

Structure and rheological properties of Starch-PE compounds in film blown applications

Fresia Alvarado Chacon, PhD

Wageningen Food & Biobased Research

Outline

- Goal
- PE - Thermoplastic starch systems
- Measuring the rheology of thermoplastic starch
- Effect of glycerol content
- Effect of starch type
- Conclusions

Goal

- How the rheology of the system can help us understanding the blend structure?
- How to measure the rheological properties of the blend components such that they are representative for the blending process and film structure?

System description

Polyethylene

Thermoplastic starch

PE is water resistant,
but has poor gas barrier properties

Starch has good barrier properties,
but is water sensitive

Blend

Synergistic effect:
Good barrier properties and water resistant!

System parameters

Polyethylene

Thermoplastic starch

Process
parameters

Viscosity

Screw type

Melting
temperature

Mass flow
rate

Temperature
profile

Specific
energy

Starch
type

Water
content

plasticizer
type

plasticizer
content

Additives

Blend

Ratio
PE/TPS

How to measure the rheology of TPS?

Rapid Visco Analyser (RVA)

Capillary rheometer

Dynamic rheometer

Option 1: Rapid Visco Analyser (RVA)

- RVA: typically used for starch viscosity
 - Good in mixing of gelling media
- Temperature profile (e.g. 50-95-50°C in 23 min)
 - Cold viscosity (solubility)
 - Gelatinisation peak
 - Hot viscosity
 - End viscosity
- Composition for TPS representative samples:
starch, glycerol, water
- Not possible to analyse PE

Option 2: Capillary rheometer

It measures:

- shear viscosity
- elongational viscosity
(calculated-Cogswell method)

Characteristics:

- Closed system (no water loss during measurements)
- High deformation rates
- No sample preparation, pellets are enough
- Temperatures comparable to extrusion conditions
- **Not possible to measure very low viscosities**

Effect of glycerol content

Polyethylene

Ratio
PE/TPS

TPS

Water
content

Starch
type

plasticizer
content

plasticizer
type

Additives

Process
parameters

extruder

Blend
In
pellets

Temperature
profile

Mass flow
rate

Specific
energy

Screw type

WAGENINGEN
UNIVERSITY & RESEARCH

Effect of glycerol on starch viscosity

Ratio glycerol/ dry starch	Peak viscosity (cP)	End viscosity (cP)	Time at peak viscosity (min)	Temperature at peak viscosity (°C)
0	6846	2388	4.38	70.35
Low	7048	2455	4.52	71.15
Medium	7029	2435	4.65	71.90
Standard	7034	2479	4.78	72.75
High	7217	2524	4.98	73.85

- Adding High ratio glycerol to dry starch increases peak and end viscosity only by 5%.
- The time needed to reach peak viscosities shifts less than a minute and the temperature increases by 3 degrees.

Extruded TPS compounds at different water contents

	Sample code	Glycerol/ Dry starch	Water content after extrusion [%]			
			A	B	C	D
GlyL	270716 IV	Low	4	8	25	20
GlyM	270716 II	Medium	4	8	25	20
GlyH	270716 III	High	4	8	25	20

Suitable TPS samples for capillary and dynamic rheometry

- Possible to compare rheological properties of the individual components of the blends
- The most interesting water contents are the highest because they should resemble conditions in the extruder!

Results capillary rheometry

Higher water content
→ lower shear viscosities, higher errors → **Not possible to measure higher water contents!**

Higher glycerol content
→ lower shear viscosity (positive for blend processing)

→ extensional viscosity comparable to PE (positive for blend structure)

Instead of adding more glycerol, what about starch types with lower shear viscosities ?

More water

More water

Effect of starch type

Polyethylene

Ratio
PE/TPS

TPS

Water content
plasticizer content
plasticizer type
Additives

Process
parameters

extruder

Blend
In
pellets

Temperature profile
Screw type
Mass flow rate
Specific energy

Results RVA

Peak viscosities and end viscosities of starch materials at 3 different levels: high, medium, low. **Higher viscosities require more glycerol for extrusion.**

	Peak viscosity (cP)	End viscosity (cP)	T at Peak visc (°C)	Time at peak visc (min)
AVEBE High	7034	2479	72.8	4.78
AVEBE Medium	3857	1848	76.0	5.32
AVEBE Low	599	40	75.1	5.18

Extrusion results during blending

- Decreasing the amount of glycerol for the same starch type increases specific energy
- Varying the type of starch can result in the same specific energy at lower glycerol contents.
Glycerol in low V starch < medium < high
- RVA results reflect on the extrusion settings!

Structure in pellets (cryo SEM pictures)

Different starch type

Different starch type

Barrier properties in films

Avebe high

OTR corrected at 100µm	
23°C, 0%RH	23°C, 70%RH
7.60 [0.32]	1080 [7]

Different starch type

Avebe low

OTR corrected at 100µm	
23°C, 0%RH	23°C, 70%RH
4.35 [0.01]	1278 [170]

Less TPS

Avebe high

OTR corrected at 100µm	
23°C, 0%RH	23°C, 70%RH
381.8 [18.3]	1385 [90]

Different starch type

Avebe low

OTR corrected at 100µm	
23°C, 0%RH	23°C, 70%RH
9.65 [0.11]	1358 [105]

Less TPS

Conclusions

- Characterizing the rheology of TPS-PE systems is challenging but possible at low moisture contents.
- The effect of glycerol in the rheology of the system could be good studied only at low moisture contents, therefore the predictive potential of the method could not be confirmed.
- Changes in rheology of initial materials such as starch type can largely influence the structure of the blend resulting in different film properties!

Questions ?!

WFBR: Brigit Beelen,
Herman de Beukelaer,
Gerald Schennink
Clement Fosse
Maxence Paillart

biobased
performance
materials

سabic
sabic

WAGENINGEN
UNIVERSITY & RESEARCH

100 years
1918 — 2018