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Abstract

The phenomenon that organisms can distinguish genetically related individuals from

strangers (i.e., kin recognition) and exhibit more cooperative behaviours towards their

relatives (i.e., positive kin discrimination) has been documented in a wide variety of

organisms. However, its occurrence in plants has been considered only recently.

Despite the concerns about some methodologies used to document kin recognition,

there is sufficient evidence to state that it exists in plants. Effects of kin recognition

go well beyond reducing resource competition between related plants and involve

interactions with symbionts (e.g., mycorrhizal networks). Kin recognition thus likely

has important implications for evolution of plant traits, diversity of plant populations,

ecological networks and community structures. Moreover, as kin selection may result

in less competitive traits and thus greater population performance, it holds potential

promise for crop breeding. Exploration of these evo-ecological and agricultural impli-

cations requires adequate control and measurements of relatedness, sufficient repli-

cation at genotypic level and comprehensive measurements of performance/fitness

effects of kin discrimination. The primary questions that need to be answered are:

when, where and by how much positive kin discrimination improves population

performance.
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1 | INTRODUCTION

Plants often grow in dense vegetation stands, such as grasslands, wood-

lands, forests or agricultural fields, where there are usually intensive

interactions with neighbours. These interactions can occur in the form of

resource competition, facilitative habitat modification or communication.

The ubiquity and diversity of plant–plant interactions entail that the

effects of a given set of traits for an individual cannot be viewed inde-

pendently of the characteristics of its neighbours (e.g., Cabal, Martínez-

García, de Castro Aguilar, Valladares, & Pacala, 2020; Riechert &

Hammerstein, 1983). Plant–plant interactions in turn also play a key role

in driving ecosystem processes such as carbon uptake, water and nutri-

ent balances, interactions with other non-plant organisms as well as crop

yields (see review Anten & During, 2011).

Much plant ecological research is built on the concept of individ-

ual selection, that is, plant traits of a given individual are (at leastNiels P. R. Anten and Bin J. W. Chen contributed equally to this study.
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implicitly) viewed from the perspective of how these traits directly

benefit the fitness of that individual. Cooperative behaviour

(i.e., actions that benefit the group rather than the individual) and even

altruistic behaviour (i.e., actions that benefit other individuals at a cost

to the actor) are, however, quite common in nature. To explain the

evolution of such ‘non-selfish’ behaviour, Hamilton (1964) introduced

the idea of ‘kin selection’. The basic concept of kin selection is that if

one individual helps another with whom it shares a certain number of

alleles, those alleles will be passed to the next generation not only

through its own fitness but also through the enhanced fitness of that

recipient. An important prerequisite for relatedness-dependent behav-

iour (i.e., kin discrimination) to occur, in turn, is kin recognition (i.e., the

ability to detect the difference in level of relatedness between oneself

and another individual), though, alternatively, kin selection also can be

favoured by population viscosity (Waldman, 1988).

Kin recognition has been demonstrated in a wide variety of organ-

isms including animals (both vertebrates and invertebrates,

Waldman, 1988), fungi (Malik & Vilgalys, 1999) and even bacteria

(Smith & Dworkin, 1994). However, the idea that it may also occur in

plants was long considered outlandish. This scepticism occurred despite

the well-known facts that plants can sense and respond to the presence

of other plants, for example, through light signals (Pierik & de Wit, 2014)

and physical contact (de Wit et al., 2012). Plants can even detect the

status of neighbours, for example, whether a neighbour is attacked by a

herbivore being conveyed through volatiles (Karban, Yang, &

Edwards, 2014) or whether the neighbour is stressed by drought being

conveyed through sounds (Jeong et al., 2014). The fact that plants can

distinguish between self- and non-self, and are thus capable of some

level of identity recognition, has been evident from the observation that

many species prevent self-pollination (Fujii, Kubo, & Takayama, 2016).

Research indicates that plants may also be able to distinguish between

their own roots and those of a non-self neighbour (see Chen, During, &

Anten, 2012 for a review) and between their own herbivore-induced vol-

atiles and those produced by another plant (Karban & Shiojiri, 2009).

The first evidence of belowground kin recognition in plants came

from a study of the annual Cakile edentula (Dudley & File, 2007), find-

ing that plants reduced root allocation (i.e., produced less roots for a

given aboveground mass) when interacting with half-sibs from the

same mother rather than with strangers from a different mother. A

series of subsequent findings have strengthened the idea that kin rec-

ognition and associated kin discrimination occur in plants (Figure 1),

though there is a heavy debate about methodology used

(e.g., Ehlers & Bilde, 2019; Klemens, 2008; Simonsen, Chow, &

Stinchcombe, 2014, and see details in Section 5). Kin discrimination

has by now been studied for different traits and functions in a wide

variety of wild as well as domesticated species.

F IGURE 1 Summary of the physiological mechanisms for kin recognition and the associated kin discrimination effects in plants. Signals and
pathways that are proven to mediate belowground kin recognition include root exudates and probably also common mycorrhizal networks. In
addition, signals like volatiles and probably also profiles of reflected light can mediate aboveground kin recognition, but they are not the focus of
this review. Effects of kin discrimination include not only a reduction of resource competition intensity but also cooperation to increase resource
availability, such as more investments in common mycorrhizal network, and probably also in aboveground pollinator attraction (which is not the
focus here) [Colour figure can be viewed at wileyonlinelibrary.com]
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The existence of kin recognition in plants has important conse-

quences for plant ecology and evolutionary biology, which go far beyond

the interesting fact that plants can recognize their kin. First, kin selection

may affect the genetic structure and diversity of a population, as it tends

to favour lower genetic diversity at the group level (Platt & Bever, 2009).

Second, cooperative traits tend to lead to greater performance at the

population level (Anten & During, 2011) and thus may have important

implications for ecosystem functioning. This, in turn, may also have impli-

cations for agriculture (Murphy, Swanton, Van Acker, & Dudley, 2017),

since farmers aim for group performance (high yields or resource-use

efficiency at the crop-stand level) rather than individual performance. It

further raises the question, to what extent kin discrimination could con-

tribute to better crop performance and could thus be a breeding target

(Anten & Vermeulen, 2016; Denison, 2011).

The objectives of this paper are therefore to (a) critically appraise

the evidence for kin discrimination and its underlying mechanisms in

plants, (b) discuss potential ecological implications of kin discrimina-

tion and (c) discuss the extent to which kin discrimination could be a

favourable trait in agricultural crops. While the degree of relatedness/

kinship can range from the same genetically identical clone to differ-

ent phylogenetic clades, we mainly focus on kin recognition at the

intraspecific level. We first give a brief introduction to kin selection

and related concepts and describe under what conditions it is most

likely to occur. We then explore the evidence for kin recognition and

discrimination in plants and critically appraise the methods that were

used. In so doing, we explore different implications of kin recognition

for resource acquisition. The first, and the one having received most

attention in the literature, is plants exhibiting less competitive traits by

producing smaller, shorter-lived or less efficient resource harvesting

structures when interacting with kin than when interacting with non-

kin. Secondly, we move beyond the direct plant–plant resource com-

petition and explore how kin discrimination in plants may result in

increasing the availability of resources to a group of related plants,

and show how this can involve interactions with other organisms such

as mycorrhizal symbionts. Thirdly, we briefly touch upon the environ-

mental dependency and wider ecological implications of kin discrimi-

nation. We also raise concerns about limitations and drawbacks of the

methodologies and interpretations in the current research field.

Finally, we explore potential applications of kin selection in crops, dis-

cussing to what extent kin recognition would be a desirable crop trait.

2 | SOME BASIC CONCEPTS

2.1 | Cooperation versus cheating

An issue that is receiving increasing interest in the plant scientific lit-

erature is the conflict between individual selection and the perfor-

mance of plant populations (Anten & During, 2011; McNickle &

Dybzinski, 2013). Populations of plants with traits that are optimal in

the sense of maximizing group fitness are often not resistant to inva-

sion by a more competitive plant type which invests more in resource

harvesting. Evolutionary game theory predicts that populations will

thus evolve towards non-optimal states. The result, that is, a popula-

tion of plants overinvesting in resource harvesting, has been denoted

as a tragedy of the commons (Hardin, 1968). The classic example is

plant height: short stature and associated small investment in stem tis-

sue would favour investment in fitness-enhancing characteristics

(e.g., seed production), but such communities can be invaded by taller

plants (Falster & Westoby, 2003).

A suite of other traits have since been associated with such a trag-

edy of the commons: plants may produce more leaf area, larger specific

leaf area and more roots, or larger flowers than what would maximize

fitness of the population (see review by Anten & Vermeulen, 2016). As

a result, vegetation stands may not be optimized in the sense of maxi-

mal fitness under a given set of conditions and this may have implica-

tions for ecosystem functioning (Anten & During, 2011; Farrior,

Rodriguez-Iturbe, Dybzinski, Levin, & Pacala, 2015).

2.2 | Kin selection when and where

Nature is full of examples of cooperative or even altruistic behaviour,

which run contrary to the above-mentioned tragedy of the commons.

Hamilton (1964) proposed that selection for altruistic behaviour may

occur in populations of genetically related individuals (so-called kin).

The basic concept is that if one helps another individual with whom one

shares a certain number of alleles, these alleles can be indirectly passed

to the next generation through the enhanced fitness of that individual.

Hamilton (1964) formalized this as a rule stating that altruistic behaviour

will be selected if the product of fractional genetic relationship (r) and

the fitness benefit for the recipient (B) is larger than the fitness cost

incurred by the actor (C, the direct fitness effect for the actor):

r ×B>C, ð1Þ

in which r × B is also known as the indirect fitness effect. Hamilton's

rule generally predicts that individuals that are genetically more closely

related are also more likely to cooperate. However, it is important to

consider that if closely related individuals are phenotypically more simi-

lar than distantly related ones, they would also compete more intensely

with each other. In the case of the more distantly related plants, differ-

ences would lead to stronger niche differentiation (Platt & Bever, 2009;

Van Dyken, 2010). This raises the question as to when kin selection is

likely to occur despite the existence of kin competition. It is clear from

Equation (1) that this is the case if r and/or B are high, or C is low.

Equation (1) also dictates an important boundary condition.

Because r ≤ 1 (r = 1 when plants are genetically identical), it holds that

if competition is a zero-sum game, that is, fitness gains of one are

equal to losses of the other (i.e., thus C = B), r × B is always smaller

than or occasionally equal to C, and thus kin selection is unlikely to

occur. For instance, let there be two genetically different plants (r < 1)

that compete for a fixed amount of soil resources. If one plant reduces

investment in resource harvesting (e.g., roots) while the other does

not, and fitness costs (C, that is, acquiring less nutrients) for that plant

are equal to the fitness gains (B) of the other plant, this can never
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have a selective benefit since r × B < C. Of course, C and B need not

be equal even if the size of resource pool is fixed. For instance, since

the production of resource-harvesting structures is costly, the rela-

tionship between plant size and seed production tends to be curvilin-

ear (see Section 6.1). In this case, two related plants might do better

by mutually refraining from competition. This is because, if r is suffi-

ciently high, the direct fitness gains of unilaterally increasing the size

of resource harvesting structures could be smaller than the indirect

fitness losses caused by reducing fitness of related neighbours

(Ehlers & Bilde, 2019).

This discussion makes it clear that kin selection critically depends

on the cost and benefit of the interaction and the ecological setting.

Together, at least two ecological factors can be considered to favour

kin selection. (a) A high r value, that is, plants tending to interact with

genetically related neighbours. This is more likely to occur if dispersal

rates are small and would increase, for example, with the level of self-

pollination; or if plants are mainly clonally reproduced.

(b) Competition being a negative non-zero sum game which entails

that altruistic behaviour not only changes the competitive balance but

also increases the availability of resources.

In addition, competition does not only occur between individual

plants but also between groups of plants, especially when resources

are highly mobile (e.g., competition for pollinators between mass-

flowering crops and grassland plants; Holzschuh, Dormann,

Tscharntke, & Steffan-Dewenter, 2011). Thus, even if cooperative

behaviour would be selected against within a group, it can be selec-

tively favoured between groups if cooperative groups are more pro-

ductive than less cooperative groups (Maynard Smith, 1964; Nowak,

Tarnita, & Wilson, 2010; Wilson, 1975). This multi-level group selec-

tion may occur in the absence of kin selection, but the two are largely

interchangeable. Multi-level selection may also favour kin selection

(Nowak et al., 2010). In both cases, it is important that genetic varia-

tion within groups is small compared to genetic variation between

groups (Platt & Bever, 2009).

In summary, evolution of cooperative traits through kin selection

is likely to occur

1. when costs of cooperation are low;

2. when cooperative interactions result not only in reduced intensity

of competition but also in greater availability of resources;

3. when resources are mobile, making competition between groups

more likely; and

4. in viscous plant populations in which there is a clear negative rela-

tionship between genetic relatedness and physical distance.

2.3 | Repeated interaction as an alternative
hypothesis

Though Hamilton's rule with the key concept of inclusive fitness pro-

vides the theoretical basis for the evolution of kin selection, there are

still alternative but not exclusive explanations, such as long-term ben-

efits from repeated interactions (Dudley, 2015; Trivers, 1971). Game

theoretical models predict that players falling into an unrepeated pris-

oners' dilemma are prone to cheat to maximize their short-term inter-

ests, while those in iterated prisoners' dilemma tend to cooperate for

their long-term interests, as long as this accumulated benefits can

exceed the costs of cooperation (Killingback & Doebeli, 2002). There-

fore, reciprocal altruism can simply emerge in a group of individuals

with intensively repeated interactions along their life spans, regardless

of their relatedness (St-Pierre, Larose, & Dubois, 2009).

In many cases, the concept of reciprocal altruism is restricted to

cooperation among non-kin. However, owing to the nature of dis-

persal, (half-)sibs from the same mother or individuals from the same

family are more likely to have overlapping living spaces, creating

greater than random chances of repeated interactions. Thus, recipro-

cal altruism is still more likely to occur among relatives, potentially

leading to the evolution of kin selection in plant species, especially

those with viscous population structures.

3 | BELOWGROUND KIN RECOGNITION
AND COMPETITION FOR AVAILABLE
RESOURCES

This section deals with the situation where plants exhibit less compet-

itive traits by producing smaller or less efficient resource-harvesting

structures when interacting with closely related neighbours, and its

mediation through kin recognition. We focus on kin recognition at the

root level, as this has been most extensively studied. We refer to, for

example, Crepy and Casal (2015) and Karban, Shiojiri, Ishizaki, Wetzel,

and Evans (2013) for intriguing examples of aboveground kin recogni-

tion through light and volatile chemical signals, respectively, and to

Torices, Gómez, and Pannell (2018) for an above-ground example of

kin-recognition-based cooperation for the attraction of pollinators

(Figure 1).

3.1 | Evidence for belowground kin recognition

Evidence accumulated in the last two decades has shown that

changes in root traits of a given plant may occur in response to the

identity of neighbouring plants. Early work in this regard showed that

plant roots can distinguish whether roots, with which they come in

contact, are from the same plant or from a different plant (non-self)

(e.g., Chen, Vermeulen, During, & Anten, 2015; Gersani, Brown,

O'Brien, Maina, & Abramsky, 2001; Gruntman & Novoplansky, 2004;

Holzapfel & Alpert, 2003). While their methodology was criticized

(e.g., Chen et al., 2015; Chen et al., 2020; Hess & de Kroon, 2007;

McNickle, 2020; Semchenko, Hutchings, & John, 2007), it clearly

spurred a wave of interest in identity recognition at the root level.

The first study to document root-mediated kin recognition was

by Dudley and File (2007). They grew C. edentula plants either solitar-

ily or paired with half-sibs or strangers in pots, and found that plants

interacting with strangers increased root allocation as compared to

both solitary ones and those interacting with half-sibs. This was
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viewed as evidence for kin recognition in plants. The responses of

plants in belowground kin recognition also involve changes in root

morphological and physiological traits beyond biomass allocation.

Compared to interactions with strangers, interaction with relatives

can stimulate some species to produce root systems with lower lateral

root density (Palmer et al., 2016), less root branching intensity and

shorter specific root length (Semchenko, Saar, & Lepik, 2014), as well

as lower nutrient uptake rate (Zhang, Liu, Tian, Xu, & Ouyang, 2016)

and lower water uptake rate (Takigahira & Yamawo, 2019).

Interestingly, belowground kin recognition also appears to result in

expression of less competitive aboveground traits. For example, plants

of the annual forest understory species Impatiens pallida allocated a

larger fraction of their mass to roots when grown in kin groups than

when grown in non-kin groups (Murphy & Dudley, 2009). However,

this was due to plants in kin interaction having smaller shoots rather

than larger root systems, and these smaller shoots could be associated

with less intense aboveground competition. In addition, plants growing

with kin neighbours also tended to produce more branches which they

interpreted as a response that further reduces mutual shading. Simi-

larly, a reduction in competitive ability for light was observed in Fagus

crenata seedlings, which produced leaves with relatively reduced chlo-

rophyll contents (Takigahira & Yamawo, 2019), and in Lychnis flos-cuculi

which produced leaves with relatively low specific leaf areas (Lepik,

Abakumova, Zobel, & Semchenko, 2012), when these plants had root

interactions with a relative rather than with a stranger. From an evolu-

tionary point of view, the aforementioned findings suggest that the

expression of kin discrimination may reflect an adaptation for the

acquisition of key limiting resources of a species in its specific habitat.

Meanwhile, it should be noted that although evidence of below-

ground kin recognition to date has been identified in various types of

plant groups ranging from gymnosperms (e.g., Cycas edentata,

Marler, 2013) to angiosperms (see above-mentioned examples), and

from wild species (e.g., Deschampsia cespitosa, Semchenko

et al., 2014) to crops (e.g., wheat, Zhu & Zhang, 2013; soybean, Mur-

phy, Van Acker, Rajcan, & Swanton, 2017, see more in Section 7),

there are also a number of studies finding no evidence or even nega-

tive effects of kin interaction. For instance, in a pot-based experiment

with eight co-occurring temperate grassland species, only one species

demonstrated less competitive traits and a higher fitness gain in kin

than in non-kin interactions (Lepik et al., 2012). In another pot-based

experiment, the relatedness of neighbours at the accession level

affected neither growth nor seed production of Arabidopsis thaliana

(Masclaux et al., 2010). Moreover, Lupinus angustifolius potted with

sibs or genotypes from the same population produced even fewer

seeds than those potted with genotypes from different populations

(Milla, Escudero, & Iriondo, 2011). These discoveries imply that the

ability of kin recognition is not a universal feature in plant kingdom.

3.2 | Mechanisms of belowground kin recognition

How do plant roots detect the level of relatedness in other plants?

Most studies so far point to the involvement of root exudates. To

date, more than 200,000 plant secondary metabolites have been iden-

tified, and a great portion of them are secreted as root exudates into

the rhizosphere (Kessler & Kalske, 2018). Plants typically secrete a

wide variety of them, and the composition of exudates differs

between species and between genotypes within a species (Mommer,

Kirkegaard, & van Ruijven, 2016).

The first evidence for the role of exudates in kin recognition came

from Biedrzycki, Jilany, Dudley, and Bais (2010), who found stronger

lateral root growth of A. thaliana seedlings when exposed to exudates

from stranger's roots than from sib's. This difference disappeared

when exudate solutions were collected from donor plants that were

treated with a root secretion inhibitor. More recently, Yang, Li, Xu,

and Kong (2018) also found that rice seedlings growing in solutions

with exudates from a different cultivar allocated relatively more mass

to roots than plants growing in solutions with exudates from the same

cultivar.

Semchenko et al. (2014) took a somewhat different approach, col-

lecting leachates from pots with different D. cespitosa plants and sup-

plying these leachates to sibs or strangers. Plants exposed to

leachates from strangers not only increased root allocation but also

produced roots with a higher branching density and a higher specific

root length than those exposed to kin leachates. All these studies

clearly indicate that exudates play a role in kin recognition at the root

level (Figure 1).

The role of exudates in kin recognition seems to be evident in a

general sense, but the exact compounds that are involved or the ways

they operate (e.g., dose dependent) are still unknown. To our knowl-

edge, so far only one study (Yang et al., 2018) has specifically consid-

ered this question. It found secretion of the compound allantoin, a N-

rich compound involved in various plant metabolic processes, to be

higher in rice plants interacting with neighbours from a different culti-

var than those interacting with neighbours from the same cultivar. It

was also found that an exogenous application of allantoin can cause

changes in auxin synthesis and gene expression in the focal rice

plants. These findings clearly demonstrated that allantoin production

depends on the level of relatedness in the interaction and that the

level of allantoin production is linked to kin recognition. More specifi-

cally, compared to monocultures, mixed-culture stimulated plants to

secrete greater amounts of allantoin, leading to higher gene expres-

sion levels of auxin transporters, which were in turn associated with

more root growth but less yield.

Some recent neighbour detection studies also showed that lac-

tone (e.g., (−)-loliolide) and phytohormones (e.g., jasmonic acid and

salicylic acid) in the root exudates of various weed species were the

key chemicals that are sensed by allelopathic wheat and rice and can

elicit them to produce more phytotoxins (Kong et al., 2018; Li, Xia, &

Kong, 2016; Li, Zhao, & Kong, 2020). However, to what extent these

chemicals are also involved in the kin recognition of wheat and rice is

still unknown. To sum up, evidence is clearly mounting that plant

roots are capable of recognizing kin and that this may involve a wide

variety of belowground as well as aboveground traits. Root exudates

play a role in the process, though more work is needed to identify the

(combinations of) compounds involved.
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4 | BELOWGROUND KIN RECOGNITION
AND COOPERATION TO INCREASE
RESOURCE AVAILABILITY: THE CASE OF
INVESTMENT IN COMMON MYCORRHIZAL
NETWORKS

While the previous section dealt with variation in the investment in a

plant's own resource-harvesting structures using roots an example,

here we discuss the investment in a common network that involves

another life-form using the example of mycorrhizal networks.

Plants form symbiotic associations with mycorrhizal fungi

whereby the mycorrhiza provide water, nutrients and/or defence from

pathogens to the plants, and the plants provide carbon in return

(Smith & Read, 2008). One emerging property in this symbiosis is the

formation of common mycorrhizal networks that connect different

plants, allowing them to transfer N, water and even carbon between

them. Such networks thus entail a common good: carbon investment

of each plant into the network allows the mycorrhiza to grow larger

and exploit larger volumes of soil, giving plants access to more water

and nutrients. If these soil resources are limiting, the investment in

turn provides a common benefit for all plants (Rankin, Bargum, &

Kokko, 2007).

In theory, this system is open to cheating, and an associated trag-

edy of the commons (File, Klironomos, Maherali, & Dudley, 2012;

Wyatt, Kiers, Gardner, & West, 2014). That is, if a plant unilaterally

provides less carbon to the mycorrhiza, it will reduce its own costs

while the resulting reduction in soil resources provided by the com-

mon mycorrhizal network are shared by the connected population,

thus giving the cheater a relative benefit. Such selection for cheating

can lead to collapse of the network. One way that stable symbiosis in

the networks can be enforced is through sanctioning. If fungi can

detect differences in carbon supply by plants and make nutrient provi-

sioning dependent on it, plants that invest more in the common net-

work would get a greater reward than those that do not (Wyatt

et al., 2014). Kin selection, however, would be an alternative, there

being added selective advantage to invest in a network shared with

kin. Investment in the common mycorrhizal network is a cooperative

behaviour that increases the availability of resources, making the

interaction a non-zero-sum game whereby costs incurred by investing

in this common network are smaller than the accumulated benefit.

To explore whether kin recognition may be involved in the func-

tioning of the common mycorrhizal network, File et al. (2012) con-

ducted experiments where Ambrosia artemisiifolia plants were grown

either with half-sibs or strangers from different mothers, and with or

without mycorrhizal fungi. The size of the mycorrhizal networks,

expressed as soil hyphal length and levels of root colonization, were

greater in half-sib groups than in stranger groups. Half-sib groups also

benefitted more from the presence of a common mycorrhizal net-

work, for example, in terms of P uptake and suppression of pathogens.

These intriguing effects of kin recognition and possible kin selection

operating via mycorrhiza raise questions as to the mechanism of kin

recognition. File et al. (2012) proposed that it could involve direct kin

recognition, whereby plants recognize the presence of kin through

exudates released by neighbouring plants into the soil, or through sec-

ondary metabolites actually being transported through the mycorrhi-

zal hyphae, which induce them to invest resources into the common

mycorrhizal network. The mechanism, however, could also be less

direct, for example, kin recognition at root level inducing changes in

root architecture, or anatomy making mycorrhizal colonization easier.

Or, if kin interacting plants are already doing better in terms of assimi-

lation, they will have more resources to invest in the networks.

To further explore whether kin-related signals might be directly

communicated via mycorrhizal hyphae, Pickles et al. (2017) grew sib

and stranger seedling pairs of interior Douglas fir (Pseudotsuga men-

ziesii var. glauca) in pots and provided one plant of the pair with 13C

labelled CO2 and measured how much carbon was allocated into the

ectomycorrhizal fungi biomass or transferred to the paired seedlings.

They found that levels of 13C in the mycorrhizal biomass as well as in

recipient plants were higher in sib pairs than in stranger pairs. They

concluded that these results could indicate the presence of signalling

compounds being transferred. Research on ectomycorrhizal host–

symbiont interface reveals that ectomycorrhizal fungi produce signal-

ling compounds, which are translocated into plant cell nuclei to alter

the host transcriptome, for example, to promote ectomycorrhizal sym-

biosis and reduce jasmonic acid production (Plett et al., 2014). The

results of Pickles et al. (2017) thus suggest that the greater carbon

exchange between sibs is associated with increased transfer of signal-

ling compounds through the network (Babikova et al., 2013; Plett

et al., 2014) (Figure 1).

These findings together provide evidence that kin recognition

between plants may involve other organisms that not only deliver sig-

nals for recognition but also provide rewards in kin selection. The

extent to which this form of relatedness-dependent cooperative

behaviour (i.e., investing resources in the network) can increase the

carrying capacity for the plant population through enhancement of

resource availability, however, still needs to be demonstrated. Fur-

thermore, several important questions still need to be answered. For

example, what is the role of transferred carbon compounds? Do they

act as cues that initiate/mediate the process of kin recognition

between mycorrhiza-connected plants? Or, are they simply the conse-

quences of kin recognition between plants via direct root interaction/

communication? Moreover, does this relatedness-dependent invest-

ment of plants in a common mycorrhizal network commonly occur in

nature; and to what extent does this phenomenon affect the stability

and efficiency of the network?

5 | KIN RECOGNITION IN A BROADER
ECOLOGICAL CONTEXT

The effects of kin recognition on the performance of plant individuals

have consequences on the dynamics and structures of plant

populations and communities. For example, the preferential transfer

of photosynthates to sibs via common mycorrhizal networks in Doug-

las fir (Pickles et al., 2017) can provide sibs with competitive advan-

tages over unrelated neighbours. Recent evidence suggests that kin
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recognition can also make groups of related plants more competitive

against hetero-specific neighbours. For instance, in competition with

Trifolium repens, sib pairs of Plantago asiatica directed more leaves

towards T. repens than stranger pairs, leading to a reduction of growth

in T. repens (Yamawo & Mukai, 2020). Positive discrimination can also

facilitate the invasion success of exotic species. Evidence for this

comes from a study showing that individuals of the South American

alligator weed (Alternanthera philoxeroides) from genotypes introduced

to North America grew larger in intra-genotypic interaction than in

inter-genotypic interaction; but the trend was opposite for those from

native genotypes in South America (Zhang et al., 2019). The afore-

mentioned findings suggest that these relatedness-dependent facilita-

tive effects including support (e.g., resource transfer) and cooperation

(e.g., reduced competition intensity) can potentially affect the distribu-

tion of genetic diversity in plant populations by reducing local genetic

heterogeneity (Tedersoo, Bahram, & Zobel, 2020).

Relatedness-dependent cooperation is probably also environment

(or microhabitat) dependent. For instance, a higher survival rate of

Medicago rigidula in intra-genotypic than in inter-genotypic competi-

tion seems to occur only when plants were grown in soils collected

underneath allelopathic thyme shrubs (Ehlers, David, Damgaard, &

Lenormand, 2016). Conversely, such a cooperation in the con-generic

species M. minima occurred only when plants were grown in non-

thyme soil. There is further evidence that the extent of kin discrimina-

tion is correlated with the nutrient availability in the habitats. For

example, reduced root activity and nutrient uptake in sib-pairs of sor-

ghum, compared to non-sib ones, occurred only under low nutrient

availability (Li, Xu, & Feng, 2018). Similarly, intra-cultivar interacting

peas produced more seeds than inter-cultivar interacting ones only at

low nutrient availability (Pezzola, Pandolfi, & Mancuso, 2020). Palmer

et al. (2016) further demonstrated that N and P are the key elements

determining the nutrient availability effects. They grew A. thaliana

seedlings either solitarily or paired with a sib, a relative (from a differ-

ent mother in the same accession) or a stranger (from a different

accession) in agar with the Murashige-Skoog nutrient medium. They

found that stranger-paired plants had more lateral roots than other

plants only when nutrient concentration was lower than 0.75 strength

of the standard solution. Relative- and sib-paired plants produced

more lateral roots than solitary plants only when the solution was fur-

ther diluted. They could reproduce these results by individually

removing N and P from the full-strength solution but not by removing

other elements, showing that kin recognition depends not only on the

amount of nutrients but also their composition, the presence of N and

P being critical in this example. A great body of literature has demon-

strated that local soil N and P availabilities are the key signals that

modulate root architecture of plants (Jia & von Wirén, 2020; Péret

et al., 2014; Tian, De Smet, & Ding, 2014). Moreover, the effects of

kin recognition on the performance of plants can be density-depen-

dent. For instance, Lepik et al. (2012) showed that the level of inflo-

rescence mass of T. repens increased with neighbour density only in

sib groups; meanwhile its petiole length (a key trait that related to

competition for light) was positively correlated with neighbour density

only in stranger groups.

Clearly, kin recognition can have implications for the structure,

diversity and functioning of communities likely extending to the eco-

system level, which we are only beginning to unravel. There is thus a

clear need for systematic ecological field experiments across different

systems and species, where genetic relatedness in populations is

manipulated or at least known and a broad scale of community inter-

actions are explored. Moreover, kin discrimination seems to be more

important in regulating plant growth and community structure under

stressful, especially infertile, conditions. This could imply that species

originating from stressful habitats might be more likely to possess the

ability of kin recognition, but this needs to be tested.

6 | CRITICAL CONSIDERATIONS ABOUT
CURRENT RESEARCH

6.1 | Considerations about measuring kin
recognition

A methodological concern with pot-based studies of root-mediated

kin recognition is that in most cases roots of individual plants could

not be separated and root mass needed to be measured at the pair

(or group) level. This implies that the larger individual(s) contribute

more to the results than smaller ones. Since size inequality is likely to

be larger in non-kin than in kin interactions and larger plants typically

investing proportionally more in structural support (stems and coarse

roots) and less in other parts (leaves, fine roots and potentially repro-

duction), the averaged proportional investment in seed production

observed in non-kin groups will inevitably tilt to that of larger individ-

uals, for example, a lower seed production level (Klemens, 2008). Even

if plant individuals can be separately harvested and measured,

Jensen's inequality effect (Figure 2) suggests that, when plant size and

seed production follow a curvilinear saturating relationship and com-

petition between plants with greater differences in relatedness yields

larger size asymmetry, plants in non-kin interactions will naturally gen-

erate lower group seed production than those in kin interactions inde-

pendently of kin recognition (Ehlers & Bilde, 2019; Simonsen

et al., 2014). Notably, a pair-wise family design (Bhatt, Khandelwal, &

Dudley, 2011), whereby all combinations of lineages (either plants of

the same or different families) are tested and differences in competi-

tiveness are corrected for, could be a solution for the problem of size

inequality.

Some studies (Fang et al., 2013; Yang et al., 2018) used pots filled

with transparent substrates, for example, agar or solutions, allowing

them to visually observe kin recognition effects on root architecture

and spatial arrangement. A problem, however, is that such solutions

are very different from soil, which typically has lower oxygen levels or

higher mechanical resistance (Chen, Hajiboland, Bahrami-Rad, Mor-

adtalab, & Anten, 2019). It is entirely unknown whether such differ-

ences may somehow interact with the kin versus non-kin contrast.

Moreover, most of the work on kin recognition discussed in this

paper concludes that genetically related plants exhibit more coopera-

tive traits leading to higher group performance. However, such plants
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are also phenotypically more similar, and classic ecological theory dic-

tates that these plants exhibit less niche differentiation and comple-

mentarity, leading to stronger competition (Chase & Leibold, 2003).

Thus, kin interaction effects and complementarity effects are to some

extent confounded, and this may cause complications in the interpre-

tation of experimental results. For instance, increased root production

of plants observed in non-kin groups than in kin groups can also be a

result of belowground niche complementarity between different

genotypes, families or varieties in the former (Dudley, Murphy, &

File, 2013). The outcome of kin interaction, as compared to non-kin

interaction, in most cases is likely determined by both kin recognition

and niche effects (Ehlers & Bilde, 2019). Depending on the relative

size of two opposite effects, the outcome of kin interaction can be

positive, neutral or even negative as compared to non-kin interaction.

As one can partly mask the other, it could lead to false negatives, for

example, wrongly concluding that kin recognition does not exist.

Concerns mentioned above can be largely attributed to the fact

that it is impossible to exhaustively test all biotic and abiotic environ-

mental determinants and separate kin recognition effect from them in

the real plant–plant interactions. Mechanism-driven approaches may

thus provide some help. For instance, in the studies of belowground

kin recognition, focal plants can be experimentally exposed to the key

signals, for example, root exudates, manually collected from kin or

non-kin neighbours rather than expose focal plants to neighbours per

se (e.g., Biedrzycki et al., 2010; Mercer & Eppley, 2014; Semchenko

et al., 2014). This method has been successfully applied (see Sec-

tion 3.2). However, it should be noted that the collected root exu-

dates solutions (from, e.g., soil extracts, leachates or hydroponic

medium) from different genotypes, families or varieties of plants may

differ not only in the chemical composition of exudates which are sup-

posedly involved in kin recognition but also in the composition and

concentration of other compounds such as nutrients. Thus, we sug-

gest that an adjustment of nutrient contents, at least the key elements

N and P (Palmer et al., 2016), should be made for the collection of

exudate solutions before treating focal plants with these solutions

(Chen et al., 2020; Semchenko et al., 2014).

Finally, all studies mentioned so far were essentially pot-based

greenhouse studies, and translation from such studies to the field is

notoriously difficult especially when the work involves roots. Yang

et al. (2018) conducted a double experiment with rice wherein differ-

ent combinations of kin (same variety) and non-kin (different varieties)

were grown in both pots and farm lands. Results were very consistent:

plants in both conditions interacting with kin produced fewer roots

and had greater seed production than those growing with non-kin.

While more work needs to be done, it does suggest that kin recogni-

tion operates under field conditions and can influence plant commu-

nity performance.

6.2 | Considerations about measuring fitness

While the previous section appraised the methods used to show kin

recognition in plants, here we discuss the methods used to quantify

the fitness benefits of kin discrimination. Most studies conducted

experiments where they grew focal individuals, either in kin or non-

kin groups, and then measured the performance of either only focal

individuals (e.g., Karban et al., 2013; Yang et al., 2018) or the whole

group (e.g., Biernaskie, 2011; Dudley & File, 2007). Results were

mixed, with some studies (e.g., File et al., 2012; Karban et al., 2013;

Yang et al., 2018) finding plants in kin groups to produce more seeds

or biomass than in non-kin groups; while others

(e.g., Biernaskie, 2011; Milla et al., 2011; Takigahira & Yamawo, 2019)

did not find a difference.

Moreover, the basic set-up of experiments comparing perfor-

mance of plants in kin or non-kin groups needs to be further consid-

ered. As noted, current studies on fitness effects of kin discrimination

simply compare performance between kin- and non-kin groups. This

does not answer the question whether the genetic variation in kin dis-

crimination for a given (set of) trait(s) is associated with a greater per-

formance in kin groups. Addressing this question entails firstly

quantifying genetic variation in kin discrimination within a population,

and secondly, determining whether this variation correlates positively

with performance in kin groups. We thus urge for a broader quantita-

tive genetic approach to the research on the selection effects of kin

recognition.

F IGURE 2 Jensen's inequality effect on the interpretation of
difference in group seed production between kin pairs and non-kin
pairs. Plants in non-kin pairs have lower degrees of genetic similarity
and thus tend to have larger differences in competitive ability, leading
to larger differences in plant sizes (e.g., MN1 for the weak competitor
and MN2 for the stronger competitor) associated with larger
differences in seed productions (e.g., PN1 and PN2; and their averaged
seed production �PN will be �PN = PN1 +PN2ð Þ=2). On the other hand,
plants in kin pairs tend to have a similar plant size (MK) associated
with a similar level of seed production (PK). When the group total
mass (e.g., 2MK in a kin pair, and MN1 +MN2 in a stranger pair) is
determined by the total amount of available resources in the group
and the correlation between plant size and seed production follows a

saturation curve, for a given amount of resources at the group level
(i.e., MN1 +MN2 = 2MK), the group seed production of plants in non-kin
pairs will be inevitably lower than that in kin pairs
(i.e., PN1 +PN2 = 2�PN <2PK ) [Colour figure can be viewed at
wileyonlinelibrary.com]
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7 | KIN SELECTION AND CROPS

Farmers generally aim to increase crop yields (or some other perfor-

mance measure such as resource-use efficiency) at the crop-stand

level. This entails that crops would need to have traits that enhance

group rather than individual performance (e.g., Anten &

Vermeulen, 2016; Denison, 2011; Donald, 1968; Weiner, Andersen,

Wille, Griepentrog, & Olsen, 2010). Modern crop selection has to

some extent unwittingly (i.e., without formal knowledge of how natu-

ral selection operates) already done this. The most notable example is

the shortening of the stem of several major cereal crops (e.g., wheat

and rice) during the green revolution (Khush, 1999). However, there

may be ample scope for further crop improvement especially in traits

other than stature, such as the size and architecture of root systems,

and allocation to symbiotic relationships with soil biota (see review

Anten & Vermeulen, 2016). As kin selection can lead to more cooper-

ative traits in plants and greater group performance, its potential use

in crop breeding could be considered (Murphy, Swanton, et al., 2017).

Kin discrimination has been demonstrated in several crop species, for

example, soybean (Murphy, Van Acker, et al., 2017), barley

(Ninkovic, 2003), sorghum (Zhang et al., 2016), wheat (Zhu &

Zhang, 2013, but see Fréville et al., 2019), rice (Yang et al., 2018) and

Jerusalem artichoke (Helianthus tuberosus, Fukano, Guo, Noshita,

Hashida, & Kamikawa, 2019), with findings that kin-interacting plants

tend to exhibit more cooperative root systems. A question then arises:

to what would extent crop selection for kin recognition and discrimi-

nation be an effective means to increase crop yields?

To address this question, it is important to note that genetic

diversity in crop stands tends to be much lower than in natural

vegetation. Modern agriculture has increasingly shifted to mono-

species cropping; and for many crop species (e.g., maize, rice and

wheat) inbred hybrid cultivars have been developed and are grown as

populations of genetically almost identical plants. In such crop set-

tings, plants rarely interact with non-kin. On the other hand, genotype

mixtures and even species mixtures are still used, especially by small-

holder farmers in poor countries (Joshi et al., 2020) as well as organic

farmers (Bedoussac et al., 2015).

Secondly, when addressing the question whether kin recognition

and associated discrimination is a useful crop trait, it is important to

consider the alternatives to which this trait is compared. Conceptually,

positively kin-discriminating genotypes can be regarded as facultative

cooperators, expressing more cooperative traits only when interacting

with kin (i.e., a result of kin recognition). One can then consider two

alternatives: obligate competitors and obligate cooperators, that is,

plants exhibiting, respectively, competitive or cooperative traits

irrespective of whether they interact with kin or non-kin (though the

level of cooperation could shift in response to some other factors). A

crop stand of strongly related kin-discriminating facultative coopera-

tors would be expected to do better than a similar stand of obligate

competitors. But the comparison between facultative and obligate

cooperators is more complex. In a cultivar mixture, facultative cooper-

ators would likely do worse than obligate cooperators, as the interac-

tion with the less related other cultivars would induce expression of

less cooperative traits in the facultative cooperator but not in the obli-

gate one. In mono-cultivar crops, the difference between the kin-

discriminating and obligate cooperators would at best be zero, but if

there would be costs associated with kin recognition itself, facultative

cooperators could still perform worse (Figure 3).

F IGURE 3 Illustration for the concept
of (a) plant–plant interactions and (b) their
consequences on crop yields of three
hypothesized behaviour modes:
facultative (i.e., kin-dependent)
cooperator, obligate cooperator and
obligate competitor. The focal (F) plant is
either grown in a mono-culture where
neighbours (N) are fully composed of
relatives (kin, indicated by the blue
colour), or grown in a mixed culture where
neighbours (N) are composed of both
relatives and strangers (non-kin, indicated
by the yellow colour). In (a), ‘+’ indicates a
more cooperative trait expression and ‘−’
a more competitive one. In (b), the
double-headed arrow indicates potential
variation in yields [Colour figure can be
viewed at wileyonlinelibrary.com]
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Unfortunately, to date there is little experimental evidence for

whether kin discrimination increases crop yields. This is largely due to

the methods that were used to determine the effects of kin recogni-

tion on performance. As noted in Section 6.2, most studies

(e.g., Dudley & File, 2007; File et al., 2012; Yang et al., 2018) com-

pared yields of a given genotype when interacting with relatives to its

performance with strangers. However, answering the question about

the usefulness of kin recognition in crops entails comparing yields of

crop stands of a set of genotypes that differ in the ability to recognize

kin. This entails a rather elaborate experiment (see also Section 6.2).

Firstly, genetic variation in kin discrimination needs to be documented

across a sufficiently large population of plants. For each target geno-

type, this ideally involves replication of kin and non-kin neighbours.

Subsequently, the extent to which genotypic variation in kin discrimi-

nation and crop yields in kin groups are correlated can be determined,

which would give an indication whether kin recognition is positively

associated with crop yields.

Even though, for crop yields, the constitutive expression of coop-

erative traits might be favourable compared to relatedness-dependent

expression of such traits, the latter might still be useful if it occurs

much more commonly than the former. However, the extent to which

the genetic basis for cooperative traits that occurs within the extant

genetic diversity of a crop species is associated with kin selection is

still unknown. Addressing this issue involves answering two questions.

First, how closely are kin selection and evolution of cooperative traits

in plants linked? A very tight link between the two would entail that

at least in the wild ancestors of crop species, expression of coopera-

tive traits would predominantly be linked to kin recognition. Second,

to what extent has past crop selection unwittingly favoured or dis-

favoured kin recognition. This question could be addressed by com-

paring wild ancestors and domesticated cultivars of different release

dates and testing whether kin recognition has increased over time.

This requires experiments with ample replication at the genotypic

level, which, to our knowledge, have not been published.

A final point of consideration is that the use of kin recognition in

crops generally means low-diversity crops. As noted, in so doing, one

foregoes the potential benefits of diversity (e.g., niche differentiation

in resource acquisition or variation in disease resistance). Interestingly,

much work on making agriculture more sustainable through improve-

ment of ecological relationships in crop systems has focused on

enhancing diversity (Kiær, Skovgaard, & Østergård, 2009; Tooker &

Frank, 2012), while the role of kin recognition has not been consid-

ered. Clearly, much more research is needed to indicate when, where

and by how much kin recognition can contribute to increasing yields

or other crop functions. This could include modelling studies that

explore the extent to which selection for cooperative traits could con-

tribute to yield increases.

8 | CONCLUSIONS AND OUTLOOK

Since the pioneering work of Dudley and File (2007), kin discrimina-

tion has been documented to affect many traits in a wide variety of

plant species among different taxonomic clades, life forms and origins

(see citations in the preceding sections). Many cases have been docu-

mented of plants exhibiting more cooperative behaviour towards kin

than towards strangers. These behaviours can reduce competition for

a common resource pool or expand the availability of resources. While

concerns still remain about some of the methods used, it is probably

safe to say that belowground kin recognition in plants exists. How-

ever, our understanding of the mechanisms has so far been limited,

except for the idea that, in general, root exudates play a role in kin

recognition. More biochemical and molecular research is needed to

identify the chemical cues that associate with or signify genetic relat-

edness, and how and where this is sensed in plants. Most of the work

so far has been conducted with rather limited sets of genetic material

and are being limited to (half-)sibs versus strangers without quantify-

ing genetic relatedness (but see, e.g., Karban et al., 2013). Expanding

on this will not only help overcome some of the experimental biases

that have been associated with research on kin discrimination (see

examples of elegant designs from Bhatt et al., 2011; Ehlers &

Bilde, 2019; Semchenko et al., 2014) but would also give a much bet-

ter indication of the level at which plants can detect genetic related-

ness. Kin recognition may also have far-reaching implications for the

structure and composition at the community level, as it can modify

multi-trophic interactions and potentially select populations with

lower genetic diversity. Many more field experiments are needed to

explore these effects. Finally, the existence of kin discrimination has

been linked to breeding more cooperative crops that could form more

productive stands with higher resource-use efficiency. More research

is needed to determine the extent to which the positive effects

indeed exist and whether it would not be more effective to breed

crops that express these traits constitutively rather than in a

relatedness-dependent way.
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