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A B S T R A C T   

Background: Optical technologies, relying on spectral analysis, are more and more implemented in portable 
devices for food analysis. Thereby, each food safety, quality or authenticity provision as well as each technology 
requires the generation of a dedicated spectral database with reference data. Currently, knowledge on how these 
databases might be connected or transferred across food commodities, targeted compounds or devices are very 
limited. Hence, repetitive work is conducted and technologies are not optimally used. 
Scope and approach: This perspective focuses on the currently available technologies and approaches for data 
handling and database transfer across miniaturized devices and technologies for food safety, quality and 
authenticity assessments. 
Key findings and conclusions: For almost every food commodity or target compound a miniaturized spectroscopic 
device can be applied with the respective database to compare findings. Recent developments in optical spec
troscopy allow more possibilities for their use as well as facilitate the production of portable devices. A multi
functional device hyphenating several sensors and broadening the application range is still not marketed. Newly 
developed software architecture, accessing and extracting data, helps to overcome sample heterogenicity or 
spurious measured data. In addition, several data fusion approaches using machine learning and deep learning 
strategies are available to fuse spectroscopic data with itself or other non-spectroscopic data. Following the 
research results presented in this field, spectral data can possibly be re-used and shared across instruments and 
locations, highly increasing the applicability of data sets. Thereby, obstacles such as policy or confidentiality are 
taken into account.   

1. Introduction 

Currently, point-and-shoot optics hardware is being constantly 
miniaturized, the storage capacity of electronic devices is increasing, 
spectral multivariate statistics applications in spectral cloud databases 
and smartphones are being implemented and very short measurement 
and response time (seconds) is targeted. New devices should be easy to 
use and applied in a non-invasive manner. Hence, there should be no 
need to pre-process samples in an extensive preparation or the addition 
of reagents. Due to their real-time data acquisition and processing, novel 
devices may be applied on- or in-line in processing plants or in situ. Using 

small optical devices as an on-site decision support system for screening 
of samples fits into the lab-to-the-sample approach, where only suspect 
samples are transported to a laboratory facility for confirmation by a 
reference method. (Chapman, Gangadoo, Truong, & Cozzolino, 2019; 
Cozzolino, 2015; Ellis et al., 2012; Ellis, Muhamadali, Haughey, Elliott, 
& Goodacre, 2015; Esteki, Shahsavari, & Simal-Gandara, 2018; Hussain, 
Sun, & Pu, 2019; Lohumi, Lee, Lee, & Cho, 2015; Oliveira, Cruz-Tirado, 
& Barbin, 2019; Tahir et al., 2019; Wadood, Boli, Xiaowen, Hussain, & 
Yimin, 2020; Yeong, Jern, Yao, Hannan, & Hoon, 2019). Tremendous 
amounts of resources and time are being spent on the construction of 
spectral databases for ultraviolet–visible (UV-VIS), fluorescence, 
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(Fourier transformation-) near-infrared (FT-NIR), mid-infrared (MIR) 
and Raman spectroscopic instruments. These optical spectroscopic ap
proaches are widely used in the characterization of food products and 
screening of food quality, safety and authenticity. Either they are 
applied in the targeted approach by classification or quantification of 
specific commodity provisions or in the non-targeted approach for 
creating so-called fingerprints. In principle, for each food product, 
desired target compound and optical device a dedicated spectral data
base needs to be constructed. A typical spectral database should contain 
a sufficient number of certified samples covering the natural variability, 
i.e. season, geographical origin, processing steps and the concentration 
range of the analyte or classification range of interest. In addition, the 
appropriate application of multivariate statistics is crucial for the correct 
functioning of the application for which the spectral database is built. 
Although the advantages of a fast, non-destructive optics screening 
method are numerous, the spectral databases are specific for one food 
product, targeted compound, and type of optics hardware combination. 
If a new or updated optical device hardware version or new optical 
device type is implemented, a (partial) re-work of the spectral applica
tion is in most cases required including a so-called calibration transfer. 
Moreover, reference values from a validated laboratory-based analysis 
method, certified sampling sources or certified paper work are needed 
for (re-)calibration too. Despite all efforts in the scientific world to 
construct databases and setting the first steps towards interesting ap
plications for food product assessments (McGrath et al., 2018), many of 
them are not in use or are not maintained any more due to hardware 
updates, lack of transferability to other devices or lack of interest or 
financial means. Thus, construction and re-construction of spectral da
tabases which form the spectral ‘treasure house’ and the core of the 
applications are dear processes which are often dead ended. Conse
quently, they have become a significant bottleneck in the widespread 
application of fast portable optical screening devices for food 

applications. 
It seems that we do not unleash the full power of our (largely scat

tered and fragmented) spectral treasure house to the full extent. In this 
perspective, we discuss the developments in spectroscopic and chemo
metric science regarding the re-use of previously recorded spectral data 
in spectral screening applications for food. We specifically focus on (1) 
hardware developments in portable devices using spectroscopic ap
proaches, (2) developments in data handling via software architecture to 
access and extract information, (3) spectral data fusion, transfer and 
exchange approaches and (4) interchange of information and knowledge 
without sharing the actual database. 

2. “The acquisition”: outlook on hardware developments of 
portable devices to acquire spectral data 

Among current miniaturized spectroscopic approaches integrable in 
portable devices, those using illumination wavelengths between UV and 
MIR range are the most widely and increasingly used in food analysis as 
reviewed recently by Crocombe (2018), Deidda et al. (2019), and Yeong 
et al. (2019). Optical spectroscopy may record spectra either in trans
mittance mode through clear or opaque samples such as beverages, 
hence deriving the optical absorbance by the investigated materials, or 
in the (diffuse) reflectance mode acquiring scattered radiation from 
solid or pastry food samples. The recorded physical effects span from 
electronic excitation of fluorophore molecules to elastic scattering. In 
the following, a synthesis of the functionality of available spectroscopic 
hardware is reported together with limitations, perspectives and data 
format and dimensions (see also Table 1). 

A very well established approach is the use of longwave ultraviolet (UV 
200–400 nm wavelength) and visible (VIS 400–750 nm wavelength) 
radiation, to explore the presence and quantity of molecules that bear 
the possibility to absorb light. Electronic transitions between molecular 

Table 1 
Overview of advantages, limitations and further research aspects of optical technologies currently used in food sensing.  

Sensor/Spectral range Advantage Limitations Further research 

UV-VIS Available sensors in miniaturized sugar cube 
dimension; 
Characteristic spectra for specific food 
components; 
Available in combination with spectral 
imaging (SI); 
Very short acquisition times (range of ms); 
Spectral data in exportable text format; 
File dimensions in the range of a few kBytes; 
Low cost; 

Only longwave UV possible; 
Only fluorescent or colourful molecules may be 
detected; 
Low chemical specifity; 
No spatial information about the sample; 
Interference of packaging; 

Sensors covering more UV wavelengths; 
More stable low cost light sources; 

NIR and MIR Available sensors in miniaturized sugar cube 
dimension; 
Available in combination with SI; 
Spectral data in exportable text format; 
File dimensions in the range of a few kBytes; 

Interference of water from samples and packaging; 
Broad overlapping spectra; 
Thermal noise which is possibly hampering 
measurements; 
Cooling required when applying longer 
wavelengths; 
Necessity of multivariate statistics. 
Long acquisition times (range of seconds) and 
spectra averages needed; 

MIR, FT-NIR and FIR sensors and 
illumination sources should be 
miniaturized; 

Raman Available portable (0.25–2 kg instruments); 
Available in hyphenated devices; 
Measurements possible through packaging; 
No interference of water content; 
Spectral data in exportable text format; File 
dimensions in the range of a few kBytes; 

Laser needed; 
Long acquisition times (range of minutes) due to 
the weakness of the physical process; 

Further miniaturization of sensors; 
Miniaturization of light sources; 

Imaging (monochromatic- 
color, camera based) 

Available in miniaturized versions (chip 
size); 
Fast acquisition times (ms to s); 
Coupling of spatial and chemical 
information; 

Large data dimensions (order of MB or more); 
Multivariate statistics necessary; 
Low specificity; 

Multivariate statistics and federate learning 
updates; 
New interfaces to handle data transmission 
(i.e. USB, wireless connections); 

Spectral imaging and 
microRaman 

Available in miniaturized versions (chip 
size); 
Really versatile, couples spatial and chemical 
information; 

Very large datasets (up to GB); 
Dedicated algorithms requested for data analysis; 
Difficult miniaturization (high cost); 
In some approaches, moving parts inside the sensor 
are necessary at the expenses of robustness; 

Further miniaturization and combination 
with different technologies; 
New interfaces to handle data transmission 
(i.e. USB, wireless connections);  
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orbitals are triggered and give as response a fluorescence, a trans
mittance or a reflectance spectrum. It is worth mentioning that only 
longwave UV is possible to use in the previously described manner, as 
shortwave UV is too energetic and may cause instead of electronic 
excitation, molecular bond breaks and ionization of molecules. A pos
sibility for development is, thus, exploring further wavelengths and 
broadening the range of wavelengths applied. An advantage of the UV- 
VIS approach is the large amount of literature present on its applications 
in food analysis for example: fruit products quality assessment (Cortés, 
Blasco, Aleixos, Cubero, & Talens, 2019), sugar and soluble solids con
tent (Suhandy et al., 2010; Włodarska, Szulc, Khmelinskii, & Sikorska, 
2019), characterization of pigments (Hempel, Müller-Maatsch, Carle, & 
Schweiggert, 2018), authenticity of varieties (Chang et al., 2016), as 
well as fat and protein content of milk (Bogomolov, Belikova, Galyanin, 
Melenteva, & Meyer, 2017). Beneficial is as well that UV-VIS wave
lengths may be detected by one- and two-dimensional (1D, 2D) sensors, 
CCDs (charge-coupled devices), and CMOSs (complementary 
metal-oxide semiconductors) based on silicon. Detectors may be 
implemented in both MOEMS (micro-opto-electrical mechanical sys
tems) or MEMS (micro-electrical mechanical systems). In combination 
with Light Emitting Diode (LED) for UV-VIS radiation, the 
manufacturing of micro and nano-scale spectrometers in miniaturized 
devices at low-cost is enabled. Nevertheless, further research is con
ducted developing novel, miniaturized sensors and light weight, mini
aturized illumination sources (see also, Table 1). The currently 
available, low-cost devices constructed for UV-VIS may also be applied 
to measure photoluminescence. After excitation at a specific wavelength 
caused by longwave UV (200–400 nm wavelength) or VIS (400–500 nm 
wavelength) radiation, some molecules emit photons in the relaxing 
process at a wavelength usually longer than the excitation one. This 
causes a detectable signal, being fluorescence or phosphorescence ac
cording to the lifetime of the relaxing process. The detected excitation 
and emission can be used to identify molecules even in a complex ma
terial (Bertani et al., 2020) when the fluorescence emission of the spe
cific molecule is known a priori and the non-specific fluorescence 
contribution from matrix molecules is taken into account. Furthermore, 
spectroscopic fingerprints may be applied to study food products’ 
authenticity, discriminate between different quality grades and 
geographical origins, and detect adulterations for example olive oils 
with low-grade olive oils or other vegetable oils (Mishra, Lleó, Cua
drado, Ruiz-Altisent, & Hernández-Sánchez, 2018; Sikorska, Khme
linskii, & Sikorski, 2012, 2019). So, fluorescence spectroscopy has 
become an increasingly used approach for assessing food characteristics. 

To overcome the limitations of UV-VIS spectroscopy with only spe
cific molecules giving a response, near-infrared and mid-infrared tech
nology may be applied. Molecular bonds vibrational level excitation is 
triggered by near-infrared (NIR 750–2500 nm wavelength) and mid 
infrared (MIR 2500–25000 nm wavelength) radiation, giving as a result 
a spectrum. NIR may be roughly divided in 2 regions from 750 (or 780) 
nm to 1900 nm and from 1900 to 2500 nm. In the first region, secondary 
vibrations or overtone energy levels due to non-harmonic contributions 
of molecular vibrations are excited. This is a less efficient effect than 
fundamental vibration excitation, which is excited by radiation from the 
second region and above (MIR). However, the detection below 1900 nm 
can be performed at ambient temperature since sensors based on silicon 
(2D, CCD or CMOS) or point detectors have a reasonable signal to noise 
ratio and cooling is not necessary. Second range NIR and MIR may 
further be detected using InGaAs (Indium gallium arsenide) and mer
cury cadmium telluride based arrays. NIR typical sources are halogen 
lamps but in miniaturized/portable NIR spectroscopy LEDs (mono
chromatic or white) are used in combination with phosphor converters. 
As NIR wavelengths penetrate fairly deep in solid samples (with low 
scattering) and most constituents in foods are sensitive to NIR, the 
resulting spectra are often broad, overlapping and complex, necessi
tating chemometric analysis (Petronijević, Velebit, & Baltić, 2017). In 
brief, beneficial of the NIR approach is that besides the identification of 

specific molecules or molecular groups, NIR reflectance spectrum may 
be used to predict complex characteristics in food analysis as listed by 
Chapman et al. (2019) and Wang, Sun, Pu, and Cheng (2017). 

Raman spectroscopy has the advantage that water is not interfering 
and it may be applied through food packaging but only on small sample 
sizes. The technique is based on the scattering of a small number of 
photons from samples in response of a laser beam with defined wave
length and polarization (Qin et al., 2019; Yaseen, Sun, & Cheng, 2017). 
Predominately the scattered radiation is elastically scattered light in the 
same frequency as the incident light, while a small fraction is inelasti
cally scattered light (Raman scattering). The energy or frequency of the 
Raman scattering is altered from that of the incident light by molecular 
bonds’ vibrational energy being decreased or increased from the inter
action of photon-molecule (Stokes shift) (Jones, Hooper, Zhang, Wol
verson, & Valev, 2019). The obtained spectra carry the basic molecular 
information about the sample or provide a fingerprint of certain food 
commodities (Tahir et al., 2019). In this methodological approach 
miniaturized sensors (CCD, CMOS, linear or 2D array, in some cases also 
InGaAs arrays) and ultra-compact modules integrating the laser source 
(785 nm or 532 nm) are already commercially available. Recent appli
cations of portable devices include the detection of food adulteration 
(Beganović et al., 2020; Du et al., 2020), assessment of foods’ texture 
(Chen et al., 2020), nutritional content (Krimmer, Farber, & Kurouski, 
2019), and authenticity and geographical origin (Liu, Chen, Shi, Yang, & 
Han, 2020; Yan, Xu, Siesler, Han, & Zhang, 2019). 

2.1. Perspectives in hardware development 

In the future tailored applications of optical technologies, hyphen
ations of multiple spectroscopy approaches or combinations with im
aging approaches are necessary. To the best of our knowledge, a 
portable optical device that combines all previously mentioned minia
turized spectral techniques has not been marketed yet. One approach 
combining visible, NIR, fluorescence spectroscopy was outlined by Groβ 
et al. (2019) and applied at prototype-stage by Weesepoel, Alewijn, 
Wijtten, and Müller-Maatsch (2020), detecting adulterations of extra 
virgin olive oils. All previous mentioned spectroscopic techniques may 
be coupled with imaging systems such as spectral imaging. The advan
tage that most of them are available in miniaturized version at 
prototype-stage, allows the forecast that easy-to-use, field ready inte
grated devices will be available in the very next future. These coupled 
systems (could) simultaneously acquire and link the spectrally deter
mined chemical information with spatial information of a sample. 
Thereby, the latter is obtained from the digital image and includes the 
shape and size, surface texture and color of a sample. Multiple appli
cations have been explored and applied such as the chemical and 
physical analysis of food samples, monitoring food processes, and food 
safety evaluation (Dong et al., 2019) as well as the characterization of 
single cells (Ma, Sun, Pu, Cheng, & Wei, 2019). Prominently UV-VIS and 
IR spectroscopy is linked, but recently also Raman chemical imaging was 
explored (Yaseen et al., 2017). Besides these hyphenations or coupling 
attempts, novel technologies such as MIR and far infrared spectroscopy 
(Su & Sun, 2019) as well as terahertz (Gowen, O’Sullivan, & O’Donnell, 
2012; Pawar, Sonawane, Erande, & Derle, 2013; Ren et al., 2019; Wang, 
Sun, & Pu, 2017) are under current development to be miniaturized and 
explored. 

Developments on the sensors and technology approaches, devices 
carrying optical spectroscopic technologies are novated to enable mea
surements in remote locations and rough environments. Novel casings 
and mechanics are water- or splash and dust-proof and robust after 
shaking or falling down and during temperature changes. As measure
ments should be cost-efficient the availability of low-cost device com
ponents such as light sources, detectors, control electronics, analysis 
software is part of the research. Furthermore, in line with the attempt to 
offer the possibility for measurements for everyone i.e., laymen (do-it- 
yourself sensing), it is needed to link personal devices like smartphones 
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to measurement tools and kits (Nelis et al., 2019), or directly use them as 
measurement tool (Rateni, Dario, & Cavallo, 2017). In order to perform 
actual implementation of spectroscopy in the coming years for control 
authorities and private entities, scientific developments target optical 
sensor hyphenation creating the universal optical sensor as well as data 
fusion, i.e., combining spectral data from different sensors, database 
transferability (i.e. calibration transfer) and open data and knowledge 
data exchange using for example a federated learning approach as 
depicted in Fig. 1 and outlined in the following sections. 

3. “The data handling”: current developments of software 
architecture to access and extract information from spectral data 

Despite the availability of numerous spectroscopic approaches, food 
sensing has many burdens. One critical aspect in spectral data analysis of 
food is the foods’ intrinsic heterogeneity. The conditions of a food 
commodity or raw material might differ due to differences in geographic 
origin, harvesting periods, processing or storage conditions and might 
even have differences within the same food sample. Such heterogeneity 
not only affects the results’ reproducibility of measurements, but above 
all impacts the storage and transmission capability of the resulting 
spectral data. These capabilities are crucial when the acquired spectral 
data from a given sample is sent to a central machine intelligence station 
that processes all the data (Callao & Ruisánchez, 2018). Current de
velopments of software architecture designed for automated food 
quality monitoring and spectral measurements are accounting for this 
aspect. Several examples, being open source tools or licensed ones are 
listed in Table 2. Beyond the heterogeneity of the foods’ spectral data 
acquired, the data commonly presents in addition a discrete variation 
within nominally equal samples. For example contamination in food 

does appear different in every sample when ambient conditions as well 
as the commodity properties influence toxin distribution or bacteria 
proliferation. To maintain stable and high classification performances 
also in the presence of the described noisy features and fault occur
rences, software data analysis architecture is part of research, embed
ding strategies for dynamic feature selection (DFS). A DFS algorithm 
selects in an unsupervised way for each new test sample the optimal 
feature set from an initial training set that will be used to train a clas
sifier for the sample prediction. Optimal features should carry most of 
the information contained in a training sample-set and exclude variables 
that are not informative. This results in a simpler model with improved 
discrimination or prediction capacity. Dai, Cheng, Sun, and Zeng (2015) 
reviewed multiple approaches of feature selection that are currently 
applied in the food industry. Nevertheless, the development or selection 
of the most appropriate approach for each model depends on the sam
ples, the size of the dataset, and the spectroscopic technology applied. In 
the heterogeneous scenario of food analysis, a unique approach is hardly 
the optimal one for any set of data features, thus, this is a matter of 
ongoing research. DFS has been successfully applied in some clinical 
scenarios (Mencattini et al., 2018; Mosciano et al., 2017) and also in 
food control (Lianou et al., 2019). 

In addition, another critical aspect current research projects account 
for is the presence of spurious measured data, i.e., the presence of any 
artifact in static images or spectral data. Spurious data, often denoted as 
outliers, can impact the decision system performance and introduce an 
unpredictable drift of classification results. To construct a more reliable 
and robust recognition model, approaches for data reduction strategies 
are implemented in turns over the training data (Ifrim, Iuga, Pop, Wal
lace, & Poulopoulos, 2018). An example is the presence of pixels in the 
digital image that are saturated towards extreme value for example due 

Fig. 1. Schematic figure of federated learning applied in food analysis. Data from an unknown sample coming from one or more instruments is send in the federated 
learning network. Here, sensors and their corresponding instrumental data in a specific database are represented by one or more network nodes. As an example, 
spectral images may be processed and by means of deep learning algorithms. After a machine learning decision strategy including reference method comparisons, the 
final response is generated to the initial node. 
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to overexposure. Those pixels may alter the values of some global de
scriptors extracted from the digital image. Therefore, descriptor values 
that are in the tails of the distribution extracted over the training dataset 
(i.e., outside the interquartile range) are eliminated. Data reduction is 
having an important role not only for static data analysis, but also for 
time-varying observation of food quality, i.e. for food monitoring (He, 
Sun, & Wu, 2014). Current developments cover the fact that any change 
in food commodity or the kind of contamination and the related dy
namics does require a sort of data adaptation process of the software 
platform. DFS is again a way to provide a robust tool for the analysis of 
food data along time. 

Last but not least, novel devices are equipped with software to access 
spectral data and give results tailored to the end-user. As most handheld 
spectroscopic approaches are now targeting laymen, suitable designs 
have been outlined in detail by Gardner and Green (2014) including a 
self-repairing option (Magna, Di Natale, & Martinelli, 2019). 

4. “The data transfer, fusion & exchange”: possibilities of 
combining, transferring and exchanging spectral information 
using machine learning approaches 

The perfect transfer from one instrument to another, for example 
from benchtop to portable devices, should include the re-use of already 
established spectral databases including the calibration with reference 
samples in statistically retained accuracy and precision. Workman 
(2018) reviewed multiple approaches, being conventional and uncon
ventional, and concluded that the differences between old and new in
struments may cause significant variations in the predicted results after 
the transfer. These variations may be mitigated by statistically aligning 
the instrument spectral profiles which is part of current research. In 
particular, relating data from wet-chemical reference methods or other 
non-spectroscopic data to the one predicted by spectroscopy remains 
challenging. Transfer of calibration between instruments with similar 
principles has been shown by Eliaerts et al. (2020) and by Salguer
o-Chaparro, Palagos, Peña-Rodríguez, and Roger (2013) in the field of 
pharmaceuticals and food, respectively. In addition a calibration trans
fer between instruments with differing principles was evaluated by Pu 
et al. (2018) for NIR spectrometry and hyperspectral imaging and 

Table 2 
Open source and licensed software tools for image analysis.  

OPEN SOURCE TOOLS 

Name Developer License Usage Functionalities Requested Skills Image 
analysis  

ImageJ National Institutes of Health 
and Laboratory for Optical 
and Computational 
Instrumentation at the 
University of Wisconsin, 
USA 

Open source 
Java-based 

GUI Image and video processing 
functionalities 

Java 
Programming 
skills for extended 
research usage 

Semi- 
automatic 

Schneider, Rasband, 
and Eliceiri (2012) 

Cell 
profiler 

Broad Institute of 
Massachusetts Institute of 
Technology, USA, and 
Harvard, USA 

Open Source 
Matlab based 

GUI Basic image processing 
functionalities 
and image measurements 

No programming 
skills 

Manual Lamprecht, Sabatini, 
and Carpenter (2007) 

Ilastik The Ilastik developers Open source GUI Basic segmentation and 
classification through Random 
Forest models 

No programming 
skills 

Semi- 
automatic 

Sommer, Straehle, 
Köthe, and 
Hamprecht (2011); 
The Ilastik developers 
(2020) 

Orbit N/A Open source N/A Built-in image analysis 
algorithms for tissue 
quantification using machine 
learning techniques, object/cell 
segmentation, and object 
classification 

No programming 
skills 

Semi- 
automatic 

Stritt, Stadler & 
Vezzali (2020) 

Icy Institut Pasteur and France- 
BioImaging, France 

Open source GUI Visualization, annotation and 
quantification of bioimaging data 

No programming 
skills 

Semi- 
automatic 

de Chaumont et al. 
(2012) 

LICENSED TOOLS 
Matlab ® The Mathworks Inc., USA Academy 

Licensed/ 
Commercial 

Inline 
programming 

Image/video analysis, 
visualization, segmentation, 
classification, measurement, and 
annotations 

Matlab language Automatic Mathworks (2020) 

AMIRA Zuse Institute Berlin, 
Germany Thermo Fisher 
Scientific Inc., USA 

Commercial GUI 3D and 4D data visualization, 
processing, and analysis 

C++ skills for 
extended 
functionalities 

Manual Stalling, Westerhoff, 
and Hege (2012) 

IMARIS Oxford Instrument plc, UK 
(Bitplane, Switzerland) 

Commercial GUI Visualization, segmentation and 
interpretation of 3D and 4D 
microscopy datasets 
Analysis includes cell counting, 
cell tracking, neuron tracing 
image segmentation, co- 
localization and 4D movie 
generation microscopy datasets 

Skills different 
according to 
specific tools 

Manual Imaris (2020) 

HUYGENS Scientific Volume Imaging, 
the Netherlands 

Commercial GUI Image processing and image 
analysis software for 
deconvolution, colocalization, 
object analysis and visualization. 
Supporting file formats from 
most major microscope 
manufactures 

Skills different 
according to 
specific tools 

Manual ScientificVolumes 
Imaging (2020)  
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between two similar matrices in different aggregation state by Pereira, 
Carneiro, Botelho, and Sena (2016). Another option for data transfer, 
which is under ongoing development, is the fusion of multiple data 
streams, thereby the same sample is measured by different instruments 
and the data combined to complete its description (see also Fig. 1). 
Callao and Ruisánchez (2018) and Borràs et al. (2015) reviewed mul
tiple ways to fuse data at low-, mid- or high-level. In low-level fusion, 
data from all instruments are concatenated sample-wise into a single 
matrix that has as many rows as samples analyzed and as many columns 
as variables supported by the respective instruments. Data fusion at 
mid-level performs a preprocessing of data by extracting principal or 
latent variables using for example Principal Component Analysis (PCA) 
or Partial Least Square-Discriminant Analysis techniques (Biancolillo, 
Bucci, Magrì, Magrì, & Marini, 2014). Finally, in high-level (or 
decision-level) fusion, classification or regression models are individu
ally constructed from each data source, and the results from each indi
vidual model are combined in a framework that is usually referred to as 
cooperative learning. By data fusion from different technologies, a 
transfer of classification results might be possible from one instrument 
or technology to another. As a different data fusion approach is suitable 
for every food product, desired target compound and optical device, its 
tackling is of great research interest. An example for data fusion is the 
combination of spatial information from imaging and spectral infor
mation from UV-VIS or NIR technology. Whereas spectral food data are 
crucial for the investigation of food composition at molecular and 
cellular levels, imaging information completes the data representation 
and may support the control of samples’ heterogeneity. Due to the huge 
amount of imaging data available, data reduction approaches such as 
PCA are developed to map the data into a domain with reduced 
dimensionality and maximum information (Del Fiore et al., 2010). 
However, this does not allow to extract and exploit the spatial correla
tion among the adjacent portion of the sample visualized. Therefore, 
Deep Learning (DL) architecture represents an important aid towards 
the analysis of image data, either static (single image acquisition) (Chen, 
Lin, Zhao, Wang, & Gu, 2014; Yu, Tang, Wu, & Lu, 2018) and variable 
over time. It offers the possibility to process large amounts of image data 
and to classify them according to a learning phase separately performed 
on data similar to those acquired. In a novel extended logic, the so-called 
transfer learning, DL allows using a pretrained network for example 
AlexNET (Alom et al., 2018) or ResNET (Wu, Shen, & van den Hengel, 
2019) to code the available image into a vector of numerical descriptors 
without a retraining step. Hence, machine learning may lead to “uni
versal” classification models that are not limited by the differences in 
hardware and sample sets. The strength of the cited approach is even 
more crucial when dealing with big data storage where re-training a 
network can be computationally prohibitive. Not less relevant, 
pre-trained networks have already learned to recognize more than 22, 
000 distinct categories from 15 million labelled images and hence 
represent a robust tool for independent data representation. Recent 
examples in food application of such networks can be found in soft-shell 
shrimp quality (Liu, 2020) or general food quality studies (Yiğit & 
Ozyildirim, 2018). The strength of such networks is the capability to 
retrieve from a given image the information that optimally represent it 
in an unsupervised manner, thus providing a sort of signature of the 
image that can be used for further processing such as image classifica
tion (Alom et al., 2018). In addition, the use of image data allows for 
advanced data transferring procedures in case image acquisition is done 
at different spatial resolutions in particular novel imaging systems can 
use improved spatial resolution thus generating images with different 
sizes. Image re-sampling and re-sizing, as well as super-resolution ap
proaches (Li, Hu, Zhao, Xie, & Li, 2017), permit to equalize data 
dimension in order to transfer old models to new data. The potential 
adaptation of a platform to diversified and changing scenarios is crucial 
also in context when large amount of (image or spectral) data have been 
already acquired and cannot be lost. However, the heterogeneity of large 
dataset acquired at different locations and times may represent a 

challenging aspect. More general, the huge amount of measured data 
already acquired represents knowhow to be saved and re-used. Data 
mining techniques (Garcia, 2013) may have a crucial role in the 
extraction of relevant information from the available dataset and the 
integration with newly acquired data. Such approaches may represent a 
valid alternative to re-formulate the data transfer & exchange paradigm. 
Instruments for food quality and monitoring change continuously from 
one locus to another within the same station, as technology progresses, 
leading to the exploiting of the novel more performing instruments. 

5. “The information and knowledge exchange”: possibilities to 
interchange knowledge and model information without sharing 
data (the actual database) 

Privacy, as well as computer memory constraints, represents a 
serious bottleneck for data sharing and knowledge exchange, thus, 
research activities are targeting to overcome it. The newly developed 
machine learning architecture, named federated learning (FL) or collab
orative learning represents a possible key solution to interchange 
knowledge and model information without sharing the actual database 
(Wang et al., 2019). In cooperation with blockchain technology, it al
lows validating the trustiness of the data along supply chains. FL trains a 
machine learning algorithm across multiple displaced centers where 
data are stored without exchanging data. The goal of current research is 
that the learned network is shared across the data acquisition loci and 
learned until it reaches acceptable results (Li, Sahu, Talwalkar, & Smith, 
2019). An example application of a federated learning approach is in 
next generation mobile phone predictors. Thereby, a predictor is trained 
in a distributed fashion, preserving the privacy of the sent data and 
reducing the network traffic. Remote devices periodically connect to a 
central server to train a global model. At each connection, local training 
on some devices’ non-identically-distributed user data is performed and 
updates are sent to the server. After incorporating these updates by the 
server, a new global model is distributed to other devices. This iterative 
training and updating process continues across the network. When 
convergence is reached or some stopping criterion is met it stops. 

The developed FL approaches only work when an efficient exchange 
of spectral data sets, and the clear understandable metadata associated 
with those spectral datasets, is properly standardized and facilitated. 
Therefore, the FAIR-data principle (Findable, Accessible, Interoperable 
and Re-usable) was developed and introduced in 2016, advocating the 
re-use of digital assets with an emphasis on machine implementation. 
The findability (or ‘FAIRification’) of data implies that metadata and 
spectral data should be made available in a format that is understood by 
both humans and machines and that automated indexing of datasets is 
possible. Once the data is found, the accessibility on where the data is 
located and how this data can be accessed needs to be cleared to ensure 
the security of data. As (inter)operability of data is often a tedious task, 
terms such as controlled vocabulary organized in a hierarchical fashion 
(ontologies) play an important role in combining data sets without sig
nificant (meta)data loss. This leads to the main goal of FAIR: the (re) 
usability of data, focusing on the quality of the metadata description so 
that they can be combined under different scenarios. The proper 
implementation of FAIR data is vital for FL networks to function in the 
future and to re-use the generated spectral data from different devices 
and industry and academia (Mons et al., 2017; Wilkinson et al., 2016). 
Developments including the FL strategy in combination with the FAIR 
approach might firstly solve privacy problems and data access rights and 
in addition, solve the issue of foods’ spectral data heterogeneity and the 
large amount of information displaced in different places. 

6. Conclusions 

The developments of the last years in sensor technologies and illu
mination sources and innovations in data handling, storage, accessing 
and transfer lead to miniaturized and portable versions that are 
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commercially available at decreasing cost and increasing performances. 
With the increase of device availability, also the number of spectral 
databases increased. However, most versions are no longer in use, due to 
the constant need for updating, aligning with new devices or device 
versions and a lack of handling procedure of all this data. Novel ap
proaches using machine learning, have been developed to tackle large 
amount of data and fuse multiple data streams, being spatial or spec
troscopic. Current research conducted on data accessibility and data 
sharing focuses not only on the usage of spectral databases from a sci
entific point of view but includes privacy and confidentiality constraints 
of industrial and governmental players. The possibility to apply meta
data analysis in combination or as an alternative to the universal ma
chine learning approach is hence followed up. Last but not least, the 
previously mentioned developments and perspectives are not only 
restricted to agriculture and food production (Beganovic, Hawthorne, 
Bach, & Huck, 2019; Power, Truong, Chapman, & Cozzolino, 2019). 
Novel, portable and increasingly sensitive devices are in need to be 
adapted as fast techniques to pre-screen samples also in mining and 
metal industry, environmental science, healthcare and pharmaceuticals 
(Ciza et al., 2019) as well as in motor- (Sales et al., 2019) and space 
science (Nelis, Elliott, & Campbell, 2018). 
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Dong, X., Jakobi, M., Wang, S., Köhler, M. H., Zhang, X., & Koch, A. W. (2019). A review 
of hyperspectral imaging for nanoscale materials research. Applied Spectroscopy 
Reviews, 54, 285–305. 

Du, X., Wang, S., Wang, P., Gu, Q., Xin, J., Zhang, Z., et al. (2020). Characterization of 
paraffin-waxed apples by Raman spectroscopy. Analytical Letters, 53, 217–227. 

Eliaerts, J., Meert, N., Dardenne, P., Van Durme, F., Baeten, V., Samyn, N., et al. (2020). 
Evaluation of a calibration transfer between a bench top and portable Mid-InfraRed 
spectrometer for cocaine classification and quantification. Talanta, 209, 120481. 

Ellis, D. I., Brewster, V. L., Dunn, W. B., Allwood, J. W., Golovanov, A. P., & Goodacre, R. 
(2012). Fingerprinting food: Current technologies for the detection of food 
adulteration and contamination. Chemical Society Reviews, 41, 5706–5727. 

Ellis, D. I., Muhamadali, H., Haughey, S. A., Elliott, C. T., & Goodacre, R. (2015). Point- 
and-shoot: Rapid quantitative detection methods for on-site food fraud analysis – 
moving out of the laboratory and into the food supply chain. Analytical Methods, 7, 
9401–9414. 

Esteki, M., Shahsavari, Z., & Simal-Gandara, J. (2018). Use of spectroscopic methods in 
combination with linear discriminant analysis for authentication of food products. 
Food Control, 91, 100–112. 

Garcia, A. B. (2013). The use of data mining techniques to discover knowledge from 
animal and food data: Examples related to the cattle industry. Trends in Food Science 
& Technology, 29, 151–157. 

Gardner, C., & Green, R. L. (2014). Identification and confirmation algorithms for 
handheld spectrometers. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry 
(pp. 1–18). 

Gowen, A. A., O’Sullivan, C., & O’Donnell, C. P. (2012). Terahertz time domain 
spectroscopy and imaging: Emerging techniques for food process monitoring and 
quality control. Trends in Food Science & Technology, 25, 40–46. 

Groß, B., Hintschich, S., Tosic, M., Bourgos, P., Tsoumanis, K., & Bertani, F. R. (2019). 
PhasmaFOOD - a miniaturized multi-sensorsolution for rapid, non-destructivefood 
quality assessment. In J. Beyerer, F. Puente León, & T. Längle (Eds.), OCM 2019 - 
optical characterization of materials: Conference proceedings (pp. 99–110). Karlsruhe, 
Germany: KIT Scientific Publishing, Karlsruhe.  

Hempel, J., Müller-Maatsch, J., Carle, R., & Schweiggert, R. M. (2018). Non-destructive 
approach for the characterization of the in situ carotenoid deposition in gac fruit aril. 
Journal of Food Composition and Analysis, 65, 16–22. 

He, H.-J., Sun, D.-W., & Wu, D. (2014). Rapid and real-time prediction of lactic acid 
bacteria (LAB) in farmed salmon flesh using near-infrared (NIR) hyperspectral 
imaging combined with chemometric analysis. Food Research International, 62, 
476–483. 

Hussain, N., Sun, D.-W., & Pu, H. (2019). Classical and emerging non-destructive 
technologies for safety and quality evaluation of cereals: A review of recent 
applications. Trends in Food Science & Technology, 91, 598–608. 

Ifrim, C., Iuga, I., Pop, F., Wallace, M., & Poulopoulos, V. (2018). Data reduction 
techniques applied on automatic identification system data. In J. Szymański, & 
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