Structure and rheological properties of Starch-PE compounds in film blown applications

Fresia Alvarado Chacon, phD Wageningen Food & Biobased Research biobased performance materials

Outline

Goal

- PE Thermoplastic starch systems
- Measuring the rheology of thermoplastic starch
- Effect of glycerol content
- Effect of starch type
- Conclusions

- How the rheology of the system can help us understanding the blend structure?
- How to measure the rheological properties of the blend components such that they are representative for the blending process and film structure?

System description

Polyethylene

PE is water resistant, but has poor gas barrier properties

Thermoplastic starch

Starch has good barrier properties, but is water sensitive

Synergistic effect:

Good barrier properties and water resistant!

How to measure the rheology of TPS?

Rapid Visco Analyser (RVA)

Capillary rheometer ROSAND PHECODO Advanced Capillary Extrusion Rheometer η(Τ, Υ. υ V. (Τ, Τ) λ(Τ, Υ. υ

Dynamic rheometer

Option 1: Rapid Visco Analyser (RVA)

- RVA: typically used for starch viscosity
 - Good in mixing of gelling media
- Temperature profile (e.g. 50-95-50°C in 23 min)
 - Cold viscosity (solubility)
 - Gelatinisation peak
 - Hot viscosity
 - End viscosity
- Composition for TPS

representative samples:

starch, glycerol, water

Not possible to analyse PE

Option 2: Capillary rheometer

It measures:

- shear viscosity
- elongational viscosity (calculated-Cogswell method)

Characteristics:

- Closed system (no water loss during measurements)
- High deformation rates
- No sample preparation, pellets are enough
- Temperatures comparable to extrusion conditions
- Not possible to measure very low viscosities

PL

Pressure

Long die

Effect of glycerol on starch viscosity

Ratio glycerol/ dry starch	Peak viscosity (cP)	End viscosity (cP)	Time at peak viscosity (min)	Temperature at peak viscosity (°C)	
0	6846	2388	4.38	70.35	
Low	7048	2455	4.52	71.15	
Medium	7029	2435	4.65	71.90	
Standard	7034	2479	4.78	72.75	↓ ↓
High	7217	2524	4.98	73.85	

- Adding High ratio glycerol to dry starch increases peak and end viscosity only by 5%.
- The time needed to reach peak viscosities shifts less than a minute and the temperature increases by 3 degrees.

Extruded TPS compounds at different water contents

	Sample code	Glycerol/ Dry starch	Water content after extrusion [%]			
			А	В	С	D
GlyL	270716 IV	Low	4	8	25	20
GlyM	270716 II	Medium	4	8	25	20
GlyH	270716 III	High	4	8	25	20

Suitable TPS samples for capillary and dynamic rheometry

- Possible to compare rheological properties of the individual components of the blends
- The most interesting water contents are the highest because they should resemble conditions in the extruder!

Results capillary rheometry

looyears

Results RVA

Peak viscosities and end viscosities of starch materials at 3 different levels: high, medium, low. **Higher viscosities require more glycerol for extrusion.**

	Peak viscosity	End viscosity	T at Peak visc		Time at peak visc	
	(cP)	(cP)	(°C)	(min)	
AVEBE High	7034	1 247	9	72.8	4.78	
AVEBE Medium	3857	7 184	8	76.0	5.32	
AVEBE Low	599) 4	0	75.1	5.18	

Extrusion results during blending

Structure in pellets (cryo SEM pictures)

Barrier properties in films

Conclusions

- Characterizing the rheology of TPS-PE systems is challenging but possible at low moisture contents.
- The effect of glycerol in the rheology of the system could be good studied only at low moisture contents, therefore the predictive potential of the method could not be confirmed.
- Changes in rheology of initial materials such as starch type can largely influence the structure of the blend resulting in different film properties!

Questions ?!

WFBR: Brigit Beelen, Herman de Beukelaer, Gerald Schennink Clement Fosse Maxence Paillart

