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ABSTRACT

Aquatic ecosystems are affected by multiple environmental stressors across spatial and temporal scales.
Yet the nature of stressor interactions and stressor-response relationships is still poorly understood. This
hampers the selection of appropriate restoration measures. Hence, there is a need to understand how
ecosystems respond to multiple stressors and to unravel the combined effects of the individual stressors
on the ecological status of waterbodies. Models may be used to relate responses of ecosystems to environ-
mental changes as well as to restoration measures and thus provide valuable tools for water management.
Therefore, we aimed to develop and test a Bayesian Network (BN) for simulating the responses of stream
macroinvertebrates to multiple stressors. Although the predictive performance may be further improved,
the developed model was shown to be suitable for scenario analyses. For the selected lowland streams,
an increase in macroinvertebrate-based ecological quality (EQR) was predicted for scenarios where the
streams were relieved from single and multiple stressors. Especially a combination of measures increasing
flow velocity and enhancing the cover of coarse particulate organic matter showed a significant increase
in EQR compared to current conditions. The use of BNs was shown to be a promising avenue for sce-
nario analyses in stream restoration management. BNs have the capacity for clear visual communication
of model dependencies and the uncertainty associated with input data and results and allow the com-
bination of multiple types of knowledge about stressor-effect relations. Still, to make predictions more
robust, a deeper understanding of stressor interactions is required to parametrize model relations. Also,
sufficient training data should be available for the water type of interest. Yet, the application of BNs may
now already help to unravel the contribution of individual stressors to the combined effect on the eco-
logical quality of water bodies, which in turn may aid the selection of appropriate restoration measures
that lead to the desired improvements in macroinvertebrate-based ecological quality.

© 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

tus of freshwater bodies (Jackson et al., 2016; Piggott et al., 2015).
The combined effects of these multiple interacting stressors are,

The ecological status of water bodies is affected by multiple
stressors acting over multiple spatial and temporal scales (Allan
et al, 1997; Frissell et al, 1986; Roth et al., 1996), such as in-
creasing water temperature, changes in flow, reduction of morpho-
logical heterogeneity and increasing nutrient loads (Friberg, 2010;
Tockner et al., 2010). Moreover, these stressors may interact, having
synergistic, antagonistic or additive effects on the ecological sta-
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however, still poorly understood (Folt et al., 1999; Jackson et al.,
2016), since stressor-response relationships observed in controlled
experiments are specific to organisms, stressors and environments
and are therefore difficult to extrapolate to the field (Jackson et al.,
2016).

The lack of understanding of the combined effects of multiple
interacting stressors may also explain why knowledge of the effect
of specific management interventions on ecological water quality
is still limited (Palmer et al., 2005; Pander and Geist, 2013). Con-
sequently, a high proportion of restoration measures are ineffec-
tive, even now (dos Reis Oliveira et al., 2020; Palmer et al., 2010).
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Hence, to increase the effectiveness of restoration measures, we
first need to increase our knowledge of how ecosystems respond
to multiple stressors and to unravel the contribution of the indi-
vidual stressors to their combined effect on the ecological status
of waterbodies.

Model simulations provide the opportunity to relate the state
of an ecosystem to environmental changes as well as to restora-
tion measures and simultaneously provide understanding of the
underlying ecological interactions. Consequently, models may be
used to predict the effects of management interventions on ecosys-
tem states in space and time and thus provide valuable tools
for water management. Over the last decades, several ecological
prediction models have been developed, ranging from mechanis-
tic representations of environmental processes to food web mod-
els and statistical data-driven models (Janssen et al., 2015). For
the latter, techniques have been used such as decision trees, ar-
tificial neural networks, generalised linear and additive models,
fuzzy logic models and Bayesian Networks (BNs) (Pistocchi, 2018).
The construction of such statistical ecological prediction models
can be data-driven, knowledge-based or a combination of both
(Mouton et al., 2009; van Echelpoel, 2020). A review of the ad-
vantages and drawbacks of selected modelling techniques indi-
cated that BNs are promising tools for the combined application
of expert knowledge and ecosystem measurements (de Vries et al.,
2020a; van Echelpoel, 2020).

BNs are causal network models in which nodes depict (envi-
ronmental) factors and in which dependencies between nodes are
expressed as probabilistic relationships (McCann et al., 2006). The
main advantage of this type of model is that the full range of avail-
able knowledge on cause-effect relations can be used, originating
from experts, mechanistic modelling output, literature and exper-
imental and observed data (Landuyt et al., 2013; McCann et al.,
2006), integrating the scattered knowledge on cause-effect rela-
tions in water bodies. Moreover, in these models, samples with
incomplete datasets can still provide knowledge (Barton et al.,
2012). The uncertainty associated with the input data is explic-
itly accounted for, and the predicted outcome is reported as like-
lihoods (Uusitalo, 2007). In addition, BNs provide a visualisation
of the causal relationship between the predictors, which helps
with communication of the model. Limitations of this model type
are the lack of representation of feedback-loops, and the require-
ment for discretising continuous data (Uusitalo, 2007). However,
for evaluating stressor-effect relations in water bodies we con-
sidered that the numerous advantages of BNs outweighed these
drawbacks. The aim of the present study was therefore to develop
and test a Bayesian Network for simulating responses of stream
macroinvertebrates to multiple stressors. Since we anticipated that
stressor-effect relationships would be context-specific, model pre-
dictions were approached using water-type and region-specific re-
lationships (de Vries et al.,, 2020b). To this end, a BN model was
developed which included the links between macroinvertebrate-
based ecological quality and stream characteristics for a single wa-
ter type, the temperate, sandy lowland streams within the North-
western European plain. The availability of an extensive dataset
with measurements of multiple stressors and ecological responses
for Dutch lowland streams enabled us to develop this BN-model.
The developed model was then applied to predict the influence of
stream restoration management scenarios on ecological quality as
represented by macroinvertebrates.

2. Methods
2.1. Study area

The studied lowland streams were located on the ice-pushed
ridges in the Veluwe area in the centre of the Netherlands (Fig. 1).
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The land use in the catchments consisted of agricultural fields, ur-
ban areas and deciduous and coniferous woodlands. Mean annual
rainfall in the study area was 850 mm and daily temperature var-
ied between -16 and 29°C. The flow velocities in the groundwater-
and precipitation-fed streams varied strongly (10-80 cm/s). The
stream bottoms consisted of sand and gravel.

2.2. Macroinvertebrate and environmental data

The data was collected by the Dutch Water Authority ‘Vallei and
Veluwe’ during regular monitoring programmes over the period
1981-2017. In total, 208 sites in the upper courses of the lowland
streams were selected. At these sites macroinvertebrate abundance
data was collected as a part of regular monitoring programs. For
each macroinvertebrate sample the ecological quality ratio (EQR)
was calculated according to the Dutch assessment system, which
expresses the ecological quality of a water body (ranging from 0-
1.0) as a fraction of the reference situation (1.0) (Van der Molen
et al,, 2016). In addition, for each macroinvertebrate sample, the
mean preference score (ranging from 1-5) for several environ-
mental variables of all species present in that sample was calcu-
lated using relative abundance frequencies. To this end, an envi-
ronmental preference dataset was used (Verberk et al.,, 2012). En-
vironmental variables that were monitored at the same locations
and at the same moment as the macroinvertebrate samples in-
cluded water temperature, dissolved oxygen concentration, stream
velocity, shading, total phosphorous concentration, biological oxy-
gen demand, chlorophyll concentration, stream gradient, silt cover,
macrophyte cover, coarse particular organic matter cover, and the
presence of wood and gravel. However, not all variables were mea-
sured at all sites and on all occasions and therefore only envi-
ronmental monitoring data was included when macroinvertebrate
abundance data and at least a single environmental variable were
monitored simultaneously. This resulted in a set of 933 samples
(Fig. 1).

2.3. BN theory

In short, BNs consist of causal network structures in which
nodes, representing important system variables, are related to each
other through arrows, representing dependencies (Charniak, 1991).
The state of a node is determined by the states of its parent nodes.
This approach is described by Bayes’ theorem, in which prior prob-
abilities are updated given the likelihood of the data to generate a
posterior probability distribution (Ellison, 2004). The type of rela-
tion between a node and its parent nodes, as well as the associated
uncertainty, are recorded in a conditional probability table (CPT).

CPTs can be based on multiple types of data, including ex-
pert knowledge, process-based modelling output, literature-based
values, experimental and observational data. Observational data is
preferred, but when gaps are present in the dataset, other types
of evidence may be used to quantify the relationships between
the nodes. CPT relations that are initially based on expert knowl-
edge can also be trained by using field observations. Hence, BNs
have the advantage of being able to deal with incomplete datasets,
and of providing ways to combine different sources of knowledge
(Uusitalo, 2007).

A BN captures relations between a set of variables, which may
be uncertain, probabilistic, or imprecise. When the predictions are
used in decision making, the explicit reporting of the associated
uncertainty and the variability in the model results provides an
advantage of this approach over deterministic methods that lack
this reporting (McCann et al., 2006). Another advantage of BNs
is that calculations can be made in the two directions of the ar-
rows between the nodes: the values of child nodes can be calcu-
lated given the values of the parent nodes and vice versa. Conse-
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Fig. 1. Study area with sampling sites in the selected streams.

quently, BNs can be used to predict the outcome of scenarios given
a set of causal variables, but also as diagnostic tools to deduce the
probabilities of causes given the observed consequences, by using
the dependencies in the model structure backwards (Barton et al.,
2012; McCann et al., 2006).

2.4. Model development

A five-step model development process was adopted (Marcot
et al. 2006) following several guidelines (Aguilera et al., 2011;
Chen and Pollino, 2012; Landuyt et al., 2013). 1) Model struc-
ture: An influence diagram was set up showing the causal relations
between the environmental variables and the macroinvertebrate-
based EQR. 2) Model parametrisation: The CPTs picturing the rela-
tionships between the nodes in the model structure were defined
using expert knowledge, and model-based and literature-based re-
lationships. In this step also continuous variables were discretized.
3) Model training: The CPTs were trained using observations. 4)
Model testing: Model performance was tested using independent

observations. 5) Model application: A final model version for ap-
plication was trained using all available data.

Model structure (step 1)

The constructed BN represents a causal network of the envi-
ronmental factors that influence macroinvertebrate assemblages.
The chosen outcome variable was the EQR. The development
of the early stages of the model structure was described in
Skeffington et al., 2014s. Based on literature and input from stream
macroinvertebrate experts, the key environmental factors that in-
fluence the EQR in this specific water type and region were se-
lected, including temperature, oxygen concentration, flow velocity,
food quality and substrate variability (Sandin and Johnson, 2004;
Verberk et al., 2012; Verdonschot et al., 1998). These factors score
the response to the environmental variables on a scale from 0-1,
thus giving the user the opportunity to see which stressor is most
limiting for a high EQR. The optimal values of these key factors
were based on water-type and region-specific preferences of the
reference macroinvertebrate assemblage (Verdonschot et al., 2000).
Next, predictors of those environmental variables that span local
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Fig. 2. Model structure of the BN relating the macroinvertebrate-based EQR to environmental variables. BOD: Biological Oxygen Demand, CPOM: Coarse particular organic

matter, DO: Dissolved oxygen concentration, FQ: Food quality.

to regional spatial scales were included, resulting in the model
structure depicted in Fig. 2. The selection of the included variables
was made to cover all relevant processes from reach- to catch-
ment scale, but at the same time aimed to limit model complex-
ity. In addition to the environmental variables, five nodes were
included that represent the average preference score of the ob-
served macroinvertebrate assemblage for the variables flow ve-
locity, CPOM, silt, gravel and wood. These scores are based on a
preference database that lists species-specific preferences for envi-
ronmental variables, based on experimental and distribution data
(Verberk et al., 2012), and range from 1 (low preference) to 5 (high
preference). Inclusion of these nodes served as an additional source
of information about the quality of a water body based on the pref-
erences of the local macroinvertebrate assemblage.

Model parametrisation (step 2)

Initially, the relationships between the nodes in the model
were based on literature, mechanistic modelling outcomes and ex-
pert judgement (Table A.1). When possible, a relationship was ex-
pressed as an equation. Discretisation was either based on equal
intervals or on equal frequency to assure an even spread of data
(Chen and Pollino, 2012). The number of discretisation classes for
each node was either 4, 5 or 6, balancing a minimum resolution
to picture environmental processes with sufficient data availability
per class.

Training and testing of the network (step 3 and 4)

Step 3) and 4) were combined in a k-fold cross-validation con-
text (Marcot, 2012). The dataset was split into 3 parts, of which
2 parts were used for training the network and 1 part for testing
the network performance. For a stable validation outcome among
trained model variations, subsets of data for cross-validation can
be made using stratified classes. Although this was not applied
here, the subsets of data did have a similar distribution of EQR
classes. Model training and testing was done for 3 consecutive
runs, where in each run another part of the dataset was used
for testing. The resulting metrics were then averaged for over-
all model performance. Cross-validation was performed on sev-
eral model variations to test the influence of differences in struc-
ture and parametrisation on the prediction performance, i.e. dis-

Table 1
Tested model settings.

Model setting Tested settings

Number of discretisation classes
Discretisation method
Trait preference nodes

4,5, 6
Equal Interval, Equal Frequency
Present, absent

cretisation method, number of discretisation classes and the inclu-
sion/exclusion of nodes representing macroinvertebrate preference
data (Table 1). Sensitivity analysis of the network was performed
to identify the factors that had the strongest influence on the tar-
get node.

It was thought more valuable to compare the model results as a
continuous EQR-value to observed continuous values, as the use of
EQR classes would not be informative enough in practice. Conven-
tional metrics such as the number of correctly classified instances
only use the classified output of the model, expressed as discrete
values, and are therefore less suitable for testing the performance
of the model in predicting the actual continuous EQR. Therefore,
in this study, performance was tracked using the correlation be-
tween the observed and predicted EQR-scores (Marcot, 2012), al-
though the performance might be more strictly assessed than by
using class-based metrics. The EQR scores used were expected val-
ues predicted by the target node, which is the average of the dis-
cretized classes weighted by the probability of occurrence.

To develop and test the BN model, the Netica BN software was
used as a modelling shell (Norsys, 1998). This software provides a
graphical user interface, can handle input of continuous data, pro-
vides ways to perform sensitivity analysis and can work in batch
mode to more easily run the model for multiple sites.

Scenario analysis (step 5)

Based on the performance analysis, the best performing model
variation was selected. Next, this model was trained with all avail-
able data (Marcot, 2006) (Table A.3) and subsequently applied to
predict the influence of stream restoration management scenarios
on macroinvertebrate-based ecological quality. To this end, sites
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Table 2
Restoration scenarios. T: Temperature, S: Shading, V: Flow velocity, TP: Total
phosphorous concentration, CPOM: Coarse particular organic matter, Sub:

Substrate.
Scenario Stressor alleviation
T Decrease temperature to 10°C
S Increase shading to 100%
\Y Increase flow velocity to 0.5 m/s
TP Decrease TP to 50 pg/L
CPOM Increase CPOM cover to 70%
Sub Add presence of wood and gravel
T+V Adjust temperature and velocity
T+CPOM Adjust temperature and CPOM
T+Sub Adjust temperature, wood and gravel

S+V Adjust shading and velocity
S+CPOM Adjust shading and CPOM
S+Sub Adjust shading, wood and gravel
V+TP Adjust velocity and TP

V+CPOM Adjust velocity and CPOM

V+Sub Adjust velocity, wood and gravel

TP+CPOM Adjust TP and CPOM

TP+Sub Adjust TP, wood and gravel

CPOM+Sub Adjust CPOM, wood and gravel

All All of the above scenarios combined
Table 3

Performance of model variations from the model evaluation as spearman rank cor-
relation between observed and predicted EQR scores. Correlations are averaged over
three pairs of training & test data sets. For all correlations p<0.05. Trait preference
nodes indicate preference for environmental factors as indicated by the observed
assemblage.

Number of Trait preference
classes nodes included Discretisation method
Equal interval Equal frequency

4 N 0.25 0.26

Y 0.24 0.28
5 N 0.27 0.26

Y 0.27 0.29
6 N 0.25 0.32

Y 0.27 0.35

were relieved from either one or multiple stressors (Table 2), in
which only combinations of scenarios that targeted at least two
different key factors were considered. A comparison was made be-
tween the effect of removing single and multiple stressors per
stream or stream stretch.

3. Results

The first steps in developing the model were constructing
the network structure and then informing it with literature- and
expert-based knowledge (step 1 and 2). In the third step, the
knowledge-informed network was trained using actual monitor-
ing data. Training the network with monitoring data resulted in
adjusted probabilities, directly affecting 17 nodes, with a maxi-
mum change in probabilities of 60%. For instance, there was a rel-
atively high number of high-gradient streams in the dataset. Con-
sequently, the corresponding probabilities were adjusted such that
for any new datapoint without observations for stream gradient,
the model assumed a higher prior probability that it is a high gra-
dient stream. This in turn altered the prediction of the status of
the target node, the ecological quality expressed by the EQR. This
adjustment is reflected by the larger bar in the top right node of
Fig. 3b compared to Fig. 3a.

In step 4 of the model development, the network was tested
using a part of the dataset applying a 3-fold cross-validation. The
performance of the tested model variations (Table 3) was ex-
pressed as correlations between the observed and the predicted
EQR scores and showed scores up to 0.35, expressing a relatively
poor predictive performance. The model variation performing best
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was obtained by incorporating 6 discretisation classes, using equal
frequency discretisation, and including the trait preferences nodes.

The sensitivity analysis shows the influence of the environ-
mental factors on macroinvertebrate-based EQR, the target node,
in decreasing order (Fig. 4), revealing that temperature, velocity
and CPOM had the strongest influence, whereas the factors macro-
phytes, stream gradient and total phosphorous concentration had a
very limited influence.

This best performing model variation was subsequently applied
to compare the model EQR predictions with the observed EQR per
stream (Fig. 5), showing that in half of the cases, the EQR was pre-
dicted well.

This concerned mainly streams with a relatively low EQR. In
contrast, in the other half of the streams, having a relatively high
observed ecological water quality, the predicted EQR was lower
than the observed EQR. In these underpredicted cases, either the
model judged the environmental variables too severely, or the ob-
served EQR was overrepresenting the actual ecological quality, as
a result of a too optimistic underlying assessment system. To gain
more insight into these underpredictions, the two most deviating
cases, the Zwaanspreng and Egelbeek, were considered in more
detail. To this end, the average preference score of the macroin-
vertebrate assemblage was calculated for each sample for the fac-
tor flow velocity, one of the most influential environmental vari-
ables (Fig. 4) and the only factor for which enough preference data
was available (Fig. 6). The mean flow velocity preference scores for
these samples was relatively high (mean preference score: 3.6 out
of 5), and also the flow velocity was generally high (mean 0.31
my/s). Likewise, the observed EQR was also high (mean 0.81). This
points to the model having underpredicted the EQR of these sites,
based on the factor flow velocity. However, flow velocity is only
one of the factors determining the EQR and therefore, also other
factors might have contributed to the underestimated EQR. How-
ever, as there is insufficient data available for the actual assem-
blage preference for the other environmental factors, we could not
evaluate the contribution of these factors to the underpredictions
of the EQR.

In the scenario analysis (step 5), the model was used to predict
the effect of relieving the stream from single and multiple stressors
on the target node, the EQR. For all streams combined, significant
differences in EQR were observed when compared with the current
conditions (Fig. 7a). Yet, for scenarios involving the relief of a sin-
gle stressor, more negative than positive effects were observed. In
contrast, when a combination of stressors was removed, the ma-
jority of scenarios showed positive effects on the EQR. In some of
the streams, the effects of taking away the stressors could not be
predicted (not shown), which might be due to inconsistencies be-
tween the observed and the scenario-based variables in the model,
where nodes receive contradicting input. When the scenario effects
were considered per individual stream, there was a high variation
in the results (Fig. A1). Nevertheless, for half of the streams clear
management effects were still observed. To illustrate this, the Hi-
erdense beek and Tongerense beek were considered in more de-
tail, because these streams showed the clearest effects of stres-
sor relief and had the largest dataset, respectively. Moreover, the
specificity of the predictions was increased when the samples were
grouped in stream stretches that represent a specific waterbody
subtype within similar surrounding conditions, as can be seen for
the upstream stretch of the stream Hierdense beek (Fig. 5). For
this stretch of the Hierdense beek and for the stream Tongerense
beek several positive effects of management scenarios were ob-
served (Fig. 7b, 7c). Relieving the stream from most single stres-
sors and stressor combinations increased the EQR. In contrast, sce-
narios involving an increase in velocity showed negative effects on
the EQR, except when this measure was combined with increased
CPOM cover, where a strong positive effect was seen. Especially the
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Fig. 3. BN model for relating the macroinvertebrate-based EQR to environmental variables a) before and b) after training with monitoring data. Node bar plots describe the
prior probabilities of states. For node colours, see Fig. 2. Node states are listed in Table A.2.

combined approaches that increased CPOM cover and flow velocity
or CPOM cover and substrate quality (wood and gravel presence)
had a positive effect on the mean EQR of both streams.

4. Discussion

The aim of our study was to develop and test a Bayesian
Network for simulating macroinvertebrate-based ecological water

quality based on the responses of stream macroinvertebrates to
multiple stressors. The model was developed for a specific wa-
ter type in a single region, where multiple stressors affected
the stream ecosystem quality. Although surrounded by substantial
margins of uncertainty (as seen in Fig. 7), the BN clearly showed
the positive influence of restoration measures on the ecological
quality of the studied lowland streams. Below we will discuss the
performance of the BN in the scenario analyses, the complexity of
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Fig. 4. Sensitivity analysis for the best performing model variation. For abbrevia-
tions, see Table 2. 4.1. BN model development

BNs are promising as tools in restoration management, as they
offer a way to include expert knowledge with associated uncer-

1.00- *% Fkkk Kkkk Tk *hkk Fhkk *hkk *kk Kkkk

0.75- b
m —
8 | E3 Observed
] ] Q T B3 Predicted
0.50- o o
|
°
. °
°
0.25- ° °
°
°
°
' ' ' ' . . . ' ' ' ' . . . ' '
NS NS s s Q NS NS NS NS s Q e Ns
& & & & & & & & & & & & & & & & &
R & S RS S S & & S N '\ N
& 2 & ) ) ) N ) & 2 ) 52 X 2 & KR @
A & & & & & o & NS & 3 & 3 \& A 'S S
3 L & & & & K & &£ P & & & e o @ <«
NS & & & e‘}‘\ & N & S RS & & & /‘/Sb
2N N M AN & & &
o & Q
o AS) @
& 2 s
& &
) &
S &
8
Stream

Fig. 5. Comparison of mean EQR model predictions and mean EQR observations for the studied streams. Boxes are inter-quartile ranges (IQR, 25™ to 75™ percentile) with
whiskers extending to -/+ 1.5 * IQR. Statistical pairwise differences were calculated using Wilcoxon test, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001.
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tainties in combination with monitoring data and output from
process-based modelling. In addition, the explicit expression of the
associated uncertainty and the clear visualisation of the causal
model structure are advantages of this technique, which make
it a suitable tool to support water managers in decision making
(Barton et al., 2012; Uusitalo, 2007). However, to be able to train
the knowledge-informed network using observations, for each pair
of connected nodes, there should be a set of data available that
covers the full range of all possible combinations of node states
(Cain, 2001). This is a requirement which may be difficult to com-
ply with in practice, especially when the focus is on a specific wa-
ter type.

In the development of our BN model, choices had to be
made to deal with the inherent complexity of aquatic ecosys-
tems. To this end, the main predictors of the macroinvertebrate-
based EQR were selected. However, there was a trade-off between
the desired model complexity and the availability of training data,
where a lack of data would decrease model performance (see also
Marcot et al., 2006). Hence, to select the optimal model varia-
tion, multiple model structures and parameterisations were tested.
In the comparison of these slightly adjusted models, equal fre-
quency discretisation gave better predictive performance than dis-
cretisation based on predefined class boundaries (however, com-
pare Boets et al., 2015). Although all discretisation methods imply a
simplification of continuous data (Aguilera et al., 2011), using equal
frequency discretisation ensures that each class of a node is repre-
sented equally in the data, which supports a better training of the
conditional probabilities in the network. Also, the inclusion of the
preference nodes slightly improved the predictions.

Our results showed the impact of restoration measures in the
scenario analysis compared to the current situation, but the over-
all absolute performance of the BN model was still limited. Es-
pecially for streams with a high observed ecological quality, the
EQR was underpredicted by the model. This might be partly due
to gaps in the dataset, consequently, it was not possible to train
each knowledge-based CPT with observed data (Table A.3). A pos-
sible explanation may also be that the model only predicts the ef-
fects of changes in environmental factors on macroinvertebrates,
whereas in reality, dispersal and biotic interaction filters also de-
termine the macroinvertebrate assemblage composition and there-
fore the ecological quality of a specific site (Poff, 1997). In addi-
tion, the interactions between environmental factors are not com-
pletely understood and cannot be fully incorporated. Moreover,
the model is static and therefore assumes that the assemblage
is in equilibrium with the environmental conditions at each site
(Austin, 2002), but this is not always the case (Belyea and Lan-
caster, 1999; Wiens, 1984). Together, these complexities, which are
not well understood, could have influenced the performance of the
model.

Therefore, the current model is not yet thought to be accept-
able for application as such, given that predictions are not yet in
accordance with the observations. With a more complete dataset,
testing of additional model variations and an increased insight in
stressor interactions to improve model relations, this model type
might be further applied as a tool in restoration management.

4.2. Multiple-stressor effects on macroinvertebrate-based ecological
quality

Waterbodies are generally subjected to multiple stressors
(Birk, 2018). This creates a complex task for water managers who
aim to improve the ecological status of stream ecosystems. In ad-
dition, stressor interactions may take place that either enhance the
added effects of additional stressors (synergism) or decrease these
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combined effects (antagonism) (Folt et al., 1999). Such interactive
effects are specific to stressors, organisms and environments and
consequently are difficult to predict (Jackson et al., 2016). With this
added complexity, simulating ecological quality remains a complex
task, as our study showed.

Despite this complexity, the present BN scenario analyses
showed that ecological quality can be improved when the streams
are relieved from specific stressors or combinations thereof,
whereas other restoration scenarios may prove to be less effec-
tive. For the studied streams, the strongest positive effect resulted
from increasing flow velocity in combination with the presence of
CPOM, whereas only improving flow velocity yielded no positive
effect. This may be explained by the interaction between flow ve-
locity and CPOM: only increasing stream velocity would not safe-
guard the variation in flow required for patches of coarse mate-
rial to persist, providing necessary habitat for stream organisms
(de Brouwer et al., 2019). To gain more insight in the interaction
between flow velocity and CPOM cover, these key environmen-
tal factors could be included in the network in more detail than
they are now. The added value of combining restoration scenarios
was also observed for the scenarios that enhanced the presence of
wood and gravel substrate and the cover of CPOM. In the scenarios
where the streams are relieved from the individual stressors, al-
ready a positive impact is seen, but when the stream is relieved
from both stressors simultaneously, the macroinvertebrate-based
ecological quality improves even more than expected based on the
contributions of the single stressors, which could point at a pos-
itive synergistic interaction of stressor relief. Similarly, such inter-
active effects on macroinvertebrates have been observed for other
environmental stressors (Beermann et al., 2018; Jackson et al.,
2016). Yet, for the other combined scenarios in the present study
where multiple stressors were adjusted, no interactive effects were
observed. Indeed, also for other water bodies it was reported that
additive effects of multiple stressors prevail (Gieswein et al., 2017).
However, the current model is partly knowledge-informed and not
completely based on data. This is especially the case for the target
node, where the relationship picturing the combination of multiple
stressors into a combined response was based on expert knowl-
edge.

To better quantify the interactions between the stressors of
interest, additional statistical analyses could be carried out on a
more extensive dataset (Feld et al., 2016; Glendell et al., 2019).
In addition, experiments may help to disentangle the interactive
effects of multiple stressors (Elbrecht et al.,, 2016; Verberk et al.,
2016). Only when we have more knowledge about the nature and
interactions of stressor-response relationships for specific species
and complete assemblages, can we develop modelling of multi-
ple stressor impacts further. In turn, the application of models can
show us where these knowledge gaps persist and where additional
experiments might be needed to better understand underlying pro-
cesses. Consequently, BNs and other approaches are complemen-
tary in their contribution to an increase of the understanding of
multiple stressor effects.

Apart from the interaction between stressors, other studies
showed that choosing measures based on identifying multiple
stressors covering the entire catchment proved to be more effec-
tive (dos Reis Oliveira et al., 2020; Feld et al., 2011; van Puijenbroek
et al., 2019). This illustrates the significance of simultaneously con-
sidering multiple stressors over multiple scales for effective stream
restoration.

In conclusion, the present model exercise demonstrated that
applying different scenarios enhances the understanding of the
effects of combinations of measures on macroinvertebrate-based
ecological quality and may aid in selecting and prioritizing the
most promising restoration measures, as discussed below.
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4.3. BNs as tools in restoration management

Nowadays, in the practice of stream restoration, the selected
measures are still strongly based on assumptions rather than
proofs of their positive effects on the ecological status of stream
ecosystem (dos Reis Oliveira et al., 2020), which was the main mo-
tivation to perform the present study. The application of the cur-
rent BN model indeed enhanced the insights into the possible ef-
fects of management scenarios on the ecological quality as repre-
sented by macroinvertebrates. Hence, these model predictions may
be used to inform water managers which measures to prioritize
in restoration management to effectively alleviate stress. This in-
creases the chance that the applied restoration measures do in-
deed lead to the desired improvement in the ecological status
of stream ecosystems. Whereas we used the BN model to show
the relative impact of (combinations of) restoration measures on
macroinvertebrate-based ecological quality, such models can also
be used ‘backwards’ in a diagnostic approach to find causes for ob-
served symptoms (Feld et al., 2020; Trigg et al., 2000).

Ideally, a model performing well, tailored to the study area,
would give insight into which environmental factors would pro-
duce most effect. For the manager, the next step would be to iden-
tify how these variables might be targeted, by linking these to ac-
tual restoration measures. However, this prioritisation is often not
just based on the outcome of the model. In these scenario analy-
ses, the use of site-specific knowledge would permit the manager
to decide which variables to prioritize, for example, knowledge of
the possibility and cost of certain measures, and of restoration ef-
forts and disturbances that have taken place in the past.

As shown here, scenario analyses can be especially informative
in situations where multiple stressors are acting. In the case of a
single dominant stressor, a specific measure may be more easily
selected, but for a situation with a more even contribution of mul-
tiple stressors, selecting and prioritizing restoration measures may
not be straightforward. In these cases, scenario analyses may help
to choose a combination of measures to alleviate the pressure on
the ecosystem and to improve the ecological water quality.

The current model was designed and trained for a single area
and water type. When applied to other areas, the main model
structure can still be used as a starting point, although the choice
for key environmental factors, parametrisation of the CPTs, calibra-
tion and validation should be carried out in a way tailored to the
water type and region of interest.

Ultimately, in the application of BNs, challenges remain with
the abovementioned complexities. In addition, Kaikkonen et al.
(2021) list the remaining challenges of BNs used in environmental
management, such as models lacking validation, unclear discretisa-
tion methods, and lack of clarity about the source of expert knowl-
edge. Indeed, most BN applications fail to test the predictive ability
of the model (Death et al., 2015). As described here, discretisation
and validation of the model outcomes is not straightforward. Bet-
ter reporting of such challenges associated with these technical as-
pects may therefore improve future robustness of BN applications.
In addition, recent technical developments might further increase
the possibilities of BN applications, such as the use of hybrid net-
works that can represent continuous variables without the infor-
mation loss associated with discretisation (Kaikkonen et al., 2021).
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The success of applying BNs for similar purposes in the future
depends on the availability of high-quality data and the possibility
to include a more fundamental understanding of the complexity of
ecosystems, with context-specific knowledge on how interactions
between multiple stressors affect macroinvertebrate assemblages.
The current approach has contributed to an increased understand-
ing of the complexity of these aquatic ecosystems. Moreover, our
study showed how BNs can be used in a scenario analysis to select
and prioritize the most promising restoration measures.

5. Conclusions

In this study, the application of BNs for simulating the effects
of multiple stressors on macroinvertebrate-based ecological water
quality was tested. Although the predictive performance can be
further improved, our application illustrated how these models can
be used to increase our knowledge of how ecosystems respond
to multiple stressors. To make predictions more robust, a deeper
understanding of stressor interactions is required. Also, sufficient
training data should be available for the water type of interest.
Still, BNs allow us to make steps in unravelling the contribution
of the individual stressors to their combined effect on the ecolog-
ical quality of water bodies. This in turn may aid the selection of
appropriate restoration measures that lead to the desired improve-
ments in ecological water quality.
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Table A1l

Node description, type and equation. E: Expert knowledge-based relationship, L: literature-based, M: relation taken from process-based model. Clip is a Netica function, returning x unless x<min, in which case it returns min,

Oor X>max, returning max.

Node name (unit)

[Abbreviation] Node description Node type Knowledge base CPT equation
Shading (%) [S] Percentage of the river Input NA
area which is shaded
Air temperature (°C) [Ty ] Mean maximum July Air Input NA
Temperature
Flow velocity (m/s) [V] Flow velocity Input NA
Stream gradient (m/km) Stream gradient Input NA
[Ser] )
Macrophytes (%) [M] Cover percentage of Input E M = ((-55+ 52) = (clip(0, 1, (555))) * (clip(0,1, (=2V +2))) )* 100
Macrophytes
Organic load (mg 02/L) Biological Oxygen Demand Input E OL= TWT‘ + 5‘%0 + %
[or]
Max. DO (mg/L) [DOpax] Maximum Dissolved Input L (Chapra, 1997) DO_Max = 14.6096 — (0.40455 % Tyater) + (0.0080231 # Twater2) — (0.0000794339 * Tyarer®)
Oxygen at a given
temperature
DO (mg/L) [DO] Actual Dissolved Oxygen Input L (Chapra, 1997) DO = DOyax — OL +2.66 V057 + M _ 0.00266A
Concentration
Temperature (°C) [Ty] Water temperature Input M (Bartholow, 2002) Tv = 4.81 — 0.0716S + 0.822 Ty,
Algae (g chl-a/L) [A] Chlorophyll concentrations  Input E A = 350 (clip(0, 1, (&) = (—(55) + (%)) * (m))lj
P-tot (ng/L) [TP] Total phosphorus Input NA
concentrations
Silt (%) [Si] Cover percentage of silt Input E Si= (—80V +40) + clip(-10, 10, (-15Sgr + 10))
CPOM (%) Cover percentage for Input E CPOM = (—(200V) +105) + clip(-10, 10, (—(15Sgr) + 10))
Coarse Particulate Organic
Matter
Gravel [G] Presence of gravel Input NA
Wood [W] Presence of wood Input NA
Macroinvertebrates - Aggregated suitability Key factor  E Msyp = ((1 — 0.5 - oM ) % (1—(Si/100)) = (clip(0,1,W)) = (clip(0, 1, G)))O'25
Substrate [Mgy;] score of substrate
Macroinvertebrates - Aggregated suitability Key factor E My = clip(0,1, (4V -0.2))
Velocity [My] score for flow velocity
Macroinvertebrates - Food  Aggregated suitability Key factor E Mg = CPOM/100
Quality [Mgq] score of food quality
Macroinvertebrates - Aggregated suitability Key factor E Mpo = clip(0, 1, (DO/7))
Dissolved Oxygen [Mpo] score of dissolved oxygen
concentration
Macroinvertebrates - Aggregated suitability Key factor  E My = clip(0,1, (-(3) +2))
Temperature [Mr] score of temperature
02
Macroinvertebrates [M] Aggregated suitability Final E M= ((MT * Trapesar) * (Mbo * Trapesmn) * (MFQ * W&qu)) * (My * Trapismy ) * (Msus * m))

score for
macroinvertebrates, taking
geometric mean and
applying weight to lower
values.
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Table A2
Overview of nodes and node states for model version performing best (using equal frequency discretisation)
Node name State
1 2 3 4 5 6
Shading (%) <16.6 16.6-33.2 33.2-49.8 49.8-66.4 66.4-83 >83
Air temperature (°C) 10-13 13-16.6 16.6-19.9 19.9-23.2 23.2-26.5 >26.5
Flow velocity (m/s) <0.02 0.02-0.1 0.1-0.15 0.15-0.25 0.25-0.33 >0.33
Macrophytes (%) <16.6 16.6-33.3 33.3-49.8 49.8-66 66-83 >83
Organic load (mg 02/L) 0-0.7 0.7-1.05 1.05-1.62 1.62-2 2-2.79 >2.79
Max. DO (mg/L) <83 8.3-9.6 9.6-10.9 10.9-12.2 12.2-13.5 >13.5
DO (mg/L) <6.8 6.8-8 8-9 9-9.88 9.88-10.7 >10.7
Stream temperature (°C) 1.4-9.2 9.2-10.5 10.5-11.5 11.5-12.9 12.9-143 >14.3
Algae (pg chl-a/L) <58 58-117 117-175 175-233 233-292 >292
P-tot (pg/L) <40.1 40.1-50.1 50.1-75.1 75.1-100 100-180 >180
Silt (%) <20 20-40 40-60 60-80 >80
CPOM (%) <20 20-40 40-60 60-80 >80
Stream Gradient (m/km) 0-0.5 0.5-1 >1
Gravel Present Absent
Wood Present Absent
Velocity preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8
CPOM preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8
Silt preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8
Gravel preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8
Wood preference <0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8
Macroinvertebrates (Sub) <0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) >0.8 (Good)
Macroinvertebrates (V) <0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) >0.8 (Good)
Macroinvertebrates (FQ) <0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) >0.8 (Good)
Macroinvertebrates (DO) <0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) >0.8 (Good)
Macroinvertebrates (T) <0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) >0.8 (Good)
Macroinvertebrates <0.2 (Bad) 0.2-0.4 (Poor) 0.4-0.6 (Moderate) 0.6-0.8 (High) >0.8 (Good)
Table A3

Number of cases available per node to train model relations. Counted are the number of
cases where an observation was available for the node of interest and all of its parent

nodes.

Node

Number of cases available
for training

Shading (%)

Air temperature (°C)
Flow velocity (m/s)
Macrophytes (%)

Organic load (mg 02/L)
Max. DO (mg/L)

DO (mg/L)

Stream temperature (°C)
Algae (ug chl-a/L)

P-tot (ng/L)

Silt (%)

CPOM (%)

Stream gradient (m/km)
Gravel

Wood

Velocity preference
CPOM preference

Silt preference

Gravel preference

Wood preference
Macroinvertebrates (Sub)
Macroinvertebrates (V)
Macroinvertebrates (FQ)
Macroinvertebrates (DO)
Macroinvertebrates (T)
Macroinvertebrates

59
0
722
17
1

0

1
916

903
289
320
930
191
287
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Fig. A1. Model predictions of restoration scenarios for a selection of streams. For scenario abbreviations, see Table 2. CC gives the model predictions for the current condi-
tions.
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