcast method, data from up to 42
sensors from within DMA1 were used as the exogenous regressors (17 pressure sensors, 25
flow sensors of which 12 industrial water demand flow sensors). The data sets of these sensors
were also sampled each five minutes from 01/06/2017 up to 01/11/2019.

2.1 Univariate Water Demand Forecast

In order to forecast up to one week of water demand for a district metering area (DMA) or at a
flow sensor in the net using a univariate water demand forecasting method, past measurements
from that DMA or sensor are required. For each time t up to one week in the future, a forecastbyt can be made based on past measurements. For that we took those measurements from the
preceding 20 weeks that correspond with the same day in the week and the same time on that
day. The corresponding linear regression problem is formulated as:

Y ¼ Xβ þ ϵ ð1Þ

bβ ¼ WXð ÞTX
� ��1

WXð ÞTY ð2Þ

Here, N = 20 are the number of prior measurements considered, Y = [y1y2,…, yN]T is an N-
dimensional vector with measured water demands for 1, 2,…, N weeks prior to time t, ϵ is the

Fig. 1 Boxplots of the data sets of DMA1, DMA1.1 and Q1
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corresponding residual vector, X ¼
1
1
⋮
1

1
2
⋮
N

264
375 is the regressor matrix, and bβ is the parameter

vector with weighted least squares estimates of the regression coefficients, which are the
intercept and slope of the line fitting the 20 data points. Since more recent water demand has
more predictive value compared less recent water demand, exponentially weighted least
squares is applied to rely relatively more on the most recent measurements, instead of ordinary
or generalized least squares. This weighting is achieved by using the diagonal weighting

matrix W ¼
w1;1

0
⋮
0

0
w2;2

⋱
⋯

⋯
⋱
⋱
0

0
⋮
0

wN ;N

264
375, where wi, i = (1 − p)^(N-i+1)N − i + 1 with i = 1, 2,…,

N and weighting factor p = 0.2.
To ensure robust regression, RANdom SAmple Consensus (RANSAC) is applied in order

to eliminate the outliers from the training data measurements (Fischler and Bolles 1981). This
is achieved by selecting all sets s consisting of every possible combination of Ns rows from X
(keeping them in the original order), the corresponding Ns values from Y, and Ns rows and

columns from W with 2 ≤Ns ≤N. Each resulting combination eX , eY , and eW is used in Eq. (2),

resulting in a corresponding estimate of the parameter vector bβs. The “optimal” parameter

vector bβopt, that maximizes the RANSAC cost function, and accompanying inlier combina-

tions of regressors Xopt, responses Yopt and weights Wopt can be found from all sets s using the
RANSAC cost function for each set s:

bβopt sð Þ ¼ argmaxbBs

∑Ns
i¼1

eWi;i if eys i−eX i s
bβs

� �2
≤δd

0 otherwise:

(
ð3Þ

Outliers are excluded from the regression, if the squared residuals eys i � eX i s
bβs

� �2
are larger

than a residual threshold δd chosen as the Median Absolute Deviation (MAD) of the responses
δd =MAD(Y) = median(|Y − median(Y)|). If RANSAC or missing data results in less than
Nmin = 12 inliers, a residual threshold δd = 2 ∗MAD(Y) is used instead. If this more tolerant
threshold still results in less than Nmin = 12 inliers, RANSAC is not used, as RANSAC
apparently does not help to improve the linear fit. Consequently, in that case all 20 measure-
ments are used. Regarding the application of water demand forecasting, using multiples of
MAD of responses Y were chosen as the RANSAC residual threshold δd, since this is assumed
to result in robust results when responses Y have low noise. Thus, the cost function in Eq. (3)

makes use of the exponential weights eWi;i in order to penalize past measurements, since recent
measurements are assumed to strongly resemble future water demand. The lower threshold of
12 inliers was used to ensure sufficient data is retained to fit the model. Combined with the
exponential weights, this ensures sufficient measurements from the recent past are still taken
into account.

Estimates of the predicted value byt and variance Σbyt as well as the 95% prediction

uncertainty interval byt*; by*t� �
can be calculated based on the squared residualsΣϵ, significance

level 0.05, and eNopt−2 degrees of freedom (Chatfield 1993):

Burst Detection by Water Demand Nowcasting Based on Exogenous Sensors



Σϵ ¼ Yopt � X opt
bβopt

��� ���2
2

ð4Þ

Σbyt ¼ 1þ X t X T
optX opt

� �−1
XT

t

� �
Σϵ ð5Þ

byt ¼ X t
bβopt ð6Þ

byt*; by*t	 

¼ byt � t

0:975;eNopt−2

ffiffiffiffiffiffiffi
Σbyt

r" #
ð7Þ

2.2 Exogenous Water Demand Nowcast

The exogenous nowcasted water demand byt was constructed using windows with N = 2016
measurements, corresponding to one week of sensor data sampled each five minutes, using P
flow and pressure sensors in the same DMA. In the case of DMA-wide water demand
nowcasting, data from inflow, outflow, and water production location sensors were excluded
as regressors, as these are constituents of the DMA water mass balance (Hutton and Kapelan
2015a). For every window of 2016 measurements, sensor signals with a standard deviation
smaller than 5 kPa or 5m3h−1 were excluded from the analysis, as signals with a small standard
deviation contain no or hardly any information. Consequently, these non-persistently exciting
signals were omitted from the analysis as these hardly contain useful information and lead to
increased multicollinearity.

The exogenous nowcasted water demand is constructed using a RANSAC Bayesian ridge
regression model. For each week of N measurements, a real-time estimate byt for a specific
sensor or water balance can be calculated, based on past measurements with a sampling

interval of five minutes. Thus, in this case: Y = [y1,y2,…, yN]T, and X ¼
1
⋮
1

x1;2
⋮
xN ;2

⋯
⋱
⋯

x1;P
⋮
xN ;P

24 35
for P exogenous regressors. The resulting Bayesian ridge prediction is formulated as:

Y ¼ Xβ þ ϵ; ϵ˜N 0; bΣϵ

� �
ð8Þ

Y ˜N X bβ; bα� �
ð9Þ

β˜N bβ; bλ−1
IP

� �
ð10Þ

bβ ¼ XTX þ bλIP� ��1
XTY ð11Þ
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Here, ϵ is the residual vector, α the variance of the noise, and λ the Tikhonov regularization
penalty. Weakly informative Gaussian priors were used for the uncertainty in the regression

coefficients, i.e. λ~Γ(10−6, 10−6) and noise variance α~Γ(10−6, 10−6) with initial guesses bλ0

¼ 1 and α̂0 ¼ 1
ΣY

; in order to ensure fast and accurate optimization of the regression

parameters, before solving for bβ, bλ, and bα (MacKay 1992; Tipping 2001). By not setting
the regularization penalty λ beforehand, but treating it as a random variable, it can be
automatically tuned to the data, concurrently with α, λ, and β.

Ridge regression was chosen for its capacity to reduce multicollinearity caused by sensors
displaying similar diurnal water demand patterns. Without regularization, thus with λ = 0, this
would lead to a nearly singular matrix XTX. Regularization improves efficiency of the
nowcasting and reduces variance, by introducing a small amount of bias (Pacchin et al.
2019). For the practical application of water demand nowcasting, the small amount of bias
introduced is deemed acceptable in the bias-variance tradeoff, as it prevents the prediction
from being over-dependent on the signal of a single exogenous sensor. Bayesian LASSO (least
absolute shrinkage and selection operator) regression was also considered, but was ultimately
rejected, as prioritizing a low number of regressors resulted in overfitting on just a few
exogenous sensors, which makes the prediction highly sensitive to local anomalies in a few
exogenous sensors. By relying on multiple exogenous sensors under ridge regularization, a
more robust prediction was created.

Similar to using the cost function (Eq. 3), RANSAC was used to remove outliers from
the training data, retaining at least 90% inliers of all measurements (Nmin = 1814). Every
possible inlier combination s of Ns rows from X and the corresponding Ns values from Y
with 2 ≤ Ns ≤ N is subjected to the Bayesian ridge regression model (Eq. 8–11) in order to

find the corresponding regression coefficient estimates in bβs and their precision bλs. The

“optimal” parameter vector bβopt, accompanying precision bλopt, and set s of inlier combi-

nation of regressors Xopt and responses Yopt can be found using the RANSAC cost function
(Eq. 3), disabling the weighting of more recent data by using wi, i = 1 for i = 1, 2, …Ns. A
residual threshold δd = 0.2MAD(Y) was used, unless this results in less than 90% inliers
(Nmin = 1814), in which case δd =MAD(Y) was used. If neither resulted in more than 90%
inliers or, due to missing data points, less than 90% of the total window size is available,
RANSAC was not used. Removing a small fraction of data may indicate some outliers
were present in the data. However, when RANSAC disregards a large fraction of the data
(≥ 10%), this most likely indicates an anomalous signal that cannot be appropriately fitted
by the chosen model. In this case, prioritizing fitting the model to the data instead of
editing the data to fit the model will most likely explain more of the phenomena present in
the data.

In order to construct a reliable nowcast of the water demand, the model should be fitted on
the basis of representative data with minimal outliers. If anomalous events occur in the training
data, masking these as outliers will benefit the model more than the commonly used weighting
or replacement (Eliades and Polycarpou 2012; Ye and Fenner 2014). An additional advantage
compared to similar methods is that allowing masking of a small percentage of data also
ensures that the method does not struggle from a small percentage of missing data points, as
these will be masked (Wu et al. 2018).

The resulting inlier regressor matrix Xopt, response vector Yopt, and model parameter vectorbβopt and bλopt are used to calculate the sum of squared residuals Σϵ and response estimate byt
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(Eq. 4 and 6, respectively), as well as the response estimate’s variance Σbyt and 95% prediction

uncertainty interval byt*; by*t� �
:

Σbyt ¼ 1þ X t eXT

opt
eX opt þ bλoptIP

� ��1

XT
t

 !
Σϵ ð12Þ

byt*; by*t	 

¼ byt � z0:975

ffiffiffiffiffiffiffi
Σbyt

r" #
ð13Þ

As the regression coefficients change slowly, it suffices to fit the water demand model only
once per day. However, real-time predictions can still be constructed at any time t based on the

last fitted regression coefficients bβopt and regularization penalty bλopt. To illustrate this ap-

proach, water demand nowcasting was performed every five minutes from the latest fitted
model, which was updated every day at midnight.

3 Results and Discussion

The univariate forecasting and exogenous nowcasting method were applied to the three data
sets, DMA1, DMA1.1 and Q1. For data set DMA1, the results of both methods were
compared with a so-called Dynamic Bandwidth Monitor (DBM), a univariate forecasting
method developed and currently in use by drinking water company Vitens (Fitié 2014)
(Fig. 2). To evaluate and compare the model efficiencies between the methods applied to
the same data set, the Normalized Root Mean Squared Error (NRMSE, Eq. 14, where values
closer to 0% indicate better performance) was calculated. To compare the model efficiencies
using different data sets, the Nash-Sutcliffe model efficiency (NS, Eq. 16, where a value closer
to 100% indicates better performance) was calculated (Table 1).

NRMSE ¼ 1

μY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 yi−byi� �2r
*100% ð14Þ

NSp ¼ 1−
∑N

i¼1 yi−byi��� ���p
∑N

i¼1 yi−μYj jp

0@ 1A*100% ð15Þ

Burst detection can be done by evaluating the actual flow measurements with respect to the
prediction uncertainty intervals of the predicted water demand. Where some studies rely on
manually selected or validation data based burst detection thresholds (Huang et al. 2018; Wu
et al. 2018), exogenous water demand nowcasting relies on the calculated prediction uncer-
tainty intervals.

The performance of the nowcasting method as compared to the univariate methods is
illustrated in Fig. 2. Where the univariate forecasts deviates from the measured flow due to
non-seasonal exogenous processes, and thus trigger significantly more false positive burst
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alarms, the exogenous nowcast is able to account for these phenomena and thus prevent these
false alarms. Within DMA1, at 16:20 on the 28th of June a lengthwise tear burst occurred in a
630 mm PVC pipe dating out of 1976 and at 14:20 on the 30th of June a ‘simulated burst’
occurred in a T-junction between 400 mm PVS pipes dating from 1989 and 1994 when water
was lost during placement of new pipes. Both bursts are detected correctly by the exogenous
nowcasting method. Although the burst on the 28th is also detected by the univariate methods,
the difference is less pronounced and the burst on the 30th is not detected by the univariate
methods. The reduced burst alarm rate of the exogenous method and the combination of these
water demand prediction methods are detailed in Appendix.

The exogenous nowcasting method also outperforms the univariate methods regarding
reduced alarm rate (Table 1). A possible reason for the very good performance of the
exogenous method is its real-time nature in contrast with the one-week-ahead forecasts of
the univariate methods. However, regarding real-time burst detection, the forecast window size
is not relevant. The univariate method more often significantly deviates from the measured
flow (Appendix Table 2), as these deviations could be caused by any of many exogenous
processes, ranging from holidays, festivities, extreme weather to unexpected peak water
consumption (Fig. 2).

The better performance of the nowcasting method is less pronounced when looking at
DMA1.1. DMA1.1 reflects the water demand in a large city, while the majority of the

Fig. 2 Comparison between measured and exogenous water demand nowcast (top), univariate water demand
forecast (middle) and Vitens DBM forecast (bottom) for data set DMA1, along with their respective 95%
prediction certainty intervals from 24th of June 2017 up to the 3rd of July 2017

Table 1 Model performance scores

Model Data set NS1 (%) NRMSE (%)

Exogenous DMA1 90.6 6.5
Univariate DMA1 75.1 11.4
Vitens’ DBM DMA1 77.7 10.0
Exogenous DMA1.1 82.7 10.4
Univariate DMA1.1 74.6 14.1
Exogenous Q1 83.5 6.0
Univariate Q1 57.9 11.0

Burst Detection by Water Demand Nowcasting Based on Exogenous Sensors



exogenous sensors in DMA1 that are used to nowcast the DMA1.1 water balance are situated
in more rural areas. The resulting difference in demographics influences water demand,
making the rural exogenous sensors used suboptimal for predicting the DMA1.1 city water
demand. For DMA1 and Q1, the exogenous sensors reflect water demand from both rural and
city areas, which may explain the better performance.

The investigated DMA’s from Vitens contained enough sensors with signals that could
serve as exogenous regressors. However, sensor density differs between DMA and water
company. The sensitivity of the exogenous water demand nowcasting method with respect to
the number of exogenous regressors considered was also investigated by applying our method
to the Q1 data set for different number of exogenous regressors. Of the 40 exogenous sensors
data sets available for sensor Q1, 30 were used in fitting the model, as the remaining 10 either
did not significantly contribute to the Bayesian ridge analysis or had a too low variance to be
included in the analysis. In order to determine how much each sensor contributed to the
exogenous prediction, the mean of the absolute regression coefficient estimates

(μ βið Þ ¼ meant βopt;i tð Þ
�� �� �

for i = 1, 2, …, P) was determined for each of these sensor

signals. Data set Q1 was again subjected to the exogenous method, where in each consecutive
iteration the regressor with the smallest μi was removed. For less than three regressors, the
method was not able to produce a prediction for at least 95% of all measurements, thus the
resulting number of sensors investigated was ranging from 30 to 3. The NRMSE, Mean
Absolute Percentage Error (MAPE, Eq. 16) and mean of the 95% prediction uncertainty
interval bandwidth over the duration of the data set (μ(95% P. I.)) were calculated for each
number of exogenous regressors used by comparing the respective predictions with the actual
measurements (Fig. 3).

MAPE ¼ 1

N
∑N

i¼1

yi−byi
yi

�����
�����*100% ð16Þ

Using less regressors may result in a lower precision of burst detection, since there may be
insufficient data on the local consumption pattern present in a limited number of regressors. In
addition, using less regressors may result in a lower recall of burst detection, especially when a
burst occurs that is reflected in the data of all regressors. Including more regressors reduces this
possibility and increases recall. This result may also explain the few instances of increase in
NRMSE and MAPE when including more sensors, instead of the expected decrease. Conse-
quently, from the top panel in Fig. 3, thus for the given period of data set Q1, approximately
13–20 sensors are needed to obtain appropriate water demand predictions. Consequently, this
analysis facilitates the choice of sensor density for “optimal” detection. The other two data
sets, DMA1 and DMA1.1, were subjected to the same approach and showed similar results
(Fig. 3, middle and bottom panel, respectively).

4 Conclusions

Exogenous nowcasting is a more robust and accurate alternative to univariate water demand
forecasting based on historical data. An advantage of nowcasting based on exogenous sensors
in the distribution net is that no exogenous processes that influence the water demand have to
be identified and no data from these processes need to be available. Our novel exogenous
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method performs significantly better than both currently used univariate methods for both data
sets, regarding reduced false positive rate (Fig. 2, Table 1).

By combining both the exogenous nowcasting and one of the univariate forecasting
methods, a high precision tool is created that only detects a burst when the actual measure-
ments lie outside both the exogenous and univariate 95% prediction uncertainty interval
(Appendix, Table 2).

Appendix

The combination of exogenous and univariate methods was also considered. The results are
given in Table 2, in which the non-diagonal entries contain the results of a combination of the
methods with which the column and row correspond. By using both methods, a high precision

Fig. 3 Model performance (NRMSE, MAPE and average prediction uncertainty interval) of the exogenous
method for data set Q1 (top), DMA1 (middle) and DMA1.1 (bottom) as a function of the number of exogenous
sensors used as regressors
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tool is created that only detects a burst when the actual measurements lie outside both the
exogenous and univariate 95% prediction uncertainty interval (Table 2)

Notation

The following symbols are used in this paper:

N scalar number of measurements
P scalar number of measurements
Y vector N × 1 responses
X matrix N × (P + 1) regressors
β vector (P + 1) × 1 regression coefficients
W matrix N ×N exponential weights of responses
p scalar exponential weighting factor 0 < p < 1
λ scalar regularization penalty
α scalar noise variance
t scalar time
ϵ vector N × 1 residuals
Σa scalar variance of random variable a
s - ordered set of inliers with Ns elements, where 2 ≤Ns ≤Nea or as - belonging to the inlier set s
aopt - belonging to the “optimal” inlier set s as determined by RANSACba - estimate of variable a
ta, b scalar t-value with significance level a and b degrees of freedom
za scalar z-value with significance level aby*t ;by*t� �

scalar, scalar 95% prediction uncertainty interval for predicted response byt
μ(95% P. I.)) scalar mean of the prediction uncertainty interval over time
μ scalar mean of vector Y
RMSE scalar Root Mean Squared Error
APE scalar Absolute Percentage Error
MAPE scalar Mean Absolute Percentage Errorr
NS scalar Nash-Sutcliffe score
μ(βi) scalar mean of absolute regression coefficient |βi| over time
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