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Cyst nematodes are able to infect a wide range of crop species and are regarded as a 
major threat in crop production. In response to invasion of cyst nematodes, plants activate 
their innate immune system to defend themselves by conferring basal and host-specific 
defense responses depending on the plant genotype. Basal defense is dependent on the 
detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition 
receptors (PRRs), while host-specific defense mainly relies on the activation of canonical 
and non-canonical resistance (R) genes or quantitative trait loci (QTL). Currently, application 
of R genes and QTLs in crop species is a major approach to control cyst nematode in 
crop cultivation. However, emerging virulent cyst nematode field populations are threatening 
crop production due to host genetic selection by the application of a limited set of 
resistance genes in current crop cultivars. To counteract this problem, increased knowledge 
about the mechanisms involved in host-specific resistance mediated by R genes and 
QTLs to cyst nematodes is indispensable to improve their efficient and sustainable use 
in field crops. Despite the identification of an increasing number of resistance traits to cyst 
nematodes in various crops, the underlying genes and defense mechanisms are often 
unknown. In the last decade, indebt studies on the functioning of a number of cyst 
nematode R genes and QTLs have revealed novel insights in how plants respond to cyst 
nematode infection by the activation of host-specific defense responses. This review 
presents current knowledge of molecular and cellular mechanisms involved in the 
recognition of cyst nematodes, the activation of defense signaling and resistance response 
types mediated by R genes or QTLs. Finally, future directions for research are proposed 
to develop management strategies to better control cyst nematodes in crop cultivation.

Keywords: cyst nematode, host-specific resistance, resistance gene, resistance locus, effector, plant immunity, 
immune receptor

INTRODUCTION

Cyst nematodes are notorious plant parasites infecting a broad range of crops worldwide. 
The most damaging species include soybean cyst nematode (SCN; Heterodera glycines), with 
more than US1.5 billion of economic losses each year in the United  States alone; potato 
cyst nematode (PCN; Globodera pallida and Globodera rostochiensis), with an estimated yield 
loss of 9% worldwide; and cereal cyst nematode (CCN; Heterodera avenae), with yield losses 
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up to 90% under nematode favorable environmental conditions 
(Jones et al., 2013). For long, the management of cyst nematode 
infections relied on the use of nematicides. Currently, cyst 
nematode control is highly dependent on crop rotation strategies 
and the application of a limited set of resistance genes in 
crop cultivars due to the ban on pesticide use in the soil 
since the early 00’s (Hillocks, 2012). However, the application 
of a limited repertoire of resistance genes has resulted in 
host genetic selection of resistance-breaking populations in 
the field (Turner and Fleming, 2002; Niblack et  al., 2008; 
McCarville et  al., 2017; Mwangi et  al., 2019), which threatens 
the lifespan of current resistant crop cultivars. These concerns 
demand for new resistance resources as well as increased 
knowledge of the genes involved for the durable application 
of resistant crop cultivars in the future.

Cysts can persist in the soil for decades, which make 
them particularly difficult to control (Lilley et  al., 2005; 
Jones et  al., 2013). One female can produce hundreds of 
nematode eggs. When she dies her swollen body hardens 
into a cyst to protect eggs, allowing them to stay viable in 
the soil for many years in the absence of a proper host. 
Upon hatching from the eggs, the pre-parasitic second-stage 
juveniles (pre-J2) migrate through the soil in search of a 
suitable host plant. Upon entering the host plant roots, they 
move intracellularly through the root to establish a permanent 
feeding site near the vascular cylinder. In a susceptible host, 
a large, multinucleate feeding structure is formed through 
cell wall dissolution and fusion of neighboring cells, a so 
called syncytium. Cyst nematodes are fully dependent on 
this feeding structure for their development and reproduction 
as the syncytium is the only source of nutrients for this 
group of sedentary endoparasitic nematodes. Parasitic J2 
develop through three molting steps into adult females when 
nutrients are abundantly available, but into adult vermiform 
males when this is not the case (Grundler et  al., 1991). In 
resistant crop plants, however, cyst nematodes are unable 
to establish such a successful feeding relationship. Upon 
recognition of the infective cyst nematode juvenile, the 
development of a syncytium and subsequently the formation 
of cysts are prevented due to a local defense response. The 
application of resistant crop cultivars is therefore very effective, 
but only a limited set of resistance traits to control cyst 
nematodes is currently known. In addition, the genes 
responsible for cyst nematode resistance are identified and 
characterized for only a few single dominant resistance (R) 
genes or quantitative trait loci (QTL) like Gpa2 (van der 
Vossen et al., 2000) in potato and Rhg1 in soybean (Concibido 
et  al., 2004). However, indebt studies on the functioning 
of the corresponding genes revealed novel insights in host-
specific defense responses to cyst nematodes. Hence, they 
can serve as an example for other R genes and QTLs 
conferring resistance to cyst nematodes, for which this 
information is still lacking.

In this review, we  explore the current knowledge on the 
molecular and cellular mechanisms involved in host-specific 
resistance against cyst nematodes as conferred by either single 
dominant R genes or QTLs. We  first shortly address the plant 

immune system, including basal immunity against cyst 
nematodes. Then, we  focus on host-specific resistance by 
addressing R gene-mediated defense responses, including effector-
triggered immunity. We  highlight how these R genes are able 
to recognize cyst nematodes and activate downstream defense 
responses in plant cells based on a few available model systems. 
Then, we briefly address how cyst nematodes are able to evade 
or suppress this type of host defense responses. We also specify 
the potential mechanisms of host-specific resistance mediated 
by QTLs, including non-canonical resistance phenotypes. Finally, 
we  discuss how this knowledge may contribute to a better 
understanding of plant defense to cyst nematodes as well as 
the control of cyst nematodes in crop cultivation.

BASAL DEFENSE RESPONSES TO CYST 
NEMATODES

During early stages in parasitism, cyst nematodes move 
intracellularly and cause root damage, leading to the release 
of Nematode-Associated Molecular Patterns (NAMPs) or 
Damage-Associated Molecular Patterns (DAMPs). These 
compounds can be perceived by extracellular Pattern Recognition 
Receptors (PRRs) and thereby elicit basal immunity, also named 
Pathogen-Associated Molecular Patterns (PAMPs)-Triggered 
Immunity (PTI; Choi and Klessig, 2016). To date, information 
about this first layer of plant immunity to cyst nematodes, 
including the role of NAMPs and PRRs, is limited. A conserved 
ascaroside (Asc#18) from H. glycines was identified as a NAMP 
as well as compounds present in cyst nematode (Heterodera 
schachtii) incubation water (NemaWater; Manosalva et al., 2015; 
Mendy et  al., 2017). The Arabidopsis leucine-rich repeat (LRR) 
receptor-like kinase (RLK) NILR1 is yet the only classified 
cyst nematode PRR (Mendy et  al., 2017). The activation of 
PTI results in a series of immune responses like reactive oxygen 
species (ROS)/NO production, secondary metabolite production, 
reinforcement of cell walls, and cell death around the migratory 
tract. For more details on cyst nematode-elicited PTI responses 
as well as the underlying molecular mechanism, we  refer the 
reader to Sato et  al. (2019).

Although PTI responses slow down nematode invasion 
and contribute to an effective defense in non-host plants, 
they are insufficient to stop the nematode from successfully 
infecting susceptible host plant roots. Just like other pathogens, 
nematodes are able to overcome PTI by the secretion of 
effector proteins which suppress basal immune responses 
(also called effector-triggered suppression or ETS; Jones and 
Dangl, 2006). Such cyst nematode effectors include GrVAP1, 
RHA1B, Ha18764, and GrCEP12 (Lozano-Torres et al., 2012; 
Chen et  al., 2013; Kud et  al., 2019; Yang et  al., 2019). Most 
effectors are synthesized in esophageal gland cells and are 
secreted into the plant via a needle-like structure named 
the stylet (Hewezi and Baum, 2013; Vieira and Gleason, 
2019). The suppression of basal immune responses enables 
cyst nematodes to establish a successful feeding relationship 
with a susceptible host plant for their development and 
reproduction (Ali et  al., 2017; Vieira and Gleason, 2019).
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EFFECTOR-TRIGGERED DEFENSE 
RESPONSES TO CYST NEMATODES

In response to ETS, plants have evolved a second layer of 
immunity according to the zigzag model (Jones and Dangl, 
2006). Resistant plant genotypes exhibit single dominant R 
genes, encoding immune receptors that recognize specific 
pathogen effectors or their activities, and subsequently activate 
so called effector-triggered immunity (ETI). Recognition can 
either be  direct or indirect, meaning that a host-derived 
co-factor is required for successful pathogen perception (Jones 
and Dangl, 2006; Araújo et  al., 2019). Moreover, R genes 
can only recognize their matching effector which is encoded 
by a corresponding avirulence (Avr) gene. Only when an Avr 
gene containing pathotype matches an R gene containing 
plant genotype, the plant can successfully activate a host-
specific resistance response. This is known as the gene-for-
gene concept (Flor, 1971), which also applies to cyst nematodes 
as demonstrated for the single dominant R gene H1 from 
potato that confers host-specific resistance to avirulent 
populations of G. rostochiensis (Janssen et  al., 1991).

R Genes Against Cyst Nematodes Encode 
Different Types of Plant Immune Receptors
Effector detection by immune receptors occurs intra- and 
extracellularly. Extracellular immune receptors, including 
RLKs and receptor-like proteins (RLPs), contain a LRR 
domain fused to a transmembrane domain (Takken and 
Joosten, 2000; Kanyuka and Rudd, 2019). Extracellular immune 
receptors encoded by R genes have the same type of structure 
as PRRs (Boutrot and Zipfel, 2017), but they are able to 
activate highly specific defense responses upon the direct 
or indirect detection of apoplastic effectors from specific 
pathogen strains. In terms of resistance to cyst nematodes, 
so far two RLP immune receptors have been characterized 
(Figure  1). One example is the sugar beet receptor Hs1pro-1, 
which was linked to resistance to the cyst nematode H. schachtii 
(Cai et  al., 1997). However, the resistance phenotype cannot 
be  inherited to the next generations by backcrossing of an 
Hs1pro-1 genotype and a susceptible genotype (Sandal et  al., 
1997) raising questions about its contributions to cyst 
nematode immunity in sugar beet. Another example is the 
tomato immune receptor Cf-2, which confers resistance to 
the PCN G. rostochiensis (Lozano-Torres et  al., 2012).

The most abundant class of R genes encodes intracellular 
Nucleotide binding (NB)-LRR proteins (NLR). NLRs contain a 
C-terminal LRR (LRR) domain involved in recognition and a 
central nucleotide-binding, Apaf-1, R-proteins, and CED-4 
(NB-ARC) domain, which acts as a molecular switch and consists 
of three subdomains (NB, ARC1, and ARC2). The N-terminus 
is a signaling domain, which divides NLRs into either a subclass 
of Toll-interleukin receptor (TIR)-like receptors (TIR-NB-LRRs) 
or coiled coil (CC) receptors (CC-NB-LRRs). Both subclasses 
are found to be encoded by R genes conferring resistance against 
cyst nematodes (Figure  1). For example, the potato resistance 
gene Gpa2 confers resistance to G. pallida and its product 

belongs to the CC-NB-LRR (CNL) type (van der Vossen et al., 2000), 
whereas a typical example of a TIR-NB-LRR (TNL) is encoded 
by Gro1-4 from potato conferring resistance to G. rostochiensis 
(Paal et al., 2004). In addition, some CNLs exhibit an extended 
Solanaceae Domain (SD) at the N terminus of the CC domain, 
which is uniquely found in Solanaceous plant species. For 
example, the tomato resistance gene Hero A is a typical 
example that belongs to the SD-CNL type, which confers 
broadspectrum resistance to PCN populations from G. pallida 
and G. rostochiensis (Ernst et  al., 2002).

Molecular Mechanisms of Different Types 
of Cyst Nematode R Genes
A major bottleneck in our understanding of R gene-mediated 
cyst nematode resistance is that the matching effector for most 
nematode R genes is unknown. Currently, only two R gene-
effector pairs are identified. These are the extracellular immune 
receptor Cf-2, which elicits an immune response upon recognition 
of the effector GrVAP1 from G. rostochiensis (Lozano-Torres 
et al., 2012) and the intracellular immune receptor Gpa2, which 
recognizes the effector GpRBP-1 from G. pallida (Sacco et  al., 
2009). Over the last decade, several indebt studies have revealed 
novel insights in their functioning and role in conferring host-
specific resistance to cyst nematodes. Therefore, Cf-2 and Gpa2 
can serve as examples for other cyst nematode resistance genes, 
for which information on the molecular mechanisms underlying 
recognition and downstream signaling activation of immune 
responses against cyst nematodes is still lacking.

Cf2-Mediated Apoplastic Immunity to Cyst 
Nematodes
The extracellular immune receptor Cf-2 belongs to the RLP 
type of immune receptors and confers apoplastic immunity 
to the PCN G. rostochiensis upon detection of the effector 
GrVAP1, which is produced in the subventral glands during 
the onset of parasitism (Lozano-Torres et al., 2012). The detection 
of GrVAP1 by Cf-2 is indirect through the detection of 
perturbations of the apoplastic papain-like cysteine protease 
(PLCP) Rcr3. Cf-2 detection of GrVAP1 through Rcr3 results 
in the activation of cyst nematode resistance, which induces 
a local programmed cell death response in cells directly around 
the nematodes as well as in most of the nematode-induced 
feeding structures (Lozano-Torres et  al., 2012). A recent study 
shows the underlying mechanism of how Rcr3  in tomato 
participates in the activation of defense responses. Rcr3 is 
present in its inactive form ProRcr3, and a group of proteases 
called subtilases cleave off the prodomain of Rcr3. This results 
in a mature mRcr3, thereby creating a binding site for the 
effector (Paulus et  al., 2020). Since distantly related subtilases 
can also activate Rcr3  in Nicotiana benthamiana, this suggests 
that there might be  a network of proteolytic cascades in 
Solanaceous plants to provide robust apoplastic immunity 
(Kourelis et  al., 2020; Paulus et  al., 2020), which may also 
apply to cyst nematodes in Cf-2 resistant tomato plants.

Interestingly, GrVAP1 is not the only pathogen effector 
that targets Rcr3. Avr2, from the fungus Cladosporium fulvum, 
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Cip1 from the bacteria Pseudomonas syringae, and several 
EPIC effectors from the oomycete Phytophthora infestans target 
Rcr3 as well with a variable prosperity in Cf-2-mediated 
defense responses (Rooney et  al., 2005; Ilyas et  al., 2015; 
Misas Villamil et  al., 2019). However, these effectors also 
inhibit a paralog of Rcr3: Pip1 which is present more abundantly 
compared to Rcr3. Findings by knockdown studies (Ilyas 
et  al., 2015) suggested that Pip1 is the actual operative target 
of the effectors, while Rcr3 acts as a decoy to trap the pathogen 
into a recognition event. This guard/decoy-recognition model 
allows plants to respond faster and more efficient to multiple 
and unrelated pathogens present in the environment via a 
common host target (van der Hoorn and Kamoun, 2008). 
Moreover, it indicates that different pathogens including cyst 

nematodes have evolved effectors that are able to inhibit plant 
proteases during co-evolution (Kourelis et  al., 2020).

Gpa2-Mediated Intracellular Immunity to Cyst 
Nematodes
In contrast to Cf-2, the intracellular CNL immune receptor 
Gpa2 activates a specific defense response upon detection of 
the dorsal gland effector GpRBP-1 from G. pallida inside the 
cell, resulting in a hypersensitive response (HR) in N. benthamiana 
leaves in agroinfiltration assays (Sacco et  al., 2009). GpRBP-1 
recognition by Gpa2 is determined by a single amino acid 
polymorphism at position 187 in the SPRY domain of GpRBP-1 
(Sacco et al., 2009). However, no physical interaction between 
Gpa2 and GpRBP-1 was detected which may point at an 

FIGURE 1 | Overview of major cyst nematode resistance (R) genes and loci (QTLs) identified in crop species, for which knowledge is available on the 
molecular and cellular mechanisms underlying cyst nematode resistance. Extracellular immune receptors: Cf-2 from tomato encodes a RLP and confers 
resistance to the potato cyst nematode (PCN) Globodera rostochiensis, respectively. Cf-2 detects the nematode effector GrVAP-1 via the host factor 
Rcr3, which is activated by apoplastic serine proteases named subtilases to induce apoplastic immunity. Intracellular Nucleotide binding (NB)-Leucine-rich 
Repeat (LRR; NLR) immune receptors: Gro1-4 from potato encodes a toll-interleukin receptor-nucleotide binding-LRR (TIR-NB-LRR) protein, whereas 
Gpa2 from potato encodes a coiled coil-NB-LRR (CC-NB-LRR) protein. Hero A from tomato encodes a Solanaceae Domain-CC-NB-LRR (SD-CC-NB-
LRR) protein. These intracellular immune receptors all confer resistance to specific PCN populations from G. rostochiensis, Globodera pallida, or both. 
Only for Gpa2, the matching nematode effector GpRBP-1 is known which is able to activate a local HR response. Detection of nematode effector 
GpRBP-1 by Gpa2 requires a host factor RanGAP2. Resistance loci: the Rhg1 and Rhg4 loci from soybean confer resistance to field populations from the 
cyst nematode Heterodera glycines. Rhg1-mediated resistance depends on copy number variation, as the high copy number Rhg1 type confers 
resistance on its own while the low copy number Rhg1 type requires the Rhg4 locus to confer resistance. Two polymoriphisms determine Rhg4-mediated 
resistance.
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indirect interaction. It is hypothesized that Gpa2 senses the 
presence of GpRBP-1 via a host factor RanGAP2, due to 
a physical interaction between the CC domain of Gpa2 and 
RanGAP2 (Sacco et  al., 2007, 2009). Silencing of RanGAP2 
compromises Gpa2-mediated HR, but artificial tethering of 
RanGAP2 and GpRBP-1 enhances Gpa2-mediated defense 
responses (Sacco et  al., 2009). These data suggest that 
RanGAP2 potentially works as a recognition co-factor for 
Gpa2 and may play an important role in downstream 
signaling regulation.

Remarkably, RanGAP2 is also required for Rx1-mediated 
resistance responses. The CNL Rx1 is a close homolog of Gpa2 
that resides in the same R gene cluster on ChrXII of potato 
and confers resistance to Potato virus X (van der Vossen et  al., 
2000). The CC domain of Rx1 interacts with the N-terminal 
WPP domain of RanGAP2 and is present in plant cells as a 
heteromeric complex when in its inactive state (Sacco et  al., 
2007; Hao et  al., 2013). Moreover, Rx1 locates in both the 
nucleus and the cytoplasm of plant cells, and RanGAP2 acts 
as a cytoplasmic retention factor of Rx1, thereby facilitating 
Rx1 functioning (Tameling et  al., 2010). The nuclear 
hyperaccumulation of Rx1 mediated by nuclear targeted 
RanGAP2 WPP domain blocks Rx1 auto-activity. As the Gpa2, 
CC domain also interacts with RanGAP2, it is speculated that 
hyperaccumulation of Gpa2  in the nucleus may also block its 
defense signaling initiation. Nonetheless, whether RanGAP2 
also regulates Gpa2 functioning by mediating its subcellular 
partitioning remains to be  demonstrated.

Structure-informed studies revealed the contribution of intra- 
and interdomain interactions in Gpa2 functioning as a molecular 
switch in plant immunity to cyst nematodes. Extensive sequence 
exchange between Gpa2 and Rx1 showed that a minimal region 
of the ARC2 together with the N-terminal repeats of the LRR 
domain is sufficient to initiate activation of the immune receptors 
(Slootweg et  al., 2013). Additionally, domain swaps between 
regions of the LRR of Gpa2 and Rx1 resulted in the conversion 
of virus resistance into nematode resistance and vice versa 
(Slootweg et  al., 2017), demonstrating that the CC-NB-ARC 
domain operates independently of the pathogen that is recognized 
whereas the LRR domain determines recognition specificity. 
Furthermore, comparative sequence analysis and computational 
structure analysis revealed that Rx1/Gpa2 polymorphisms in 
the LRR domain are under positive selection and surface 
exposed consistent with a possible role in pathogen detection 
(Slootweg et  al., 2013). However, the dynamic process of how 
R genes like Gpa2 switch from an inactive to an active state 
upon cyst nematode detection remains elusive. Breakthrough 
discoveries on the 3D modeling and cryoEM-structure analyses 
as reported for the Arabidopsis CNL immune receptor ZAR1 in 
its inactive, primed, and activated state (Wang et  al., 2019a,b) 
are expected to provide novel insights in the functional dynamics 
of NLR immune receptors in the near future. Moreover, it 
underscores the importance of structural approaches in plant 
resistance research to increase our understanding about the 
molecular warfare between cyst nematodes and their host plants.

Recently, both Rx1 and Gpa2 have been identified as so 
called sensor NLRs (Wu et  al., 2017; Adachi et  al., 2019a). 

In Solanaceous plants, a major class of CNLs, have been 
identified to form an immunoreceptor network in which sensor 
NLRs can directly or indirectly perceive molecules derived 
from pathogens, but require paired so called helper NLRs to 
activate immune responses. As a helper, NRCs (NLR required 
for cell death) are thought to translate upstream signaling from 
sensor NLRs to downstream signaling components for the 
activation of immune responses (Wu et al., 2018; Adachi et al., 
2019b). Rx1 requires NRC2, NRC3, or NRC4 to activate a 
resistance response. The triple silencing of NRC2, NRC3, and 
NRC4 compromises Rx1-mediated resistance to PVX while 
the individual silencing remains Rx1 functional, indicating that 
these NRC proteins redundantly contribute to Rx1-mediated 
resistance. It remains to be seen which helper NRCs are required 
for the activation of downstream defense response to cyst 
nematodes mediated by sensor NLRs like Gpa2 as well as 
Hero A (Wu et  al., 2017). NRCs including NRC4 carry a 
MADA motif at the N-terminus, which is sufficient for triggering 
cell death (Adachi et al., 2019a). Interestingly, the MADA motif 
does not exist in NRC-dependent sensor NLRs like Rx1 and 
Gpa2, suggesting this motif might be  degenerated during 
evolution. It is therefore likely that Rx1 and Gpa2 rely on the 
MADA motif of their helper NRCs to activate defense responses 
upon virus and nematode recognition, respectively.

Downstream Signaling Pathways Involved 
in Host-Specific Resistance to Cyst 
Nematodes
Activation of R proteins leads to the transcriptional 
reprogramming of cells leading to the activation of local 
and systemic defense responses. Transcriptome studies revealed 
insights in downstream signaling pathways involved in host-
specific resistance to cyst nematodes (Uehara et  al., 2010; 
Walter et al., 2018). For instance, in resistant tomato harboring 
the Hero A gene, the salicylic acid (SA)-dependent 
pathogenesis-related protein 1 (PR-1) shows a markable 
increase in expression at 3 dpi upon G. rostochiensis infection 
compared to susceptible plants (Uehara et  al., 2010). This 
was not the case in resistant plants with an extra inserted 
NahG gene, which can prevent SA accumulation, indicating 
that SA plays a key role in Hero A-mediated resistance to 
cyst nematodes. Another transcriptome study performed on 
resistant potato containing the H1 gene shows upregulation 
of many genes after G. rostochiensis infection, including the 
tomato stress-responsive factor TSRF1 and a cysteine protease 
(Walter et al., 2018). TSRF1 is an ethylene responsive factor, 
which can be  upregulated by ethylene or SA treatment 
(Zhang et  al., 2004). The same study also shows that TSRF1 
can interact with the GCC box located in the promoter of 
PR genes. Taken together, H1-induced TSRF1 upregulation 
possibly triggers PR proteins accumulation, which is consistent 
with the finding of systemic PR protein accumulation in 
leaves in G. rostochiensis infected H1 resistant potato plants 
(Hammond-Kosack et al., 1989). From this, a picture emerges 
in which ethylene- and/or SA-dependent pathways might 
be  involved in H1-triggered resistance to cyst nematodes 
similar to what has been reported for other R gene-mediated 
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resistance responses to other pathogens (Denancé et al., 2013; 
Broekgaarden et  al., 2015; Islam et  al., 2019).

Transcriptome analysis on the resistant wheat genotype 
VP1620 shows that jasmonic acid (JA) regulated PR4 and PR10 
are significantly induced upon infection by CCN H. avenae, 
suggesting that the JA pathway is involved in resistance against 
CCN in this monocot crop (Kong et  al., 2015). Moreover, the 
abundant presence of phospholipase D1/2 in the KEGG pathways 
suggests a role for ROS in conferring resistance to CCN (Kong 
et  al., 2015), since phospholipase positively regulates defense 
responses via the ROS pathway (Wang, 2005; Pinosa et  al., 
2013). In another transcriptome study, transcription factor 
WRKY40 and WRKY70 are upregulated in resistant soybean 
genotype PI533561 upon infection by a H. glycines virulent 
type named HG type 0 (Jain et  al., 2016). WRKY70 has been 
shown to be  involved in the regulation of the ROS pathway 
in defense, suggesting that the ROS pathway might be involved 
in resistance to SCN as well. Moreover, the PR-5 like receptor 
kinase shows an upregulation in the resistant genotype, indicating 
that a similar SA pathway may be  involved in response to 
SCN infection. Interestingly, WRKY40/70 and one PR family 
protein (Phvul.005G081500) also show an upregulation in 
susceptible genotype GTS-900 (Jain et al., 2016); implying ROS 
and SA pathways may also be  involved in basal defense.

R Gene-Mediated Resistance Response 
Types to Cyst Nematodes
In resistant plants, cyst nematodes are blocked in their life cycle 
and reproduction due to host-specific defense responses induced 
by R proteins. During normal cyst nematode development and 
reproduction, the syncytium is crucial since it functions as the 
only nutrient source for this obligatory biotrophic endoparasite. 
Host-specific resistance by R genes often associates with an HR, 
which causes necrosis around the nematode-induced syncytia. 
According to the timing in the ontogeny of feeding structures 
and characteristic cytological features, host-specific resistance to 
cyst nematodes can be  roughly divided into two types (Goverse 
and Smant, 2014; Smant et  al., 2018). The first type allows the 
initiation of a syncytium, but the expansion of the syncytium is 
restricted by the formation of a layer of necrotic cells around 
the young feeding structure (Figure  2). The initiated syncytium 
still allows the development of males, but does not support the 
development of females due to the poorly developed feeding 
structure. This type of “male-biased” resistance is observed for 
R genes like H1 and Hero A (Rice et  al., 1985; Sobczak et  al., 
2005). The second type of resistance occurs in a later stage of 
the plant-nematode interaction and allows syncytium formation 
and expansion (Figure  2). These young syncytia are functional 
and support the initiation of female development. However, a 
layer of necrosis around the syncytium is formed soon thereafter 
to disconnect the syncytium from the vascular cylinder. In this 
way, the transfer cell function of the syncytium is compromised 
and female development is arrested due to starvation. A typical 
example of this delayed resistance responses are induced by the 
potato R protein Gpa2, which confers host-specific resistance to 
PCN G. pallida (van der Vossen et al., 2000; Mwangi et al., 2019).

EVASION OR SUPPRESSION OF R 
GENE-MEDIATED IMMUNITY BY CYST 
NEMATODE EFFECTORS

To evade recognition by R proteins, cyst nematodes have evolved 
effector variants which are not recognized or able to suppress 
the activation of host-specific defense responses. Examples of 
such effectors were recently identified, such as SPRYSEC effectors 
(Diaz-Granados et  al., 2016), an E3 ubiquitin ligase RHA1B 
(Kud et  al., 2019), and an expansin-like protein GrEXPB2 (Ali 
et  al., 2015a). The SPRYSEC effector family is characterized 
as a single SPRY domain-containing protein, secreted from 
the dorsal esophageal gland of PCNs (Diaz-Granados et  al., 
2016). SPRYSEC effectors from G. rostochiensis, including 
SPRYSEC-4/5/8/18/19, function as suppressors of HR and disease 
resistance mediated by CNL immune receptors like Rx1 (Postma 
et al., 2012; Ali et al., 2015b). A typical example is G. rostochiensis 
effector SPRYSEC-19, which can physically interact with the 
tomato intracellular CNL immune receptor homolog Sw5F both 
in vitro and in planta as show by Y2H; GST-pull down and 
Co-IP (Rehman et  al., 2009; Postma et  al., 2012). The minimal 
domain for this interaction is the C-terminal end of the LRR 
domain. Although this is in line with a possible role for the 
LRR in cyst nematode detection, co-expression of Sw5F and 
SPRYSEC-19 did not trigger an HR or resistance response to 
nematodes. Therefore, the function of Sw5F in plant immunity 
to cyst nematode still remains elusive (Postma et  al., 2012).

Another example is the effector from G. pallida named 
RHA1B, which is characterized as an E3 ubiquitin ligase that 
functions in ubiquitin-proteasome pathway-mediated protein 
degradation (Kud et  al., 2019). RHA1B applies two distinct 
ways to suppress plant immunity during nematode parasitism: 
it suppresses PTI signaling via a yet unknown E3-independent 
manner, and it suppresses HR mediated by several R proteins 
via E3-dependent degradation of R proteins. In addition, an 
apoplastic effector from G. rostochiensis, an expansin-like protein 
GrEXPB2, could inhibit a set of NLR immune receptors, 
including Rx1 and N mediated defense responses in the cytoplasm 
(Ali et  al., 2015a). As GrEXPB2 is highly accumulating in 
pre-parasitic stages and decreases quickly during plant infection, 
it is speculated that GrEXPB2 might be involved in suppression 
of early PTI or ETI upon root invasion by cyst nematodes. 
However, GrEXPB2 also triggers necrosis in tomato and potato 
but not tobacco (Ali et  al., 2015a). The activation of defense 
in a plant species-dependent manner suggests the specific 
recognition of the effector by the plant immune system, indicating 
that GrEXPB2 retains its dual role in suppressing and triggering 
plant defense responses.

QUANTITATIVE TRAIT LOCI 
CONFERRING HOST-SPECIFIC 
RESISTANCE TO CYST NEMATODES

In addition to single dominant R genes that encode for immune 
receptors, host-specific resistance to cyst nematodes can also 
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be  conferred by QTLs. In the last decades, many QTLs to 
different cyst nematode species in various major food crops 
have been identified such as Rhg1 and Rhg4 to SCN in soybean 
(Cook et al., 2012; Liu et al., 2012), Rha2 from barley conferring 
resistance to CCN (Kretschmer et  al., 1997), and Gpa, Grp1, 
and Gpa5 among others in potato conferring resistance to 
PCN (Kreike et  al., 1994; van der Voort et  al., 1998, 2000). 
QTLs may involve multiple or polymorphic genes present at 
different loci or even a particular locus, including essential 
genes that are required for achieving nematode resistance. 
Often, QTLs co-localize with NLR gene clusters as observed 
in potato suggesting that classical resistance gene homologs 
may contribute to host-specific resistance mediated by these 
QTLs (Bakker et al., 2011). However, an alternative explanation 
for the quantitative behavior of these QTLs loci could be  the 

result of the heterogeneous composition of cyst nematode field 
populations used in the resistance tests. Interestingly, in case 
of Rhg1 and Rhg4, host-specific resistance is not linked to 
NLR-mediated immunity and was shown to be  mediated by 
non-canonical resistance genes (Cook et al., 2012; Liu et al., 2012).

Recently, several studies have revealed first insights in the 
molecular mechanisms underlying this novel type of resistance 
to cyst nematodes (Figure  1). For Rhg1, copy number variation 
plays an important role in determining SCN resistance since a 
higher copy number of genes at the Rhg1 locus relates to an 
increased resistance phenotype (Cook et al., 2012, 2014; Yu et al., 
2016). A copy of a 31-kilobase segment carrying three genes that 
contribute to resistance leads to an increased resistance to SCN, 
but only when the expression of this set of genes increases at 
the same time. Based on the copy number, at least two classes of 

FIGURE 2 | Host-specific defense responses against cyst nematodes in plant roots harboring major R genes or resistance loci (QTLs). Type I. A subset of R genes 
mediate early defense responses to cyst nematodes that allows syncytium initiation but restricts further expansion by forming a layer of necrotic cells around the 
young feeding structures. As a result, these encapsulated syncytia allow the development of males but not females. This “male-biased” resistance is seen for R 
genes like H1 in potato and Hero A in tomato. Type II. Another subset of R genes mediates a late defense response that allows syncytium formation and expansion, 
supporting the development of females. In this case, a layer of necrotic cells is formed around the expanded syncytium which disrupts the connection between the 
syncytium and the vascular cylinder. Thereby, female development is restricted due to the lack of nutrition. This “female-biased” resistance is observed for R genes 
like Gpa2 from potato. Whereas the type I and II responses are typical for cyst nematode R genes encoding NB-LRR immune receptors, the resistance loci Rhg1 
and Rhg4 trigger non-canonical resistance responses to cyst nematodes in soybean roots. Type III. The high copy number Rhg1-b type encodes a α-SNAP protein 
that poorly interacts with the protein NSF to disrupt vesical trafficking. Meanwhile, the hyperaccumulation of α-SNAP is thought to promote the collapse of the plant-
nematode biotrophic interface leading to nematode resistance. Type IV. Rhg4-mediated resistance is determined by two polymorphisms in the encoded protein 
serine hydroxymethyltransferase (SHMT). SHMT regulates folate homeostasis leading to folate deficiency, causing the poor development and difficult maintenance of 
syncytia. Interestingly, cross-talk occurs in low copy number Rhg1-a, which requires Rhg-4 to activate SCN resistance. It is thought that the elevated levels of 
Rhg1-a encoded α-SNAP induces Rhg-4 encoded SHMT, which then physically interact with each other to form a complex with the pathogenesis-related protein 
PR08-Bet. This multiprotein complex regulates the activity of SHMT which leads to syncytium collapse and thus cyst nematode resistance.
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Rhg1 haplotypes are identified: low-copy rhg1 (rhg1-a, Peking-
type) and high-copy rhg1 (rhg1-b, PI 88788-type). Three genes 
located in the 31-kilobase segment are required for resistance, 
which encode for an amino acid transporter, an alpha-soluble 
NSF (N-ethylmaleimide–sensitive factor) attachment protein 
(α-SNAP) protein and a wound-inducible domain (WI12) protein 
(Cook et  al., 2012; Guo et  al., 2019). The rhg1-a and rhg1-b 
haplotypes encode two different α-SNAP variants (Liu et al., 2017; 
Bayless et  al., 2019), but both variants hyperaccumulate at SCN 
infection sites (Bayless et al., 2016, 2019; Lakhssassi et al., 2020a). 
The rhg1-a encoded α-SNAP carries a copia retrotransposon in 
its structure named RAC (Rhg1 α-SNAP copia), which harbors 
intrinsic transcriptional activity (Bayless et  al., 2019). However, 
the exact role of RAC in SCN resistance is not clear yet as no 
direct effect of RAC in regulating Peking-type GmSNAP18 mRNA 
and protein level is detected. Different from the Peking-type 
GmSNAP18, rhg1-b encoded α-SNAP lacks the RAC element in 
its structure (Bayless et  al., 2019). Interestingly, PI 88788-type 
GmSNAP18 poorly interacts with the NSF protein and disrupts 
vesical trafficking (Bayless et  al., 2016). As such, the 
hyperaccumulation of PI 88788-type GmSNAP18 is thought to 
promote the collapse of the plant-nematode biotrophic interface 
leading to nematode resistance (Figure  2). The role of the amino 
acid transporter Rhg1-GmAAT in SCN resistance may be  via the 
JA pathway, as overexpression of Rhg1-GmAAT induces JA 
accumulation and glutamic acid tolerance (Guo et  al., 2019). The 
role of WI12 in rhg1 mediated SCN resistance is not understood yet.

Rhg4 is another non-canonical resistance locus and Rhg4-
mediated resistance to SCN is determined by two genetic 
polymorphisms residing near the ligand-binding sites of a serine 
hydroxymethyltransferase (SHMT; Liu et  al., 2012). Mutation 
analysis showed that these polymorphisms affect the enzymatic 
activity of SHMT, which ubiquitously exists in nature and 
exhibits a key role in one-carbon folate metabolism (Cossins 
and Chen, 1997). The change of folate homeostasis can lead 
to folate deficiency, which may cause the poor development 
and difficult maintenance of syncytia. Alternatively, folate 
deficiency may trigger HR-like programmed cell death of the 
syncytium and lead to the death of nematodes as nematodes 
get insufficient folate from the host plant. The findings of 
Rhg4-mediated resistance reveal that plants may disrupt 
developmental or metabolic processes of the feeding structure 
itself to achieve resistance (Figure  2). The functional study of 
mutations on the SHMT protein structure revealed key residues 
that affect resistance to SCN (Kandoth et  al., 2017; Shaibu 
et  al., 2020). Meanwhile, the SHMT mutant still exhibits other 
functions in addition to its main enzymatic role in SCN resistance.

Rhg4 is required for Peking-type rhg1-a to confer resistance 
to SCN successfully (Liu et  al., 2012) and this involves both 
Peking-type rhg1-a GmSNAP18 and Rhg4-a GmSHMT08 (Liu 
et al., 2017). Interestingly, two recent studies have revealed novel 
insights in the mechanisms underlying the crosstalk between 
Peking-type rhg1-a GmSNAP18 and Rhg4-a GmSHMT08. Peking-
type GmSNAP18 physically interacts with the Rhg4-a GmSHMT08 
tetramer and this interaction is strengthened by the pathogenesis-
related protein GmPR08-Bet VI (Lakhssassi et  al., 2020a,b). 
Mutational analysis shows that GmSHMT08 tetrameric structure is 

essential for GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-
protein complex formation (Lakhssassi et al., 2020b). GmPR08-Bet 
VI is suggested to contribute in SCN resistance as overexpression 
of the gene leads to an enhanced resistance to SCN while 
mutation of cytokinin-binding sites of the gene product abolishes 
its effect on SCN resistance (Lakhssassi et al., 2020a). Furthermore, 
these studies indicate that SA, cytokinin, and ROS pathways 
are involved in SCN resistance. Under SA and cytokinin treatments, 
GmSNAP18 and GmPR08-Bet VI are induced while GmSHMT08 
is only induced in the presence of GmSNAP18, implying 
GmSHMT08 functions downstream of GmSNAP18 (Lakhssassi 
et  al., 2020a). Collectively, a picture emerges in which SCN 
infection induces increased expression of GmSNAP18 which 
leads to a subsequent induction of GmSHMT08. Next, a 
GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-protein complex 
is formed to regulate activity of GmSHMT08, including one-carbon 
folate metabolism and redox metabolism maintenance. Also, the 
trafficking of GmPR08-Bet VI toward infected cells increases 
the cytotoxicity in the cells. Consequently, necrosis and disruption 
of the syncytium occurs (Figure  2). Interestingly, for PI 88788-
type of resistance, GmSNAP18 also interacts with GmSHMT08 
and GmPR08-Bet VI is able to strengthen this interaction in 
the cells as in Peking-type (Lakhssassi et  al., 2020b). However, 
PI 88788-type GmSNAP18 shows the incompatibility with Peking-
type GmSHMT08 and this may explain the current difficulty 
in applying soybean lines that combine PI 88788-type and 
Peking-type in breeding strategies.

CONCLUSION AND FUTURE 
PERSPECTIVES

In this review, we  have highlighted the current knowledge on 
the molecular and cellular mechanisms involved in host-specific 
resistance against cyst nematodes based on a few well-studied 
examples. In addition, information from other studies on the 
activation of host-specific downstream defense responses were 
addressed as well and integrated in this review to provide a 
comprehensive picture of the molecular mechanisms underlying 
different types of cyst nematode resistance known to date. 
From this, it can be  concluded that host-specific defense to 
cyst nematodes in most cases is conferred by classical R genes 
encoding extra- and intracellular immune receptors upon specific 
recognition of cyst nematode effectors or their activities in 
the plant cell. Interestingly, host-specific defense to cyst nematodes 
is also conferred by non-canonical resistance loci directly 
interfering in the biotrophic interface between nematodes and 
their host plants. To counteract host-specific defense responses, 
either mediated by typical single dominant R genes as well 
as non-canonical QTLs, cyst nematodes have evolved molecular 
mechanisms to evade recognition by the plant immune system 
or by active suppression of defense responses. This co-evolutionary 
arms race explains both the diversity and copy number variation 
observed in R gene homologs as well as effector variants similar 
to what is reported for other pathosystems.

For cyst nematode R genes, only two model systems (e.g., 
Gpa2/GpRBP-1 and Cf2/GrVAP-1) are currently available for 
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which the matching immune receptor-effector pair is known. 
Such pairs allow the performance of biochemical, cellular, molecular, 
and functional studies to resolve the mechanisms underlying 
plant immunity to cyst nematodes. For example, agroinfiltration 
assays on leaves of N. benthamiana can be  used instead of time 
consuming and highly variable nematode infection assays on 
crop plants, for which often effective genetic tools are lacking. 
However, only a few cyst nematode R genes and resistance loci 
are identified and characterized to date, which hampers advances 
in the field. It is anticipated though that this number will increase 
in the near future as the result of sequencing efforts of genomic 
regions combined with refined genetic mapping approaches in 
various crops linked to cyst nematode resistance (Concibido 
et  al., 2004; Banu et  al., 2017) For example, cyst nematode R 
gene loci are known in crops for years, such as the H1 and 
H2 gene in potato (Ellenby, 1952; Blok and Phillips, 2012), but 
the genes responsible for the resistance are still unknown. However, 
with the tools currently available for genetical and functional 
genomics studies, it is possible to identify the causal genes. Fine 
mapping in combination with genome sequencing revealed that 
the H1 locus harbors a cluster of NLR candidate genes, suggesting 
that the H1 gene is a classical single dominant R gene (Finkers-
Tomczak et  al., 2011). Similarly, the recent mapping of the H2 
gene in combination with NLR-specific enrichment sequencing 
(RenSeq), Diagnostic resistance gene enrichment (dRenSeq), and 
Generic-mapping enrichment sequencing of single/low-copy 
number genes (GenSeq) also revealed candidate R genes encoding 
NLR immune receptors (Strachan et  al., 2019). So, the next step 
is to show their contribution to cyst nematode resistance, which 
can be  examined by for example RNA interference (RNAi) or 
CRISPR-Cas9 gene editing techniques in a resistant background 
followed by infection of plants with a matching avirulent cyst 
nematode population to see if R gene mediated resistance is 
compromised (Shaibu et  al., 2020).

The application of these advanced sequencing techniques 
combined with molecular mapping approaches will not only 
enhance the identification of novel R genes to cyst nematodes 
in major crops like potato, but also provides the accurate 
positioning of these genes on the chromosomes of crop genomes. 
Together, this knowledge and knowhow will facilitate the 
improvement of crop resistance to cyst nematodes by marker 
assisted selection and molecular breeding. Functional 
characterization of the (novel) responsible genes or QTLs as 
well as detailed insights about the underlying molecular and 
cellular mechanisms can contribute to the rational design of 
novel R genes (loci) with different recognition spectra, either 
through gene editing or targeted selection of resistance gene 
homologs in natural or breeding populations. In this way, broad 
spectrum resistance could be achieved in crop species to different 

cyst nematode populations. Also the stacking of R genes with 
different recognition spectra provides a promising strategy to 
obtain broad spectrum and durable resistance to cyst nematodes.

Another major bottleneck in this research area is the lack 
of knowledge on the corresponding effectors recognized by 
known cyst nematode R genes like Hero A or GroV1. Over 
the last decades, an increasing number of cyst nematode effectors 
have been identified and characterized, including several 
suppressors of plant immunity. However, whether certain effector 
variants are recognized by the plant immune system remains 
to be  demonstrated. Gland-specific sequencing coupled with 
available nematode transcriptomics and genomics data allows 
identification of novel effectors, thereby expanding the current 
effector cyst nematode repertoire (Vieira and Gleason, 2019). 
Also, the prediction of dorsal gland promoter elements or 
specific motifs such as the dorsal gland box (DOG box; Eves-
van den Akker and Birch, 2016; Eves-van den Akker et  al., 
2016) will contribute to the identification of pioneer cyst 
nematode effectors. Effector libraries can be  subsequently used 
in screening approaches on resistant plant backgrounds with 
known R genes to find the corresponding Avirulence factors. 
In addition, such so called effectoromics approaches can also 
enable the identification of novel R genes based on the activation 
of a specific hypersensitive response upon screening of natural 
or breeding populations. So in conclusion, expanding the 
repertoire of R and Avr proteins in future research is a key 
step to obtain novel insights on the different molecular and 
cellular mechanisms underlying cyst nematode resistance and 
virulence. Moreover, it will contribute to a better understanding 
on how cyst nematodes are detection by the plant’s immune 
system, but also how cyst nematodes have evolved mechanisms 
to evade host-specific defense mechanisms to increase their 
virulence. Ultimately, this knowledge can be exploited to develop 
improved control strategies to counteract cyst nematodes in crops.
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