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Abstract Personal(ised) sensors or ”wearables” could, in the fu-
ture, be applied to provide personalized nutritional advice. A
challenge here is to assess dietary intake. To date, this has mainly
been done with questionnaires or interviews, for example, food
frequency questionnaires or 24-hour recalls. However, these
methods are prone to bias due to conscious or unconscious mis-
reports, and more objective measurement methods are desirable.
By applying and combining spectral imaging techniques like hy-
perspectral imaging (HSI) and RGB-depth (RGBD) imaging, in-
formation on the macro-composition, identity and quantity of
food consumed can be obtained. In this work, we demonstrate
that HSI was effective for estimation of the fat content and layer
thickness of butter on slices of bread with root mean squared
errors of predictions of 4.6 (fat w/w %) and 0.056 mm respec-
tively. Identification and volume estimation of vegetables and
preparation methods were successful with RGBD imaging. Us-
ing Convolutional Neural Networks, all samples were correctly
identified. For volume estimations of vegetables, R-square scores
between 0.80 – 0.96 were achieved.
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1 Introduction

Dietary intake data is important in epidemiology, for dietary interven-
tions and for providing dietary advice. Advances in nutritional sci-
ence have facilitated the shift from general population-based dietary
guidelines to more personalized dietary recommendations. To provide
personalized advice, an appropriate method for measuring and assess-
ing dietary intake is required. Dietary intake is traditionally assessed
with questionnaires or interviews, for example, food frequency ques-
tionnaires or 24-hour recalls. However, these methods are prone to bias
due to conscious or unconscious misreports. Therefore, more objective
measurement methods are desirable. Moreover, the traditional meth-
ods are rather time-consuming for both researchers and consumers.

For this reason, we aim to develop an easy-to-use measurement set-
up that enables consumers to measure their dietary intake themselves,
using state-of-the-art vibrational spectroscopy and imaging techniques.
The analytical and machine learning challenges for this work comprise
several issues:

1. Object-level recognition to identify the type(s) of food products
present, to estimate the volume of those objects (before and after
eating) and to obtain intake quantities from this information. For
this purpose, Red Green and Blue-depth imaging (RGBD) was
explored (this work).

2. Molecular-level recognition for the determination of the macro
and micro composition and, to a lesser extent, identification of the
product. Here a snapshot hyperspectral imaging (HSI) system in
the short-wavelength infrared (SWIR) was used (this work).

3. Data fusion methods to connect the data of both imaging sensors
to improve decision accuracies and versatility of the set-up.

4. Application of a functional metadata decision layer to deal for
example with the within-food heterogeneity, the enormous diver-
sity of products and dishes available [1].
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In the current study, a first demonstrator is developed at technology
readiness level 4. This means that the demonstrator can be operated
in a controlled environment by trained persons. We demonstrate in
this study the individual imaging techniques applied to the intake of
butter (HSI), and vegetables (RGBD), and their respective data analysis
procedures.

2 Materials and Methods

2.1 Materials

Fresh (1 – 2 days after baking) sliced white and wholegrain bread,
crispbread, 44 commercially available types of butter and margarine,
fresh endive (Cichorium endivia), fresh carrots (Daucus carota subsp.
sativus), fresh spinach (Spinacia oleracea), frozen spinach and spinach
with added cream of a single brand were purchased from a local su-
permarket in Wageningen, The Netherlands. All chemicals used for
macro composition reference analysis were in purity grades following
the specifications in the ISO standards used (Section 2.3).

2.2 Sample preparation

To test the ability of dietary intake assessment, the sensing principles
were firstly assessed separately in two food cases: (i) (low-fat) mar-
garine and butter applied to a sandwich using HSI, and (ii) raw and
prepared vegetables using RGBD imaging. For the first case, standard-
ized amounts (3, 6, 10, 15 and 30 g) of 28 butter types with varying
fat concentrations (29.8% - 84.3% w/w) were applied on three different
types of sandwiches with standardized sizes (wholegrain and white 10
x 10 cm and crispbread 6.0 x 8.1 cm). A randomized experimental de-
sign was made in combining the type of bread, margarine/butter type
and layer thickness of the butter/margarine, resulting in 84 samples.
As an alternative experiment, butter was applied (16 butter types, fat
concentration 28.0% - 82.5% w/w, applied on white and wholegrain
bread) using a custom-made triangular applier, resulting in a continu-
ous layer thickness of 10 mm – <0.5 mm (Figure 2.1 A-B).

For the second food case, fresh endive, fresh carrots and fresh
spinach were investigated in raw form and after cooking. In addi-
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tion to the fresh spinach samples, frozen spinach and frozen spinach
with added cream were added to the sample set resulting in 7 differ-
ent sample types. Fresh samples were cleaned and washed with cold
tap water before spectral acquisition. Cooking was performed using a
steam oven and specific cooking times for each product. Frozen and
frozen creamed spinach were defrosted and heated according to the
producers’ instruction. All samples were brought to room tempera-
ture before spectral acquisition. Sample plates were created by adding
a random amount of mass from a product-specific range (carrots 20 -
80 g, endive raw 5 - 15 g, endive cooked 15 - 50 g and spinach 20 -
60 g) to the plate. After every five samples, the plate was emptied and
cleaned. Product samples were put on the plate off centre and placed
under the RGBD camera such that the centre of mass was roughly at a
randomly selected rotation. In total, 585 samples plates were prepared,
by incrementally adding vegetables to the same plate (i.e. 5 times for
each plate). A single RGB and depth image was captured for each
sample (Figure 2.1 C-D).

2.3 Determination of reference values of butter and vegetables

The total moisture content of the butter samples was determined by
NEN-EN-ISO 3727-1:2001 / IDF 80-1:2001, the total fat content by
NEN-EN-ISO 17189 : 2003 / IDF 194 : 2003. For the vegetables, the
sample mass was determined using a standard-issue analytical balance.

2.4 Spectral image setup and acquisition

The HSI and RGBD image equipment was mounted in a customized
build setup with an approximate distance to the sample of 30 and 40
cm respectively (Figure 2.1 E-F). A standard-issue white glazed ceramic
plate (diameter 20 cm) was used for sample presentation. The HSI cam-
era was mounted dead-centre above the sample, whereas the RGBD
camera was mounted on a 45-degree angle. For the HSI system, four
standard issue halogen lights were installed at each corner around the
camera. Lights were directed dead-centre downwards to avoid direct
illumination of the reflecting ceramic plate and surfaces of the samples
presented. An Effilux bar light (ELB-400SW, Effilux, Les Ulis, France)
with a diffuse window was installed underneath the RGBD camera.
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An IMEC SWIR Snapscan hyperspectral imaging system (Interuni-
versity Microelectronics Centre, Leuven, Belgium) with a spectral range
of 1117 – 1670 nm equipped with an Optec 16mm F1.7 SWIR lens
(Optec S.p.A., Parabiago, Italy). The system was controlled by the
IMEC Snapscan software (version 1.3.0.8, IMEC). Before data acquisi-
tion, the camera was calibrated using a 95% reflection calibration white
standard (WS) tile sized 200 x 200 mm, using an integration time of 2.5
ms. Raw sample spectra were corrected according to Equation 2.1 to
generate corrected diffuse reflection spectra used in subsequent calcu-
lations for the 640 x 512 x 108 (x x y x λ) sized hypercubes.

Corr(x,y,λ) = (Raw(x,y,λ) − Dark(x,y,λ))/(WS(x,y,λ) − DarkWS(x,y,λ))

(2.1)

RGBD images were acquired using an Intel RealSense D415 depth
camera (Intel Corporation, Santa Clara, CA, USA) controlled by a cus-
tom build GUI. Images were captured in a semi-controlled environ-
ment, with light blocking on the left, right and backside of the scene
using mat dark plastic plates. Furthermore, a dark A2-sized paper was
used as a background on which plates were placed. The exposure time
was set to 70 ms to prevent saturation of the image. Intrinsic calibration
parameters available on the camera were stored alongside the color and
depth image to be able to construct a point cloud of the depth image.

2.5 Data analysis

Multivariate statistics of HSI data

Processing of the HSI images was performed using the hyperSpec
package [2] in R 3.6.1 [3]. The corrected images contained hyper-
responsive (dead) pixels and non-sample regions, both of which
needed to be excluded from further processing (Figure 2.1 B). Dead
pixels contained reflection values > 1e6 and were easily recognized
and removed. To discriminate between the sample (region of inter-
est, ROI) and the background (empty plate, table and showy edges
were present), a simple spectral based principal component analysis
(PCA) approach was performed, in which scores on Principal Compo-
nent (PC) 2 and a threshold of 0 determined if any pixel belonged to the
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Figure 2.1: (A) Triangular mold for accurate layer thickness estimation of butter; (B) Spec-
tral Image Heat plot of the butter applicator on a wholegrain sandwich; (C)
RGB image of raw endive; (D) Depth image of (C) visualized using a gray
color map; (E) Frame design of food intake setup; (F) Experimental setup
with Hyperspectral SWIR camera (center) and RGBD camera (right bottom).

sample or not. As PCA’s signs are non-determined, the portion near
the centre of the image – presumed to be sample and not background
– determined whether positive or negative PC2 scores contained the
ROI. No data preprocessing or further thresholding or area filling was
needed nor applied.

To estimate the butter and bread types, and mainly to characterize
the butter (fat content, type, fat (un)saturation) and quantity (average
layer thickness) of the butter on the bread a straightforward approach
was chosen. a more straightforward approach was chosen. First, ROI-
spectra were corrected for scattering effects (standard normal variate,
SNV). Then the intensity of the signal at 1221 nm was found to corre-
late well with the amount of butter (fat) [4]. Individual spectra from
the ROI pixels were sorted based on the value in this number, and the
top and bottom 5% of the spectra were averaged to represent the butter
and bread-spectra, respectively. These averaged spectra were input for
further (multivariate) classification and regression. Although machine
learning approaches per pixel (or pixel cluster) of spectral cube data
are a normal approach, this method was not necessary for these rel-
atively simple samples.Bread type (3 types) were classified using the
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”bottom 5%” spectra for each of the samples using Soft independent
modelling by class analogy (SIMCA), employing cross-validation (25x
bootstrapped training sets). Butterfat content (Section 2.3) and butter
layer thickness on the bread (5 discrete values, Section 2.2) were fitted
using multivariate regression (PLS) using leave-10-out cross-validation.
To assess the effect of the interaction of the butter layer thickness on
bread on the observed spectra, a custom plexiglass shape was built
to help apply butter on bread in known thicknesses. This device was
10 cm long and approximately 2 cm wide, and had a height of 10 mm
on one end, linearly decreasing to 0 mm on the other end. When placed
on a sandwich, this shape can be filled with butter and smoothed with
a knife, after which an HSI will yield spectra with known butter thick-
nesses on bread -– only marginally affected locally by the foamy struc-
ture of the bread, slightly increasing the average thickness of the butter
layer.

Analysis of RGBD images

Colour and depth information was used to identify and estimate the
mass of vegetables on the plate. Two separate Convolutional Neural
Networks (CNNs) were trained on colour images; ResNet50 [5] to clas-
sify the vegetable present in the scene and U-Net [6] to semantically
segment the scene into pixels belonging to vegetables and the back-
ground. The segmentation was used to extract the relevant informa-
tion from the depth images which were subsequently converted into
a point cloud using available intrinsic calibration parameters. From
the point cloud the volume was estimated. Finally, linear regression
models were constructed for each identified product on the volume to
obtain the mass. ResNet was the first network to introduce so called
skip connections. These connections allow a layer to learn the iden-
tity operator, such that layers can be skipped if they are considered
superfluous. U-net is a fully CNN using up sampling layers to obtain
the same resolution in the output as layers as the input image. Both
networks were trained using PyTorch (version 1.2, www.pytorch.org).
The initial learning rate for U-net was upto 0.01, and for ResNet50 to
0.001 as pretrained weights were used for the latter. The learning rate
was reduced by factor 10 when no improvement was obtained on the
validation set after 200 epoch. Early stopping was applied after 400
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epoch of no improvements. Samples were partitioned over a training,
validation and test set with each respectively 355, 114 and 116 samples.

3 Results and Discussion

3.1 Bread and butter case using HSI

ROIs were set prior to classification of bread types, fat content estima-
tion and layer thickness determination (Figure 3.1). Bread type classifi-
cation was performed using SIMCA on the averaged spectra assigned
to bread (Table 4.1). While it is clear that the spectra contain sufficient
information to reliably distinguish between bread and crispbread un-
derneath the butter layer (regardless of the amount and type of butter
applied), the discrimination between white and wholegrain bread was
not so clear. Apart from the visual color, their composition (moisture,
protein, carbohydrates, fat) is not very different, and the difference in
fibers is not strong enough in this part of the near-infrared (NIR) spec-
trum to make this discrimination reliably in this setup [7].

Table 4.1: Confusion matrix for the classification of bread type.

Actual

White bread Wholegrain bread Crispbread

Pr
ed

ic
te

d White bread 29 17 0

Wholegrain bread 0 11 0

Crispbread 0 0 27

The spectra were also used to estimate the fat contents and the (aver-
age) thickness of the butter layer applied on the bread. Figure 3.1 gives
the predictive capability of the multivariate method applied for both
provisions. Note that the fat content of the butter was estimated from
all layer thicknesses present in the dataset, and the layer thicknesses
were estimated regardless of the butter type and fat content, and these
parameters were estimated regardless of the type of bread under the
layer. As root mean squared error of predictions (RMSEPs) values of
4.6 (fat w/w %) and 0.056 (mm) were found, which can be considered
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quite acceptable for the intended application. Of course, models per-
form slightly better when separate models are made by determining
the bread type and layer thickness first before estimating fat content,
or bread type and fat content before estimating layer thickness (data
not shown), but these improvements require more data to be calibrated
and tested more reliably.

For further development of this model, both in terms of robustness
and possibly to reduce the calculation cost (currently approximately
5 seconds per sample on a 2.7 GHz 6-core laptop), it is desirable to
understand the interaction that two foodstuffs have on the NIR spec-
trum as obtained by the hyperspectral camera. Figure 3.1 shows the
observed spectra as a function of butter layer thickness as obtained
using the butter applicator device. Each line is the average of 20 spec-
tra (±0.4 mm) around the thickness indicated. Spectra are corrected
for scatter-effects (SNV) and transformed using (simplified) Kubelka-
Munk (K/S) absorption-over-scattering coefficient-values [8]. It is clear
that there are trends in the spectra according to the layer thickness, but
there does not seem to be a straightforward solution which explains
the trend from 0 to 10 mm of butter on the bread for all wavelengths.
The same holds for unprocessed and only scaled data. This implies
that the desired information is present in the spectra, but the described
multivariate statistics and due calibration are required to extract this
information.

3.2 Vegetable case using RGBD imaging

To calculate the volume of vegetables, firstly, PCA was performed
on point clouds centered around the origin (Figure 3.2). The vectors
found using PCA represent the length, width and height of the three-
dimensional objects. Next, points were rotated such that the third prin-
cipal component was aligned with the vector (0,0,-1). After rotation, the
surfaces of the scenes were parallel to the plane z = 0. To compensate
for noise in the depth image, z-values of the points were subtracted
such that the 98th percentile was at z = 0. Finally, point clouds were
subsampled in a uniform voxel grid of fixed dimensions and estimates
of volumes were obtained by summing the z-values.

The CNNs were trained on the training set, early stopping was ap-
plied using the validation set and the results are reported on the test
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Figure 3.1: (A) A result of ROI detection of the 10 x 10 cm of bread-and-butter detec-
tion of HSI data in a false-colour image of first PC scores; (B) Average NIR
spectrum as a function of the butter layer thickness (0 – 10 mm); (C) deter-
mination of the total fat content of butter independent of the bread type and
layer thickness; (D) determination of the layer thickness of the butter inde-
pendent of the bread and butter type.

set. The classification of the selected vegetables and preparations was
successful with zero misclassification as shown in the test set. Indeed,
there seems to be sufficient variation present in the RGB data in either
color or texture for successful identification. When endive is cooked
the product darkens whereas the carrots lose the shiny smooth struc-
ture after having been prepared. As for the three different types of
spinach, these products themselves are visually different. Estimates
of the mass were obtained using product-specific regression models on
the calculated volumes. Reasonable results were obtained ranging from
an R-squared score of 0.80 to 0.96 (Table 4.2). Although the volume esti-
mation method is in principle generic, as it does not assume any shape
or form of the product, to get an accurate mass estimation individual
models are needed. A single regression model could be constructed
based on the estimated volumes when the (average product) densities
are known.
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Figure 3.2: (A) Colour image of a scene; (B) Reconstructed point cloud of the seg-
mented vegetables with the first three principal components, corresponding
the length (red), width (green), and height or depth (red) axis of the vegeta-
bles.

4 Conclusions and outlook

Both sensing systems performed well in the identification and quan-
tification of food products, and the estimation of nutrient composition.
To expand the versatility of the setup, a data-fusion experiment will
be performed. In this experiment, sandwiches containing multiple ele-
ments will be used, such as tomatoes, avocadoes, nuts/seeds, sprouting
vegetables and butter. Also, the application of a functional meta-data
layer for improving decision making and reducing the number of ref-
erence samples will be worked out. In 2021, a human study will be
performed to test and validate the setup. Finally, the ultimate goal is
to integrate the used analysis techniques into smaller devices such as
wearables or smartphones that can be used by consumers themselves.
Data obtained by using these wearables can then be combined with
data from other sources such as consumer profiles to assess dietary in-
take as accurately as possible. Missing data can be supplemented based
on user profiles, for example, if a particular food is not optimally ori-
ented concerning the measuring equipment or if the food cannot be
adequately determined through detection techniques at all. This will
be of great value for providing personalized dietary advice that is op-

41



Y. Weesepoel et al.

timally tailored at the individual consumer, eventually contributing to
better health.

Table 4.2: R-squared scores for mass estimation of individual vegetables by RGBD imag-
ing.

Food product R-squared

Spinach creamed 0.96

Spinach frozen 0.93

Spinach fresh 0.88

Endive raw 0.87

Endive cooked 0.80

Carrots raw 0.91

Carrots cooked 0.83
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