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Abstract. In this work we compare the performance of a location-
specific and a location-agnostic machine learning metamodel for crop
nitrogen response rate prediction. We conduct a case study for grass-
only pasture in several locations in New Zealand. We generate a large
dataset of APSIM simulation outputs and train machine learning models
based on that data. Initially, we examine how the models perform at the
location where the location-specific model was trained. We then perform
the Mann–Whitney U test to see if the difference in the predictions of the
two models (i.e. location-specific and location-agnostic) is significant. We
expand this procedure to other locations to investigate the generalization
capability of the models. We find that there is no statistically significant
difference in the predictions of the two models. This is both interesting
and useful because the location-agnostic model generalizes better than
the location-specific model which means that it can be applied to virgin
sites with similar confidence to experienced sites.

Keywords: Machine learning · Process-based simulation · APSIM ·
Metamodels

1 Introduction

Environmental data are growing in an unprecedented way [8]. Many domains
of Environmental Research utilize those data and combine them with Machine
Learning (ML) techniques [7] to enable understanding. However, there are
domains like grassland-based primary production systems where certain areas
(e.g. pasture production, nitrogen leaching) have limited, low quality data, mak-
ing them poor candidates for ML applications. In such areas, dynamic models
are deployed to seek causality and make predictions based on first principles but
sometimes they need data that is not available.
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ML has been used in a complementary way with dynamic models to sum-
marize them and capture their embedded knowledge. The resulting ML models
are also known as metamodels, surrogate models or emulators. The knowledge
summarization is achieved by training ML models using the output of dynamic
model simulations. Advantages of this technique include the reduction in need
of observation data [1], the use of fewer inputs [10] and faster computation times
[13] for large scale systems than the dynamic models. The paradigm of sum-
marizing dynamic models is applied in several disciplines from physics [2] to
hydrology [14].

Dynamic model summarization has also been studied in agriculture [11]. Sev-
eral studies have examined the application of ML surrogate models for sensitivity
analysis [4], the performance of different ML algorithms for crop model summa-
rization [12] and the amount of data needed for accurate predictions [12]. In
these works, the authors trained ML models in generated datasets to examine
how well the models can generalize, using either one or all the available loca-
tions, and not testing in other locations. However, the generalization capability
of a model over multiple locations does not mean that it performs better than a
model specifically trained for that location. Since there are cases where the inter-
est lies in absolute performance or generalizability of the summarization model
it would be compelling to investigate how location-specific and location-agnostic
models compare in those aspects.

The purpose of this work is to investigate the performance difference of
location-specific and location-agnostic ML metamodels using a case study app-
roach. To achieve this goal, we first generate a large dataset across several loca-
tions using a crop simulation framework. Second, we aggregate the generated
data and train a ML model using all the available locations, and a second ML
model using only one location. Next, we test the ML models on a dataset com-
prised of samples of the latter location. We compare the results using statistical
metrics, and examine if they are statistically different using the Mann–Whitney
U test [9] which has been used for comparing ML models in other works [5].
Finally, we investigate the trade-off between model performance and generaliz-
ability by testing the models in the rest of the locations of our dataset.

2 Materials and Methods

2.1 Case Study, Data Description

A case study was performed to predict the grass-only pasture nitrogen response
rate in different locations in New Zealand. The application of nitrogen along with
environmental factors such as temperature and time of year greatly affects pas-
ture growth [3] so it is important to know the nitrogen response rate. Our dataset
consisted of grass pasture growth simulations performed with the APSIM mod-
eling and simulation framework [6]. A hyperspace of parameters was created and
put to the simulator. The simulation parameters for APSIM included daily his-
torical weather data from eight locations in New Zealand and management treat-
ment options which can be seen in Table 1. The cross-product of those parameters
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was used to create a hyperspace of input combinations for APSIM. The total
number of simulations was 1,658,880 which should have yielded 1,382,400 nitro-
gen response rates. However, the input combinations included application of fer-
tilizer at times when pasture growth was near zero because of dry soil conditions
or cold temperatures. These were excluded from the analysis as the calculated N
response rate was known to be unreliable. In total there were 1,036,800 response
rates available for further analysis. Our target was to predict the 3-month nitro-
gen response rate – the additional pasture dry matter grown in the three months
after fertilizer application over that from a non-fertilizer control divided by the
kg of nitrogen in the fertilizer applied. The outputs of APSIM consisted of the
nitrogen response rate, biophysical variables related to fertilizer concentration
in grass and moisture in soil.

Table 1. The simulation parameters of APSIM. The cross-product of those parameters
was used to create a hyperspace of input combinations.

Simulation parameters

Location Weather from eight sites spanning the country

Soil water 42 or 77 mm of plant-available water stored to 600 mm deep

Soil fertility Carbon concentration in the top 75 mm of 2, 4, or 6%

Irrigation Irrigated with a centre-pivot or dryland

Fertilizer year All years from 1979 to 2018

Fertilizer month All months of the year

Fertilizer day 5th, 15th and 25th of the month

Fertilizer rate 0 (control), 20, 40, 60, 80 and 100 kg N /ha

2.2 Data Preprocessing

The generated data were preprocessed to formulate a regression problem where
the target variable was the nitrogen response rate and the inputs were the
weather, some treatment options regarding the fertilizer and irrigation, and
some biophysical variables. The generated data were aggregated from a daily
to a simulation basis, to imbue memory to the data. First, the data were split
into training and test sets to avoid information leakage during the latter stages
of processing. The split happened based on the year, taking one year to the test
set every five years and the rest to the training set. The resulting percentage of
training and test samples was 80/20%. Second, from the generated daily data
only the samples in a window of 28 days before fertilization were kept. This range
was selected because grass pasture is known to not be affected by past condi-
tions further than this window provided it is not under- or over-grazed. Also,
weather data after the first fertilization was not considered because preliminary
work has shown that it is not needed to achieve meaningful results. Third, only
the variables related to the weather, simulation parameters, nitrogen response
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rate and to some of the biophysical variables were preserved which were con-
sidered to be likely drivers, based on expert knowledge of the nitrogen response
rate. Fourth, the weather and biophysical variables were aggregated using their
weekly mean values. Finally, the aforementioned steps were repeated once to
form an aggregated dataset containing all the locations, and once for each of
the eight locations contained in our dataset. The output of those steps was an
aggregated dataset (training set) for the location-specific model, an aggregated
dataset (training set) for the location-agnostic model, and an aggregated dataset
(test set) for each location.

2.3 Machine Learning Pipeline

The aggregated datasets were then passed to the ML stage. In this stage, the
training and test data were standardized using the same data transformer to keep
the same mean for both transformations. To clarify further, each test set was
using the scaler of the location-agnostic model and the location-specific model
so that each model can have a version of the test set according to the mean
of its training set. Categorical variables were converted to ordinal by substitut-
ing them with numbers. Then, hyperparameter optimization was performed to
the Random Forest algorithm using gridsearch with 5-fold cross-validation. The
gridsearch parameters were n estimators {200, 300, 400, 500}, max depth {3, 5,
7, 11}, min samples split {2, 3, 4, 8, 16}, min samples leaf {1, 2, 4, 8, 16} and
max features {0.33, sqrt, None}. The out-of-bag score was used for the building
of the Random Forest trees. No feature selection was performed because the
number of features was small (64) compared to the size of the training datasets
(1, 044, 060 and 130, 095 samples for the multiple and single locations corre-
spondingly). After training, the optimized models of the location-agnostic and
location-specific models were tested using the test set of location Waiotu where
the location-specific model was trained. The pipeline of the ML stage is shown
in Fig. 1.

2.4 Evaluation

The performance of the location-specific and location-agnostic models was first
evaluated by comparing error metrics (MAE, RMSE, R2) of their results on
the test set. Then, the Mann–Whitney U test was performed on the models’
results on the test set to see if the differences were significant. The Mann–
Whitney U test examines if the distributions of the populations of two groups
are equal and it was preferred among other statistical tests because first it is non-
parametric, second it assumes that the pairs in the samples do not come from
the same populations and third that the observations are ordinal, all of which fit
our problem. Consequently, error metrics and the Mann–Whitney U test were
calculated for the rest of the locations to test the models’ generalizability.
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2.5 Implementation

The data preprocessing stage was developed utilizing the Apache Spark frame-
work. The ML models were developed using the scikit-learn library in Python.
The experiments took place in a Databricks node consisting of 96 cores and
384 GB of RAM to speed up procedures through parallelization.

3 Results

The hyperparameter tuning procedure selected the following parameters for both
models: n estimators 400, max depth 11, min samples split 2, min samples leaf
1, max features 0.33. The results of the ML models on the training and test sets
are shown in Fig. 2, along with the distributions of the simulation and the model
predictions. We observe that the angle between the identity and regression lines
on the test set is smaller for the location-specific model which means that it
fits better the location-specific test data. The data points on the test set of the
location-agnostic model are more dispersed. Also, we notice that the distribu-
tions of the location-specific and location-agnostic model predictions on the test
set appear to be similar. The mean and variance of the distributions appear to
be close as it can be seen in Table 2.

Regarding the error metrics, in Table 3 we observe the Mean Average Error,
Root Mean Square Error and coefficient of determination (R2) for both mod-
els on the test set of each location. For the location where the location-specific
model was trained (Waiotu), we observe that the location-specific model per-
forms better than the location-agnostic model. For the rest of the locations, the
location-agnostic model outperforms the location-specific one.

Fig. 1. The pipeline for the training and testing of the models on the location where
the location-specific model was trained. At the end there is also the evaluation stage.
The process starts by taking the training and test datasets from the preprocessing
stage. It has to be explicitly noted that hyperparameter tuning was performed only on
the training set. More specifically the test set was the same for both models but it was
standardized for each model individually to preserve the same mean which was used
for each training set.
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Table 2. The distribution characteristics of the two models for the test set predictions
on the location where the location-specific model was trained.

Location-specific Location-agnostic

Mean 18.47 18.44

Variance 44.73 40.99

Skewness 0.11 0.18

Kurtosis −0.90 −0.82

In Table 3 we also observe the results of the Mann–Whitney U test for each
location. For the location where the location-specific model was trained (Waiotu)
we see that there is no statistically significant difference between the models. The
same applies to the location Ruakura.

Fig. 2. The results of the location-specificmodel (top row) and location-agnostic
model (bottom row) for the training (left) and test (right) sets. The test set is
common for both models and contains data from the location where the location-specific
model was trained (Waiotu). On the vertical axes are the predictions of the model and
on the horizontal axes the simulated values. On top and right of the plots are the distri-
butions of the simulated and predicted values correspondingly. The black lines are the
identity lines. The red lines are the regression of Prediction on Ground truth. Darker
spots indicate that more predictions fall on the same area. (Color figure online)
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Table 3. The error metrics of the location-specific and site agnostic models on the
different locations. On the first row are the locations existing in our dataset. Waiotu is
the location where the site specific model was trained. On the second row are the mean
absolute error (MAE), root mean squared error (RMSE) and coefficient of determina-
tion (R2), for each model and location. The blue and red colors indicate the models
with the highest and lowest performance correspondingly, for each location and error
metric. On the third row, statistically significant difference on Mann–Whitney U test
between the predictions of the two models is denoted with as asterisk.

Waiotu Ruakura Wairoa Marton Mahana Kokatahi Lincoln Wyndham

Location-specific MAE 2.37 2.72 2.92 3.27 3.44 4.36 4.96 5.62

RMSE 3.19 3.62 4.03 4.41 4.2 5.81 6.63 7.29

R2 0.85 0.78 0.68 0.66 0.66 0.5 0.41 0.38

Location-agnostic MAE 2.71 2.13 2.71 2.06 2.29 2.56 2.88 2.31

RMSE 3.55 2.95 3.91 2.83 3.04 3.33 4.08 3.06

R2 0.81 0.85 0.7 0.86 0.82 0.83 0.78 0.89

MannWhitney U test * * * * * *

4 Discussion

The results showed slightly better error metrics for the location-specific model
over the location-agnostic model for Waiotu. The reason may be that the
location-specific model learns the local conditions better since they are only from
this location and fewer than those included in the training of the site-agnostic
model. For the rest of the locations, the location-agnostic model performs better
because it was trained with more data, which also included these locations and
as a result, it can generalize better. An interesting finding is that the errors of the
location-specific model increase as we move further away from Waiotu, as shown
in Fig. 3. The locations can be seen in Fig. 4. This finding indicates that the
further away a prediction is made from the training location, the higher the error
will be for a location-specific model. On the other hand, the location-agnostic
model is not affected since it was trained in a larger dataset which included data
from those locations.

Another finding was that there was no statistical difference between the pre-
dictions of the two models for Waiotu. The location-specific model may perform
better but it seems that the gain is marginal and is lost when moving to other
locations. The second location with no statistical difference between the mod-
els’ predictions is Ruakura. We assume that this happens because Ruakura and
Waiotu are close to each other and as a result, environmental factors do not
vary substantially between those locations.

We deduct that there seems to be a trade-off between accuracy and general-
ization performance. The location-specific model is trained on a smaller dataset
and overfits the data. As a result it performs better for Waiotu but the location-
agnostic model generalizes better. In our opinion, the decision for which model
to deploy depends on the use. We emphasize though that the performance dif-
ference in this case study is not dramatic for Waiotu. On the other hand, the
generalization performance is evident especially as we move further away from
the location where the location-specific model was trained.
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Fig. 3. The mean absolute error (MAE) of the location-specific and agnostic models for
all the locations in our dataset. On the vertical axis is the error and on the horizontal
the locations. The orange and blue colors indicate the results of the location-specific
and agnostic models respectively. (Color figure online)

Fig. 4. The locations in New Zealand which were included in our dataset. On the top
right is Waiotu which was used to train the location-specific model. Right next to
Waiotu is Ruakura. The rest of the locations are further away.
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5 Limitations

A limitation of our study regarding the performance comparison of the ML
models is that the location-agnostic model was trained using data from all the
locations. As a result we did not test how the models would perform in a location
that would be new to both of them.

Another limitation is that the performance of both models was affected by the
way we partitioned years into the training/test split. That is due to seasonality
in the generated data, which was not taken into account when performing the
split.

6 Conclusion and Future Work

In this work, we examined the performance difference between a location-specific
and a location-agnostic metamodel using error metrics and the Mann–Whitney U
test. We tested the models in different locations including the location where the
location-specific model was trained. We found that the location-specific model
performs better for the location where it was trained, although not in a statisti-
cally significant way. Also, the error metrics in other locations showed that the
location-agnostic model generalizes better.

Future work could include the setup of the methodology in a way to test
location-specific models for all the available locations to examine if the results
will be the same. Also, a location could be left out of both training sets to allow
testing in a new location for both models. Besides, different machine learning
algorithms could be deployed and tuned even further. The performance of the
models could also be improved by adding complex features and features based
on agronomic knowledge.
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