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A B S T R A C T   

Indonesia harbours a high diversity of cetaceans, yet effective conservation is hampered by a lack of knowledge 
about cetacean spatial distribution and habitat preferences. This study aimed to address this knowledge gap at an 
adequate resolution to support national cetacean conservation and management planning. Maximum Entropy 
(Maxent) modelling was used to map the distribution of 15 selected cetacean species in seven areas within 
Indonesian waters using recent cetacean presence datasets as well as environmental predictors (topographic and 
oceanographic variables). We then combined the individual species suitable habitat maps and overlaid them with 
provincial marine spatial planning (MSP) jurisdictions, marine protected areas (MPAs), oil and gas contract 
areas, and marine traffic density. Our results reflect a great heterogeneity in distribution among species and 
within species among different locations. This heterogeneity reflects an interrelated influence of topographic 
variables and oceanographic processes on the distribution of cetacean species. Bathymetry, distance to- coast and 
the − 200m isobaths, and chlorophyll-a concentration and sea surface temperature were important variables 
influencing distribution of most species in many regions. Areas rich in species were mainly related to coastal 
areas or insular-reef complexity, representing high productivity and upwelling-modified waters. Although some 
important suitable habitats currently fall within MPAs, other areas are not and overlap with oil and gas explo-
ration activities and marine traffic, indicating potentially high risk areas for cetaceans. The results of this study 
can support national cetacean conservation and management planning, and be used to reduce or avoid adverse 
anthropogenic threats. We advise to consider currently unprotected suitable cetacean habitats in MPA and MSP 
development.   

1. Introduction 

Biodiversity conservation and area-based management call for 
adequate-resolution species distribution data. Understanding the spatial 
distribution and habitat preferences of marine mammal species is a high 
priority for effective conservation management. A principal phase un-
derpinning marine spatial planning (MSP) involves mapping the spatial 
distribution of ecological processes and biological features (Ehler and 
Douvere, 2007; Metcalfe et al., 2018). Protecting important habitats of 
top marine species is also a priority issue for MSP development (Hooker 

et al., 2011). However, often this information is lacking, inhibiting 
conservation efforts of these marine species. A sound management plan 
which adopts the most effective measures to protect marine mammals is 
clearly constrained by the knowledge on the species’ critical habitats. 

Cetaceans are well-known as charismatic species and as top preda-
tors they could have strong effects on community structure and function 
(Foley et al., 2010). The management of protected areas designed for top 
predators as umbrella species is highly efficient, resulting in higher 
biodiversity and more ecosystem benefits (Sergio et al., 2008). However, 
there is a long history of anthropogenic impacts on cetaceans through 
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whaling, habitat degradation and increased activities in the marine 
environment that could adversely affect cetaceans (Weir and Pierce, 
2013). Cetaceans are particularly susceptible to human threats because 
of their life-history traits, i.e., late maturity and low reproductive rate 
(Passadore et al., 2018). The variety of anthropogenic pressures includes 
interactions with fisheries (entanglement, bycatch, prey depletion) 
(Read, 2008; Reeves et al., 2013), physical and acoustic disturbance 
mainly by marine traffic (ship strikes, underwater noise) (Erbe et al., 
2019; Pennino et al., 2017), seismic activities from oil and gas explo-
ration and naval sonars (Henderson et al., 2014; Rosenbaum and Collins, 
2006), and pollution (oil spills, plastic debris, heavy metals, and other 
chemicals) (Allen et al., 2011; Monk et al., 2014; Tanabe, 2002; Ven-
n-Watson et al., 2015). New threats have also been recognized, 
including coastal-offshore development and energy production, 
resource extraction, tourism, and climate change (MacLeod, 2009; 
Passadore et al., 2018). A prominent stressor to cetaceans is shipping 
traffic (Coomber et al., 2016). Large whales are vulnerable to collisions 
with vessels throughout the world’s oceans (Laist et al., 2001). In 
addition, marine activity due to oil and gas exploration and extraction is 
also growing (Dawson et al., 2018) and this has a major impact on 
marine life and environment (Azzellino et al., 2012), mainly from noise 
and potential pollutants. Understanding how both marine traffic and 
oil-gas related activities overlay with marine mammals’ distributions is 
crucial for improving future decision-making regarding the zoning of 
multiple-use MPAs and MSPs. 

The Indonesian archipelago holds a high diversity of cetacean species 
with 34 cetacean species recorded so far (Mustika et al., 2015), ac-
counting for more than a third of cetacean species worldwide (Jefferson 
et al., 2015). The archipelago was previously one of the largest global 
whaling grounds (Rudolph et al., 1997; Townsend, 1935) and is highly 
biologically productive. Indonesia is situated in an upwelling system, 
where wind regimes and oceanic currents strongly influence the tem-
perature and primary productivity (Drushka et al., 2010; Steinke et al., 
2014), benefiting marine species at all levels of the food web, including 
cetaceans (Huffard et al., 2012). Knowledge on cetacean distribution in 
Indonesia, however, is not homogeneous, spatially or temporally. There 
have been relatively few recent cetacean surveys in Indonesia due to its 
vast area, remote offshore locations, poor weather and sea conditions, 
limited financial resources for research, and other logistic constraints 
(Evans and Hammond, 2004). Several locations have received survey 
coverage, mainly in the Lesser Sunda (including Bali and Solor-Alor), 
Papua, East Kalimantan, West Sumatra and Banda Sea (Ender et al., 
2014; Kreb et al., 2015; Kreb and Budiono, 2005; Mustika, 2006; Sahri 
et al., 2014). These surveys were often undertaken in the framework of 
wildlife conservation through the establishment of MPAs. No studies 
have yet assessed the distribution of cetaceans in the whole Indonesian 
archipelago. 

All marine mammal species in Indonesia are under strict protection 
according to the national regulation (Sahri et al., 2020a), where all 
species are listed in the annex of the Government Regulation No. 7/1999 
(The Government of The Republic of Indonesia, 1999). Based on the 
online database of the International Union for Conservation of Nature 
(International Union for Conservation of Nature (IUCN), 2020), the 
status of more than a fifth of the cetacean species that occur in Indo-
nesian waters is listed as ‘threatened’. Information about the spatial 
distribution of these species is even still very limited, yet determining 
areas that require protection at appropriate scales for national man-
agement requires a finer understanding of the species habitat (Drans-
field et al., 2014; Redfern et al., 2006). Typically, however, such 
information is only available in broad geographic regions and if so, 
usually only in a coarse resolution and for a limited number of species 
(Kaschner et al, 2006, 2016). In Indonesia, no distribution maps are 
available at eco-regional or seascape scales. The need for mapping 
critical habitat for cetaceans in Indonesia was indicated by the National 
Plan of Action (NPOA) for Cetaceans (Mustika et al., 2015) and under 
the Regional Plan of Action (RPOA) for the Coral Triangle Initiative 

(CTI-CFF, 2009) as well as national legislation (MMAF, 2018). They ask 
for a better understanding of the biology and ecology of cetaceans for 
conservation purposes. Knowledge on distribution and habitat prefer-
ence would enable stakeholders to minimize harmful human and ceta-
cean interactions and implement spatially explicit conservation 
measures in a certain region. Combining cetacean habitat maps and 
maps of human activities to identify areas of high impact has not been 
attempted for Indonesia before. 

Species distribution models (SDMs) are increasingly used in conser-
vation planning and wildlife management, including for cetaceans 
(Hammond et al., 2013), especially in developing MSP and designing 
MPAs (Cañadas et al., 2002) and identifying areas of potential conflict 
between human activities and marine organisms (Guisan et al., 2013). 
The models can provide a finer spatial resolution than traditional 
abundance estimates (Becker et al., 2012). One of the powerful model-
ling tools used by numerous studies for cetacean species worldwide is 
Maximum Entropy (Maxent) (Breen et al., 2016). As a presence-only 
technique, Maxent is particularly useful for studies of species with 
large ranges and small sample sizes, for regions where systematic sur-
veys are sparse and/or limited in coverage, and for datasets for which 
absence or effort data are not available (Elith et al., 2011; Moura et al., 
2012). Using this modelling technique, it is possible to predict suitable 
habitats for a range of species and ultimately map areas of high cetacean 
diversity that is particularly useful for managers and decision-makers 
(Becker et al., 2012). 

This study aims to provide adequate-resolution maps of cetacean 
distribution and habitat suitability in Indonesia and assess areal overlaps 
with MPAs, MSPs, and two anthropogenic threats, i.e., oil and gas 
concessions and marine traffic. The information from this study is 
crucial and particularly needed by the Indonesian government to be able 
to manage their national scale habitats to ensure species’ protection as 
well as to guide policies mitigating anthropogenic threats. 

2. Materials and methods 

2.1. Study area 

In this study, seven regions within Indonesian waters are included: 
Sunda Strait (SS), Balikpapan Bay (BB), NE Borneo Seascape (NEBS), SE 
Sulawesi Seascape (SESS), Lesser Sunda Ecoregion (LSE), Bird’s Head 
Seascape (BHS), and Fakfak Seascape (FS) (Fig. 1). These regions are 
chosen based on the availability of sufficient sighting data. The 
boundaries of the regions used either ecoregions or seascapes depend on 
the geographical distribution and the extent of presence data, with the 
exception of two first regions that were determined based on the MSP 
jurisdiction (~12 nm from coastlines). Ecoregion or seascape were 
chosen, since the boundaries are scientifically-determined and ecologi-
cally based (Green and Mous, 2008). 

2.2. Sighting data 

Species presence data were collected from multiple sources from 
several cetacean programs in Indonesia from 2000 to 2018 (Fig. 1). 
These are currently the best sources of information on the occurrence of 
cetaceans in the Indonesian archipelago. The list of species, the number 
of sightings, and the number of sightings used in SDMs, however, were 
different in each region (Table S1). The data were collected from both 
dedicated surveys (only in Balikpapan Bay) and non-systematic surveys 
from a range of platforms of opportunity (e.g. from fishing monitoring 
boats and hydro-oceanography survey boats) during several years. In 
order to improve the number of sightings, records from several surveys 
were pooled, regardless of the survey methods. Long term and pooled 
data capture both inter-seasonal and inter-annual variability in cetacean 
distribution (Cotté et al., 2010). Only species with ≥10 sightings in a 
region were included in SDMs, as this is the minimum number of 
sightings for which the tested models in previous studies reached the 
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Fig. 1. Seven regions in Indonesia (regions #1–6, region #7 on the next page) that were included in this study with the reported presences of the 15 selected cetacean 
species (in total n = 1276) used in Maxent. The isobaths (− 200, − 1000, and − 2500m) are indicated (see below the maps of region 3), and only region 2 (Balikpapan 
Bay) has different isobaths (− 10, − 30, and − 50m). 
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constant higher accuracy level i.e. the asymptotic point where the ac-
curacy curve plateaued (Stockwell and Peterson, 2002; Wisz et al., 
2008), meaning that the models were performed well with minimum 10 

sighting data points. This treatment resulted in 15 species out of 34 
being used for this study (Table S1). The other 19 species were not 
included in our study, because of insufficient sighting data. 

Fig. 1. (continued). 
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To avoid model over-fit, occurrence data should be spatially inde-
pendent (free from spatial auto-correlation). An over-fitted model will 
reduce the model’s ability to predict spatially independent data and 
inflate model performance values (Boria et al., 2014). The ‘Spatially 
rarefy occurrence data tool’ in SDMtoolbox 2.0 (Brown et al., 2017) was 
used to spatially filter locality data by a pre-determined distance, 
reducing occurrence localities to a single point within the specified 
Euclidean distance or according to spatial heterogeneity of environ-
mental variables. The maximum distance of 3 km (1 km for two smaller 
regions: the SS and BB) was used for sighting rarefying because of the 
high spatial heterogeneity in this study area and to prevent loss of many 
occurrence data. This graduated filtering method is particularly useful 
for this study, since most sighting records were concentrated in certain 
locations as consequence of non-systematic surveys, so they might be 
spatially correlated. After the rarefying process, a total of 1276 
presence-only data points of the original 2252 data points for 15 ceta-
cean species were used in Maxent. 

2.3. Environmental predictors 

Ten variables were selected in the study area (Table 1) that can be 
categorised into two types i.e. topographic variables (bathymetry, slope, 
distance-to coast, shelf, − 200m, − 1000m, and − 2500m isobaths), and 
oceanographic variables (sea surface temperature (SST), sea surface 
salinity (SSS), chlorophyll-a concentration (Chl)). These environmental 
features have been used to understand cetacean habitat in many studies 
(Azzellino et al., 2012; Fiedler et al., 2018; Tardin et al., 2019; Viddi 
et al., 2010). The collinearity among variables was checked in each re-
gion and only variables with Pearson’s correlation values less than 0.75 
were included in ecological modelling. The ‘Remove highly correlated 
variables tool’ in SDMtoolbox 2.0 was used to check the collinearity 
among variables and eliminate correlated variables. Therefore, the 
selected variables used in modelling were different in each region 
(Table 2). 

Bathymetry data with a 1 km2 grid were obtained from the General 
Bathymetric Chart of the Oceans (GEBCO, https://www.gebco.net). 
Slope was derived from the GEBCO using the ‘Spatial Analyst extension’ 
in ArcGIS 10.3 (Environmental Systems Research Institute, Inc.). The 
coastlines were obtained from the Indonesian Geospatial Information 
Agency, while submarine shelf was acquired from the Seafloor 
Geomorphic Features Map (Harris et al., 2014). Isobaths of − 200m, 
− 1000m, and − 2500m were generated from the bathymetry data using 
the ‘Contour tool-Spatial Analyst extension’ in ArcGIS 10.3. Distance 
to-coast, shelf, and the three isobaths were generated using the 
‘Euclidean Distance tool-Spatial Analyst extension’ in ArcGIS 10.3. The 

SST and Chl data were downloaded from Aqua MODIS (https://oceanc 
olor.gsfc.nasa.gov), while the SSS data was downloaded from SODA 
3.3.1 (http://apdrc.soest.hawaii.edu). Mean annual SST, Chl, and SSS 
from daily records covering the same time frame as the sightings data 
were used. The ‘Inverse distance weighted (IDW) algorithm’ in ArcGIS 
10.3 was used to interpolate the spatial data of these oceanographic 
variables. The selection of spatial resolutions for final environmental 
variables was primarily based on data availability. Since bathymetry 
and slope were already in a 1 km2 grid, the other variables were 
aggregated to match the same grid size and cover the same area in each 
region. 

2.4. Maxent model setting 

Maxent software version 3.4.1 (https://biodiversityinformatics. 
amnh.org/open_source/maxent) was used to generate probabilistic 
predictions and habitat models for each cetacean species. This software 
is a maximum entropy algorithm, specifically developed for presence- 
only data (Phillips et al., 2006). Maxent has been successfully applied 
in situations where absence data were not available (Elith et al, 2006, 
2011), and was widely used when working with combined data 
collected with different methodologies (Elith et al., 2006), as done in the 
present study. Maxent estimates the relative probability distribution of 
species occurrence by finding the probability distribution of maximum 
entropy, i.e., the distribution that is closest to uniform across the study 
area. The probability of occurrence can be interpreted as an estimate of 
the probability of the presence under a similar level of sampling effort as 
used to obtain the known occurrence data (Phillips and Dudík, 2008). 

The following Maxent settings were chosen with regard to data 
limitations and the specific questions of the study (Merow et al., 2013): 
i) logistic output to easily understand where the model predicts the 
occurrence of each cetacean species; ii) 30% random test percentage; iii) 
default regularization parameters, auto feature class types, and 500 
maximum iterations; iv) 10-fold bootstrap replicated run type, a setting 
that allows replacement in sampling replicates and is particularly useful 
when the number of sightings are low (Fielding and Bell, 1997); and v) 
the maximum number of background points was 10,000 (over 43, 
800–369,861 available points) as number of background points greater 

Table 1 
Environmental predictors available for the study areas and the information 
sources.  

Predictors Unit Source 

Bathymetry m GEBCO (https://www.gebco.net) 
Slope % GEBCO and ArcGIS derived 
Distance to isobaths: 
− 200 m (d_200) km GEBCO and ArcGIS derived 
− 1000 m (d_1000) km GEBCO and ArcGIS derived 
− 2500 m (d_2500) km GEBCO and ArcGIS derived 

Distance to: 
coast (d_coast) km Indonesian Geospatial Information Agency and 

ArcGIS derived 
shelf (d_shelf) km Seafloor Geomorphic Features Map (Harris 

et al., 2014) and ArcGIS derived 
Oceanographic predictors: 

Sea surface 
temperature (SST) 

◦C Aqua MODIS (https://oceancolor.gsfc.nasa. 
gov) 

Sea surface salinity 
(SSS) 

PSU SODA 3.3.1 (http://apdrc.soest.hawaii.edu) 

Chlorophyll-a (Chl) mg. 
m− 3 

Aqua MODIS (https://oceancolor.gsfc.nasa. 
gov)  

Table 2 
Environmental predictors used per area in the Maxent models (unless removed 
based on multi-collinearity test, indicated with ‘*‘).  

Predictors SS BB NEBS SESS LSE BHS FS 

Bathymetry v v v v v V v 
Slope v v v v v V v 
Distance to isobaths: 
− 200 m (d_200) V n. 

a 
v v v V * 

− 1000 m (d_1000) V n. 
a 

v v v n.a n. 
a 

− 2500 m (d_2500) n. 
a 

n. 
a 

* v v V n. 
a 

Distance to: 
coast (d_coast) V n. 

a 
v * * v v 

shelf (d_shelf) * n. 
a 

* * * * * 

Oceanographic predictors: 
Sea surface temperature 
(SST) 

V v * v v v v 

Sea surface salinity (SSS) * v v v v * v 
Chlorophyll-a (Chl) V * v v v v * 

n.a: predictor was not available for the specific region, so was not used in the 
modelling. 
‘v’ indicates the variables that were used in the models in each region. 
SS: Sunda Strait, BB: Balikpapan Bay, NEBS: NE Borneo Seascape, SESS: SE 
Sulawesi Seascape, LSE: Lesser Sunda Ecoregion, BHS: Bird’s Head Seascape, FS: 
Fakfak Seascape. 
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than 10,000 does not improve the predictive ability of the model 
(Phillips and Dudík, 2008). The maximum number of background points 
for two smaller regions (the SS and BB) was set to 1720 and 320 
respectively (~13% of its own available points, comparable to the 
average ratio of background-available points of other regions). Bias files 
were used to refine background point selection in Maxent. Bias files 
constrain the location and density of background point sampling to 
ensure that background points are generated from the same environ-
mental space as the presence locations and allow the user to account for 
sampling bias from the data collection method (Phillips et al., 2009). 
Bias files were created and hence background selection was carried out 
using 30 km (15 km for two smaller regions: the SS and BB) buffered 
local adaptive convex-hull for individual species using the ‘Background 
selection tool’ in the SDMtoolbox 2.0. The buffers chosen have been 
shown to best restrict background point selection within the environ-
mental space. 

The performance of each Maxent model was evaluated using the AUC 
(area under the receiver-operating-characteristic curve), which assesses 
model discriminatory power by comparing model sensitivity (i.e., true 
positives) against model 1 minus specificity (false positives) from a set of 
test data (Phillips et al., 2006). The AUC value provides a 
threshold-independent metric of overall accuracy, and ranges between 
0 and 1. An AUC value above 0.5 indicates that the model performs 
better than random (Phillips and Dudík, 2008), while values between 
0.6 and 0.9 were indicative of a well fitted model (Breen et al., 2016). To 
assess how much each environmental variable contributed to the Max-
ent run, jackknife tests of variable importance were conducted by 
running the model with-only and without a variable at a time. It was 
possible to evaluate the contribution (gain) of each variable with respect 
to the whole ensemble of variables, and to evaluate the effects of the lack 
of the selected variable on the model compared to the set of overall 
variables (Elith et al., 2006). To distinguish suitable and unsuitable 
habitats, the ‘maximum training sensitivity plus specificity threshold’ 
was applied to the predicted distribution maps in ArcGIS 10.3. The mean 
threshold of 10 replicates of each species model was used as a binary 
threshold for presence/absence of corresponding species, above which a 
suitable habitat is considered to occur. This is the point where the 
proportion of correctly predicted presences and absences are maximized 
(Liu et al., 2005). 

Maxent has a common problem with producing over-prediction, 
since it gives higher probability scores for habitat suitability in areas 
with similar environment characteristics to the sighting locations, 
although the predicted areas are located outside the observed range. To 
overcome the over-prediction, minimum convex polygon (MCP) with 
30 km (15 km for two smaller regions: the SS and BB) as a buffer distance 
from the sighting point of each species was used in SDMtoolbox 2.0. This 
technique resulted in model outputs that represent the suitable habitat 
within an area of known occurrence, excluding potentially suitable 
habitats outside the observed range and unsuitable habitats throughout 
the study areas. 

2.5. Species combined maps overlap with spatial conservation 
management system and anthropogenic threats 

Firstly, a combined suitable habitat map (hereafter called ‘combined 
map’) was made by summing individual binary species suitability maps 
in each region (Brown et al., 2017). This map, however, does not 
necessarily represent the absolute species richness (Brown, 2014) as 
only data from the selected 15 out of the 34 reported species were used. 
Next, the areal overlap between cetacean habitats and current spatial 
conservation management system was made by superimposing the 
combined map in each region with maps of MPAs and MSP jurisdiction. 
MPA polygons were gained from the Ministry of Marine Affair and 
Fisheries of Indonesia, while MSP jurisdiction (12 nm from coastlines 
(The Government of The Republic of Indonesia, 2014a)) was generated 
using ‘Buffer-Analysis Tools’ in ArcGIS 10.3. Similarly, to predict 

cetacean exposure to anthropogenic threats, the combined map in each 
region was overlaid with oil and gas concession areas and marine traffic, 
and the overlap between these areas was quantified. Oil and gas 
concession areas in Indonesia from Patra Nusa Data (2016) were digi-
tized in ArcGIS 10.3. Marine traffic was indicated by shipping density 
from a global map of shipping traffic (Halpern et al., 2008). 

3. Results 

3.1. Maxent model performance 

Maxent model performed well for the majority of species modelled 
for most regions. All model outputs presented good discriminant power 
with AUC scores ranging from 0.740 to 0.898, thus can be considered 
well fitted models. The standard deviation of the AUCs showed low 
values less than 0.05 for 29 out of total 33 model outputs (Fig. 2). The 
threshold values used to distinguish suitable and unsuitable habitats 
ranged from 0.302 to 0.555 (Fig. S1). A comparison of suitable habitat 
from Maxent model predictions with the distributions of sightings shows 
a good agreement for most species in most regions (Fig. S1). Of the 33 
Maxent model outputs, six were performed based on only a few presence 
data points (between 10 and 15 data points) (Fig. 2). 

3.2. Predicted distribution, important variables and habitat preferences 

Our results reflected a great heterogeneity in distribution among 
species and within species among different regions (Fig. 2). Within the 
same region, predicted distributions varied between species and some 
species showed areas of overlap. The predicted distributions showed a 
similar pattern for overlapping species in a region, although differences 
in spatial extent were identified between species (Fig. 2). 

Important variables differed across the model outputs for each spe-
cies and region (Table 3). In general, bathymetry, distance to coast, 
distance to the − 200m isobath, Chl, and SST were important variables 
for most species in many regions. High predictive scores or habitat 
suitability index (HSI) of most species (Fig. 2) were mainly in areas that 
indicate the presence of these environmental predictors that represent 
productive areas. Habitat preference also varied among species 
(Tables S2–S8). Below, the distributions of cetacean species, the 
important variables and habitat preferences are elaborated upon per 
region. 

In the Sunda Strait (SS), both Stenella longirostris and Tursiops trun-
catus, were distributed near coastal areas, insular areas and around the 
− 200m isobath, although S. longirostris was spread wider (Fig. 2). Dis-
tance to − 200m isobath was prominently determining the distribution 
of S. longirostris and T. truncatus. The second most important variable 
explaining the distribution of both species, however, differed; bathym-
etry for S. longirostris, and Chl for T. truncatus (Table 3). The habitat 
preferred by S. longirostris was characterised by being closer to the 
− 200m isobath, and at areas with a depth of around − 255m, and these 
characteristics were significantly different in comparison with habitat 
where the species did not occur (Table S2). Similarly, the habitat pref-
erence of T. truncatus was related to areas closer to − 200m isobath, but 
having higher Chl (Table S2). 

In the Balikpapan Bay (BB), the high predicted distribution of 
Orcaella brevirostris was principally found in river areas (Fig. 2), while 
Tursiops aduncus was distributed both in estuarine and coastal waters 
(Fig. 2). The distribution of O. brevirostris was mainly determined by SST 
and SSS, while the distribution of T. aduncus was dominantly explained 
by slope and SSS (Table 3). O. brevirostris preferred habitat that was 
characterised by higher SST and lower SSS (Table S3). T. aduncus was 
likely to occur in areas with steeper sea-bottom slope and lower SSS 
(Table S3). 

In the NE Borneo Seascape (NEBS), the predicted distributions were 
almost identical for all species and present in broader areas (Fig. 2), 
except O. brevirostris which was restricted to estuarine areas like in the 
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Fig. 2. Individual spatial distribution of 15 cetacean species in the 7 Indonesian regions included in this study (regions #1–4, regions #5–7 on the next page). Habitat 
Suitability Index (HSI) ranges from 0 (blue) to 1 (red). n = number of sightings, AUC is area under the receiver-operating-characteristic curve. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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BB. Most of the delta areas of the NEBS were predicted to be a suitable 
habitat for O. brevirostris, especially in Sesayap in north areas (Fig. 2). 
This prediction will need to be validated in future surveys. Areas that 

consistently indicate high habitat suitability for the other species were in 
coastal and complex insular-reef areas. High suitability predictions also 
extended towards the southern part of the region along the coastline. 

Fig. 2. (continued). 
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Bathymetry, distance to coast and Chl were the most important variables 
determining the distribution of most species (Table 3). The distribution 
of two deep diving species, Peponocephala electra and Physeter macro-
cephalus, in addition was explained by distance to the − 200m isobath. 
The habitat preferences of all species in the NEBS are detailed in 
Table S4. 

In the SE Sulawesi Seascape (SESS), the model suggested that P. 

electra and P. macrocephalus have a wide distribution (Fig. 2), with 
P. macrocephalus tending to avoid shallow reefs. S. longirostris occurred 
closer to the complex insular-reef areas, while T. truncatus was occu-
pying both coastal and complex reef areas (Fig. 2). Some patches of 
predicted high suitability for S. longirostris and T. truncatus occur in the 
vicinity of oceanic islands. Environmental variables that explain most of 
the distribution of each species are given in Table 3. The two most 

Table 3 
Relative importance (%) of each environmental variable in explaining the species distribution in the Maxent model. Bold numbers in 
grey background are the two most important variables, bold italic numbers with grey background are the third or the fourth important 
variables that were required to achieve a summed explanation of at least 50%. The variable names in the first row are the names given in 
Table 1. 
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important variables for P. electra were distance to the − 200m isobath 
and SST. Chl and distance to the − 1000m isobath were the major pre-
dictors that determined the distribution of P. macrocephalus. The dis-
tribution of T. truncatus was well-explained by bathymetry and SST. 
S. longirostris distribution was determined by four most important vari-
ables, i.e., distance to − 1000m isobath, Chl, distance to the − 200m 
isobath, and SST. The preferred habitat areas of these species can be 
found in Table S5. 

In the Lesser Sunda Ecoregion (LSE), all species exhibited relatively 
uniform spatial distributions, concentrated along the coastal areas with 
the differences in spatial extents (Fig. 2). Areas with relatively low 
occurrence, so relatively unsuitable for most species, were in deeper 
oceanic waters. Two species, P. macrocephalus and P. electra however, 
were predicted to occur in deeper oceanic waters, although with low 
predicted values. For most species, two topographic variables, ba-
thymetry and distance to − 200m isobath, and two oceanographic var-
iables, SST and Chl, were the most important variables (Table 3). The 
distribution of two deep diving species, Globicephala macrorhynchus and 
P. macrocephalus, was also explained by distance to the − 1000m isobath 
(Table 3). Steno bredanensis is a regular inhabitant of coastal waters, but 
it was also found around the − 200m isobath. The habitat preferences of 
all species in the LSE can be seen in Table S6. 

In the Bird’s Head Seascape (BHS), the predicted distributions were 
relatively homogeneous and predicted mixed-species distribution over-
lap, although there was spatial variability among species (Fig. 2). Areas 
suggested as favourable habitat for all species were dominated by 
coastal and complex insular-reef areas. Distance to coast and bathyme-
try were two major environmental variables that drove the distribution 
of most species. The habitat preferences of the species occurring in the 
BHS can be found in Table S7. 

Finally, for the Fakfak Seascape (FS), the model showed Sousa 
sahulensis to principally utilise estuarine areas. Two main estuarine areas 
with consistently high predicted distribution of S. sahulensis were the 
Bintuni Bay and the Arguni Bay (Fig. 2). Areas further offshore seem to 
be less suitable for the species. The distribution of S. sahulensis were 
determined by distance to coast and bathymetry (Table 3). The preferred 
habitat of S. sahulensis was closer to coast in areas with depths around 
− 23m (Table S8). 

3.2.1. Habitat preferences of same species in different regions 
Our modelling results show great heterogeneity in within-species 

habitat preferences among different regions. Nine out of 15 species 
occurred in more than one region (Fig. 2). The distribution of 
O. brevirostris mainly occurred in river and estuarine areas both in the BB 
and the NEBS. The other species that were present in more than one 
region did not show consistent habitat preferences. For instance, 
P. macrocephalus was associated with more complex insular-reef areas in 
the NEBS, utilised more coastal areas in the SESS but avoided shallow 
reefs, and occupied both coastal and deeper waters in the LSE (Fig. 2). 
The heterogeneity in distribution for other species that occurred in more 
than one region can be seen in Fig. 2. 

3.3. Combined species maps and overlap with management systems and 
threats 

Maxent results can be reported as probabilities or binary output (i.e., 
suitable vs. unsuitable habitat). The latter is easier to interpret and has 
important implications for managers to define areas of interest. The 
individual suitable habitat maps for each species in each region are 
shown in Fig. S1 (in the Supplementary information 1). The combined 
suitable habitat map of all species (hereafter, the combined map) in each 
region shows distinct patterns, with most used common locations along 
coastlines and complex insular-reef areas (Fig. 3). The hotspots based on 
the combined maps were identified in each region, and most prevalent in 
the NEBS, SESS, LSE and BHS (Fig. 3). In the NEBS, SESS, and BHS the 
hotspots can be found around complex insular-reef areas, while in the 

LSE two hotspots were identified in coastal areas (Fig. 3). 
Superimposing the combined maps with MPAs and MSP jurisdiction 

indicate areas of potential future protection. Some highly suitable areas 
were outside protected areas where multiple human activities are 
allowed and only ≤35% of these areas were covered by MPAs (except in 
the SESS with 61% of the suitable areas fall within MPAs, Figs. 4 and 6a). 
Still, the majority (≥78%) of these suitable areas will potentially be 
covered in the MSP jurisdiction (e.g. in the SS, BB, NEBS, LSE and BHS; 
Figs. 4 and 6b), therefore it is important to take these critical habitats 
into account during MPA and MSP designation. In addition, super-
imposing the combined maps with the anthropogenic threats indicate 
areas of high potential risk. Some suitable habitats coincide with oil and 
gas exploration areas and marine traffic (Figs. 5 and 6c-e). The majority 
of areas with predicted high habitat suitability had low risk from ship-
ping traffic (BB, NEBS, SESS, BHS, and FS; Figs. 5 and 6d,e). The LSE and 
SESS have large areas with suitable habitats overlapping with MPAs 
(Figs. 4 and 6a), and less overlapping with oil and gas concession areas 
(Figs. 5 and 6c). The LSE, however, and the SS have more dense shipping 
lanes. The overlap between suitable cetacean habitat and medium and 
high shipping density is ≤ 2%, (Fig. 6d and e), suggesting that cetaceans 
face relatively substantial risk in these regions. Remarkably, several 
MPAs also overlap with oil & gas concession areas in five regions: the 
NEBS, SESS, LSE, BHS, and FS (Figs. 4 and 5). The rest of the overlapping 
areas are considered to have low exposure to the two studied anthro-
pogenic threats (Table S9 in the Supplementary information 2). 

4. Discussion 

The current knowledge of cetacean spatial distribution, its protection 
coverage and anthropogenic threats in Indonesia is still very limited 
though crucial for effective conservation management. Here we present 
the distribution modelling of 15 species in seven ecoregions or seascapes 
in Indonesia at a 1 km2 fine spatial resolution. The results reveal partial 
overlap with current MSP and MPA management systems and conflicts 
with anthropogenic activities. This study is a first attempt to provide 
more comprehensive spatial information using a currently available 
large collection of cetacean data. We summarized the main findings and 
general patterns, highlight remarkable results, and provide the full in-
formation in the supplementary. Below we discuss (i) the spatial dis-
tribution resulting from the models, (ii) the quality of the models and 
their limitations, and (iii) the combined map and overlapping areas, as 
well as the potential uses of the model outputs, its implications for na-
tional cetacean conservation management and future perspectives. 

4.1. Spatial distribution and habitat suitability predictions 

Great heterogeneity in spatial distribution and habitat preferences 
among species and within species among different regions was identified 
from our work (Fig. 2). It is not surprising taking into account the 
different ecological niches of the 15 species. For cetaceans, utilizing 
spatially different habitats may be a strategy to minimize interspecific 
food competition (Bombosch et al., 2014). The heterogeneity reflects an 
interrelated influence of both topographic and oceanographic variables 
on the distribution of cetacean species. Both variables play a major role 
in partitioning the distribution of cetacean species, underlining how 
these variables were employed in the Maxent model to predict species 
distribution (Azzellino et al., 2012). The predictions reflect species’ 
traits in how they use the habitat. The fine scale of the present study 
allows us to identify habitat use and preferences in relation to different 
environmental features. 

The species-specific habitat preferences of cetaceans are reflected in 
the set of environmental variables selected by each species’ model 
output. Both the composition and the number of environmental vari-
ables that determine habitat preferences, as well as the relative impor-
tance of the respective variables, are species-specific (Table 3). Each 
species in most regions mainly had 2 important variables determining its 
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Fig. 3. The combined suitable habitat maps of all modelled species in each of 7 regions in Indonesia. The number of overlapping species habitats are different in 
each region. 
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Fig. 4. Overlapping areas between the combined suitable habitats (from Fig. 3) with Marine Protected Areas (MPAs) and Marine Spatial Planning (MSP) jurisdiction. 
Purple areas are the cetacean habitats that fall within an MPA (dark green dotted areas), while ochre areas are the habitats that fall within an area under MSP 
jurisdiction (light green lines). The black lines indicate the area included in the modelling (ecoregion or seascape). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Overlapping areas between the combined suitable habitats (from Fig. 3) with two anthropogenic threats: shipping traffic (shipping density of large vessels 
(>300 tons) indicated with gradual red colours, data from Halpern et al., 2008), and oil & gas contract areas (red dotted). In dark orange areas, the cetacean habitats 
overlap with high shipping intensity (14–48 routes/km2/yr). In orange areas, the habitat overlap with medium shipping intensity (8–13 routes/km2/yr). In yellow 
areas, the habitat overlap with low shipping intensity (1–7 routes/km2/yr). In purple areas, the cetacean habitats overlap with oil-gas contract areas. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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habitat that thus were retained in its model. Only S. longirostris in the 
SESS had 4 variables, the highest number of variables, retained in the 
model compared to other species model outputs (Table 3). Four other 
species in the LSE and 2 species in the NEBS also had 3 important var-
iables. The high number of variables retained in the models indicates 
that their environmental niche in the region depends on the combination 
of several conditions. Despite the different important variables across 
the model outputs for each species and region, in general, Chl and SST 
(oceanographic predictors), and bathymetry, distance to coast and dis-
tance to − 200m isobath (topographic predictors as proxies for produc-
tivity), were the most important variables that contributing to the 
distribution of most species in many regions. To a lesser extent SSS and 
distance to the − 1000m isobath were important for respectively estua-
rine and oceanic species. The ecological interpretation of complex re-
lationships detected through Maxent model, of course, needs further 
analysis and validation. 

4.1.1. Chlorophyll-a as a proxy of high productivity areas 
Areas with high predictive suitability in every region were mainly 

related to coastal areas or insular-reef complexity. In general, suitable 
habitat seems chiefly associated with high productivity, often with 
upwelling-modified waters close to the topographic features (Redfern 
et al., 2017), which would create favourable foraging conditions. It has 
been reported before that cetacean distributions and population den-
sities reflect the oceanographical conditions that are associated with 
biological productivity and diversity hotspots (Cama et al., 2012; Scales 

et al., 2014; Tobeña et al., 2016; Worm et al., 2005). That is why most 
suitable habitat areas identified in our results are mainly characterised 
by chlorophyll-a concentration (Chl) and sea surface temperature (SST), 
and for few species by sea surface salinity (SSS) (Fig. 2, Table 3). Chl 
indicates phytoplankton and is the basis of the food web and is driven by 
nutrient availability (for example from rivers, and thus related to lower 
SSS) and higher SST (La Manna et al., 2016). Therefore it works as a 
good proxy for other bio-ecological factors (Moura et al., 2012) such as 
the distribution of zooplankton feeding on the phytoplankton on which 
the next predators feed including the prey species for the cetaceans. 
Thus, via this indirect link between primary biomass as represented by 
Chl and cetacean occurrence, Chl seems useful in identifying hotspots 
where cetaceans may aggregate. Our results are in accordance with 
Cotté et al. (2010) and Putra and Mustika, (2020a, 2020b) who reported 
that densities of dolphins were related to high Chl and high gradients of 
SST. All study areas are situated in the Indonesian tropical upwelling 
system, where oceanic currents strongly influence the temperature and 
primary productivity (Drushka et al., 2010; Steinke et al., 2014), 
benefitting marine species at all levels of the food web, including ceta-
ceans. All of our determinants do contribute to the features of productive 
habitats (Chl-a, SST, SSS, depth, slope), thus the determinants resulted 
from this study may not be applicable to oligotrophic areas in Indonesia 
and thus should be studied further. The distribution of some species (e. 
g., S. sahulensis in the FS and three species in the BHS), however, seemed 
not related to primary production but was instead strongly influenced by 
topographic variables (mainly distance to coast and bathymetry). 

Fig. 6. The percentage of local cetacean habitat that 
overlap with: (a) MPAs, (b) MSP jurisdiction waters, 
(c) oil-gas contract areas, (d) low shipping density 
(1–7 routes/km2/yr), and (e) medium (8–13 and 
routes/km2/yr) and high (14–48 and routes/km2/yr) 
shipping density in the 7 Indonesian areas modelled 
in this study. SS=Sunda Strait, BB=Balikpapan Bay, 
NEBS=Northeast Borneo Seascape, SESS=Southeast 
Sulawesi Seascape, LSE = Lesser Sunda Ecoregion, 
BHS=Bird’s Head Seascape, FS=Fakfak Seascape.   
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4.1.2. Topographic complexity indicating high habitat and prey diversity 
Our model outputs clearly show that most species occurred in more 

complex topographic areas such as complex reefs and oceanic insular 
areas identifiable by certain depth e.g., the − 200m and − 1000m iso-
baths, and in few species by slope. In the NEBS and SESS, for instance, 
sperm whale distribution is closely associated with the − 200m and 
− 1000m isobaths. The latter isobath was also reported as a key deter-
minant of sperm whale occurrence in the past (Sahri et al., 2020b). 
Distance to the − 2500m isobath, however, was not retained in any 
model output as an important variable, indicating that this variable is 
weak in determining cetacean distribution. Topographic variables have 
been suggested to influence and even drive persistent hydrographic 
features which can lead to the creation of predator hotspots (Bouchet 
et al., 2015; Pirotta et al., 2011; Praca et al., 2009) and most likely af-
fects the availability, distribution and concentration of prey species 
(Arcangeli et al., 2016; Naud et al., 2003). The high topographic het-
erogeneity areas and sea currents result in formation or localized up-
welling, stimulating primary productivity that can sustain a rich food 
web structure and contain dense patches of prey, attracting large 
predators (Breen et al., 2016), including cetaceans. Blue whale in the 
LSE was predicted to be distributed in deep yet near coast areas around 
the strait between Flores and Sumba islands (Fig. 2). This is in agreement 
with Ilangakoon and Sathasivam (2012) suggested that blue whales can 
be present in relative small, localized highly productive feeding area 
associated with strong upwelling year-round in Sri Lanka, and only 
make localized movements within this area. O. brevirostris prefers 
shallow, sheltered estuaries, such as in the NEBS, since such areas are 
commonly highly productive systems that can attract fish and top 
predators (Passadore et al., 2018). It has been shown before that distinct 
isobaths (− 200m and − 1000m) are important factors in determining the 
distribution of many cetaceans known to forage on pelagic schooling fish 
or deep-water prey (Goetz et al., 2015; Scales et al., 2014). In our study, 
especially the LSE, NEBS and SESS have very steep slopes with ba-
thymetry exceeding − 1000m within a short distance from shore. 
Near-shore deep waters with complex topographic is supportive of high 
cetacean diversity. 

4.1.3. Species traits reflected in their predicted distribution 
Cetaceans greatly differ in traits such as food choice, body surface- 

volume ratio and physiological adaptations for deep diving to forage 
(Mannocci et al., 2014). For instance, P. macrocephalus and G. melas have 
lower energetic costs and are able to forage deeper than most delphinid 
species and therefore can exploit deeper food resources along the con-
tinental slope than species with shallower diving capabilities (Mannocci 
et al., 2014). Predicted habitat from our study was also higher for most 
species in coastal (mainland or insular) areas. Cetaceans increase their 
benefits by spending as much time as possible close to the areas where 
the likelihood of finding their preferential prey may be higher (La 
Manna et al., 2016). For instance, bottlenose dolphins in all regions 
prefer coastal areas in which have shallower feeding grounds that often 
host complex and rich food webs (La Manna et al., 2016) which is 
optimal for a species that chiefly forages on demersal prey (Bearzi et al., 
2008). 

The same species can have distinct habitat preferences in different 
regions and the combination of different environmental variables may 
influence its predicted distribution. The expression of the combination 
of variables can be unique in each ecosystem (Redfern et al., 2017). Our 
results showing that sperm whales can inhabit different areas with 
variable characteristics are in agreement with those reported by Praca 
et al. (2009), since some cetaceans tend to be opportunistic towards 
their surrounding available habitats. In this case, sperm whale can 
sustain their needs in both productive coastal and complex insular-reef 
areas, as well as in more offshore oligotrophic areas (Lambert et al., 
2014). Comparison of the habitat preference of a species over different 
regions characterised by different complex environmental variables 
could add understanding on the core qualities of the species’ favoured 

areas. Habitats overlapping for different species are especially important 
to study further as understanding co-occurrence due to niche speciali-
sation as well as potential interspecies competition better might be very 
helpful for cetacean conservation management effort. 

4.2. Quality and limitations of the models 

To be able to build a plausible habitat suitability model, we carefully 
analysed data, performed predictor quality control (e.g., reducing data 
autocorrelation and environmental variable multicollinearity) (Brown 
et al., 2017), chose Maxent as it is specifically designed to handle 
presence-only data (Elith et al., 2006; Phillips et al., 2006), and cor-
rected over-prediction model outputs (Brown et al., 2017). Model 
evaluation metrics (based on moderate-high AUC and low SD values) 
indicate that most of model outputs had internal model consistency thus 
supporting the reliability of models and the distribution models pro-
duced had reasonable robustness (Bombosch et al., 2014). The results 
are useful not only for ecological investigation but could also support 
conservation management decision making. Nevertheless, in the inter-
pretation of model outputs attention should be paid to some methodo-
logical limitations. Some common issues derived from sample size, 
different sources of data, sampling bias and different spatial scales could 
influence the accuracy of the Maxent algorithms (Elith et al., 2006) and 
are discussed below. 

The sighting data used in this study was collected opportunistically 
in areas of known occurrence or areas that are easy to survey, hence our 
sighting data represents a sampling bias (Fig. 1). Spatial autocorrelation, 
the tendency of locations close to one another sharing similar values for 
environmental variables, is also common in species occurrence data 
(Dormann et al., 2007). This can lead to a number of problems in species 
distribution modelling, including biased coefficient estimates, inflated 
measures of model evaluation and difficulties in transferring predictions 
in geographical space (Guélat and Kéry, 2018). Spatial autocorrelation 
arises from several processes, but mainly by sampling bias (El-Gabbas 
and Dormann, 2018). To correct for non-homogeneous distribution of 
the sampling effort (Phillips et al., 2009), we tried to address this issue 
by applying the ‘bias file’ function in the Maxent models (Brown, 2014; 
Brown et al., 2017). 

Due to sample size limitations, we only modelled the habitat suit-
ability for 15 out of 34 cetacean species in seven regions in Indonesia 
(Fig. 2, Table S1). Obtaining enough data for modelling the habitats of 
cetaceans, or top predators in general, is challenging because these or-
ganisms are by nature sparsely distributed compared to lower trophic 
levels, and their detection is often imperfect, often resulting in scarce 
datasets (Virgili et al., 2017). We performed the distribution models, 
despite the relatively small number of sightings for some species, as a 
useful first approach of cetacean habitat modelling that could accelerate 
the knowledge on distribution of these never-studied populations. A 
number of previous studies also successfully used distribution models for 
multiple cetacean species with low numbers of sighting records (e.g. 
Breen et al., 2016; Correia et al., 2015; Roberts et al., 2016). For some 
species in our study the number of sightings unfortunately was too low 
(between 10 and 15 points) for our distribution modelling, highlighting 
the need for further dedicated monitoring of cetacean presence in this 
area to validate the predicted distributions from the models and also to 
build better databases for future modelling works. 

Among available presence-only models, we chose Maxent because it 
appeared more suitable to model the predictions of species distribution 
with complex interactions between the response and the predictor var-
iables (Elith et al., 2011; Phillips and Dudík, 2008) and seemed to 
manage datasets characterised by scarce data well (Wisz et al., 2008). 
The use of Maxent along with limited occurrence data, can be a 
cost-efficient way to obtain information for unprecedented studied re-
gions. Ideally, the number of occurrence data point is > 15 sightings to 
prevent inconsistent model results (Aguirre-Gutiérrez et al., 2013), 
although Maxent is known to perform well with small sample sizes 
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(Pearson et al., 2007), which was the case for several species in our 
study. More sightings over the whole year can generate seasonal pre-
dicted distributions for species by incorporating seasonality into future 
models, which is especially relevant for non-resident species. Despite the 
aforementioned limitations, our results provide crucial first insights to 
support conservation and management strategies where there was a 
fundamental lack of knowledge regarding cetacean distribution. 

4.3. Overlapping suitable habitats and conservation management areas 
and threats 

This study highlights the importance of several ecoregions and sea-
scapes in Indonesia for cetacean species especially in the LSE and NEBS, 
while several species could not even be included due to insufficient data. 
The more species that occur in a region, the more important the region 
from conservation perspective (Zacharias and Gregr, 2005). Most of the 
important coastal habitat areas also containing major human settle-
ments, harbours and tourism destinations. These anthropogenic activ-
ities pose actual and potential future threats to cetacean populations in 
those regions. The combined species maps also show that important 
suitable cetacean habitat is in the vicinity of insular areas. Under-
standing the current habitat use of cetaceans is a necessary step in 
comprehending and evaluating the effects of human activities on the 
species for conservation management strategies including MSP and 
MPA. In spatially explicit risk assessments, local species distribution 
should be linked to the potential effects and distribution of human ac-
tivities (Stelzenmüller et al., 2009). Measures can then be developed to 
reduce or avoid the adverse impacts. This study provides cetacean dis-
tribution maps at a fine (1 km2) resolution as an input for MSP to pro-
mote human activities that are less harmful to cetaceans (Roberts et al., 
2016). 

Using Maxent modelling to identify cetacean suitable habitat can 
provide the scientific justification for their more effective protection. 
Our results show that large areas of important cetacean habitats are 
currently not protected in the existing conservation management sys-
tem, since areas of highest probability were located outside MPAs 
(Figs. 4 and 6a). These areas could to be considered in other site-based 
protection approaches such as MSP development (Coomber et al., 2016). 
The information on spatial gaps in protection coverage is useful to assess 
effectiveness of existing MPAs for conserving biodiversity in the region. 
To our knowledge, no studies so far have investigated whether Indo-
nesian MPAs are adequately protecting marine mammals which is the 
ambition of the Indonesian government (Sahri et al., 2020a). The 
different extent of species habitats making the delineation of MPAs a 
challenge. The most suitable cetacean habitats in coastal and complex 
insular-reef areas deserve special protection against human activities 
that may threaten cetaceans, and deserve special attention when 
establishing MPAs. Typically small MPAs offer limited conservation 
benefits (Gaines et al., 2010) particularly for mobile species. Additional 
measures to protect the migratory species are needed including re-
strictions on fisheries activities with destructive gears in the species 
hotspots, seasonal closures during migration and breeding seasons and 
temporal or permanent ship rerouting (Allen, 2014; Dransfield et al., 
2014; Hoyt, 2011). The size and design of MPAs and consequent man-
agement measures should be adapted to the ecological principles of the 
cetacean life cycles and that of their prey (Mangano et al., 2015). MPAs 
also need to be viewed in the larger context of the entire ecosystem 
including the extent to which these habitats interact at larger spatial 
scales (Azzellino et al., 2012). In Indonesia, provincial MSP jurisdiction 
only covers waters until 12 nm from the coastline. Thus, to improve the 
protection of cetaceans outside current MPAs and provincial MSPs, the 
suitable habitats should be taken into account in MSP establishment in 
waters beyond 12 nm (The Government of The Republic of Indonesia, 
2014b). The existing knowledge on cetacean habitats in this region, 
fortunately, has been largely included as Important Marine Mammal 
Areas (IMMA) (IUCN-MMPATF, 2019). In addition, the ecosystem in 

which marine mammals live often encompasses the waters of more than 
one country (Giannoulaki et al., 2017). This is the case in the LSE, where 
two countries (Indonesia and Timor Leste) share the coastline, therefore 
can encourage multi-national collaborations, for instance through the 
Coral Triangle Initiative (CTI), since both countries are the members of 
CTI. Our results allow the identification of the suitable habitat for the 
species over wider areas, providing the means to strengthen protection 
for the species beyond individual country’s territorial waters. 

Worldwide, oil-gas exploration is currently expanding into areas 
previously undisturbed by industrial development (Wilson et al., 2013), 
including areas important for cetaceans. The BB and NEBS in East 
Kalimantan, and the FS in Papua hold significant hydrocarbon reserves 
and are well-known as important national oilfields (Patra Nusa Data, 
2016) that can support the national need on oil, gas and income. The 
areas overlap with important cetacean habitat identified from our study. 
The concession areas are subject to seismic activity for hydrocarbon 
deposits in the seabed during exploration activities. Cetacean mass 
stranding events have been related to seismic exploration (Filadelfo 
et al., 2009; Frantzis, 2004). Seismic survey is also one major contrib-
utor of anthropogenic ocean noise (Elliott et al., 2019; Farmer et al., 
2018) that cetaceans are exposed to (Finneran et al., 2015; Schlundt 
et al., 2016), in addition to the noise produced by marine shipping. 
Although some cetacean suitable habitats overlap with oil-gas conces-
sion areas, Indonesia has no regulation on underwater noise such as 
from seismic activities (Sahri et al., 2020a). Oil spills from exploration 
and production activity have been reported to cause massive pollution to 
marine environment (Eckle et al., 2012; Farmer et al., 2018). Cetaceans 
suffer from oil spills by direct contact with crude-oil or high concen-
trations of volatile gases, by indirect exposure to toxic oil hydrocarbons 
via their prey or loss of prey, as well as from oil spill response activities 
including increased vessel operations, dispersant applications, and oil 
burns (Dias et al., 2017; Schwacke et al., 2017). The cetacean habitat 
maps from this study identify potential overlapping areas of conflict, 
which could be avoided. Where potential threats are already well 
known, such as near production wells for oil and gas extraction, 
enhanced preparedness for spill events in proximity to species habitat is 
also worthwhile. 

Shipping is one of the world’s largest industries and dominates ocean 
use (UNCTAD, 2017), thus excluding this sector from decision-making 
could lead to increased conflict among user groups and negative envi-
ronmental impacts (Coomber et al., 2016; Metcalfe et al., 2018). This 
marine transport may directly affect the habitat use of marine mammals, 
since they coincide in the overlapping ocean spaces, and if uncontrolled, 
can create adverse impact to the species by collision and noise pollution. 
The overlapping maps of suitable habitat and shipping density from our 
study showed two regions, the SS and LSE, had high exposure of marine 
traffic (Figs. 5 and 6d), therefore mitigation for the anthropogenic 
threats should be focused on these areas. Within Indonesian waters, 
three archipelagic sea lanes (Indonesian: Alur Laut Kepulauan Indonesia, 
ALKI) have been established, i.e., in Sunda Strait (ALKI I), Lombok Strait 
(ALKI II), and Ombai Strait (ALKI III). ALKIs are one of the busiest 
shipping routes in the Asia and Oceania regions with an estimated 27% 
of the world’s oil traffic per day are transported through the Malacca 
Straits and the ALKIs (Asian Development Bank, 2014). Although some 
cetacean suitable habitats exist close to the designated ALKIs, Indonesia 
has not declared any sensitive areas to protect such habitats from 
possible ship collision, noise and oil pollution produced by shipping 
operations. The current shipping also is not only concentrated in the 
established lanes, but also occurs in unofficial shipping lanes northeast 
of the ALKI III (Fig. 5). These lanes are also important migratory corri-
dors for a variety of marine mammals including pygmy blue whale as 
shown by telemetry data (Double et al., 2014). During 1975–1997, oil 
spills from 104 shipping accidents polluted the Indonesian marine and 
coastal areas (Nontji, 2000). A better understanding of the shipping 
intensity overlapping with cetacean habitat can be used to inform 
ecosystem-based management within an MSP framework (Coomber 

A. Sahri et al.                                                                                                                                                                                                                                    



Ocean and Coastal Management 205 (2021) 105555

17

et al., 2016). For instance, the information can be useful in planning 
low-impact shipping corridors, informing the delineation, modification 
or adjustments of the shipping lanes and additional protection needed 
for cetaceans by establishing new marine reserves (Dawson et al., 2018; 
Dransfield et al., 2014). 

It is important to note that the spatial footprint of marine traffic used 
in this study was only based on large vessels, so an underestimation of 
the shipping intensity. As mandated by the International Maritime Or-
ganization (IMO), only large vessels (>300 tons) making international 
voyages and all passenger ships regardless of their size are required to 
have an Automatic Identification System (AIS) to track their movements 
in real time (Shelmerdine, 2015). Small recreational boats do not have 
AIS transmitters and can exist unnoticed in large numbers in certain 
areas. Vessel Monitoring System (VMS) data from fishing vessels un-
fortunately is not yet publicly available in Indonesia. Therefore, our 
marine traffic information excludes a large portion of smaller vessels, 
many of which travel a lot. Furthermore, these smaller vessels tend to 
operate inshore which will particularly affect exposure for the cetaceans 
which have been shown to prefer shallower coastal waters. Further work 
on improving our knowledge of the spatial distribution of inshore ma-
rine traffic is imperative and will give new insights into possible boat 
collision and noise risk. 

4.4. Applications for national cetacean conservation and management, 
future perspectives 

The risk exposure maps (Figs. 4 and 5) from our study can support 
management decisions and conservation measures as in MSPs, although 
they are only one input into a systematic conservation planning process 
(Margules and Pressey, 2000). Our analysis only included two anthro-
pogenic threats: marine shipping and oil and gas industry. Fisheries, 
tourism and many more human activities are synergistically or indi-
vidually also important anthropogenic threats to cetaceans (Thorne 
et al., 2012; Wise et al., 2019). More accessible information is needed to 
better understand the actual allocation of these other anthropogenic 
threats and the overlap with cetacean distribution, MPAs and MSP. The 
present study is an important step as a basis for assessing the overlap 
between cetacean habitat, anthropogenic threats, MPAs and MSP. 
Although bycatch is not included in our overlays, we suggest our 
approach should be used for bycatch mitigation as well, for Indonesia 
has a potentially prominent tuna gillnet fisheries in the Indian Ocean 
(Anderson et al., 2020). The cetacean spatial prediction maps as pre-
sented here provide a basis for valuable planning tool in the context of 
anthropogenic threats, and can also direct additional monitoring effort 
to further improve the spatial and species coverage. The inclusion of 
other anthropogenic pressures is a next step to better understand how 
human activities overlap with cetacean distribution and to determine 
where MSP for conservation management is urgently needed. Quanti-
fying spatial risk assessment by using models such as INVEST (Arkema 
et al., 2014) may also be a valuable and logical next step to this pre-
liminary work. 

5. Conclusion 

The cetacean distribution maps presented here provide a recent 
habitat preference characterization of the studied species. Closer anal-
ysis clearly indicates why Indonesian waters are rich in cetacean di-
versity, as topographic and oceanographic factors favour primary 
production and habitat complexity including deep waters. We provide 
fine resolution distribution maps of 15 cetacean species in seven regions 
in Indonesia. We highlight the areas of highly suitable cetacean habitat 
as priority areas for future spatial conservation decisions, for example, 
in the SS, the BB, the northern part of the NEBS, and the north-eastern 
part of the LSE. Our results also identified potential areas of conflict 
with human activities. High risk areas will vary with seasonal distribu-
tion, further research on seasonal modelling is then needed e.g., to find 

the best time for performing oil and gas exploration (seismic activity). It 
is important to realise that 19 out of the 34 species reported were not 
included in this modelling study because of lack of sighting data. The 
distribution of these species should also be taken into account in future 
cetacean conservation management planning. 

The spatial planning efforts should also include a larger spatial scale 
than 12 nm to ensure all important biodiversity assets are appropriately 
represented in new MPAs, in protected zones within provincial MSP 
jurisdiction, or in future open-sea MSP establishment beyond 12 nm. 
Given current global environmental changes, dedicated monitoring of 
possible changes in cetacean distribution is necessary for adaptive 
conservation management. Our species distribution prediction maps can 
help future monitoring surveys to collect more information on under-
studied species. The maps can also predict suitable habitat for which 
observations are not yet available, followed by validation of the pre-
dicted areas by field research. 

The approach we present is relatively inexpensive that parallels and 
is complementary to large-scale marine mammal surveys, providing a 
model that can be used where resources are limited. This approach can 
be applied anywhere to model cetacean habitat use, identify priority 
areas for conservation, and highlight potential areas of conflict with 
human activities to inform conservation management. 
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